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MULTIRESOLUTION APPROXIMATIONS
AND WAVELET ORTHONORMAL BASES OF L2(R)

STEPHANE G. MALLAT

Abstract. A multiresolution approximation is a sequence of embedded vec-
tor spaces (Vyjygz for approximating L2(R) functions. We study the prop-
erties of a multiresolution approximation and prove that it is characterized
by a 27t-periodic function which is further described. From any multireso-
lution approximation, we can derive a function >i/(x) called a wavelet such
that {V2~Ji//(2Jx - k)),k )6Z2 is an orthonormal basis of L2(R). This pro-
vides a new approach for understanding and computing wavelet orthonormal
bases. Finally, we characterize the asymptotic decay rate of multiresolution
approximation errors for functions in a Sobolev space Hs.

1. Introduction

In this article, we study the properties of the multiresolution approximations
of L2(R). We show how they relate to wavelet orthonormal bases of L2(R).
Wavelets have been introduced by A. Grossmann and J. Morlet [7] as functions
whose translations and dilations could be used for expansions in L (R). J.
Stromberg [16] and Y. Meyer [14] have proved independently that there ex-
ists some particular wavelets y/(x) such that (v2jy/(2jx - k)),¡ k)eZ2 is an
orthonormal basis of L2(R) ; these bases generalize the Haar basis. If y/(x) is
regular enough, a remarkable property of these bases is to provide an uncon-
ditional basis of most classical functional spaces such as the Sobolev spaces,
Hardy spaces, lf(R) spaces and others [11]. Wavelet orthonormal bases have
already found many applications in mathematics [14, 18], theoretical physics
[6] and signal processing [9, 12].

Notation.  Z and R respectively denote the set of integers and real numbers
L (R) denotes the
The inner product

written (g(u), /(«)).

L (R) denotes the space of measurable, square-integrable functions f(x).
2 2The inner product of two functions f(x) e L (R)  and g(x) e L (R)  is

2The norm of f(x) G L (R) is written
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70 S. G. MALLAT

The Fourier transform of any function f(x) e L2(R) is written f(a>).
Id is the identity operator in L (R).
1 (Z) is the vector space of square-summable sequences:

•2(z) = {kw £ ki2<°4-
I /'=—oo )

Definition. A multiresolution approximation of L (R) is a sequence (V.) 6Z
of closed subspaces of L2(R) such that the following hold:

(1) V,cV;+i    V>eZ>
+00 +00

(2) (J  Vj is dense in L2(R)   and      f)  V,. = {0},
j=—oo j=—oo

(3) f(x) e V. o f(2x) e Vj+x   VjeZ,

(4) f(x) e \j;=> f(x - 2~jk) g V,   VfcGZ,

(5)
There exists an isomorphism I from VQ onto 1 (Z)
which commutes with the action of Z.

In property (5), the action of Z over V0  is the translation of functions
by integers whereas the action of Z over 1 (Z) is the usual translation. The
approximation of a function f(x) e L2(R) at a resolution 2j is defined as the
orthogonal projection of f(x) on V . To compute this orthogonal projection
we show that there exists a unique function q>(x) e L (R) such that, for any
j'eZ, (v 2j <p(2} x - k))kez is an orthonormal basis of V . The main theorem
of this article proves that the Fourier transform of (j>(x) is characterized by
a 27T-periodic function H(a>). As an example we describe a multiresolution
approximation based on cubic splines.

The additional information available in an approximation at a resolution
27+1 as compared with the resolution 2J, is given by an orthogonal pro-
jection on the orthogonal complement of V in V +1 . Let O be this or-
thogonal complement. We show that there exists a function y/(x) such that
(v2;V(27x - k))keZ is an orthonormal basis of O . The family of functions

(v2-/V(27x - k)),k  )€Z2 is a wavelet orthonormal basis of L (R).
An important problem in approximation theory [4] is to measure the decay

of the approximation error when the resolution increases, given an a priori
knowledge on the function smoothness. We estimate this decay for functions
in Sobolev spaces H*. This result is a characterization of Sobolev spaces.

2. Orthonormal bases of multiresolution approximations

In this section, we prove that there exists a unique function <j>(x) G L (R)
such that for any j e Z, (v2i^>(2}x - k))k 7 is a wavelet orthonormal basis
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MULTIRESOLUTION APPROXIMATIONS 71

of V,.  This result is proved for j = 0.  The extension for any j e Z is a
consequence of property (3).

Let us first detail property (5) of a multiresolution approximation. The oper-
ator I is an isomorphism from V0 onto I (Z). Hence, there exists a function
g(x) satisfying

il    if n = 0,
(6)      £(x)gV0   and   l(g(x)) = e(n),    where e(n) = \

{ 0   if n t¿ 0.
Since I commutes with translations of integers:

l(g(x - k)) = e(n - k).

The sequence (e(n - k))keZ is a basis of 1 (Z), hence (g(x - k))keZ is a basis
of V0 . Let f(x) e V0 and I(/(x)) = (ak)keZ. Since I is an isomorphism,
and (Y^t™—x \ak\ ) are two equivalent norms on V0 . Let us express the con-
sequence of this equivalence on g(x). The function f(x) can be decomposed
as:

(7) /(x)=   £  akg(x-k).
k=-oo

The Fourier transform of this equation yields
+oo

(8) f(oi) = M(co)g(co),    where M(œ) =   ^ ake~l w.
k=—oo

The norm of f(x) is given by

/•+oo r2n +°°

11/11= /      \f(oj)\2dco= /     \M(to)\2  Y,  \g(<o + 2kn)\2da>.
J-°° J° k=-oo

Since 11/11 and (D^^-oo \ak\ ) are two equivalent norms on V0, it follows
that

/ +oo \ x'2

(9) 3C1;C2>0suchthatVa;GR,    C, <      J2  \g(œ + 2kn)\2 \      <C2.

We are looking for a function (p(x) suchthat (<j>(x-k))kez is an orthonormal
basis of V0. To compute 4>(x) we orthogonalize the basis (g(x - k))keZ. We
can use two methods for this purpose, both useful.

The first method is based on the Fourier transform. Let (j>(a>) be the Fourier
transform of <j>(x). With the Poisson formula, we can express the orthogonality
of the family ((j>(x - k))keZ as

(10) Y  \koJ + 2kn)\2 = \.
k=—oo
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72 S. G. MALLAT

Since <p(x) G V0, equation (8) shows that there exists a 2rc-periodic function
M^(co) such that

(11) j>(<o) = Mrj>(oj)g(co).

By inserting equation (11) into (10) we obtain

-1/2

(12) M¿a>)= [   £  \g(co + 2kn)\2
U=-oo

Equation (9) proves that (12) defines a function MAjco) G L2([0,27r]). If <j>(x)
is given by (11), one can also derive from (9) that g(x) can be decomposed
on the corresponding orthogonal family (r/>(x - k))keZ. This implies that
(4>(x - k))kez generates V0.

The second approach for building the function <p(x) is based on the general
algorithm for orthogonalizing an unconditional basis (ex)XeA of a Hubert space
H. This approach was suggested by Y. Meyer. Let us recall that a sequence
(ex)X€A is a normalized unconditional basis if there exist two positive constants
A and B such that for any sequence of numbers (ax)XeA ,

(13) £aA
ÀÇA

<*Í£KI2V/2
\À€A )

We first compute the Gram matrix G, indexed by A x A, whose coefficients
are (exx ,eX2). Equation (13) is equivalent to

(14) ^2Id<G<52Id.

This equation shows that we can calculate G~1/2, whose coefficients are written
y(Xx ,X2). Let us define the vectors fx — J2X€Ay(X,X')ex,. It is well known
that the family (fx)X€A is an orthonormal basis of H. This algorithm has the
advantage, with respect to the usual Gram-Schmidt procedure, of preserving any
supplementary structure (invariance under the action of a group, symmetries)
which might exist in the sequence (ex)X€A. In our particular case we verify
immediately that both methods lead to the same result. The second one is more
general and can be used when the multiresolution approximation is defined on
a Hubert space where the Fourier transform does not exist [8].

In the following, we impose a regularity condition on the multiresolution
approximations of L (R) that we study. We shall say that a function f(x) G
L2(R) is regular if and only if it is continuously differentiable and satisfies:

(15) 3C>0,VxgR,    |/(x)|<C(l+x2f '    and   |/(x)| < C(l+x2)"'.
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MULTIRESOLUTION APPROXIMATIONS 73

A multiresolution approximation (V ) gz is said to be regular if and only if
<j)(x) is regular.

3. Properties of <j)(x)

In this section, we study the functions <f>(x) such that for all j e Z,
(v2j(j)(21 x - n))neZ is an orthonormal family, and if V is the vector space
generated by this family of functions, then (V.) 6Z is a regular multiresolution
approximation of L (R). We show that the Fourier transform of <p(x) can
be computed from a 2^-periodic function H(co) whose properties are further
described.

Property (2) of a multiresolution approximation implies that

i*(f)€V_lCV0.
The function 5 0(f) can thus be decomposed in the orthonormal basis
Mx-k))kez of V0:

1      /X\ °° 1     f°°       /X\ —(16) 2^(2) =  ^ hk<p(x + k),    wherehk = 2        <p[^J(p(x+ k)dx.
k=—oo

Since the multiresolution approximation is regular, the asymptotic decay of hk
2   _1satisfies \hk\ — 0(1 + k )    . The Fourier transform of equat

(17) 4,(2(0) = H(œ)4>(to),    where H(co)=   £ hke -ikco
nke

k=—oo

The following theorem gives a necessary condition on H(œ).

Theorem 1. The function H (of) as defined above satisfies:

(18) \H(co)\2 + \H(co + n)\2= 1,
(19) \H(0)\ = \.
Proof. We saw in equation (10) that the Fourier transform <j>(co) must satisfy

+00

(20) J2  \k<o + 2kn)\2 = l,
k=—oo

and therefore

(21) ¿  \<f>(2(ú + 2kn)I2 = 1(p(¿Ü) + ¿KK)'
k=—oo

Since 4>(2oj) — H(œ)(j>(ca), this summation can be rewritten
+00

(22) J2  \H((o + kn)\2\4>(œ + k7i)\2 = 1.
Ar=—00
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74 S. G. MALLAT

The function H(œ) is 2^-periodic. Regrouping the terms for k e 2Z and
k e 2Z + 1 and inserting equation (20) yields

\H(œ)\2 + \H(œ + n)\2 = \.

In order to prove that \H(0)\ = 1, we show that

(23) |0(O)| = 1.
Let us prove that this equation is a consequence of property (2) of a multi-
resolution approximation. Let Pv   be the orthogonal projection on V . Since

(v2j<j)(2jx - n))neZ is an orthonormal basis of V , the kernel of Pv can be
written:

oo

(24) 2JK(2Jx,2Jy),    where K(x,y) =  £ <j>(x - k)$(y - k).
k=—oo

Property (2) implies that the sequence of operators (Pv.),-eZ tends to Id in
the sense of strong convergence for operators. The next lemma shows that the
kernel K(x ,y) must satisfy f^°00K(x,y)dy - 1.

Lemma 1. Let g(x) be a regular function (satisfying (15)) and A(x,y) =
J2T=-oo S(x - k)g(y ~ k). Then the following two properties are equivalent:

/+oo A(x,y)dy = 1   for almost allx.
-oo

The sequence of operators (T.) .gZ whose kernels are 2JA(2Jx, 2Jy),
tends to Id in the sense of strong convergence for operators.

Proof. Let us first prove that (25) implies (26). Since g(x) is regular, 3C > 0
such that

(27) |^l(x,j)|<C(l + |x-y|)-2.

Hence, the sequence of operators (T,)eZ is bounded over L (R). For proving
that

(28) V;gZ,V/gL2(R)      lim  ||/-T (/)|| = 0,
y-»+oo '

we can thus restrict ourselves to indicator functions of intervals. Indeed, finite
linear combinations of these indicator functions are dense in L (R). Let f(x)
be the indicator function of an interval [a, b],

( 1    if a < x < b,
f(x) = \ -     -    'l 0   otherwise.

Let us first prove that T,/(x) converges almost everywhere to f(x) :

(29) T (/)(*)= / 2jA(2Jx,2Jy)dy.
Ja
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MULTIRESOLUTION APPROXIMATIONS 75

Equation (27) implies that

(30)       \Tj(f)(x)\<C2j f (l+2j\x-y\)-2dy< f
3 Ja 1 + 2Jdist(x,[a,b])

If x is not a member of [a, b], this inequality implies that

lim T(/)(x) = 0.
j->+oo     J

Vb
Let us now suppose that x e]a, b[,

rl'D

(31) T(/)(x)=/     A(2Jx,y)dy.
JVa

By applying property (25), we obtain

/2'a /--l-oo
A(2Jx,y)dy- A(2Jx,y)dy.

-oo ./2J¿>

Since x e]a, è[, inserting (27) in the previous equation yields

(33) .lim T(/)(x) = l.
J—»+oo     J

Equation (30) shows that for j > 0, there exists C" > 0 such that

|T/(x)|<-^.
1 1 +x

We can therefore apply the theorem of dominated convergence on the sequence
of functions (T /(x)) eZ and prove that it converges strongly to f(x).

Conversely let us show that (26) implies (25). Let us define

/oo A(x,y)dy.
-oo

The function a(x) is periodic of period 1 and equation (27) implies that a(x) e
L°°(R). Let f(x) be the indicator function of [-1,1]. Property (26) implies
that Tjf(x) converges to f(x) in L2(R) norm. Let 1 > r > 0 and x G [-r,r],

T//)(x)= /   2jA(2jx,2jy)dy.

Similarly to equation (32), we show that

(35) T.(/)(x) = a(2;x) + 0(2-7').

Since a(2Jx) is 2~J periodic and converges strongly to 1 in L2([-r,r]), a(x)
must therefore be equal to 1. This proves Lemma 1.

Since (Pv ) 6Z tends to Id in the sense of strong convergence for operators,
this lemma shows that the kernel ir(x,j>) must satisfy f^>00K(x,y)dy = 1.
Hence, we have

/oo °°K(x,y)dy=  J2 *Kx-k)=l,
-oo ,._    __k=—oo
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76 S. G. MALLAT

with
/oo <t>(y)dy = 4>(0).

-oo

By integrating equation (36) in x on [0,1], we obtain |0(O)|2 = 1. From
equation (17), we can now conclude that \H(0)\ = 1. This concludes the proof
of Theorem 1.

The next theorem gives a sufficiency condition on H(co) in order to compute
the Fourier transform of a function <f>(x) which generates a multiresolution
approximation.

Theorem 2. Let H(co) = £~-oo ***"*" be such that

(38) \hk\ = 0(l+k2)~x,
(39) \H(0)\ = 1,
(40) \H(co)\2 + \H(œ + n)\2 = l,
(41) H((ú)¿0   on [-7i/2,n/2].

Let us define
oo

(42) 4>(<o) = l[H(2-kco).
k=l

The function <j>(oj) is the Fourier transform of a function (f>(x) such that
(<j>(x - k))keZ is an orthonormal basis of a closed subspace V0 of L (R). If
4>(x) is regular, then the sequence of vector spaces (Vj)j€Z defined from V0 by
(3) is a regular multiresolution approximation of L2(R).
Proof. Let us first prove that <¡>(co) e L2(R). To simplify notations we denote
M(œ) = \H(o))\ and denote by Mk(co) (k > 1) the continuous function
defined by

if |a>| > 2 71,

kK   '      \M{%)M($)--M{§)    if\co\<2k7t.

Lemma 2. For all k e N, k ¿ 0,

(43) ^=LM^)e        dœ=\0     ifnïO.
Proof. Let us divide the integral l"k into two parts:

I  = /      Mk(co)e       dco+ Mk(co)e        dco.
J-2kn JO

Since M(2~Jaj + 2k~Jn) = M(2~Jœ) for 0<j<k and

Af(2_A:&j) + M(2"fceo + it) = 1,
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MULTIRESOLUTION APPROXIMATIONS 77

k.by changing variables œ = co + 2 n in the first integral, we obtain

Î-f»(ï)    m(^K'«^.
Since M(oj) is 27t-periodic, this equation implies

^'L^\i)r-M\¥^r   dœ=Ik-x-
Hence, we derive that

n n „ (2)1     if«I    - I -...-/= I 2ti   if n = 0,

This proves Lemma 2.

Let us now consider the infinite product
oo

(44) MJx») = lim Mk(co) = \[M(2~iw) = |0((«)|2.

Since 0 < M(co) < 1, this product converges. From Fatou's lemma we derive
that

/oo /-oo
M   (œ)dœ< lim /     Mk(œ)dœ = 2n.

-oo fc-»oo J-oo

Equation (42) thus defines a function <¡>(oj) which is in L (R). Let <j>(x) be its
inverse Fourier transform. We must show that (</>(x - k))keZ is an orthonormal
family. For this purpose, we want to use Lemma 2 and apply the theorem of
dominated convergence on the sequence of functions (Mk(co)el nnc°)kez ■ The
function M^co) can be rewritten

(46) Mjœj-*-^v**r',*).

Since H(co) satisfies both conditions (38) and (39), it follows that Log(Af (eo))
= O(œ) in the neighborhood of 0, and therefore

(47) ljmMoo(co) = Moo(0) = l.

As a consequence of (38), H(œ) is a continuous function. From property (41)
together with (47), we derive that

(48) 3C>0 such that Vw G [-n, n]   M^co) > C.

For \a>\ < 2 n , we have

Moc(<o) = Mk(oj)Moo(co/2k).

Hence, equation (48) yields

(49) OKMiWZtM^œ).
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78 S. G. MALLAT

Since Mk(œ) = 0 for \œ\ > 2 n, inequality (48) is satisfied for all œ e R. We
proved in (45) that M^co) e L (R), so we can apply the dominated conver-
gence theorem on the sequence of functions (Mk(œ)e'2nnco)k€Z. From Lemma
2, we obtain

(5°) /     M^o^e       dco= I

With the Parseval theorem applied to the inner products (</>(x), <f>(x - k)), we
conclude from (50) that (4>(x - k))keZ is orthonormal.

Let us call V0 the vector space generated by this orthonormal family. We
suppose now that the function </>(x) is regular. Let (V.)J€Z be the sequence

of vector spaces derived from V0 with property (3), (v 2j4>(2jx - k))k€Z is
an orthonormal basis of V   for any j e Z. We must prove that (V) ez is a
multiresolution approximation of L (R). We only detail properties (1) and (2)
since the other ones are straightforward.

To prove (1), it is sufficient to show that V_, C V0. The vector spaces V0
and V_, are respectively the set of all the functions whose Fourier transform
can be written M(œ)$(co) and M(2co)4>(2co), where M (of) is any 27t-periodic
function such that M(œ) e L ([0,27i]). Since 0(a>) is defined by (42), it
satisfies
(51) 4>(2to) = H(co)4>(co),
with \H(œ)\ < 1. The function M(2co)H(oj) is 2n-periodic and is a member
of L ([0, 2tz]) . From equation (51), we can therefore derive that any function
of V_, is in V0.

Let Pv be the orthogonal projection operator on V . To prove (2), we must
verify that
(52) lim Pv =Id   and      lim  Pv =0.

7-.+00     yJ j->-oo     YJ

Since (v 270(27x - k))keZ is an orthonormal basis of V , the kernel of Pv is
given by

oo

(53) 2'   J2  <P(2Jx-k)^(2Jy-k) = 2jK(2jx,2jy).
k=—oo

Since (4>(x - k))kez is an orthogonal family, we have
+oo

Y^\koJ + 2kn)\2 = 1.
— oo

We showed in (47) that |0(O)| = 1 , so for any k ¿ 0, the previous equation
implies that <fi(2kn) = 0. The Poisson formula yields

(54)
OO /- + 00

J2 <t>(x-k)= /   4>(u)du = m.
J —oo
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MULTIRESOLUTION APPROXIMATIONS 79

We can therefore derive that

/
K(x,y)dy = \<j>(0)\  = 1   for almost all x.

Lemma 1 enables us to conclude that lim. +oo Pv = Id. Since (p(x) is regular,
similarly to (27), we have

CI*
(55) |27#(27x, 23y)\ <-—-r .

1 yn~ {l + y\x-y\)2
From this inequality, we easily derive that lim. _00PV. = 0. This concludes
the proof of Theorem 2.
Remarks. 1. The necessary conditions on H(co) stated in Theorem 1 are not
sufficient to define a function <f>(x) such that (<p(x - k))kez is an orthonormal
family. A counterexample is given by H(œ) - cos(3w/2). The function <f>(x)
whose Fourier transform is defined by (42) is equal to ^ in [—1,|] and 0
elsewhere. It does not generate an orthogonal family. A. Cohen [2] showed that
the sufficient condition (41) is too strong to be necessary. He gave a weaker
condition which is necessary and sufficient.

2. It is possible to control the smoothness of 0(tw) from H(of). One can
show that if H (of) G Cq then 4>(œ) e C9 and

(56) ¿^ = 0forl<«<^^M = 0for !<«<<?.
doj doj

I. Daubechies [3] and P. Tchamitchian [17] showed that we can also obtain a
lower bound for the decay rate of 0(<y) at infinity. As a consequence of (40),

^=0   for.<„<,
doj

implies that
d"H((2k+l)n)

dco"
Hence, we can decompose H ((a) into

(57) H(co) = (cos(<y/2)f M0(co),
where MQ(of) isa 27r-periodic function whose amplitude is bounded by A > 0.
One can then show that

+oo(58) J] |M0(2-;û;)| = 0(Mu,8(/,)/u,g(2))

at infinity. Since
sin(co/2)

0   for 0 < n < q - 1 and k e Z.

+ O0

n>s(2-^)= co/2    '

it follows that
(59) \4>(a>)\ = O(|û,r?+L0g(/f)/L0g(2))    at infinity.
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<K*)

(a)

<KCû)
1

0.3

0.6

0.4

0.2

-10      -if   0      TT        10 CO

(b)

(a) Graph of the function <f>(x) derived from a cubic spline multiresolution
approximation. It decreases exponentially.

(b) Graph of <¡>(w). It decreases like 1 /<y4 at infinity.
Figure 1

H (co)

0.8

0.6

0.4

"IT      -2 2       T"    CO

Graph of the function H(u>) derived from a cubic spline multiresolution ap-
proximation.

Figure 2

Example. We describe briefly an example of multiresolution approximation
from cubic splines found independently by P. Lemarie [10] and G. Battle [1].

The vector space V0 is the set of functions which are C and equal to a
cubic polynomial on each interval [k,k + 1], k e Z. It is well known that
there exists a unique cubic spline g(x) e\0 such that

VaVgZ,    g(k) -{ 1      ÍfrC = 0,
0   ifkjiO.
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MULTIRESOLUTION APPROXIMATIONS 81

The Fourier transform of g(x) is given by

-,   s     (ún(o)/2)\4 f.     2  . 2Co\-x
(60) *((y)Œ(_LIJj   (1-3 S"1-)     •

Any function f(x) G VQ can thus be decomposed in a unique way,
oo

/(*)-    £   f(k)g(X-k).
k=—oo

Hence, for a cubic spline multiresolution approximation, the isomorphism I of
property (5) can be defined as the restriction to Z of the functions f(x) e V0.
One can easily show that the sequence of vector spaces (V-) -ez built with
property (3) is a regular multiresolution approximation of L2(R). Let us define

+oo .

(61) Z,(Q>) = £,       '     ,8-^(œ + 2kny

It follows from equations (60), (12) and (17) that

(62) ¿(at) = -r-l——   and   H(co) =a>AJZJwj V2%(2û>)'
We calculate Zg(<a) by computing the 6th derivative of the formula

2,(<y) =-5-.
2 4sin2(w/2)

Figure 1 shows the graph of 4>(x) and its Fourier transform. It is an exponen-
tially decreasing function. Figure 2 shows H(co) on [-71, n].

4. The wavelet orthonormal basis

The approximation of a function at a resolution 2J is equal to its orthogonal
projection on V,.   The additional precision of the approximation when the
resolution increases from 2J to 2J+ is thus given by the orthogonal projection
on the orthogonal complement of V. in V +1. Let us call this vector space O^ .
In this section, we describe an algorithm, which is now classic [13], in order to
find a wavelet >f/(x) suchthat (v2Jy/(2}x-k))keZ is an orthonormal basis of
°J

We are looking for a function ^(x) such that iff(x/2) G 0_, c V0.  Its
Fourier transform can thus be written

(63) i¡/(2oj) = G(co)4>(co),

where G(co) is a 27r-periodic function in L ([0,27t]). Since V0 = V_, ©0_, ,
the Fourier transform of any function f(x) G V0 can be decomposed as

(64) f(af) = a(oj)(¡>(oj) = b(of)<i>(2oj) + c(of) \j/(2œ),
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where a(co) is 27t-periodic and a member of L2([0,7t]), and b(œ),c(œ) are
both ^-periodic and members of L2([0,7t]). By inserting (17) and (63) in the
previous equation, it follows that

(65) a(co) = b(œ)H(œ) + c(oj)G(co) .

The orthogonality of the decomposition is equivalent to

/    \a((o)\2dü)= [  \b(o>)\2dco + Í  \c(co)\2dco.
Jo Jo Jo

It is satisfied for any a(œ) if and only if

(66) Í l^rf + l^)!2 = 1 '_
\ H(co)G(w) + H(œ + n)G(œ + n) = 0.

These equations are necessary and sufficient conditions on G(co) to build y/(x).
The functions b(œ) and c(co) are respectively given by

(67) {:
b(co) = a(œ)H(œ) + a(a> + 7i)H(a> + n),
(œ) = a(co)G(a>) + a(co + n)G(œ + 7i).

Condition (66) together with (40) can also be expressed by writing that
"    H(œ) G(œ)    '

H(œ + 7i)   G(œ + n)
is a unitary matrix. A possible choice for G(w) is

(68)

-IOJ-,
(69) G(oj) = e~,UJH(oj + it)

Any vector spaces Vy can be decomposed as
7-1

(70) V/=®0,.
j=-oo

Since Utrioo^; is dense in L2(R), the direct sum ©j^^O^ is also dense

in L2(R).   The family of functions (v2/V(2Jx - k)),k  )€Z2  is therefore an
orthonormal basis of L (R).

Multiresolution approximations provide a general approach to build wavelet
orthonormal bases. We first define a function H(œ) which satisfies the hypoth-
esis of Theorem 2 and compute the corresponding function <j>(x) with equation
(42). From equations (63) and (69), we can also derive the Fourier transform
of a wavelet y/(x) which generates an orthonormal basis. Figure 3 is the graph
of the wavelet derived from the cubic spline multiresolution approximation de-
scribed in the previous section.

The Haar basis is a particular case of wavelet orthonormal basis with
'1        if0<x< 1/2,

V(x) = {   - 1    if 1/2 <x< 1,
0        otherwise.
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(b)

CO

(a) Graph of the function y/(x) derivedfrom a cubic spline multiresolution
approximation. It decreases exponentially.

(b) Graph of \ij/{co)\. It decreases like l/ca4 at infinity.

Figure 3

The corresponding function <f>(x) is the indicator function of [0,1], so the
Haar multiresolution approximation is not regular. It is characterized by the
function H(of) = e~ml2 cos(co/2). With some other choice of H(of), we can
build wavelets which are much more regular than the Haar wavelet.

The smoothness and the asymptotic decay rate of a wavelet y/(x) defined by
(63) and (69) is controlleld by the behavior of H (of). The asymptotic decay
rate of y/(x) is estimated by observing that if H(a>) e C9, then y/(œ) e Cq
and

(71)
d"H(0)

dœ" = 0forl<n<q*>{

d"G(0)
doj"

¿V(Q)
dco"

= 0for0<n<q-\

OforO<n<q-\.

We can also obtain a lower bound of the asymptotic decay rate of y/(co) from
the lower bound (59) on the decay rate of 4>(of) :

(72) \y(o>)\ 0/|ftJ-?+Log('4)/Log(2k at infinity.

Outside the Haar basis, the first classes of wavelet orthonormal bases were
found independently by Y. Meyer [14] and J. Stromberg [16]. Y. Meyer's bases
are given by the class of functions H (of) satisfying the hypothesis of Theorem
2, equal to 1 on [-n/3, n/3] and continuously differentiable at any order. The
Fourier transform of Y. Meyer's wavelets are in C°° , so y/(x) has a decay faster
than any power. We can also easily derive that y/(co) has a support contained
in [—87T/3,8?r/3] so y/(x) is in C°° .

By using a multiresolution approach, I. Daubechies [3] has recently proved
that for any n > 1 , we could find some wavelets y/(x) eC" having a compact
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support. Indeed, she showed that we can find trigonometrical polynomials

H«o) =  ± hke-'k»
k=-N

such that the constant q-lx>g(A)/lx)g(2) of equation (72) is as large as desired.
The corresponding wavelet y/(x) has a support contained in [-27V- 1, 2JV+1]
and its differentiability is estimated from (72).

If y/(x) is regular enough, Y. Meyer and P. Lemarie showed that wavelet
orthonormal bases provide unconditional bases for most usual functional spaces
[11]. We can thus find whether a function f(x) is inside LP(R) (1 < p < oo),
a Sobolev space or a Hardy space from its decomposition coefficients in the
wavelet basis. As an example, one can prove that if a wavelet y/(x) satisfies

(73) 3C>0,    |^(x)|<C(l + |x|)-1-9,
/+oo x"y/(x)dx = 0   for \<n<q,

-oo

\d"y/(x)
(75) 3C >0, <C'(l + |x|)1 "   for n<q,dx"

then for any s < q, the family of functions (v 27V(2'/x - k)),¡ fe)€Z2 is an
unconditional basis of the Sobolev space Hs. As a consequence, for any f(x) e
L2(R), if a(k,j) = (f(x), \/2>V(2;x - k)) then

(
(76) /6H!# £ £  Hk,j)\

j=-oo  I   \fc=-oo

1/2
2 I        V*

A

;

1/2

< +00.

Remarks. 1. The couples of functions H(of) and G(of) which satisfy (69) were
first studied in signal processing for multiplexing and demultiplexing a signal
on a transmission line [5, 15]. Let A = (an)neZ be a discrete time sequence
and a(co) the corresponding Fourier series. The goal is to decompose A in two
sequences B and C each having half as many samples per time unit and such
that B and C contain respectively the low and the high frequency components
of A. Equations (67) enable us to achieve such a decomposition where b(of)
and c(of) are respectively the Fourier series of B and C. In signal processing,
H(co) and G(co) are interpreted respectively as the transfer functions of a
discrete low-pass filter H and a discrete high-pass filter G. They are called
quadrature mirror filters. The sequences B and C are respectively computed
by convolving A with the filters H and G and keeping one element out of two
of the resulting sequences.

2. If a function is characterized by N samples uniformly distributed, its de-
composition in a wavelet orthonormal basis can be computed with an algorithm
of complexity 0(N). This algorithm is based on discrete convolutions with the
quadrature mirror filters H and G [12].
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3. We proved that we can derive a wavelet orthonormal basis from any
multiresolution approximation. It is however not true that we can build a mul-
tiresolution approximation from any wavelet orthonormal basis. The function
y/(x) whose Fourier transform is given by

(l    if47i/7<\œ\<7ior47i<\œ\<4n + 47t/7,
1 0   otherwise,

is a counterexample due to Y. Meyer. The translates and dilates

(s/2/v(2jx-k)){kJ)€Z2

of this function constitute an orthonormal basis of L2(R). Let Vy be the vector
space generated by the family of functions

One can verify that the sequence of vector spaces (Vy)7€Z does not satisfy prop-
erty (5) of a multiresolution approximation. Hence, this wavelet is not related
to a multiresolution approximation. It might however be sufficient to impose
a regularity condition on y/(x) in order to always generate a multiresolution
approximation.

4. Multiresolution approximations have been extended by S. Jaffard and Y.
2 y.Meyer to L (Q) where Q is an open set of R [13]. This enables us to build

wavelet orthonormal bases in L (Q).

5. Approximation error

When approximating a function at the resolution 2J, the error is given by
8j = ||/-PV.(/)II ■ Property (2) of a multiresolution approximation implies that
lim,_+0O e = 0. A classical problem in approximation theory is to estimate the
convergence rate of e given an a priori knowledge on the smoothness of f(x)
or derive the smoothness of f(x) from the convergence rate of e   [4].

Theorem 3. Let (V ) €Z be a multiresolution approximation such that the asso-
ciated function 4>(x) satisfies

(78) 3C>0,    |¿(x)|<C(l + |x|r3-*,

(79)

(80) 3C'>0,

/+oo x"(p(x)dx = 0   for\<n<q+\,
-oo

d"4>(x
dx" <C'(l + |x|)   '  "   forn<q.

Let Cj = ||/ - Pv.(/)|| • For all f e L2(R), if 0 < s < q then

(81) f(x)eHso  ¿ e222íJ<+oo.
j=-00
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Proof. Let P0 denote the orthogonal projection on the vector space O and
let y/(x) be the wavelet defined by (63) and (69). Let f(x) be in L2(R) and
let a(k ,j) = (f(x), v 2JV(2Jx - k)). The approximation error is given by

1/2 / n   1/2
+ CO     -t-oo

,2(82) Ej = ||/-PV,(/)|| =   £iip0j(/)II2       =   £ £ Hk,j)\2
\j=J J \j=Jk=-oo

In order to prove the theorem we show that if the function 4>(x) satisfies con-
ditions (78), (79) and (80) then >//(x) satisfies conditions (73), (74) and (75).
We then apply property (76) to finish the proof.

It follows from (78) that the function H(to) = J2t=-oo Ke~ik<° satisfies

(83) hk = 0((\ + \k\)-'-q).
The function G(of) defined in (69) can be written

G((o)=   J2  8ke 'M>    with^ = A-¿_i(-1)"-ikw ... , /    . x— k— 1
Ske

k=—oo

The wavelet ^(x) is thus given by
. +O01       IXM!) = £ h_k_x(-irk-xd>(x-k).

k = — oo

With the above expression and equations (78), (80) and (83) we can derive that

\y/(x)\ = 0((l + \x\)  ' 9)   and
d"w(x)

dx"
i-«>= 0((1 + |x|)      ")   for n<q

Equations (78) and (79) imply that <¡>(of) G C*     and

^ = 0   forl<«<9+l.
act)

From (56) and (71) it thus follows that d"y>(0)/dœ" = 0 for 0 < n < q and
therefore

/+oo x" y/(x) dx — 0   for 0 < n < q.
-oo

We can now finish the proof of this theorem by applying property (76). Let
ßj = HtZoo \<*(k,j)\2 ; equation (82) yields

+oo

j=J
2 2This implies that ßj - e2 - eJ+x .   The right-hand side of property (76) is

therefore given by
+oo

-2s..    v—»      2~2sjy: ß/js=d-2-2s) y: &
j=—oo j=—oo
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The right-hand side statement of property (76) is thus equivalent to the right-
hand side statement of (81). This concludes the proof of Theorem 3.
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