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Abstract

An efficient algorithm for the estimation of the 2-d disparity between a
pair of stereo images is presented. Phase based methods are extended to the
case of 2-d disparities and shown to correspond to computing local correlation
fields. These are derived at multiple scales via the frequency domain and a
coarse-to-fine 'focusing' strategy determines the final disparity estimate. Fast
implementation is achieved by using a generalised form of wavelet transform,
the multiresolution Fourier transform (MFT), which enables efficient calcula-
tion of the local correlations. Results from initial experiments on random noise
stereo pairs containing both 1-d and 2-d disparities, illustrate the potential of
the approach.

1 Introduction

Estimating the disparity between a pair of binocular images in order to determine
depth information from a scene has received considerable attention for many years.
Essentially a problem of finding corresponding points in the two views of the scene,
the complexity of the task is considerable, involving not only the estimation of
relative 2-d displacements, but with the added complication of taking into account
such effects as geometric transformations and occlusions. This is reflected in the
wide range of approaches to solving the problem that have been investigated [1, 2].

Recently, some of the problems have been successfully addressed by the use of
frequency domain methods in the form of phase differencing. Using localised fre-
quency representations similar to that proposed by Gabor [3], local phase differences
between bandpass filtered versions of the binocular images provide robust estima-
tion of disparity at sub-pixel accuracy [4, 5,6]. Incorporation of the methods within
some form of multiscale framework also allows for efficient matching to be achieved
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using coarse-to-fine analysis [4, 6]. Nevertheless, these methods are not without
their shortcomings. To the authors' knowledge, no straightforward extension to 2-d
disparity estimation has been devised and the use of bandpass filters with constant
relative bandwidth over scale would appear to be an unwelcome restriction: signifi-
cant events in a scene are in general broadband and in any case there is no reason
why the disparity between the views of a given object should be directly linked to
its size or frequency content. In addition, the technique is critically dependent upon
the local frequency properties of the images - dominant frequencies significantly
different from that of the filter centre frequency can lead to error.

The work reported here is an attempt to address the problems of phase differenc-
ing while retaining the advantages of a frequency domain approach. The estimation
of 2-d disparity is cast in the form of a least squares minimisation problem over all
spatial frequencies and is shown to be equivalent to calculating spatial correlations
via the frequency domain. Moreover, by defining the scheme within the framework
of a generalised wavelet transform, the multiresolution Fourier transform (MFT)
[7, 8], the analysis can be based upon local spatial regions over a range of sizes
and so enable a fast coarse-to-fine matching strategy to be adopted. This approach
avoids the problem of tying disparity to scale and removes the dependence on a
known centre frequency associated with phase diiferencing. In addition, these ad-
vantages are achieved without the high computational cost normally associated with
correlation methods. Finally, the unified framework provided by the MFT gives po-
tential for extending the scheme to incorporate feature information to further aid in
guiding the disparity estimation and to cope with problems such as local geometric
transformations. After outlining the theoretical principles of the algorithm and its
implementation using the MFT, results of experiments on random noise stereo pairs
with 1-d and 2-d disparities are presented to illustrate the potential of the approach.

2 Multiresolution Disparity Estimation

The purpose of this section is to outline the main features of the algorithm and to
indicate its relationship with phase based methods. Towards this end, consider a 2-d
image z(£) at a depth A from the reference (vergence) plane in a binocular system,
where £ = (fi,&) is the coordinate vector in 2-d space. Ignoring any effects such as
scaling, the left and right images in the system are related by

*R(£) = xL((+ d) (1)

where the 2-d disparity d is proportional to the depth A. This relationship can also
be considered in the Fourier domain as

xR(u}) = xL(uJ) exp[;w.J| (2)

where '.' denotes scalar product, j = \f-i and x(to) is the 2-d Fourier transform
(FT) of x(£). The significance of (2) is that it suggests a means of estimating d

using the phase of the inner product between £L{UJ) and XR(W), ie

{Z)x*R{Z)\ = -(u5.«f) (3)
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Thus, providing the direction of d is known (eg when considering horizontal dispari-
ties) and spectral estimates of the left and right images are obtained at some known
frequency to, then estimation of d can be made using (3). This is the basis of phase
differencing approaches. However, the situation is less clear when the direction of
disparity is unknown, as is the case in most natural stereopsis problems [9, 10]. In
this instance, single frequency estimates will mean that d is indeterminate; to de-
termine d requires more than one frequency estimate in different radial directions.
This then poses the question as to what is the most appropriate way of estimating
d: to use a subset of frequencies or to devise a method using all frequencies. Given
that in most natural scenes it is impossible to predict a priori in which frequency
bands significant events will lie, it would seem that the latter should be the preferred
option. In fact, such a method of solution can be readily formulated in terms of a
least-squares problem and corresponds to selecting d to maximise the function

p(d) = T~
x
[xL{Q)xR[Q)\ = — j ^ xL(w)xR{Q) exp[ju.d] d<2 (4)

where j r ~ 1 denotes the inverse 2-d FT. The maximisation therefore amounts to
finding the 'phase correction' term (u.d) which maximises the inner product between
the spectra of the binocular images, ie arg[£jj(o;)] is 'rotated' so as to minimise the
squared error between the spectra. Moreover, (4) can be written in terms of the
spatial domain as [11]

r°° xL([)xR((+ d) d£ (5)= r
J —

which is just the cross correlation between XL(£) and XR(£). Maximising (4) therefore
corresponds to finding the peak in the correlation field and the connection between
phased based methods and correlation is made clear: the latter provides a natural
extension of the former to deal with 2-d disparities, by making use of the whole
frequency domain.

Of course, simply computing the global correlation between the left and right im-
ages is inappropriate except in the most trivial of cases. In practice, the interocular
disparity will be inherently local; objects in a scene are necessarily confined to some
finite spatial region and exist at differing depths, implying that any correspondence
measurements must also be based on local properties [6]. This can be achieved in
the present case by considering local correlations between neighbourhoods in the
binocular images, ie find the d, denoted by d{£-[,£i), which maximises

i L ( £ , u!)i-H(6, J3) exp\jCS.d] dw (6)

where the global spectra in (4) are now replaced by the local spectra X£,(£i,w) and

^K(^2I^)I centred at £j and £j respectively, and defined according to

where ui(£) is some appropriate window function, ie i(£, Jj) is a windowed FT remi-
niscent of the Gabor representation [3]. It is these equations which underlie the dis-
parity estimation used in the present work: derive local correlation fields p(£i, £2, d)
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by computing the inverse FT of XL(£I,L5)X"K(£2-£) and find the peak to give the
disparity <?(£,£).

The above formulation also suggests a means of overcoming the matching prob-
lem, ie selecting £1 and £2 in (6). If the neighbourhoods used in the correlations
are too small, then finding the best match will involve extensive searching, whereas
neighbourhoods which are too large will be susceptible to error due to the presence
of more than one disparity. As has been previously noted, eg in [4, 6], the solution is
to employ some form of coarse-to-fme analysis so that the disparity estimates can be
'focused' over multiple scales. This approach can be incorporated here by defining
the local correlations to be dependent upon a scale parameter <r, ie

J du (8)

where the local spectra are now scale dependent and correspond to multiresolution

Fourier transforms (MFT) [8, 7]

- r°° -.

x{t,u,a) = a w{a{x-O)
x
{x)exTp[-juJ.x\dx (9)

J — oo

ie a 'stack' of windowed FTs in which the locality of the spectral estimates is varied
as a function of a. Using (8), it is therefore possible to derive local correlation
fields, and thus disparity estimates, at multiple spatial resolutions via the Fourier
domain. Moreover, there is now no longer a link between those disparity estimates
and a specific frequency band as in previous multiscale approaches; in this case, the
estimates are based on information from the whole of the frequency domain.

It is now possible to summarise the multiresolution scheme used to derive the
required disparity field. Starting at some suitably large scale cr0, local correla-
tions between neighbourhoods centred at the same spatial positions in the left
and right images are formed according to (8) and the disparities d(£,£,<7o) found
which maximise /»(£, ^,cr0. d). A disparity field D(£,tr0) is then generated such that
•^(^i^o) = d(£,£, (To), ie it represents the current disparity estimate with respect to
the left image at spatial position £ and scale cr0. The scheme then proceeds through
smaller and smaller scales (a0 < <T\... < <rm_i < am), deriving disparity fields at
each scale according to the following update rule

D{{, ak+1) = D((, ak) + <T(£ £+ D((, <rk), ak+l) 0 < k < m (10)

where the first term on the rhs serves as both the previous estimate and the 'focus-
ing' term - defining the pair of regions to be correlated - and the second term is the
disparity update at scale crk+\ based on the current correlation. The local correla-
tions performed at smaller scales are therefore directed by the disparity estimates
obtained at larger scales, producing a more refined estimate at each stage. The final
estimate is then given by the disparity field D(£,a,n) defined at scale am.

3 Implementation

3.1 The Discrete MFT

The algorithm described above is based upon the MFT as defined by (9). This is

a generalised form of wavelet transform designed specifically to enable local Fourier
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discrete Fourier transform

00,(11)

original image

Figure 1: The MFT viewed as a quadtree in which the nodes are assigned the local
spectra corresponding to the region "below" the node.

analysis to be performed at multiple scales [8]. A brief summary of the essential
properties of the discrete transform is given here. For a discrete 2-d image x(£t), its
MFT at scale cr(n), frequency ujj(n) and position £;(n) is given by

;&.J5>(n)] (11)

where the discrete window sequence wn(^t) approximates a scaled version of a suit-
able continuous function w(£), ie ii>,,(£;) = a(n)w(cr(n)£i). Thus, for some value
of c(n), x(^i(n),tjj(n),<7(n)) is a discrete windowed FT of x(f,-) and corresponds
to local frequency estimates centred at spatial positions £,(n). As cr(n) varies, the
spatial and frequency resolution varies, and thus the transform as a whole consists
of local estimates over a range of scales.

The two most important factors determining the properties of the MFT are
the distribution of the sampling points &(ra) and ioj(n), and the choice of the win-
dow sequence. In the present work, the 2-d transform has been formed as the
cartesian product of 1-d transforms, and the sampling points in both domains dis-
tributed on regularly spaced square lattices of size N((n) x N((n) and Nu(n) x Nu(n).

where JVj(n)JVu,(n) = 2JV for an image of finite size Ar x N [8]. The window func-
tions adopted here are bandlimited versions of the prolate spheroidal sequences [11].
These provide maximal spatial localisation and enable efficient computation of the
transform using fast Fourier transform techniques [7]. A useful interpretation of the
resulting transform is that of a quadtree structure in wliicli the individual nodes
are assigned the local spectra referring to the neighbourhood ''below'' the node and
have four associated child nodes whose estimates refer to quadrants of the father's
neighbourhood (see Fig. 1). It is this hierarchical framework which forms the basis
of the disparity focusing algorithm described below.
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3.2 Disparity Focusing

The basic operation employed in the disparity estimation can now be expressed in
terms of the discrete MFT coefficients of two binocular images, ie (cf (8))

] (12)

where F^^ denotes the inverse 2-d discrete FT of size N.M(n) x Nu(n) and the

correlation is performed between neighbourhoods centred at £i(n) and £fc(n) in the
left and right images respectively. A correlation field of size NM(n) x Nu(n) is thereby
obtained, in which the position of the peak indicates the relative 2-d displacement
between the two neighbourhoods. As a guide to the computational saving obtained
by using the MFT. the computational burden of implementing (12) for an N x jV
pixel image is in the order of iN*(n) log2 2N multiplications [7], giving a gain by
a factor of around N^(n)/ilog22N over that required for direct calculation of the
correlation. For example, for a 256 x 256 image and a 16 x 16 neighbourhood, this
corresponds to a gain by a factor greater than 5, whilst for neighbourhoods of 32 x 32
and 64 x 64, this increases to over 25 and 100 respectively. The saving achieved is
therefore considerable, particularly at the larger region sizes.

The disparity focusing algorithm is best described in terms of the quadtree frame-
work discussed above. A level of the MFT, n = nQ say, is chosen as the starting
level (typically corresponding to Nu(n) = 64) and either the left or right channel
selected as the reference channel. The algorithm then proceeds as follows (Fig. 2):

1. Cross correlations between corresponding nodes on level n0 are formed and
peak positions in the correlation fields assigned to the relevant nodes in the
reference channel.

2. For a father node in the reference channel on level n0, its child nodes at level
rio + 1 are compared with those on the same level in the other channel according
to the disparity estimate at the father node. If the estimate is greater than
half a block at level no + 1 along either or both coordinates, the child nodes
are compared with their relevant "neighbours"' in the other channel; otherwise
they are compared with their corresponding nodes. The peak positions in the
resulting correlation fields are used to produce an updated estimate (cf (10)),
which is then assigned to the relevant nodes on level no + 1 of the reference
channel.

3. The process proceeds to level TIQ + 2, nodes are compared according to the
disparities obtained at the previous level (ie to the nearest block interval)
and a new disparity estimate produced. This process then continues through
subsequent levels until some final level n0 + m is reached.

The result of this hierarchical scheme is a set of disparity estimates defined at levels
no < n < n0 + m, with the spatial resolution of each estimate being determined by
the corresponding resolution of the MFT level.
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Figure 2: Discrete disparity focusing within the quadtree framework. Estimates
obtained at higher nodes dictate which nodes are compared at subsequent levels,
yielding an updated and refined disparity field at each scale.

4 Experiments

To test the algorithm, experiments were performed on random noise stereo pairs
with horizontal and 2-d disparities. The images were of size 256 x 256 pixels with
8-bit grey level resolution. The MFTs of each image were generated and the levels
with 16 < Nu(n) < 64 used in the focusing algorithm.

The test image pairs are shown in Figs. 4a and 5. The first of these consists
of only horizontal disparities, linearly increasing in the positive and negative direc-
tions to a peak of ±16 pixels in the centre of the upper and lower halves of the
image respectively, ie forming inward and outward projecting peaks when viewed
stereoscopically (Fig. 3a). The second pair incorporates 2-d disparities by varying
the relative displacement as a function of the radius from the centre of the image,
where the disparity at the edges is 16 pixels (Fig. 3b).

Results of the experiments are shown in Figs. 4b and Fig. 6. These show the hor-
izontal and vertical components of the estimates obtained on each of the four levels
(only the horizontal component in the case of the first pair, the vertical component
being zero). The luminance values (0-255 grey levels) in these images indicates the
amount of disparity, where zero disparity corresponds to a grey level value of 128.
These results show clearly the focusing steps of the algorithm and the final estimates
correspond well to the known disparity variation.
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Figure 3: Test image disparity variation with (a) horizontal disparities and (b) 2-d
disparities.

IP

(a)

(b)

Figure 4: (a) Random noise stereo pair containing horizontal disparities, (b) Hor-
izontal component of disparity estimates produced by focusing algorithm from the
stereo pair in (a).
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Figure 5: Random noise stereo pair containing 2-d disparities.

(b)

Figure 6: (a) Horizontal and (b) vertical component of disparity estimates produced
by focusing algorithm from the stereo pair in Fig. 5.

5 Conclusions

An algorithm to compute the 2-d disparity between a pair of binocular images has
been presented. The approach is based on the calculation of local correlation fields
over multiple scales using a frequency domain method. This has been shown to
be a natural extension of phase differencing techniques to deal with 2-d disparities.
Efficient implementation of the algorithm is achieved by making use of the MFT.
A disparity focusing scheme enables fast matching of corresponding regions in the
two images and the results obtained from experiments illustrate the satisfactory
performance of the approach.
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It should be emphasized, however, that the work presented here is in its prelim-
inary stages. The initial experiments suggest that the approach has considerable
potential, although the simplicity of particularly the matching will clearly lead to
difficulties when dealing with more complex scenes. Work is under way in extending
the approach, most notably on incorporating both local transformation and feature
information into the algorithm. Perhaps the most interesting aspect of this work is
that due to the flexibility and richness of representation provided by the MFT, the
potential exists for incorporating such extensions within the same framework [8].
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