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Multiresolution Analysis, Haar Bases, and 
Self-similar Tilings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" 

K. Grochenig and W. R. Madych 

Abstract-Orthonormal bases for Lz( R")  are constructed that 
have properties that are similar to those enjoyed by the classical 
Haar basis for L*(R).  For example, each basis consists of 
appropriate dilates and translates of a finite collection of 
"piecewise constant'' functions. The construction is based on 
the notion of multiresolution analysis and reveals an interesting 
connection between the theory of compactly supported wavelet 
bases and the theory of self-similar tilings. 

Index Terms-Multiresolution analysis, multivariate Haar ba- 
sis, self-similar tilings, wavelets, fractals. 

I .  INTRODUCTION 

ECALL that the Haar system on L2( R )  is the collection R of functions 

2 k / 2 $ ( 2 k ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) ,  j ,  k E Z ,  (1) 

where 

if 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI x < 112, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$(x) = -1 ,  i f1/2 I X <  1 ,  i:: otherwise, 

where Z denotes the set of integers. Note the role played by 
the dilation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -+ 2 x  and the translations x -+ x - j .  It is 
well known that this collection is a complete orthonormal 
system for L2(R).  

The point of this paper is to construct analogous systems 
for L2( R") ,  n L 2 ,  where the dilation noted above is re- 
placed by appropriate linear transformations of R" and the 
integers Z are replaced by an appropriate lattice in R". The 
motivation and framework for our construction is outlined in 
Section 11. 

We remind the reader that there are obvious generaliza- 
tions of the Haar basis to higher dimensions. However, the 
general case is by no means obvious and offers some interest- 
ing surprises. 

The plan of this paper is as follows. In Section 11, we 
briefly review the concepts of multiresolution analysis and 
wavelet basis, introduced by Mallat [7] and Meyer [9], for 
L2( R")  and explain how the classical Haar system and our 
construction fit into this scheme. In short, these bases are 
simply wavelets whose corresponding scaling functions are 
characteristic functions of appropriate sets. In Section 111; we 

show how such scaling functions are related to certain self- 
similar tilings of R" and indicate how to construct such 
tilings. Essentially the celebrated two scale functional equa- 
tions reduce to simple iterated function systems in this case. 
Thurston [ 10, Sections 8- 101 considers self-similar tilings 
generated by similarities, that is matrices which are constant 
multiples of rotations, which do not necessarily preserve 
some lattice. The construction presented here is different 
because it requires matrices which leave a lattice invariant 
but includes many cases that are not similarities. In Section 
IV, we construct the promised bases from appropriate scaling 
functions or, equivalently, certain self-similar tilings of R ". 
Representative examples in R and R2 together with several 
general observations are presented in Section V. We con- 
clude the paper with miscellaneous remarks and citations to 
the literature. 

11. MULTIRESOLUTION ANALYSIS AND WAVELET BASES 

In what follows r is a lattice in R", that is, r is the image 
of the integer lattice Z" under some nonsingular linear 
transformation. We say that a linear transformation A on R" 
is an acceptable dilation for r if it satisfies the following 
properties: 

A leaves r invariant. In other words, A r  C r. Here 

A r  = { y :  y = A x  and x e r } ;  

0 all the eigenvalues, X i ,  of A satisfy 1 X i  1 > 1. 

These properties imply that I det A I is an integer q which is 
2 2. 

Such an A induces a unitary dilation operator U,: f + U, f 
on L2( R"),  defined by 

If V is a subspace of L2( R ") we use the customary notation 
U,V to denote the image of V under U,, that is, U,V = 

{ f :  f = U, g ,  g E V }  . The translation operator ry is defined 

A wavefef basis associated to (r, A )  is a complete 
orthonormal basis of L2( R ") whose members are A dilates 
of I' translates of a finite collection * . , $, of orthonor- 
mal functions. More specifically, the members of the basis 
are the functions 

by 7J(X) = f ( x  - Y ) .  
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The classical Haar system defined by (1) is the simplest 

example of such a basis for L 2 ( R ) .  In this case m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, and A is the dyadic dilation A x  = 2 x .  

There is a generic recipe, due to Y. Meyer, for the 
construction of wavelet bases. The main ingredient is the 
notion of multiresolution analysis. 

A multiresolution analysis Y' associated with (I', A )  is 
an increasing family . c V, - ,  C V,  C V,+l C , 
j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Z, of closed subspaces of L2( R") with the following 
properties: 

1) U J E Z V /  is dense in L2(R" ) ,  and n,V, = { 0 } ,  
2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( X )  E V,, if and only if f( A X )  E V,+ , . In other words 

V,  = U i J V o ,  j E Z .  (4) 

3) V, is invariant under 7,. More specifically, if f ( x )  is 
in V, then so is f( x - y) for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy in I'. 

4) There is a function 4 E V,, called the scaling function, 
such that { r,4, y E I'} is a complete orthonormal basis 
for V,. 

From the definition it should be clear that a multiresolution 
analysis is determined by the scaling function 4. Since 
V, C VI there is a sequence {a,} in 12(1 ' )  such that 

4 ( x )  = c a , u i 1 7 , 4 ( X )  
,Er 

ycr 
= 1 a, ldet A I 'j24( A x  - 7). ( 5 )  

It is known that, under certain conditions, these coefficients 
determine the scaling function 4 uniquely. On the other 
hand, in spite of the fact that the orthogonality relations 

impose certain restrictions on the sequence { a r } ,  these condi- 
tions are not sufficient to guarantee that the ay's are accept- 
able scaling coefficients; in short, the nature of the scaling 
coefficients is not completely understood in the general case. 

The simplest example of a multiresolution analysis in one 
dimension with (I', A )  = ( Z ,  21) ,  where Z is the identity, is 
given by the scaling function 4 ( x )  = X [ , , ~ , ( X ) .  Then V, is 
the closed subspace of L2(R)  consisting of all functions that 
are constant on the intervals [ j ,  j + l), ~ E Z ,  and the 
subspaces V, consist of those functions that are constant on 
subintervals [ j 2 - k ,  ( j  + 1)2-,), j E Z. The scaling relation 
is given by 

4 ( x )  = 4 ( 2 x )  + 4 ( 2 x  - 1).  (7 )  

Given a multiresolution analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9', define W, as the 
orthogonal complement of V,. in V,+ I ,  thus Y O  W, = V,+ , 
for all j .  It follows that 

If q = Jdet A 1 then a result which can be found in Meyer's 
paper [8] says the following: There exist q - 1 functions 

$ q - l  such that { T , $ ~ ;   YE^, i = l;.., q - l} i sa 
complete orthonormal basis of WO. 

In view of (8) this theorem implies that the collection 
{Ui7 q i : j e Z ,  y ~ r ,  i = l;.., q - 1 )  is a wavelet basis 

quences {ai,} in 12(1')  such that 

of L 1 (R") .  Furthermore, since WO C VI there are se- 

i = 1 , .  , q -  1.  (9) . 

For example, in the specific case of multiresolution analy- 
sis mentioned above where the scaling relation is given by 
(7), q = 2 and the corresponding basic wavelet is given by 

$(.) = 4 ( 2 x )  - @ x -  1) 

= X [ O ,  I )  (2-4 - XLO, I )  ( 2 x  - 1) .  

This is the basic Haar wavelet. 
Thus, the generic recipe to construct a wavelet basis can be 

briefly summarized as follows: Start with a multiresolution 
analysis with scaling relation (5 )  and look for basic wavelets 
which are of form (9). 

Due to the work of Cohen [ 2 ] ,  Daubechies [3], Mallat [7 ] ,  
Meyer [9] and others, the algorithm outlined above is well 
understood in the case when n = 1 and A x  = 2 x .  In this 
case, multiresolution analyses can be constructed that have 
desired continuity and support properties. The coefficients for 
the basic wavelet can always be expressed in terms of the 
original scaling coefficients via a simple formula. 

The construction of the basic wavelets in the general case 
is not so clear. For example, the structure of scaling se- 
quences which will produce multiresolution analyses with 
desired properties is not well understood. Also, although it is 
clear that the coefficients of (9) should have some relationship 
to the coefficients in the basic scaling relation (3, except for 
certain examples, there are no known formulas for the coef- 
ficients in (9) in the general case. 

We are now ready to state the questions addressed in this 
paper precisely: Given (I?, A ) ,  what are the multiresolution 
analyses whose scaling functions are characteristic functions 
of measurable sets Q? What are the corresponding basic 
wavelets whose support is in Q and how can they be con- 
structed explicitly? In what follows we will refer to such 
multiresolution analyses as simple and to such wavelets as 
elementary. 

Before we start, let us make the following simplification: 
Since every lattice r c R" is of the form I' = EZ" for some 
invertible real-valued n x n matrix E, without loss of gen- 
erality, we may and do restrict our attention to the case 
I' = Z". In this case the matrices A must have integer 
entries. 

111. SELF-SIMILAR TILINGS AND SCALING FUNCTIONS 

In this section, we establish a connection between self-sim- 
ilar tilings and multiresolution analyses that have a character- 
istic function for a scaling function. 

Given a measurable set S, xs denotes its characteristic or 
indicator function and I S I denotes its Lebesgue measure. 
The notation S = T means that the sets S and T are equal 
up to a set of measure zero, in other words, 1 S \ T I = 1 T 
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\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. If S n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 0 we say that S and T are essen- 
tially disjoint. Also recall that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 1 det A I. 

We begin with two technical lemmas which are elementary 
and are probably folklore. 

Lemma I :  Suppose Q is a measurable subset of R" such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U ( Q +  k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: R" 
kcZ" 

Then the following are equivalent: 

1) Q n (Q + k )  = 0 whenever k is a nonzero element in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) IQ1 = 1. 

Z", 

Proof: Let f ( x )  = CjeznxQ(x - j ) .  Then if Q satis- 
fies property 1) it follows that f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and we may write 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992 

where Qo = [0, 11". 

Note that assumption implies f ( x )  L 1. Also observe that 
To see the converse let f and Qo be as previously defined. 

implies that f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 1, which in turn implies the desired result. 
U 

Lemma 2: The number of disjoint cosets in Z" /AZ"  is 
4. 

Proof: Let Qo = [0, 11" and let k ,  + A Z " ; . . ,  k, + 
AZ, be an enumeration of the cosets in Z " / A Z " .  Express 
R" as a union of essentially disjoint subsets as follows 

m 

Since A- 'R"  = R", applying A- '  to both sides of the last 
equality results in 

It should now be clear that 

m 

U A - ' ( k ;  + Qo)  
i =  1 

Q = 

satisfies the hypothesis and 1) in Lemma 1. Hence, 1 Q I = 1, 
and, since Q is the union of disjoint subsets A- ' ( /? ,  + 
Q,);.., A - ' ( k ,  + Q,)eachofwhichhasmeasure l / q , i t  

U 

Theorem I :  Suppose 4 = cxQ is a scaling function for a 
multiresolution analysis associated with (Z",  A ) .  Here x Q  is 
the characteristic function of a measurable set Q and c = 

follows that m = q. 

I Q 1 - ' I2. Then Q satisfies the following properties. 

1) 

Q U ( Q  + k )  2: $, for k # 0, ~ E Z " .  (10) 

- , k that 
are representatives of distinct cosets in Z " / A Z "  such 
that 

2) There is a collection of q lattice points k ,, 

4 

A Q =  U ( k ; + Q ) .  (11) 

(12) 

i =  1 

3) 
U ( Q  + k )  = R". 

kcZ" 

4) There is a compact set K such that Q = K .  

Conversely, the characteristic function of a bounded measur- 
able set Q that satisfies properties l), 2), and 3) is the scaling 
function of a multiresolution analysis associated with (Z",  
A ) .  

Remarks: 

Properties (10) and (12) mean that translates of Q by the 
integer lattice form a tiling of R". Sets Q that enjoy 
property (1 1) are sometimes said to be self-similar in the 
affine sense. 
In view of Lemma 1 properties (10) and (12) imply that 
I Q 1 = 1. Thus c = 1, 4 = xQ and satisfies the func- 
tional equation 

4 

4 ( x )  = c 4 ( A x -  k ; ) ,  (13) 
i= 1 

where the ki's are those lattice points whose existence is 
implied by property 2). 
In view of Lemma 2 the ki's in (11) are a full set of 
coset representatives, namely, 

4 

U (k i  + AZ")  = Z" .  (14) 
i =  1 

Proof: Suppose 4 = cxo is a scaling function for a 
multiresolution analysis associated with (Z",  A ) .  

The disjointness of the translates of Q (10) follows from 

The second property follows from the scaling relation for 
(6):  (Lk4, 4) = C2 I Q n ( Q  + k )  I = &kO. 

X Q ,  

xQ( .) = akq"2XQ( Ax - k ,  
k 

= akq1'2XA-i(Q+k)( .) 9 

k 

where ak,q'/' = 1 for exactly q lattice points k i  and ak = 0 
for the remaining coefficients. The fact concerning the coef- 
ficients akr which of course immediately implies (1 l), fol- 
lows from (10) and the formula 1 AQ 1 = q 1 Q 1 . 

That the k,'s are representatives of distinct cosets of 
Z"/AZ" follows from the orthogonality of 4 ( A - ' x  - k ) ,  
k E 2". To wit, suppose k ,  and k ,  are not in distinct cosets. 
Then there is a lattice point k so that k ,  = k, + Ak and this 
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in turn implies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 

A Q =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( k i + Q )  and 

A ( Q + k )  = U ( k , + A k +  Q )  

are not disjoint which contradicts the orthogonality of 
4 ( A - ' x  - k )  and ~ ( A - ' X ) .  

The covering property (12) is a consequence of the density 
of U,? in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2( R") and 2). To see this, let Pj f be the 
projection of f €L2(R")  onto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi$, in other words, Pi f = 

I Q 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-J( UiJTk x Q ,  f )  UiJrk  xQ.  Then Pj f -+ f as j -+ 00 

and 

i =  I 

4 

i =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

11 Pjf 11 i = 1 Q 1 - j0  1 ( Uijrk X Q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 f )  I -+ 11 f 11 ( 15) 

as j + 00. Hence, if B is any measurable set of finite 
measure, if follows from (15) that 

k 

1 Ql-lq'I A- ' (k  + Q )  n B I Z  
k 

= l Q 1 - ' q - ' l ( k + Q >  n A ' B I 2 - +  I B J  (16) 
k 

as j -+ 00. Now, in view of 2), 

u k ( Q + k )  = u k ( A - J ( Q + k ) ) ,  

for all j in Z". Hence, we may write 

IBI 2 l u k ( Q + k ) n B (  

= I U k ( A - j ( Q 4 - k ) )  

= q - j I ( k +  Q )  f lA jB I  
k 

= I Q I p ' q p J l ( k + Q )  nA'B12. 
k 

By virtue of (16) the last expression converges to I B 1 as 
j - 00 and, as a consequence, we may conclude that 1 B I = 

1 U k ( Q  + k )  n B 1 and, since B was arbitrary, the desired 
result follows. 

Property 4) is a consequence of Lemmas 3 and 5. 
To see the converse let 

Vo = { f e L 2 ( R " ) : f ( x )  = c k x Q ( x -  k )  
k&" 

and let 5 = U i J  Vo for each integer j .  Then Y= { V , j j E Z  is 
a family of closed subplaces of L2(R") and using both the 
above definition and the properties of the set Q it is easy to 
see that this family satisfies the following properties: 

0 V' is an increasing family, namely, 5 C 5+, for all 
integers j ,  

0 V,  = U i J V o  for each integer j ,  
0 Vo is invariant under rk for each k in Z",  

n j e z y  = (01, 

~ 
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{ rkxQ:  k E 2") is a complete orthonormal basis for Vo. 

In view of this, to see that $' is a multiresolution analysis 
associated with (Z", A )  with scaling function x Q ,  it suffices 
to show that U,Ez? is dense in L2(R"). 

To this end, let Pi f be the orthogonal projection of f 
onto 5, let 4 j ( x )  = Jdet A 1 'xQ( -A'x) ,  and observe that 

P j f ( x )  = 4j*  f ( A p j k ) ,  whenever x - A - j k c ~ A - j Q ,  

(17) 

where 

+ j * f ( x )  = J K n 4 j ( x  - y ) f ( y )  dY 

is the convolution of 4 j  and f .  Now, it is easy to see that 

4 j * f -  f - 0  in L 2 ( R " ) a s j - + a ,  (18) 

for all f in L2(R"). In view of (17), the difference between 
Pj f and 4j* f may be expressed as 

If we call the expression in braces Fj(x, y )  and take f to be 
continuous with compact support and I y 1 I 1 then for any 
positive E we may write 

/Rn  I FJ(x ,  r) I dx < E ' ,  (20) 

for sufficiently large j .  Hence, in this case, if we take the 
L2(R") norm of EJ and apply the integral variant of 
Minkowski's inequality to the right-hand side of (19), in- 
equality (20) implies that 

for sufficiently large j .  In other words, 

+ j * f - P j f - + O  in L ~ ( R " )  a s j j o o ,  (21) 

whenever f is continuous with compact support. Since such 
f are dense in L2(R"),  (21) together with (18) imply that 

U U j E z v J  is dense in L2(R"). 

is a scaling function for a multiresolution analysis associated 
with ( Z " ,  A ) .  In view of this, we know that 1 Q 1 = c = 1 
and 

4(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 4(Ax - k ) ,  (23) 
ksY 

where 4 = xQ and Y= { k , ,  . a ,  k 4 }  is a collection of 
representatives of distinct cosets in Z " / A Z " .  Thus, if we 
are interested in constructing a multiresolution analysis whose 
scaling function 4 is of the form (22), a reasonable approach 
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seems to be the following: find an appropriate collection of 
lattice points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3? and solve the functional equation (23). 

Since the solution of (23) is a fixed point of the mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc $ ( A x  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

kc Y 

it is quite natural to apply fixed point iteration to solve for +. 
Namely, start with an initial function +,, and define the 
sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq51, q52, &, * * via 

+ N + I ( X )  = 1 @ N ( X )  (24) 
k e f  

and hope that the sequence converges to 6. Since the desired 
solution is the characteristic function of a set Q whose 2" 
translates tile, it is reasonable to begin the iteration with 
4, = xQo where Q ,  has the same properties. 

Suppose Qo satisfies (10) and (12) and X =  { k , ,  . . * ,  k q }  
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa collection of representatives of distinct cosets of 
Z " / A Z " .  If +o = xQo and 4,  is related to +o via (24) then 

Q1 = U A - ' ( Q ,  + k )  

also satisfies (10) and (12); that Q 1 ,  satisfies (12) follows 
from the fact that 37 is a full collection of distinct represen- 
tatives of Z " / A Z "  and that it satisfies (10) follows from 
I Q1 I = 1. By induction we may conclude that +N+ , , N = 0, 
1, 2; - a ,  is the characteristic function of the set Q N + I  
defined by 

= xQ,  where 

k e y  

Q N + I  = U A p l ( Q N +  k ) .  (25 1 
ke X 

Observe that (25) looks like an iterated function system in 
the sense of Bamsley [l]. Convergence of schemes like (25) 
is usually considered in terms of the following metric defined 
on the space of subsets of R":  

P ( P ,  Q )  = m a x { r ( P ,  Q ) ,  r (Q,  P ) }  (26) 

r (P ,  Q) = supinf I x - y 1 .  

It is well known that when equipped with the metric p the 
class of compact subsets of R" is a complete metric space. If 
the mapping x + A - ' x  is a contraction and Qo is compact 
then the iteration (25) converges to a compact set Q ;  for 
example, see [l]. 

Unfortunately, in our considerations the mapping x + 

A - ' x  is not necessarily a contraction, see Example 1) in 
Section V-C. Nevertheless since all the eigenvalues of A 
are less than one in absolute value it follows that 

where 

xePyeQ 

11 A -'x )I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 CXJjs 11 x 1 1 ,  (27 ) 
for all x E R", where C,  s, h are positive constants and 
X < 1. This is easily seen by writing A in its Jordan form. 
Inequality (27) allows us to state the following. 

Lemma 3: Suppose 3?= { k, ,  . . , k,} is a finite collec- 
tion of lattice points in 2" and Q is the compact set defined 

by 
03 

Q = [ X E R " :  x =  

If Qo is any compact set then the sequence of sets Q1, 
Q2,.  . * , defined by 

converges in the metric p to the set Q. 
Remarks: 

0 

0 

Note that Q is well defined and bounded by virtue of 
(27). 
It follows immediately from the definition that the set Q 
satisfies the self-similarity relation 

m 

Q = U A - ' ( k i +  Q ) .  
i =  1 

Proof: Using (25) repeatedly, we see that 

m 

- 
i =  1 

where jY is the collection of all N tuples ( E , ,  c 2 ,  * . , e N )  
whose components are in X .  Hence, if x is any element in 
QN then there is a point x ,  in Qo such that x = C j =  , A -'ej 
+ A N ~ o .  So by choosing an element y in Q of the form 
y = 

N 

, A- jc j  + A-"y0 where yo E Q we may write 

inf J x - y J  I inf I A - N ( ~ o - y o ) I  
YEQ YOEQ 

I CA"" inf I xo - yo I 
YOSQ 

where the inequalities follow by virtue of (27) and the 
definition of r(Qo, Q). Taking supremum over x E QN 
shows that r(QN, Q )  can be made arbitrarily small by 
choosing N sufficiently large. Similar reasoning shows that 
r (Q,  Q N )  can also be made arbitrarily small by choosing N 
sufficiently large. It now follows that the sequence of com- 
pact sets { QN} converges to Q in the sense of the metric p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

In what follows, we will often be considering collections 
A/= { k , ,  . . - , k,,,} of lattice points in conjunction with the 
scaling relation (1 3) or the self-similarity (1 1). In this context 
it is a minor inconvenience if 0 is not in X .  For example, the 
set defined by (28) does not contain finite sums of the 
specified form. In this particular case this inconvenience can 

and, as a consequence, Q is compact. 
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be remedied by re-expressing the elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx as follows: 

m 

x = ( A  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ) - ' k ,  + A - J ( ~ J  + k , ) ,  
J =  1 

where the E / ' S  are in 2. In the arguments used below there 
is no loss of generality in assuming that 2 contains 0 in 
view of the following easily verifiable lemma. 

is a collection of lattice points 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY2 = xo + 2, for some point xo in R". If $(x) 
satisfies 

Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Suppose Y, 

$(.) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc $ ( A x -  k ) ,  
k e y ,  

then $( x) = $( x - ( A  - Z)-'xo) satisfies 

$(x) = c $ ( A x -  k ) .  
ke X ,  

Similarly, if Q satisfies (1 1)  where the union is taken over k ,  
in Y1 then Q + ( A  - I ) - ' x o  satisfies (11) where the 
union is taken over k ,  in jV,. 

Next we define two sequences of useful measures. If 
3!= { k , ,  * a ,  kq}  is a collection of lattice points in Z" that 
contains 0 then the sequences of measures { p,} and { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,}, 
N = 1, 2 , .  . . , are defined as follows: 

where 6 ( x )  is the unit Dirac measure at the origin and 

vN+I = pN+I * v N ?  

where v ,  = p , .  Note that the support of v, is the finite 
collection of points 

(33) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 
2,= XER,:  X =  E ~ E Y  . (34) 

Note that { S,}, N = 0, 1, 2 , .  * * ,  is the sequence of sets 
generated via (25) with Qo = { 0). 

a ,  k4 }  is a full collection of represen- 
tatives of distinct cosets of Z " / A Z " .  To avoid needless 
repetition of these phrases we say that such a collection is a 
full collection of digits. Of course we refer to elements of 
such a set 2 as digits. 

Lemma 5: Suppose 2 = { k , ,  . . . , k 4 }  is a collection of q 
distinct lattice points in 2". Then any integrable solution of 

1 J =  1 

Suppose Y= { k ,  , 

$(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 $ ( A x -  k )  (35)  
ke I 

is unique up to multiplication by a constant and has support 
in the compact set 

Proof: Without loss of generality, assume 2 contains 
zero. Suppose $ is an integrable solution of (35). Note that 

(35) may be re-expressed as 

4 ( x )  = p , * $ , ( x )  = / $ d x  - Y )  d P , ( Y ) ,  (36) 

where $,(x) = qN+(ANx)  and p,  is defined by (32). By 
induction it follows that for N = 1 ,  2, - * * , 

$(x) = VN*$N(X) '  (37) 

where v, is defined by (33). Now, if $ is in Lp(R"), 
1 5 p < 00, $,* $ converges to c$ in Lp(R") as N -+ 00 

where c = JRn$(x)dx.  Since for each N v, has total varia- 
tion one it follows that v, * $,* $ - cv, * $ converges to 
zeroin LP(R")as  N + m .  Sinceforany N =  1 , 2 ; . - , $  
= v, * $, = cv, + ( v ,  * $, + CY,) and v, * 4, - cv, 
converges weakly to zero we may conclude that cv, con- 
verges weakly to $ as N + 00. Thus the support of $ must 
be in Q. Since the sequence p, is uniquely defined by the 
functional equation (35) and it converges weakly to a con- 
stant multiple of $ it follows that $ is unique up to multipli- 

Theorem 2: Suppose .iY= { k , ,  * . . , k 4 }  is a full collec- 

cation by constants. 0 

tion of digits and suppose the compact set Q is defined by 

m 

Q = { X E R ~ :  x = 1 A - ~ E , ,  E ~ E . Y  
j=  1 

Then the set Q has the following properties. 

If Qo is any compact set then the sequence of sets Q,, 
Q2,.  . . , defined by (25) converges in the metric p to 

Q. 
A Q  = U Yrl(ki + Q). 

(Q + k i )  fl (Q + k j )  = 6 wherever both k i  and k j  
are in Y and ki # k j .  
$ = I Q 1 - ' I2xQ is the unique solution, in the L'(R") 
sense, of 

U k e z n ( Q  + k )  R". 

which has L2( R ") norm 1 .  
The sequence of measures { v,} , N = 0, 1 ,  2, * . . , de- 
fined by (33) converges weakly to I Q I - I xQ.  In other 
words, 

for all functions $ that are continuous and bounded on 
R". 
If { Q,} , N = 0,1,2, * * . , is the sequence of sets gen- 
erated via (25) with Qo = [ -  1/2, 1/21", then the 
corresponding sequence of characteristic functions 
{ xQ,} converges weakly to 1 Q I - ' x Q .  In other words, 



562 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI€€€ TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for all functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ that are continuous and bounded on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R". 

Remarks: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 note that Property 3) implies that I Q I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 ;  

0 as will be clear from the proof, Property 7) holds if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q, = [ - 1 / 2 ,  1 /2]" is replaced by any compact set Q, 
that satisfies (10) and (12). 

Proof: The first two assertions are simply implied by 
Lemma 3. 

To see item 3) let Q, = [ - 1 /2, 1 /2]" and observe that 
for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, N = 0, 1 ,  2,  . , Q, satisfies (12) by virtue of 
the fact that X is a full collection of representatives of 
distinct cosets of Z " / A Z " ,  namely, 2" = U k e 2 ( k  + 
AZ") .  This implies that for every x in R" there is a 
sequence of lattice points { m,} such that x - m, is in Q,. 
Since the Q N ' s  are all contained in a fixed ball, { m N }  is a 
bounded sequence as well, and thus, contains a constant 
subsequence m ,, = m , j = 1 , 2 ,  . Finally, since x - m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E Q,, for infinitely many indexes, it follows that x - m is in 
Q by virtue of the fact that { Q,} converges to Q in the p 

metric. 
Since 3) implies that 1 Q I 2 1, item 4) follows from the 

identity 

which is implied by 2). 
That xQ satisfies the identity in item 5) follows immedi- 

ately from 2)  and 4). The fact concerning uniqueness is the 
assertion of Lemma 5. 

To see item 6) let $ be any bounded continuous function 
on R". Write 

where 

= $ ( r ) X Q ( A N ( X - y ) )  
Y S B ,  

is a simple function which converges to $(x )xQ(x )  almost 
everywhere and is dominated by a constant multiple of x Q .  
The dominated convergence theorem now implies the desired 
result. 

Item 7) follows from an argument analogous to the one 
used to show 6). 0 

It should now be clear how to construct scaling functions $I 
for multiresolution analyses associated with ( Z " ,  A ) ,  which 
have characteristic functions as scaling functions. 

Start with compact set Q, and a full collection A/= 
( k ,  , * , k q }  of representatives of distinct cosets of 
Z " /  AZ".  
Find Q as the limit of the iteration (25). 
If I Q I = 1 the algorithm is successful and $I = xQ is 
the scaling function of a multiresolution analysis associ- 
ated with ( Z " ,  A ) .  Otherwise the algorithm fails. 

The reason one must check the condition 1 Q 1 = 1 is that the 
requirement that X be a full collection of representatives of 
distinct cosets of Z" is a necessary but not sufficient condi- 
tion on this set of indices. Indeed, examples show that Q 
need not satisfy this condition and the algorithm may fail. 

The following theorem gives various equivalent conditions 
that guarantee that this algorithm be successful. 

Theorem 3: Suppose Y= ( k , ,  a ,  kq}  is a collection of 
representatives of distinct cosets of Z " / A Z "  and the com- 
pact set Q is defined by (38). Then the following statements 
are equivalent: 

xQ is a scaling function for a multiresolution analysis 
associated with ( Z " ,  A ) .  

Q fl ( k  + Q) = @ for all k in Z" which are different 
from 0. 
The sequence of measures { v N }  , N = 0, 1, 2, . , de- 
fined by (33) converges weakly to xQ. In other words, 

IQ1 = 1 .  

for all functions $ that are continuous and bounded on 
R". 
If { Q,), N = 0,  1 ,  2; a ,  is the sequence of sets 
generated via (25) with Q, = [0, l]", then the corre- 
sponding sequence of characteristic functions { xQ,} 
converges to xQ in measure. 
(Cohen's condition) Let fi be the Fourier transform of 
the measure p = p ,  where p,  is defined by (32), 
namely 

There exists a compact set K that contains a neighbor- 
hood of the origin and which satisfies 

0 U kEZ42nk  + K )  = R", 
K f l  (27rk + K )  = @, whenever k # 0, 

such that if B = A* then 

holds for all E K and j 2 1. 

Proof: That items l ) ,  2) ,  and 3)  are equivalent is 

That items 2) and 4) are equivalent follows immediately 
essentially the content of Lemma 1 and Theorem 1 .  

-a ~ ~ ~ - -  ~~~ from item 6) of Theorem 2. 
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To see that 2) and 5) are equivalent observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Q, I = 1, for all in the cube Q = [ - n-, TI". The last inequality 

implies that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is the number of elements in 2" then for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2, * , and by virtue of dominated convergence 

so it is quite clear that 5) implies 2). 
To see that 2) implies 5), let E be any positive number and 

observe that the regularity of Lebesgue measure and the 
compactness of Q imply that there is a positive 6 such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IQ+B, l  < E ,  where B , = { x E R " : I x ~  < 6 } .  Since 
{ QN} converges to Q in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp metric it follows that for N 
sufficiently large QN C Q + B,. In this case QN U Q E Q 
+ B, so 

IQNUQI 5 IQ+B,I < I + € .  

This and the fact that I QN I = I Q I = 1 gives 

IQNUQI = lQNl + IQ1 - I Q N ~ Q I  

each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 in Q there is an open cube Q ,  and a lattice point k ,  
in 2" such that 

1 
l i ( 1 7 - 2 n - k { ) 1 2 > -  2 N '  

for all 17 in Q , .  Let Q t 0 ,  Q , , ; . . ,  Q E m  be any finite subcol- 
lection of these cubes which covers 8 and such that Q E o  = Qo 
is a cube centered at 0. Finally, let K O  be the closure of 
Q E 0  ,n Q and let K j  be the closure of ( Q , ,  n Q )  \ 
(U::,' K , ) .  It is clear that K = Ui",o(k,, + K j )  does the 
desired job by virtue of (41). 

To complete the proof we show that item 6) implies 2). 
Let 4 = I Q 1 - ' x Q .  Since 1) 411 r2(Rn) = IQ 1 - 'I2, to see 

the desired result it suffices to show that 11 4 11 L~(Rn)  = 1. 
Since 11 4N 11 L 2 ( R n )  = 1,  N = 1, 2, * * e ,  Plancherel's I"ormula 
will imply the desired result if 

= ~ - I Q , ~ Q I < ~ + E  
I iN ( t )  I dt  = JRn I $ ( E )  I d t .  (42) 

so 1 QN fl Q I > 1 - E .  Thus, we may conclude that 

This is where the set K comes in. First observe that IQNAQl = IQNUQI - IQNnQI 
whenever N is sufficiently large. Since I xQ - xQN I = 
xQNaQ, the last inequality implies the desired result. 

To see how ji fits in let {QN}, N =  0, 1 ,  2;*.,be the 
sequence of sets generated by (25) with Qo = [1/2, 1/21" 
and let 4 N = ~ Q , ,  N = O ,  1 ,  2;*.,:nd + =  1 Q l - l ~ ~ .  
Recall that the Fourier transform 4 + 4 is defined by 

$([) = ] 4 ( x ) e - i ( E , X ) d x .  
R" 

Let vN be the measure defined by (33) and observe that 

N 

j =  1 
GN(t) = n j i ( B - j t )  and 

i N ( t )  = Y I N ( ' $ ) i O ( B - N t ) .  

In view of items 6 )  and 7) of Theorem 2 we see that 

1 i 0 ( t - 2 n - k ) I 2 =  1 ,  
keZ" 

so, by virtue of the fact that CN is 27rBNZ" periodic, setting 
Q = [-a, n-1" we may write 

JRn I I d E  

lim $ N ( t )  = J(4) and lim i N ( E )  = J(t )? or, more briefly, 
N+ m N+ m 

for all [ in R" and 

; N ( ' $ ) 6 ( B - N t )  = 6( '$) ,  (41) 

for N =  1,2,  . 
Now, to see that item 1)  implies 6) let 4 = xQ and recall 

that the fact that the family { 4( x - k)},,,, is orthonormal 
implies that 

i ( 0 )  = 1 and I &([ - 2 a k )  1 '  = 1 ,  
keZ" 

for almost all_ E in R". From this and the smoothness 
properties of 4 it follows that there is a finite subset d of 
2" such that 

c I i ( t  - 2 a k )  l 2  > 1/29 
ktz 2' 

- 2n-k) I d[ 

I i N ( t )  I d t  = I %"B" I d t .  (43) 

I $([) I > C ,  for all in K .  (44) 

JR. JR. 

Next observe that there is a positive constant C such that 

(If this were not the case then &[) = 0 f y  some 4 in K .  
The hypothesis and (41) then imply that A 4 ( B - N t )  = 0 for 
N = 1 ,  2, , contradicting the fact that 4(0) = 1 .) Inequal- 
ity (44) implies that I 4 ( B - N [ )  I > C for all 5 in BNK so 
by virtue of (41), we may write 

1 ; N ( t ) X B N k ( t )  I c-' I 4 ( t )  1 .  (45 ) 

Finally, since K contains a neighborhood of 0, it follows that 
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for all in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" so that (45) implies that When q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 3 there are many such examples. Specifically, we 
mention the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

;Tm .i," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI4"B"  I * dE = I & ( E )  I dE 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i -  l ) ( j -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)2a 
U,, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 
q l / 2  cos 

s,. 
by virtue of dominated convergence. In view of (43), this 
gives the desired result. i = l;.., q and j = l;.., q. 

As a corollary we state the following. 

Theorem 4: Suppose $ 1  7 * ' ' 7 $ q -  1 is the 
Iv. WAVELET BASES OF HAAR TYPE 

To construct a piecewise constant wavelet basis associated 
with (Z" ,  A )  we use the results of Section 111 and follow 
Meyer's recipe outlined in Section 11. 

First let Q be any set satisfying items 1)-4) of Theorem 1. 
Then xQ is a scaling function for a multiresolution analysis 
Y =  { , V,, VI, } associated with (Z " ,  A ) .  Next we V. EXAMPLES 
need to identify the subspace WO, the orthogonal complement 
of Vo in VI. Since V, is the collection of all functions of the 

Of 

functions defined in Lemma 7 .  Then the 

UiJrklc/, j E Z ,  k E Z " ,  i = l ; . . ,  q - 1 

is a complete orthonormal basis for L2(R").  

A .  Generalities 
form 

f ( x )  = a k X Q ( x  - k ) ,  
kcZ" 

where { ok) is in 12(Z" ) ,  it is not difficult to see the 
following. 

Lemma 6: WO is the collection of all functions of the form 

where the sequence of coefficients {ck} is in 12(R") and 
satisfies 

1 c ~ + ~ ,  = 0 ,  for all I in z". (47) 
kc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. 

Here Y= { k ,  , . . , k q )  is the collection of coset representa- 
tives appearing in the self-similarity relation (1 1) for Q. 

From (46) and (47) it is not difficult to construct a collec- 
tion of q - 1 basic wavelets whose existence is guaranteed 
by Meyer's result. Indeed one can easily verify the follow- 
ing. 

Lemma 7: Suppose U = (U,,) is a unitary matrix q x q 
matrix whose first row is constant, namely u l ,  = q - ' l 2 ,  
j = I ; . . ,  q. Let X =  { k l ; . . ,  /cy) be the collection of 
coset representatives as in Lemma 6. Then the collection of 
functions { . , Gq- ,} defined by 

4 

$,-'(x) = 1 u , , ~ ' / ~ x ~ ( A x  - k,) i = 2 ; - .  > q  
J =  1 

(48) 

is a collection of elementary basic wavelets corresponding to 
the simple multiresolution analysis associated with (Z" ,  A )  
whose scaling function is xQ. In other words, the support of 

is contained in Q, i = 1; 9 * ,  q - 1, and the collection 
{ rk$,, k E Z " ,  i = 1; * - ,  q - l }  is a complete orthonormal 
system for W,. 

Conversely, every collection of elementary basic wavelets 
that arises from the multiscale analysis associated with (Z" ,  
A )  whose scaling function is xQ is of form (48). 

In the case q = 2, there is essentially only one matrix 
U = (U,,) that satisfies the property described in the lemma. 
Namely, uI1 = uI2 = l / f i  and u , ~  = -u22 = . l / f i .  

Numerical experiments lead to various observations. These 
include the following. 

Fixing the dilation matrix A but varying the choice of 
digits can result in wildly varying Q's. Some cases 
appear totally unrelated while others appear to be some 
sort of dilates of each other. 
Certain choices of dilation matrix A can give rise to 
Q's that are simple parallelepipeds when an appropriate 
choice of digits X is used. Other choices of A never 
give rise to such simple Q's; the corresponding Q's are 
always "fractals." 

The following proposition sheds some light on the first 
item. 

Lemma 8: Suppose A', and .W2 are two full sets of digits 
for A .  Let Q1 and Q, be the self-similar sets satisfying (1 l), 
with Y= XI and Y,, respectively. If there is a linear 
transformation B that commutes with A and such that 
Y2 = B X ,  then Q2 = BQ,. 

Remark: Examples show that the hypothesis that B com- 
mutes with A is essential for the conclusion. 

Proof: Write 

ABQl = BAQ, = B{ U ( k  + Q l ) ]  
kc 

= U ( B k +  BQ,) = U ( k + B Q , ) .  

Since the solution of (1 1) is unique the last string of equalities 

k e y ,  kc Y, 

implies the desired result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Concerning the second item, here is a characterization of 
dilation matrices A that can give rise to self-similar sets Q, 
which are simple parallelepipeds with the appropriate choice 
of digits Y .  

Lemma 9: The self-similar tile Q resulting as the limit of 
the iteration (25) can be a parallelepiped, if and only if the 
dilation factorizes as A = C D P C ' .  Here C is an integer- 
valued, invertible matrix with determinant k l ,  P a permuta- 
tion matrix, ( P x ) ,  = xT( , )  for some permutation a E S,,  and 
D is a diagonal matrix with entries d, E Z along the diagonal 
such that on each cycle of a 1 d, I > 1 for at least one i; in 
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other words, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,d,(,)d,z(,) * - * dTn-,(;) 1 > 1 for 
each i = 1, 2;-., n. 

Proof: Assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is of the described form, then A 
is indeed a dilation. Since C, P ,  D are integer-valued, A 
leaves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2" invariant. The conditions on D,  P guarantee that 
DP, hence, A = CDPC- have all eigenvalues 1 X i  1 > 1. 
To see this, let D(k)  be the diagonal matrix with the per- 
muted entries djk' = dsk(;), and check that PkD = D(k'Pk. 
After rearranging, (DP)" = DD'D" - * D("- ' )P" = 

II;=,Dck), one obtains a diagonal matrix b with elements 
d, = did,(;)d,z(,, - * dzn-1(,). The eigenvalues of DP are 
nth roots of Do, and its eigenvalues 1 X i  1 > 1, if and only if 
in the cycle determined by i 1 d,r(;) I > 1 for at least one k .  

P just interchanges the coordinate axes and thus PQ, = 
Q,. Therefore, DPQ, = DQ, is a parallelepiped with edges 
parallel to the coordinate axes and side-lengths I d j  I .  Obvi- 
ously DPQ, = U := I ( k i  + Qo) for an appropriate set { k,, 
i = l ; .., q }  2" of the form { l  EZ":O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I ,  < d, or d ,  
I li < 0 ) .  In the general case, C # Id, set Q = CQ, and 
kl = Ck,, then 
U :='=,(k: + Q). 

Conversely, assume that Q is a parallelepiped Q = { x :  x 
= C ~ = l x j e j , a j ~ x j ~ b , , i =  1,2; . . ,n} forsomenum- 
bers a,,  bj and n linearly independents vectors ejER".  
Upon writing a = Ca,e, and C for the invertible matrix 
with columns (b ,  - ai)ei, one obtains Q = CQ, + a. 

The self-similarity of Q (11) becomes C-'A(CQ, + a) = 

U:='=,C-'(k, + a + CQ,) or 

CDPC-'Q = U e , ( C k ,  + CQ,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

c-~ACQ, = U ( C - ' ( k j  + a - Aa) + Q,). (49) 
i =  1 

In other words, the parallelepiped C-IACQ, is a union of 
unit cubes. This is only possible if the edges of C-' ACQ, 
are parallel to the coordinate axes and C- '( k j  + a - Aa) E 

{IEZ":O I 1; < di or -d ,  I 1, < 0} for some ~ , E Z .  
Therefore A' = C-'AC maps the coordinate axes onto 
themselves, A'6, = ditjr(;), where d,EZ,  T E S ,  is a per- 
mutation, and 6; is the ith unit vector. Thus A' = DP and 
A = C-'DPC. Finally, R" = C-'R" = C-'(U kez.(k + 
Q)) = C-'(U k e Z " ( k  + a + CQ,)) = U kezn(C -'a + 
C ' k  + e,)) = U ksZn(C- 'k + Q,)) implies that C-IZ" 
= 2". A symmetric argument yields CZ" = Z", from which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 C E SL( n,  2)  follows. 

Remarks: 

0 As we have just seen, the choice Y= { I  E Z":O I I ,  < 
di or -d ,  I I ,  < 0 )  produces a parallelepiped as the 
self-similar tile when A is of the appropriate form. It is, 
however, not the only possible choice of digits in this 
case. As we will see (Example 3 in Section V-C), other 
sets of digits can be used and yield more interesting 
tilings. 

0 Since the set Q depends on the choice of digits, it 
should be clear that there may be many different mul- 
tiresolution analyses associated with ( Z " ,  A),  which 
consists of simple functions. In certain cases, Lemmas 4 
and 8 are useful in relating different multiresolution 
analyses that arise in this way. 

The following examples represent a very small sampling of 
a very large smorgasbord. 

B. Univariate Examples 

The case A = 2 is relatively uninteresting in this context. 
Since all sets of possible digits are related via shifts and 
multiplications by integers, the fact that ( A  - I ) -  I = I to- 
gether with Lemmas 4 and 8 implies that the only Q's that 
lead to scaling functions are integer translates of the interval 
[0, I]. Thus, we may conclude that there is only one 
multiresolution analysis associated with (2, 2) that con- 
sists of simple functions; its scaling function is the charac- 
teristic function of the interval f0, If and the correspond- 
ing elementary wavelet basis is the classical Haar system. 
For a similar result obtained from a different point of view 
see [3]. 

The case A = 3 is already more interesting. The choice of 
digits (0, 1,2)  leads to Q = [0, 11. Since ( A  - I)-' = 1/2, 
the choice of digits { 1, 2, 3) leads to Q = [1/2, 3/21. These 
Q's lead to two different multiresolution analyses associated 
with (Z, 3). The choice of digits (0, 1, 5) leads to a 
disconnected set Q that can be shown to have measure one 
by using item 6 )  of Theorem 3; the corresponding character- 
istic function is the scaling function of yet another multireso- 
lution analysis associated with (2, 3). Using Lemma 7, one 
can construct many different elementary wavelet bases corre- 
sponding to each of these examples. 

These examples should give the flavor of what happens in 
the general univariate case. 

C. Two-Dimensional Examples 

1) The dilation 

is of the type described in Lemma 9. Choosing k ,  = (0, 
- l ) ,  k ,  = (1, - 1) one obtains Q = [0, 11, as the basic 
tile, since AQ = [0, 21 x [ -  1, 01 = (0, - 1) + Q U (1, 
- 1) + Q. The basic wavelet $ is defined by $( x )  = 1 for 
X E [ O ,  11 x [0, 1/2), $ ( x )  = - 1  for X E [ O ,  11 x [1/2, 11 
and $ ( x )  = 0, elsewhere. The corresponding elementary 
wavelet basis for L2( R 2 )  is 2JI2$( A J x  - k ) ,  j E 2, k E Z 2 ;  
it is generated by one function only. 

In this case one can easily determine all the simple mul- 
tiresolution analyses associated with ( Z 2 ,  A) .  Indeed we 
have the following: 

There are exactly three different simple multiresolution 
analyses associated with ( Z 2 ,  A ) .  Their scaling functions are 
the characteristic functions of the squares Q, Q + x, and 
Q - X ,  where Q = [0, 11, and x ,  = ( -  1/3, 1/3). 

To see this observe that any acceptable pair of digits must 
be Z 2  translates of one of the pairs ( (0 ,  0), ( I ,  m ) }  where 
1 = 2 j  + 1, and j ,  m E Z .  Now, the pair { (0, 0), ( I ,  m)}  is 
the image of the pair ((0, 0), (1, O)] under the linear 
transformation whose matrix is given by 

B =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A - ; m )  
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0.4 

0.2 

0 -  

-0.2 

-0.4 

-0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.8 

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-1.2 

-1.4 
-0.8 

and which commutes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  In view of Lemma 8 and the 
fact that the determinant of B is l2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2m2,  it follows that 
the only such pairs that can give rise to a Q of measure one 
are { (0, 0), (1,O)) and ((0, 0), ( - 1, O)}. Since these pairs 
are Z2 translates of each other we may conclude by virtue of 
Lemma 4 that all the acceptable sets Q are of the form 
Qo + ( A  - Z)-'k, k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ2. Since 

I 

- 

- 

- 

- 

- 

- 

- 

J 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

it is easy to check that each such square is a Z2 translate of 
one of the three squares previously given. 

2) The matrix 

rotates a vector by a / 4  and stretches it by a factor of a. 
Choosing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, = (O,O), k, = ( l , O ) ,  the algorithm (25) pro- 
duces the set Q shown in Fig. 1, which is known as the twin 
dragon set in the flowery language of fractals [l]. 

In order to check that the characteristic function of Q is a 
scaling function for a multiresolution analysis we verify 
Cohen's condition. In this case j i ( f l ,  f 2 )  = (1 + eiE1)/2 has 
zeroes at f ,  = ( 2 n  + l ) ~ ,  t 2  arbitrary. The natural guess 
K = Q = [ -  a ,  a]' does not satisfy (40), because 
j i (+A- ' (a ,  a) )  = b ( k a ,  0) = 0. This can be avoided by 
moving a neighborhood of the critical points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ( a ,  a )  by 
r 2 a  as follows: Let U,, = Q n B , ,  where = 
{ x :  I x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( a ,  a) 1 < 6 ) .  Then K = (Q \ (U, U U-  ,)) U 
(U, + ( -2a ,0 ) )  U (U - ,  + ( Z T , ~ ) )  does the job. 

The function $ defined by $ ( x )  = 1 for X E A - I Q ,  $ ( x )  
= - 1  for X E A - ' Q  + (1/2, -1/2), $ ( x )  = 0 elsewhere 
is the basic elementary wavelet in this case, see Fig. 2. The 
collection 2 j / * $ ( A J x  - k ) ,  ~ E Z ,  k e Z 2 ,  which is gener- 
ated by the one basic wavelet is a complete orthonormal basis 
for L ~ ( R , ) .  

By using reasoning similar to that used in the previous 
example we can easily determine all the simple multiresolu- 
tion analyses associated with (Z2 ,  A ) .  Indeed, we have the 
following. 

There are exactly two different simple multiresolution 
analyses associated with ( Z 2 ,  A ) .  Their scaling functions are 
the characteristic functions of the twin dragon set Q de- 
scribed above and BQ where B is a rotation about the origin 
by the angle a /2. 

3) At first glance the usual homogeneous dilation A = 2 I ,  
as in the univariate case, does not seem very interesting. If 
k, = (O,O), k, = (l,O), k2 = (0, l ) ,  k, = (1, l) ,  then 
clearly Q = [0, 112 and x Q  is the scaling function for 
multiscale analysis % associated with ( Z 2 ,  A ) ,  which is the 
obvious generalization of the univariate dyadic multiscale 
analysis considered in Section V-B. The corresponding ele- 
mentary wavelet basis is generated by three basic wavelets 
that are easily constructed using the recipe given in Section 
IV . 

Choosing as the digits k, = (O,O), k, = (1, l), k ,  = 
(0, l), k, = (1,2), one obtains the parallelogram with cor- 
ners k i ,  i = 1, 2, 3, 4 as the self-similar set Q. The 

0.4 r 

-1.4 I I 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig. 2 .  Wavelet corresponding to tile in Fig. 1. 

characteristic function of Q is the scaling function for a 
multiscale analysis % associated with (Z', A ) ,  which is 
different from < previously mentioned. 

However, if the digits are chosen k ,  = (0, 0), k, = (1,0), 
k, = (0, l), k, = ( -  1, - l ) ,  then the algorithm (25) con- 
verges to a Cantor-like set Q ,  which is shown in Fig. 3. To 
see that xQ is a scaling function for a multiresolution analysis 
associated with ( Z " ,  A ) ,  we check Cohen's condition: The 
zeros of j i ( E 1 ,  f , )  = (1 + eiEl + eig2 + e-i(El+t2) )/4 are at 
the points ((2k + l ) ~ ,  /T) or (IT, (2k + l )n) ,  I, ~ E Z .  
Then K = [ - T,  nI2 does the job since j i  does not vanish 
2-JK E i K  = [ - a/2 ,  r /2 I2 .  It should be clear that the 
corresponding multiresolution analysis is different from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
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-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.5 0 0.5 1 

Tile described in last paragraph of Example 3) in Section V-C Fig. 3. 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

Fig. 4. Wavelet corresponding to tile in Fig. 2 .  

and 'K nreviouslv mentioned. The corresnonding elemen- ' ~~. .-..-., _.._ __..__ ~ _._..._.. 

tary wavelet bases are generated by three basic wavelets that 
are easilv constructed using the reciDe given in Section IV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C  

see Fig. 4. 
4) Figs. 5 and 6 show the tiles obtained from the matrix 

A = ( ;  ;), 
with the digits k ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(O,O) ,  k ,  = (1,0), k ,  = (0, l), k, = 

(1, 1) and the digits k ,  = (O,O), k ,  = (1,0), k ,  = (1, l ) ,  
k, = (2, l ) ,  respectively. It should be clear from the picture 
that the first set has measure one; this can also be checked by 
verifying Cohen's condition with K = [ - a, a]'. The set in 
Fig. 6 is the image of the first under the linear map that sends 

I 
-1 -0.5 0 0.5 1 -0.5 ' 

Fig. 5.  One of the tiles described in Example 4) in Section V-C. 

1.5 

1 

0.5 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.5 

1 

5 0 0.5 1 1.5 

Fig. 6. Second tile described in Example 4) in Section V-C. 

(1,O) to (1,O)  and (0, 1) to (1, 1); this transformation maps 
the first set of digits into the second, commutes with A ,  and 
has determinant one. 

5)  Figs. 7 and 8 show the tiles obtained from the matrices 

with the digits { ( O , O ) ,  (0, 11, (0,2), ( l , O ) ,  (1,2), CO) ,  
(2, 11, (2,2), (4,4)) and { ( O , O ) ,  (1,0>, (0, - I ) ) ,  respec- 
tively. 

VI. MISCELLANEOUS REMARKS 

For more details and background concerning dyadic mul- 
tiresolution analysis and wavelet bases, including the classi- 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; 
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh’ c’ 

1.61 

1.4 c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“0 0.5 1 1.5 2 

Fig. 7. Tile corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 3 1  described in Example 5 )  in Section 
v-C 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 ’ 
0 0.5 1 1.5 

Fig. 8. Second tile described in Example 5 )  in Section V-C. 

cal Haar system, see 131, [6], [7], [9] and the references cited 
there; for the more general case see 181. 

The fixed point iteration (24) is called the cascade algo- 
rithm in [3] in the case considered there. Tilings of R” that 
are not necessarily self-similar arise naturally in other con- 
texts also; for example, see [lo] and 141. The proof of the 
equivalence of item 6) to the other items in Theorem 3 is an 
easy modification of the argument found in [2], we include it 
for the sake of completeness. 

In the case Idet A 1 = 2 ,  the martingale version of a 
classical theorem of Littlewood and Paley, see 15, Theorem 
5.3.81, implies that the elementary wavelet bases constructed 
here are also unconditional bases for L p ( R ” ) ,  1 < p < 00. 

We emphasize that the specific examples considered here 
represent a small selection of a wealth of interesting exam- 
ples. The numerical experiments were done with Matlab 
software on a Sun 3 workstation. 
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