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Due to surface meshes being produced at
increasing complexity in many applica-
tions, interest in efficient simplification
algorithms and multiresolution repre-
sentation is very high. An enhanced
simplification approach and a general
multiresolution data scheme are present-
ed here. JADE, a new simplification solu-
tion based on the mesh decimation
approach, has been designed to provide
both increased approximation precision,
based on global error management, and
multiresolution output. Moreover, we
show that with a small increase in mem-
ory, which is needed to store the multi-
resolution data representation, we are
able to extract any level of detail repre-
sentation from the simplification results in
an extremely efficient way. Results are re-
ported on empirical time complexity, ap-
proximation quality, and simplification
power.
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1 Introduction

Surface simplification is a very hot topic in visual-
ization because of several application-driven
motivations. In fact, huge surface meshes are
produced in a number of fields: volume visualiz-
ation, where isosurfaces composed of millions
of facets can be extracted on high-resolution vol-
ume datasets; virtual reality, where very complex
models are built to cope with the complexity of
real environments, e.g., to support high quality
walk-throughs in virtual worlds; automatic
modeling, where technologies for the automatic
acquisition of the shape of 3D objects are emerg-
ing (e.g., 3D range scanners), and the high pre-
cision infers very complex meshes (in the order of
hundreds of thousands of facets) (Curless and
Levoy 1996); and free form surface modeling,
where optimized polyhedral approximations of
parametric surfaces produce highly detailed
meshes.
Reducing the complexity of surface meshes is
therefore a must to guarantee interactivity in ren-
dering or, in some cases, to make the rendering
itself possible. In fact, such large meshes often
require more than the available storage and/or
adversely affect the graphics performance of the
current mid-level graphics subsystems.
This interest in surface simplification is also mani-
fested by the large number of research groups who
have started projects on this topic and by the
many papers published in recent years.
Our goals in the design of a new solution for
surface simplification are:

f Approximation error. An accurate estimation
of the approximation error introduced in the
simplification process.

f Compression factor. A reduction factor compa-
rable or better than that of other approaches at
the same level of approximation.

f Multiresolution management. Once the simpli-
fication process has been run, we want to make
possible the interactive extraction of any level
of detail (LOD) representation, with the com-
plexity of a single LOD extraction being linear,
in practice, with respect to the LOD output
size.

f ¼orking domain. Wide generality: the algo-
rithm should not rely on the correctness of
the surfaces (self-intersecting, nonmanifold,
nonorientable surfaces are common in real-
world data).
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f Space/time efficiency. Short simplification
times and low memory consumption to allow
the management of large meshes.

We consider the third point one of the most signif-
icant in our approach: our goal is to provide a real
multiresolution representation. To clarify this
point, we first give a characterization of two terms
that are sometimes considered synonymous.
Given a surface S, we define them here.
A LOD representation is a data structure that
holds a constant number k of different representa-
tions of the surface S, at different levels of detail or
approximation (Funkhouser and Sequin 1993).
A multiresolution representation is a data struc-
ture that allows the compact representation of
m representations, at different levels of detail,
where m is somewhat proportional to the data size
(e.g., the number of faces in S ).
LOD representations are widely used in leading
edge applications (e.g., virtual reality, 3D web
graphics, etc.). A multiresolution representation is
better than a LOD representation because the
user or the application has much more flexibility
in the selection of the ‘‘best’’ level of detail; in
many cases, it is better to postpone the choice at
run time, instead of forcing it in the preprocessing,
simplification phase.
Our solution, just another decimator (JADE), has
been designed as an enhanced decimation algo-
rithm that provides bounded error management,
high precision, good efficiency, and multiresolu-
tion management. The main points of our pro-
posals are:

1. JADE is based on a decimation approach,
which reduces mesh complexity by removing
vertices. Topological classification of the
vertices follows the original proposal by
Shroeder et al. (1992), which is therefore briefly
introduced in Sect. 3.

2. After the topological classification, we try to
remove all the vertices that are candidates for
removal. The criteria used for the evaluation of
the error introduced by each removal are pecu-
liar to our solution. We provide a global
approximation error criterion, defined in
Sect. 4, which supports high-precision error
management.

3. To reduce accumulation of error during re-
moval of vertices, the ordering adopted for the

candidate vertices is critical. An ad hoc strat-
egy for candidate vertex selection is presented
in Sect. 5.

4. Sophisticated triangulation heuristics, ex-
tremely important for the minimization of the
approximation error introduced in each re-
moval action, are described in Sect. 6.

5. Finally, the availability of a global error
measure enabled us to design a simple and
efficient method to manage multiresolution.
This is presented in Sect. 7.

We evaluated the JADE algorithm in depth with
a number of well-known public domain datasets
to prove the asserted precision and efficiency of
our solution. For this reason, we compared
(Sect. 8) the results obtained with JADE and those
produced with other state-of-the-art simplifica-
tion codes.

2 Related work

Substantial results have been reported in the last
few years on surface simplification. The data do-
main of the solution proposed generally covers
any type of triangular meshes (e.g., laser range
data, terrains, and synthetic surfaces). These
meshes are simplified either by merging elements
or by resampling vertices, different error criteria
being used to measure the fitness of the approxi-
mated surfaces. In general, any level of reduction
can be obtained with most of the approaches
listed next, on condition that a sufficiently coarse
approximation threshold is set.
Among the existing methods we have:

f Coplanar facet merging. Coplanar or nearly
coplanar data are searched for in the mesh,
merged in larger polygons, and then retrian-
gulated into fewer simple facets than those ori-
ginally required (Hinker and Hansen 1993;
Kalvin et al. 1991). Superfaces is a new ap-
proach based on face merging and bounded
approximation, recently proposed by Kalvin
and Taylor (1996).

f Retiling. New vertices are inserted at random
on the original surface mesh, and then moved
on the surface to be displaced on maximal
curvature locations. The original vertices are
then iteratively removed and a retiled mesh,
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built on the new vertices, is given in output
(Turk 1992).

f Mesh decimation. Based on multiple filtering
passes, this approach analyzes locally the ge-
ometry and topology of the mesh and removes
vertices that pass a minimal distance or curva-
ture angle criterion (Schroeder et al. 1992). New
decimation solutions that support global error
control have been recently proposed (Bajaj and
Schikore 1996; Cohen et al. 1996; Klein et al.
1996). In particular, the simplification envelopes
method (Cohen et al. 1996) supports bounded
error control by forcing the simplified mesh to
lie between two offset surfaces. A local geomet-
rical optimality criterion was also paired with
the definition of a tolerance volume to drive
edge collapsing and maintain bounded approx-
imation (Gueziec 1996).

f Mesh optimization. In a way similar to that for
mesh decimation, mesh optimization is
achieved by evaluating an energy function over
the mesh and minimizing such a function either
by removing/moving vertices or collapsing/
swapping edges (Hoppe et al. 1993). An en-
hanced version, progressive meshes, was re-
cently proposed to provide multiresolution
management, mesh compression, and selective
refinements (Hoppe 1996).

f Multiresolution analysis. This approach uses re-
meshing, resampling, and wavelet parametri-
zation to build a multiresolution representation
of the surface from which any approximated
representation can be extracted (Eck et al. 1995).

f »ertex clustering. Based on geometric proxim-
ity, the approach groups vertices into clusters
and, for each cluster, computes a new represen-
tative vertex. The method is efficient, but
neither topology nor shape are preserved (Ros-
signac and Borrel 1993).

In a recent Siggraph tutorial on surface simplifica-
tion, Schroeder (1995) classifies the approaches
just listed by highlighting two main orthogonal
classifications: approaches that preserve mesh
topology (e.g., mesh decimation and mesh optim-
ization) and those that do not (e.g., vertex cluster-
ing); and approaches based on vertex subset
selection (e.g., coplanar facets merging and mesh
decimation) or resampling (e.g., mesh optimiza-
tion, retiling, and multiresolution analysis). Other
characteristics that can also be at the base of

a classification are precise control and measur-
ability of the approximation error introduced
(e.g., simplification envelopes), preservation of dis-
continuities (e.g., mesh decimation and progres-
sive meshes), and multiresolution management
(e.g., multiresolution analysis and progressive
meshes).
A general comparison of these approaches is not
easy because efficiency depends largely on the
geometrical and topological structure of the mesh
and on the results required. For example, the
presence of sharp edges or solid angles would be
managed better by a decimation approach, while
on smooth surfaces mesh optimization or retiling
would give better results. However, the good re-
sults in the precision and conciseness of the out-
put mesh given by mesh optimization and retiling
techniques are counterbalanced by substantial
processing times. Although no time comparisons
of the various methods have been reported in the
literature, an informed guess would be that the
decimation approach is the most efficient method.
Several approaches have also been proposed for
a particular occurrence of the simplification prob-
lem: how to reduce the complexity of the isosur-
faces fitted on high-resolution volume datasets.
These techniques are peculiar to volume-render-
ing applications and are less general than the
previous ones. A possible classification is:

f Adaptive fitting approaches. Ad hoc data
traversing and fitting are devised to reduce
output data complexity by using approximated
fitting (Criscione et al. 1996), bending the mesh
(Moore and Warren 1992), or adapting the cell
size to the shape of the surface (Muller and
Stark 1993).

f Datasets simplification approaches. First, the
volume datasets are organized into a hierarchi-
cal (Criscione et al. 1996; Wilhelms and van
Gelder 1994) or a multiresolution (Cignoni
et al. 1994) representation, and then isosurfaces
are fitted into the simplified datasets.

3 Mesh decimation

The mesh decimation method (Schroeder et al.
1992) reduces mesh complexity by applying mul-
tiple passes over the triangle mesh and using local
geometry and topology to remove vertices that
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fulfil a distance or angle criterion. The resulting
holes are then patched with a local triangulation
process (3D recursive loop splitting). One charac-
teristic of this method is that the simplified mesh
has vertices that are a subset of the original ones.
The criterion is based on local error evaluation.
Each vertex v is classified topologically (looking
at the loop of facets incident to v). For each vertex
v that is a candidate for elimination, the algorithm
computes:

1. The distance of v from the average plane, in the
case of simple vertices (i.e., those surrounded
by a complete cycle of triangles, and where
each edge incident to v is shared by exactly two
triangles in the cycle).

2. The distance of v from the new boundary edge,
in the case of boundary vertices (i.e., those on
the boundary of the mesh and within a semi-
cycle of incident triangles).

In both cases, the approach computes an approx-
imated estimate of the local error. The estimate is
approximated because decimation does not com-
pute precisely the error introduced by removing
the vertex and retriangulating the hole. In fact,
only a simplified and approximated estimate of
the error between the selected vertex and the
resulting mesh is considered.
In this way, the returned simplified mesh does not
guarantee a bounded precision: successive simpli-
fication steps that affect the same mesh area may
produce an accumulated approximation error
that is much higher than the maximum allowed.
However, significant sharp edges (which we call
feature edges) are maintained by not removing all
of their vertices. These vertices are detected by
setting an angle threshold and testing, for all
edges, the magnitude of the angle between the two
adjacent faces. The power of the decimation ap-
proach is its time efficiency, which is higher than
that of other methods. The construction of LOD
representations is made possible by means of
k successive iterations of the decimation process,
with various error threshold settings.

4 Global error control

Our simplification solution is based on a vertex-
decimation approach, with vertex selection driven

by a criterion based on global error evaluation.
There are two crucial reasons for providing a glo-
bal error management: firstly, to give the user
accurate control of the approximation error intro-
duced and secondly, to allow easy management of
multiresolution, as we clarify in Sect. 7.
Given: an input mesh S; an intermediate mesh S

i
,

obtained after i steps of the decimation process;
a candidate vertex v on mesh S

i
; the patch ¹

v
of

triangles in S
i
incident to v; and, finally, the new

triangulation ¹ @
v
that replaces ¹

v
in S

i`1
after the

elimination of v. Then, the error introduced while
removing vertices can be measured in terms of
local and global error:

f ¸ocal error measures the local approximation
introduced by replacing the patch ¹

v
in S

i
with

¹ @
v
and generating the new mesh S

i`1
. The local

error can be estimated either in an approximate
manner, by computing the distance of v from
the mean plane over ¹

v
(Schroeder et al. 1992),

or in a more precise approach, proposed in the
following;

f Global error measures the error of approxima-
tion introduced if the corresponding subarea of
the original input mesh S is represented by the
new mesh parcel ¹ @

v
.

The exact global error can be defined as the
symmetric Hausdorff distance between the two
surfaces (Klein et al. 1996). Although global error
management may be not cheap if we require a pre-
cise evaluation, a number of efficient heuristics
can be used to approximate it.
A first technique that generally yields an over-
estimation of the actual global error is based
on accumulating the local errors introduced in
each simplification step. We maintain the error
accumulated on each facet of the mesh. Initially,
the error is set to null for each triangle t3S. For
each simplification step, we first compute the new
local error e

l1
generated by the removal of the

candidate vertex v. Then, we select the facet t
k
3¹

v
that has the largest accumulated global error, and
set the sum of e

l1
(v, ¹

v
) and of the global error in

t
k
as the new global error of each facet in the new

patch ¹ @
v
.

Following this approach, the global error on
each vertex v

j
in the mesh S

i
is computed as the

maximum of the global error of all the facets
incident to v

j
. The global error of the current
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mesh S
i
is the maximum of the global error of all

the facets in S
i
.

As far as the local error estimate is concerned, the
original decimation criterion (distance of v from
the mean plane or from the edge) gives an exces-
sively rough approximation of the local error
(Schroeder et al. 1992).
Another possibility is to compute, for each simpli-
fication step, the distance between the new patch
¹ @

v
and the previous patch ¹

v
. For each t@3¹ @

v
, we

select a set of points Q on t@. Q contains the
baricenter of t@, the three points halfway between
the baricenter and the vertices of t@, and n points
generated at random in the interior of t@ (with
n directly dependent on the surface area of t@ ).
Then, for each point q3Q, we compute the dis-
tance between q and the patch ¹

v
. We therefore

compute the local error e
l1

on t@ as the maximum
of these distances:

e
l1
(t@, ¹

v
)"max

q|Q

(dist (q, ¹
v
)),

and the global error on a single facet is therefore
evaluated as:

e
g1

(t@)"e
l1
(t@, ¹

v
)#max

t|¹
v

e
g1

(t)

with t3¹
v
, t@3¹ @

v
and S

i`1
"S

i
!¹

v
#¹ @

v
, and

the precision of the simplified mesh S
i`1

is obvi-
ously defined as the maximum of the errors on the
facets of S

i`1
.

This approach guarantees that the global error
will show an increasing monotonic behavior as far
as simplification proceeds, but it returns, in gen-
eral, an over-estimation of the effective error
(Fig. 1) or, in a few cases, an under-estimation.
Global error under-estimations are rare (espe-
cially after a few simplification steps), but are
possible because a local error computation based
on sampling always returns an under-estimation
of the real error.
A second possibility is to compute the global error
directly. To do this, we maintain, during the sim-
plification, a trace of the removed vertices, and
each facet t3S

i`1
is linked to the subset of the

removed vertices that are ‘‘nearest’’ to t. A relation
of proximity between removed vertices and facets
of the mesh S

i`1
is therefore defined and in-

crementally updated. Given the removed vertices,

for each facet t we can compute an estimate of the
global error by choosing the maximum of the
distances between these vertices and t.
Given the ith simplification step, where vertex v is
removed and patch ¹

v
is replaced by ¹ @

v
, the

proximity relation is updated as follows:

1. Detect the facet t
j
3¹ @

v
that is nearest to v and

assign v to t
j
.

2. For each t3¹
v
, redistribute the sublist of re-

moved vertices (vert-removed(t)) on the facets of
the new patch ¹ @

v
.

3. For each facet t@3¹ @
v

and for each vertex in
vert-removed(t@), compute the new vertex-face
distance dist (v

i
, t@ ).

The global error on a single facet is now defined
as:

e
g2

(t@)" max
v
i
3vert-removed(t@ )

dist (v
i
, t@ ).

This second estimate requires shorter computing
times than the previous one, but again it may
produce an under-estimation of the effective
error. Using this approach, the first stages of
simplification are highly critical because a
large number of facets t@ are connected to only
a few (or any) removed points. Obviously, an
evaluation of distances on a small set of sampling
points may lead to an under-estimation of
the error.
For this reason, we decided to use both ap-
proaches at the same time, in order to assure
maximal precision in error evaluation. The joint
global error is therefore defined as:

e
g3

(t@)"max(e
g1

(t@), e
g2

(t@)).

The precision of the proposed approaches has
been evaluated empirically by a number of tests
on real meshes. Some results are reported in
Table 1, where we compare a number of meshes
produced by JADE with different settings of the
threshold error selected by the user (e*). The two
global error estimates e

g1
(t@) and e

g3
(t@) just defined

were used to produce the results presented. The
effective error of these meshes was measured in
terms of maximum (E

max
) and mean error (E

avg
)

with the Metro tool (Cignoni et al. 1996b), which
is briefly described in Sect. 8.
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2

3
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Fig. 1. Possible over-estimation of global error
(using the first evaluation approach)

Fig. 2. Global error increases when various
values are associated with the constant k in the
e*
l
( j ) function (cosine surface data)

Fig. 3. Increase in the global error with
different settings of the amplification constant
c
2

in e*
g
( j ) function (cosine surface data)

Fig. 4. Flipping may improve mesh quality
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Table 1. Various global error estimates (e
g1

and e
g3

) are compared on the Bunny dataset (34 834 vertices and 69 451 faces)

Stanford Bunny (bounding box 15.6]15.4]12.1)

e
g1

e
g3

e* N
triang

¹
sec

E
max

E
avg

N
triang

¹
sec

E
max

E
avg

0.10 6646 255.79 0.147 0.0275 7545 285.38 0.139 0.0238
0.20 3021 264.38 0.282 0.0575 3397 310.05 0.225 0.0503
0.50 1051 271.49 0.747 0.1506 1176 331.30 0.499 0.1336
0.75 654 279.89 1.227 0.2216 726 336.96 0.736 0.2027
1.00 455 278.23 1.458 0.2986 510 340.11 0.985 0.2784

5 Setting an order in candidate
vertex selection

In our algorithm, the strategy of selecting the
vertices that are candidates for removal is analog-
ous to the mesh decimation approach as far as the
topological classification of vertices is concerned.
However, the order in which vertices are deci-
mated is unique to our solution. We process can-
didate vertices in order of increasing both local
and accumulated global errors.
The order introduced in the selection of the candi-
date vertices has two positive effects:

1. The approximation error (defined as the max-
imum of the global errors of its facets) increases
more slowly, and the quality of the obtained
mesh improves (Fig. 6).

2. A smooth error growth is mandatory to ensure
the high quality of the meshes that will be
retrieved from the multiresolution representa-
tion (see Sect. 7 for details).

Let us call e* the target error. It is set by the user
and it has to be satisfied by the final simplified
mesh. The original mesh decimation algorithm
classifies a vertex as a candidate for selection if the
local error e

l
is lower than e* (and for this reason it

cannot guarantee the final accumulated error to
be lower than e*).
In our solution, we take into account e*, e

l
, and

e
g
and we adopt a criterion that takes into account

the progressive state of simplification. To evaluate
whether a given candidate vertex exceeds the er-
ror threshold set by the user, we adopt an estimate
rule that takes into account the current iteration
depth. This is because we do not compare the

current local and global errors with e*, but with
a function over the iteration depth that returns
values that progressively increase up to e*. Taking
into account the iteration depth is fundamental.
For each jth iteration, we scan the list of vertices
and select for removal any vertex that has local
and global errors lower than the iteration j target
errors. We therefore define two functions that set
the current iteration targets, for both the local and
global errors:

e*
l
( j)"minA

e*

k
· cj

1
, e*B

e*
g
( j)"min(e*

l
( j ) · c

2
, e*),

where k, c
1
, and c

2
are constants.

With the first function, selection is driven by
choosing at each iteration only the vertices that
satisfy a ‘‘low’’ local error, and the threshold used
to evaluate the error fitness increases with the
iteration level. Moreover, with the second func-
tion, we select among the previous ones only those
vertices such that the sum of their accumulated
global error, together with the current local error,
does not exceed the current iteration global target
error e*

g
( j ). In this way, at each iteration we man-

age to keep the global error of the obtained mesh
as low as possible. Then, at the end of each iter-
ation (i.e., when no more candidate vertices are
available) we increase these target values until the
value set by the user for the target error is reached.
The number of iterations performed by our algo-
rithm will obviously depend on the values chosen
for the constants in the two functions.
Regarding the e*

l
( j ) function, the best results have

been obtained by setting k5256 and c
1
41.3. By
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‘‘best results’’ we mean the lowest increase in the
accumulated global error, as shown in Fig. 2.
With regard to the e*

g
( j ) function, the experiments

show that low values of the constant c
2

(in the
range 1. 22.) have to be set. Figure 3 represents
how much the approximation error is affected by
various choices for the global error constant c

2
.

Figures 2 and 3 report graphs of the error re-
turned by JADE on the cosine surface (a synthetic
dataset, see Fig. 5).

6 Best fitting triangulation

We designed the triangulation as a two-phase
process. Firstly, we compute a valid triangulation
¹ @

v
that fills the hole generated by the removal of

vertex v. Then, we improve the quality of the new
patch by a series of edge-flip actions.
We used a 2D approach for the triangulation of
the hole resulting from the removal of patch ¹

v
.

This was to reduce the complexity of the problem
and to increase robustness. The solution imple-
mented evaluates a set of 14 planes by projecting
the border of ¹

v
on each of them until it finds

a ‘‘valid’’ projection plane (i.e., a plane where the
projection of ¹

v
has no intersecting edges). The

planes evaluated progressively are: (a) the average
plane with respect to ¹

v
; (b) the three planes

orthogonal to the axes; (c) for each axes pair, the
two quadrant bisector planes (in total six planes);
and (d) the four planes orthogonal to the octant
diagonals. If none of these 14 planes gives a valid
projection, the candidate vertex removal action
fails (but no more than 0.05% occurrences of this
case have been found in practical experiments).
Two 2D triangulators were implemented and tes-
ted: an ear-cutting solution (Hinker and Hansen
1993; O’Rourke 1994) and minimum angle modi-
fication of the previous one.
The ear-cutting algorithm is a very simple in-
cremental solution, which builds the triangulation
by cutting from the current n-sided polygon each
couple of adjacent edges that form an angle lower
than n. The algorithm iterates for a maximum of
n times, and it stops as soon as n!2 facets have
been cut.
The minimum angle solution adopts an incremen-
tal approach similar to the previous one, but here
we choose the next vertex onto which the next
triangle is built by adopting a minimum angle

criterion. The internal angles of the polygon are
computed and sorted, and at each step we choose
the minimum one to build the next triangle.
The validity of the 2D triangulation obtained is
then checked in 3D space by testing:

f Whether any internal edge intersects the border
of ¹

v
f Whether there are pairs of intersecting edges
f Whether all triangles are contained in the in-

terior of ¹
v

f Whether any new edge was also part of the
S
i~1

mesh (this occurrence would modify the
topology of the mesh, and we want to prevent
that)

f Whether any triangle has a particular ill-condi-
tioned shape (aspect ratio evaluation).

If any of the previous conditions are verified,
then the 2D-valid, but 3D-invalid triangulation is
rejected.
The minimum angle solution proved to be faster.
We therefore use the ear-cutting triangulator only
in the case where the minimum angle one does not
produce a 3D-valid triangulation. This approach
guarantees computational efficiency and reduces
the number of unsuccessful triangulations.
To get the best approximation of the removed
patch ¹

v
, and to reduce the error introduced in

each individual simplification step, we process
triangulation ¹ @

v
further. How well the triangles in

¹ @
v
actually fit the removed mesh has to be careful-

ly evaluated (Fig. 4). In many cases, the regularity
in shape of the mesh is not sufficient to guarantee
high precision in the approximation of the orig-
inal mesh, which is our main objective.
The quality of the approximation may be signifi-
cantly increased through a series of edge-flip ac-
tions. Each internal edge e of ¹ @

v
has two incident

triangles, t
1

and t
2
, whose union is a quadrilateral

with e as diagonal. If we flip e, two new triangles
are generated to replace t

1
and t

2
, the pair

t
flip1

and t
flip2

. We evaluate whether the new pair
of triangles gives a better approximation with
respect to the original mesh S and, if they do, we
perform the flip. To do this, a number of heuristics
may be devised:

f Edge-vertex distance. We compute the distan-
ces between the two edges e and e

flip
, and the

removed vertex v.
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5

6

Fig. 5a, b. Simplification of a synthetic mesh (cosine-mesh): a without
flipping; b with flipping

Fig. 6. Intermediate errors obtained in the simplification of the Stanford
Bunny dataset

f Approximated volumetric error. For each pair
of triangles, we compute the volume of the two
tetrahedra they form with the removed vertex
v (base: one triangle, apex: vertex v) and com-
pare these volumes: the lower the volume, the
better the approximation.

f Sampled local error. We compute the error as-
sociated with the two triangle pairs, one before
and the other after flipping, by sampling distan-
ces with the patch ¹

v
(Sect. 4).

f Aspect ratio. The couple with the best aspect
ratio is preferred.

f Area difference. We compute the difference be-
tween the area of ¹

v
and ¹ @

v
: the smaller the

difference, the better the approximation.

Table 2 shows how both the times and precision
of the mesh increase when volumetric or sampled
local criteria are used independently to drive flip-

ping. The errors reported are measured in a post-
processing phase with the Metro tool (Sect. 8).
In the current JADE implementation, we make
use of a composed evaluation function that takes
into account some of the previous heuristics. For
each flipping action, the aspect ratio cannot
worsen more than a user-specified threshold (usu-
ally, a threshold of 50% is set) with respect to the
removed patch ¹

v
aspect ratio, and the flip action

is accepted if both volumetric and sampled local
error criteria detect an improvement of the ap-
proximation with respect to the patch before
flipping. The adopted approach is therefore to
maintain a good aspect ratio and to improve
approximation.
Flipping has proved to be crucial in increasing the
quality of the reduced mesh. Figure 5 shows that
a dramatic improvement may be introduced on
mesh precision by edge flipping. The meshes
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Table 2. Comparison of results with different flip heuristics. Er-
rors (E

max
, Esq-avg) are measured as percentages of the mesh

bounding box diagonal

Edge flipping

Triangles Time E
max

Esq-avg

(in seconds) (%) (%)

Original mesh 28322 — · — — · — — · —
No flip 1026 30.09 1.221 0.104
Volumetric 409 72.95 0.589 0.108
Sampled local 412 97.10 0.535 0.093

presented in Fig. 5 are the simplifications of ana-
lytic datasets, called cosine-meshes, that are ob-
tained by evaluating the function:

z"
cos(sqrt(x2#y2 ))

sqrt(x2#y2)#0.001
.

In the test of Fig. 5, we used the same target error
in both simplifications, and we applied flipping to
produce the mesh in the image of Fig. 5b. Using
flipping, we obtain a more precise approximation
with a number of facets nearly one-half of those
used without flipping (mesh of Fig. 5b: 412 tri-
angles and Fig. 5a mesh: 1026 triangles).

7 Multiresolution representation

Given a decimation process, we want to produce
a multiresolution representation S

M
such that,

given any precision threshold e, the retrieval of
an approximate model that satisfies precision e
should be achieved by a simple and fast traversal
of S

M
.

Let us consider the set ¹ of all the triangles that
were generated during the whole decimation pro-
cess, including the triangles of the original mesh.
Each facet t3¹ is characterized by two time
stamps: its creation (or birth, i.e., when t is gener-
ated as part of a new patching submesh) and its
elimination (or death, i.e., when t is found as one
of the triangles incident to a vertex candidate for
removal).
An intermediate mesh S

j
is associated by defini-

tion with each time stamp j, and therefore we can
associate with each time stamp j the global ap-
proximation error held by mesh S

j
. Given the

birth and death time stamps, each facet t3¹ is
therefore tagged with two errors e

b
and e

d
, with

e
b
(e

d
, called the birth and death errors of t,

respectively.
Our multiresolution representation S

M
is there-

fore the set of facets in ¹, having the associated
e
b

and e
d
errors explicitly stored for each facet t.

The extraction of a representation S
e
from S

M
at

a given precision e is therefore straightforward:
S
M

contains sufficient information to reconstruct
it. S

e
is composed of all of the facets in S

M
so that

their life interval contains the error threshold
searched for (e

b
(e4e

d
).

A very efficient technique to extract a model
S
e
from S

M
is to use an interval tree (Edelsbrunner

1980) to retrieve all the facets whose life intervals
(i.e., e

b
and e

d
) covers e. [For an example of the

application of the interval tree data structure in
visualization and evaluation of the results, see
Cignoni et al. (1996a).] Using such a structure, we
are able to retrieve all the m facets of a model
S
e
with a complexity of O(m log k), where k is the

number of decimation steps. Some experiments
show that the use of an interval tree permits
interactive extraction of approximated models
from the Bunny (see Sect. 8 for details on the
dataset specifications), in multiresolution repre-
sentation with a constant per-triangle rate of the
order of 1.5 M triangles/s.
A significant advantage of our multiresolution
approach is its generality. It does not depend on
the particular simplification approach adopted.
More generally, the definition of the model works
either in the case of refinement-based or simplifi-
cation-based approaches, provided that inter-
mediate meshes with resolutions close to each
other can be related through local changes and
that a global, monotonic error measure is defined
on the meshes.
Four snapshots of a simple tool that allows the
interactive extraction and visualization of various
levels of detail from the multiresolution repre-
sentation are shown in Figs. 7 and 8.
Experimental results show that the number of
facets stored in S

M
is not much larger than the

number of facets in the model at maximum resolu-
tion S (approximately less than three times),
though a large number of resolutions are avail-
able. In Table 3, we show the storage size of our
multiresolution representation on the cosine-
mesh datasets, and we compare it with the size of
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a

c

b

d

Fig. 7a–d. Four meshes extracted at different
resolutions (the full resolution Bunny mesh is
shown in a)

three more classical LOD representations (with
errors set to 0%, 1.25%, 2.5%, 3.75%, and 5% in
the case of the five models in LOD representation.
Storage size is evaluated by considering a naive

representation of the mesh. In the case of LOD
representation, we count 12 bytes/vertex and 12
bytes/triangle. In the case of the multiresolution
representation, the sizes are 12 bytes/vertex and
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c

a

d

b

Fig. 8a–d. Four meshes extracted at different
resolutions (the full resolution Fandisk mesh is
shown in a)

20 bytes/triangle (12 bytes for the three vertex
indices, 8 bytes for the e

b
and e

d
errors). Obviously,

techniques that reduce mesh size are available,
based on vertex/triangle proximity and quantiz-

ation (Deering 1995), and can be applied to both
types of representations.
Moreover, if a LOD representation is built
with n independent runs of a standard surface
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Table 3. Multiresolution versus level of detail (LOD) representa-
tion: space and construction time comparison (input mesh: co-
sine-mesh dataset — 28322 triangles, 14400 vertices)

Triangles Size Time
(bytes) (in seconds)

Multiresolution-861 models 78404 1740895 144
LOD-3 models 41936 754848 167
LOD-5 models 69587 1252566 280
LOD-9 models 125603 2260854 505

simplification code, then the times required to
build multiresolution or LOD models are in favor
of the multiresolution approach (see the times
presented in Table 3).
As introduced in Sect. 5, the shape of the approxi-
mation error curve is critical. While performing
decimation, the approximation error growth
should be slow and smooth to ensure that a large
number of different approximated meshes Sj are
stored in SM and to ensure that all the meshes
Sj extracted from SM guarantee a good reduction
factor. Figure 6 shows that, thanks to the heuris-
tics adopted for the candidate vertex selection and
the attention paid to finding the best triangulation
for each removed patch, the approximation error
follows a very smooth curve indeed.

8 Results and evaluations

The proposed algorithm, JADE, has been imple-
mented and is distributed on the public domain
(see the Acknowledgements section). The results
presented here were obtained on an SGI Indigo2
workstation (R4400 200 MHz cpu, 16 KB pri-
mary cache, 1 MB secondary cache, 32 MB RAM,
IRIX 5.3).
In order to evaluate both the simplification rate
and the quality of the approximation, we ran
a number of tests on two public domain datasets:
the ‘‘Bunny’’ mesh, acquired at Stanford with
a range scanner, modeled with 34834 vertices and
69451 triangles; and the ‘‘Fandisk’’ mesh, a syn-
thetic CAD model of a gas turbine engine com-
ponent modeled with 6475 vertices and 12946
triangles. [The original model of the ‘‘Bunny’’ was
created from laser range data with Turk and
Levoy’s (1994) mesh zippering algorithm. The
original model of the ‘‘Fandisk’’ is included in the

mesh optimization package (Hoppe et al. 1993).]
The first mesh was chosen as a valid representa-
tive of free-form or acquired surfaces, and it
presents a ‘‘bumpy’’ surface that increases mesh
complexity. On the contrary the second is a typi-
cal CAD model, with sharp edges and surfaces
characterized by sophisticated curvature.
Tables 4 and 5 present the precision obtained in
a number of runs of our code on the two test
datasets. In the runs reported, the value selected
for feature edges classification is n/6 (i.e., all those
edges where a pair of adjacent faces form an angle
lower than 60 degrees).
Times are given in CPU seconds and measure the
cost for the construction of a multiresolution rep-
resentation that stores all approximations from
error 0.0 to the threshold set by the user.
The approximation error obtained after simplifi-
cation was evaluated with Metro, a tool we de-
veloped to measure the difference between meshes
(Cignoni et al. 1996b). To compare two triangle

Table 4. Bunny dataset: numerical evaluation of simplified mesh
quality

Stanford Bunny (bounding box 15.6]15.4]12.1)

JADE Metro Evaluation

N
Vert

N
Triang

¹
Sec

e* E
max

E
avg

34834 69451 — · — — · — — · — — · —
3845 7545 285.38 0.10 0.139 0.0238
1764 3397 310.05 0.20 0.225 0.0503
628 1176 331.30 0.50 0.499 0.1336
391 726 336.96 0.75 0.736 0.2027
276 510 340.11 1.00 0.985 0.2784

Table 5. Fandisk dataset: numerical evaluation of simplified
mesh quality

Fandisk (bounding box 4.8]5.6]2.7)

JADE Metro Evaluation

N
Vert

N
Triang

¹
Sec

e* E
max

E
avg

6475 12946 — · — — · — — · — — · —
445 886 30.01 0.05 0.063 0.0061
277 550 32.00 0.1 0.099 0.0134
183 362 33.10 0.2 0.217 0.0282
104 204 34.21 0.5 0.490 0.0681
74 144 35.33 1.0 0.921 0.1291

240



Fig. 9. A simplified mesh produced from the Bunny dataset, produced with a target error of 0.2%, rendered by Metro with color
mapping proportional to the approximation error

meshes numerically, Metro adopts an approxi-
mated and symmetric approach based on surface
sampling and point-surface distance computation.
Metro requires no knowledge of the simplification
approach adopted to build the reduced mesh. It
returns both numerical results and error magni-
tude visualization.
Tables 4 and 5 report the target error e* set by the
user and the values returned by Metro after com-
paring the original mesh and the simplified one:
E
max

, the maximum error and E
avg

, the average
error. All errors reported in the tables are given as
percentages of the dataset bounding box diagonal.
One of the functionalities of Metro is the possibili-
ty of producing renderings of the measured mesh,
where facets are colored and shaded to visualize
the magnitude of the local approximation error.
An example of this feature, relative to the Bunny
dataset is shown in Fig. 9. Please note that the
Metro output window contains the histogram of
the distribution of error (Fig. 9a). The numbers
reported in the histogram are measured as abso-

lute values (therefore, the mesh shown in the fig-
ure has a maximal absolute error equal to 0.056,
which is 0.2% of the bounding box diagonal). The
histogram shows that most of the surface has
approximation error lower than one-third of the
maximal error.
Figures 7 and 8 present four different meshes
extracted interactively from the two multiresolu-
tion representations built on the test datasets. The
errors reported in the figures are measured as
percentages of the dataset bounding box diagonal.
The total number of vertices and facets in the
multiresolution representation and the number of
facets of the mesh currently extracted and visual-
ized are also reported.

8.1 Comparison with other simplification
approaches

We compared our algorithm with one of the
‘‘fastest’’ approaches, the mesh decimation
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Table 6. Comparison of simplification algorithms (errors are measured as percentages of the dataset bounding box; times are in
seconds)

Stanford Bunny (bounding box 15.6]15.4]12.1)

JADE Decimation Optimization

N
Vert

N
Triang

E
max

E
avg

¹ime E
max

E
avg

¹ime E
max

E
avg

¹ime

34834 69451 — · — — · — — · — — · — — · — — · — — · — — · — — · —
17145 34120 0.037 0.0039 163.30 0.155 0.0049 22.41 0.307 0.0100 4461
3430 6820 0.137 0.0270 284.60 0.421 0.0226 26.51 0.281 0.0157 4746
590 1160 0.578 0.1438 318.99 2.757 0.3210 28.10 0.467 0.0542 5116

Table 7. Comparison of simplification algorithms (errors are measured as percentages of the dataset bounding box; times are in
seconds)

Fandisk (bounding box 4.8]5.6]2.7)

JADE Decimation Optimization

N
Vert

N
Triang

E
max

E
avg

¹ime E
max

E
avg

¹ime E
max

E
avg

¹ime

6475 12946 — · — — · — — · — — · — — · — — · — — · — — · — — · —
1025 2020 0.0181 0.00114 37.90 0.427 0.0071 4.7 0.307 0.00321 1373
530 1065 0.0465 0.00462 36.29 0.998 0.0280 5.5 0.241 0.00401 1495
280 560 0.0965 0.01260 36.10 1.804 0.0880 5.0 0.295 0.00673 1468
175 325 0.2489 0.03197 35.44 1.916 0.0820 5.2 0.340 0.01374 1391
100 195 0.5444 0.07234 35.76 1.917 0.1690 6.7 0.595 0.02856 1293

implementation provided in the visualization
toolkit (Schroeder et al. 1995), and one of the most
‘‘precise’’ approaches, the original implementa-
tion of the mesh optimization algorithm (Hoppe
et al. 1993).
A number of runs of the three solutions were
done, in order to produce simplified meshes of
‘‘similar’’ sizes (sizes differ by no more than 5—10
triangles).
The results obtained (Tables 6 and 7) show that
JADE is half way between them. It takes approx-
imately ten times longer than mesh decimation,
but approximately 20—30 times less than mesh
optimization.
Given a target number of vertices for the simplifi-
ed meshes, the error in our solution is from four to
ten times lower than mesh decimation, and it is
very close to that of mesh optimization. Again,
approximation errors were measured by using
Metro to compare each simplified mesh with the
input mesh.
Times were compared by running JADE and the
mesh decimation system on an SGI Indigo2

workstation. The mesh optimization algorithm
was run on a Digital 3000/900 workstation (Alpha
64 bit 275 MHz, 128 MB RAM) because only
a Digital executable is available in the public
domain. Then, Digital times were scaled into
‘‘SGI-expected’’ times (the scaling factor was com-
puted by running JADE on both architectures, on
the same datasets). The times relative to the mesh
optimization algorithm are therefore Digital-to-
SGI scaled times.
In the case of Fig. 7, it may seem contradictory
that the simplification at lower precision requires
lower times, even if a larger number of vertex
removal operations are executed. This depends on
the higher frequency of invalid triangulations that
are produced when a higher precision threshold is
set.
One important advantage of our solution is the
measurability of the global approximation error
introduced in the simplification. For this reason,
a comparison with some extremely recent ap-
proach would be interesting, such as the simplifi-
cation envelopes algorithm (Cohen et al. 1996) or
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the method based on tolerance volumes (Gueziec
1996), which support bounded global error evalu-
ation. However, an empirical comparison is not
possible, since implementations of these methods
are not available to us.
JADE and the simplification envelopes algorithm
are both based on a decimation approach. The
simplification envelopes algorithm should be
slightly less efficient, due to the cost of the envel-
ope-intersection test executed for each t@3¹ @

v
and

the cost of the expensive preprocessing for com-
puting the envelopes. Nonetheless, although
JADE gives a very good estimate of global error,
it does not provide an exact bound on maximal
error (due to possible under-estimations in global
error evaluation; see Sect. 4).
Results obtained on the Bunny datasets are
reported in the simplification envelopes paper
(Cohen et al. 1996). The simplification rates are
comparable to those obtained with our solution,
whereas simplification envelope times are twice
those of JADE (and the times reported in the
paper were measured on an HP 735/125 worksta-
tion [136 SPEC92int, 201 SPEC92fp], which is
slightly faster than the SGI Indigo2 we used in our
runs [140 SPEC92int, 131 SPEC92fp]).
Concerning the method based on tolerance vol-
umes (Gueziec 1996), the results presented in the
paper have been obtained on proprietary surfaces,
and therefore comparison with our results is not
easy. Adopting edge collapsing instead of vertex
decimation has the advantage of avoiding the
retriangulation of the removed patches. However,
the approach adopted in the tolerance volumes
method to estimate and bound the approximation
error is fairly complex, and it returns an over-
estimation of the actual error, which may be the
origin of a lower simplification ratio.
Another approach that supports bounded error
management has been recently proposed by Bajaj
and Schikore (1996). We became acquainted with
their proposal only during the revision of this
paper, and we thank the anonymous referee for
that. There are some similarities between this
work and our solution. Bajaj and Schikore adopt
a vertex decimation approach and estimate a glo-
bal error bound by accumulating local errors. For
each decimation step, the local error is measured
by mapping the edges of the new patch on the
removed patch and dividing it into pieces. Due to
the linear variation of geometry on each piece,

local error is evaluated only at the intersections of
the edges (simplifying computations) and is used
as an upper bound for each triangle in the new
patch. They also use edge flipping to improve the
quality of the mesh.

8.2 Comparison with other multiresolution
approaches

The only two approaches that support multi-
resolution are multiresolution analysis (Eck et al.
1995) and progressive meshes (Hoppe 1996).
Again, an empirical comparison is not possible,
because these codes are not available on the pub-
lic domain.
Following Hoppe’s (1996) evaluations, we can say
that our solution has a number of advantages
over multiresolution analysis. It is a lossless rep-
resentation, it manages any feature edges or
discontinuities in the input mesh with higher
precision, and it is much more efficient both in
construction of the multiresolution representation
and in the reconstruction by remeshing the ap-
proximate meshes S

j
(which costs tenths of min-

utes on an SGI Onyx ws).
A comparison with the Progressive Meshes ap-
proach is more debatable. Our approach is char-
acterized by:

f Lower simplification times: the progressive
meshes approach is based on a revised [and
probably slightly more expensive] mesh optim-
ization approach, and we have proved that our
solution is much more efficient than the orig-
inal mesh optimization code. However, the
methodology proposed here for vertex selection
and mesh update might be also applied to the
methods based on edge collapsing.

f Measurability of the global approximation er-
ror held by simplified meshes.

f Faster extraction of a single level of detail
model S

j
from the multiresolution representa-

tion S
M

: we only need to search for e-valid
triangles, with complexity O(m log k) and em-
pirical efficiency in the order of 1.5 M facets/s
(Sect. 7). However, progressive meshing re-
quires the execution of O(m!m

0
) slightly

more complex inverse edge-collapsing actions
and mesh updates, with m being the number of
facets of the mesh S

j
and m

0
, the number of
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facets in the lower resolution mesh contained
in S

M
.

Our multiresolution scheme, like the progressive
meshes representation, can support the progres-
sive transmission of meshes to show progressively
better approximations while the high/mid-level
mesh is being transmitted on a slow communica-
tion line.
An advantage of the progressive meshes approach
is the ability to apply geomorphs between differ-
ent LOD representations, thus increasing visual
quality in LOD switching. This is not possible
with JADE, due to the current design of the
S
M

multiresolution data structure. Geomorphing
is not possible because, once the S

M
representa-

tion has been built, we lose the interference rela-
tion that, for each simplification step, links the
removed patch ¹

i
to the new updating patch ¹ @

i
.

However, this is not a limitation of our multi-
resolution approach because alternative designs
of S

M
that maintain the updating relation

(¹
i
%¹ @

i
) are possible (De Floriani and Puppo

1995). We decided to avoid an explicit representa-
tion of the ¹

i
% ¹ @

i
relation to allow a more com-

pact representation.
Other interesting features of the progressive
meshes approach are (1) the ability to extract
a single mesh at various precisions, a feature that
Hoppe calls selective refinement, and (2) both
scalar and discrete attributes preservation (e.g.,
the normals or colors defined on the input mesh).
We are extending JADE with the same objectives,
as briefly described here.
We recently proposed an approach that provides
selective refinements on multiresolution terrain
maps (Cignoni et al. 1997b); we designed a data
structure that can encode dynamic changes in
a triangulation obtained by progressive refine-
ments or by simplification. The structure is based
on embedding triangles in 3D space, and it main-
tains topological relations between pairs of
triangles that are adjacent at some time during
dynamic construction. The data structure sup-
ports efficient traversal algorithms to obtain
either a triangulation at some fixed error, or some
special triangulations that cover different parts of
the domain with triangles with different approxi-
mation errors.
We are now extending this approach to generaliz-
ed surfaces in 3D space. Starting from the multi-

resolution data produced by JADE, we support
the interactive selective refinement/simplification
of the mesh (Cignoni et al. 1997a). The domain
of this system is resolution modeling or, using
a metaphor, geometric painting. Given an input
surface and the results of its simplification, the
idea is to allow the user to choose a constant
approximation level and then, interactively, to
modify the mesh by increasing or reducing the
precision in selected areas. A logical interface ex-
tremely similar to those provided by image paint-
ing systems (Haeberli 1990) is used.
Preserving scalar and discrete attributes can be
introduced in a decimation-based approach, as
well as in an optimization-based one, by choosing
an appropriate error metric for vertex removal.
We completely agree with Hoppe’s considerations
regarding the importance of preserving attribute
discontinuities (Hoppe 1996), and the extensions
we are designing for the JADE code were largely
inspired by his work.

8.3 Conclusions

We have presented JADE, a new algorithm for
surface simplification. JADE adopts a mesh deci-
mation approach and fulfills three major goals: to
minimize error with sustainable processing costs,
to provide a bounded error management, and to
produce a multiresolution representation at the
cost of a low memory overhead.
The observed time complexity is from tenths to
hundreds of seconds on medium complexity
meshes (composed by tenths of thousands facets).
A peculiar characteristic of JADE is that the
multiresolution description of the simplified mesh
comes free, at no added processing costs, and the
extraction of a mesh at a given error e is extremely
efficient and can be computed in real time. Storing
a multiresolution mesh requires a very limited
overhead in space. Experimental results showed
that, on average, it holds at most three times more
facets than the single maximal precision mesh.
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