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Abstract—In this paper, we investigate the effectiveness of a I. INTRODUCTION
financial time-series forecasting strategy which exploits the mul- .
tiresolution property of the wavelet transform. A financial series URING the last two decades, various approaches have
is decomposed into an over complete, shift invariant scale-related been developed for time series prediction. Among them

representation. In transform space, each individual wavelet series linear regression methods such as autoregressive (AR) and au-
is modeled by a separate multilayer perceptron (MLP). To better toregressive moving average (ARMA) models have been the
utilize the detailed information in the lower scales of wavelet coef- 1,55t used methods in practice [18]. The theory of linear models

ficients (high frequencies) and general (trend) information in the . -
higher scales of wavelet coefficients (low frequencies), we appliedIS well known, and many algorithms for model building are

the Bayesian method of automatic relevance determination (ARD) available.

to choose short past windows (short-term history) for the inputs ~ Linear models are usually inadequate for financial time se-
to the MLPs at lower scales and long past windows (long-term ries as in practice almost all economic processes are nonlinear
history) at higher scales. To form the overall forecast, the indi- to some extent. Nonlinear methods are widely applicable nowa-
vidual forecasts are then recombined by the linear reconstruction days with the growth of computer processing speed and data

property of the inverse transform with the chosen autocorrelation . -
shell representation, or by another perceptron which learns the storage. Of the nonlinear methods, neural networks have be

weight of each scale in the prediction of the original time series. COMe very popular. Many different types of neural networks

The forecast results are then passed to a money managementsuch as MLP and RBF have been proven to be universal func-
system to generate trades. Compared with previous work on tion approximators, which make neural networks attractive for

combining wavelet techniques and neural networks to financial time series modeling, and for financial time-series forecasting
time-series, our contributions include 1) proposing a three-stage particular.

prediction scheme; 2) applying a multiresolution prediction which AN i tant isite for th ful licati f
is strictly based on the autocorrelation shell representation, 3) N important prereéquisite for the successtul application o
incorporating the Bayesian technique ARD with MLP training SOMe modern advanced modeling techniques such as neural net-
for the selection of relevant inputs; and 4) using a realistic money works, however, is a certain uniformity of the data [14]. In most
management system and trading model to evaluate the forecasting cases, a stationary process is assumed for the temporally ordered
performance. Using an accurate trading model, our system data. In financial time series, such an assumption of stationarity
shows promising profitability performance. Results comparing has to be discarded. Generally speaking, there may exist dif-

the performance of the proposed architecture with an MLP f t kinds of tati i E | b
without wavelet preprocessing on 10-year bond futures indicate erentkinds or nonstationarities. or example, a process may be

a doubling in profit per trade ($AUD1753:$AUD819) and Sharpe @ Superposition of many sources, where the underlying system
ratio improvement of 0.732 versus 0.367, as well as significant drifts or switches between different sources, producing different
improvements in the ratio of winning to loosing trades, thus dynamics. Standard approaches such as AR models or nonlinear
indicating significant potential profitability for live trading. AR models using MLPs usually give best results for stationary
Index Terms—Autocorrelation shell representation, automatic time series. Such a model can be termed as global as only one
relevance determination, financial time series, futures trading, model is used to characterize the measured process. When a se-
multilayer perceptron, relevance determination, wavelet decom- ries is nonstationary, as is the case for most financial time series,
position. identifying a proper global model becomes very difficult, unless
the nature of the nonstationarity is known. In recent years, local
models have grown in interest for improving the prediction ac-
curacy for nonstationary time series [25].
To overcome the problems of monolithic global models, an-
other efficient way is to design a hybrid scheme incorporating
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data [1], [2], [19], [27]. The preprocessing methods they useidn defined on the whole real line, then, for a suitably chosen
are based on the translation invariant wavelet transform [7] wother wavelet functior, we can expangd as
a trouswavelet transform [4], [23]. - -
In this work, we have developed a neuro-wavelet hybrid i/2.1 of
; . o t) = 12’ 2t —k 1
system that incorporates multiscale wavelet analysis into a 1) Z Z Wik ) (@)
set of neural networks for a multistage time series prediction.

Compared to the work in [11], our system exploits a shifi/here the function(2/t — k) are all orthogonal to one another.
invariant wavelet transform called the autocorrelation Shq"he Coefﬁcientwjk conveys information about the behavior of
representation (ASR) [4] instead of the multiscale orthogon@e function f concentrating on effects of scale arouzid’
wavelet transform as was originally presented in [13]. It igear timek x 2—7. This wavelet decomposition of a function is
cumbersome to apply the commonly defined DWT for real-tim@gsely related to a similar decomposition [the discrete wavelet
time series applications due to the lack of shift invariancgansform (DWT)] of a signal observed at discrete points in time.
Whlc_h p_lays an important role in time series forecgstlng. Using The DWT has the property of being very good at compressing
a shlft_mvanant wavelet transfor.m., we can egsny relate the,ide range of signals actually observed in practice—a very
resolution scales exactly to the original time series and presefygye proportion of the coefficients of the transform can be set
th%mt_egrlllty of some short;]llve(zjq SVENLS [I'Z]. . ¢ to zero without appreciable loss of information, even for sig-
asically, we suggest the direct app_lcathn 0 ero‘_JS nals that contain occasional abrupt changes of level or other
wavelet transform based on the ASR to financial time series ap8havior. It is this ability to deal with heterogeneous and in-

the prediction of each scale of the wavelet's Coeﬁ'c'ents.bYtgrmment behavior that makes wavelets so attractive. Classical
separate feedforward neural network. The separate predictions, . . ; .

. ..~ methods of signal processing depend on an underlying notion
of each scale are proceeded independently. The predlcnoncﬁ?étationarit for which methods such as Fourier analysis are
sults for the wavelet coefficients can be combined directly b Y, y

ery well adapted.

the linear additive reconstruction property of ASR, or prefer- . L o .
ably, as we propose in this paper, by another NN in order toOne problem with the application of the DWT in time-series

predict the original time series. The aim of this last network gnalysis is that it suffers from a lack of translation invariance.

to adaptively choose the weight of each scale in the final pr'ghls means that statistical estimators that rely on the DWT are

diction [11]. For the prediction of different scale wavelet coefS€NSitive to the choice of origin. This problem can be tackled by
ficients, we apply the Bayesian method of automatic relevanf$ans of aedundantor nondecimateavavelet transform [7],
determination (ARD) [16] to learn the different significance of?1l- A redundant transform based onsasfength input time se-
a specific length of past window and wavelet scale. ARD is'#S has am-length resolution scale for each of the resolution
practical Bayesian method for selecting the best input variablé&vels of interest. Hence, information at each resolution scale is
which enables us to predict each scale of wavelet coefficietéectly related at each time point. To accomplish this, we use
by an appropriate neura| network' thus S|mp||fy|ng the |earnir@'\a trousalgorithm for realiZing shift-invariant wavelet trans-
task as the size of each network can be quite small. forms, which is based on the so-called autocorrelation shell rep-

Comparing the previous work on applying wavelet tecHesentation [21] by utilizing dilations and translations of the au-
niques together with connectionist methods to financial tinfecorrelation functions of compactly supported wavelets. The
series in [1], [2] our contributions consist of 1) applyindilters for the decomposition process are the autocorrelations of
some three-stage prediction schemes; 2) a multiresolutidve quadrature mirror filter coefficients of the compactly sup-
prediction which is strictly based on the autocorrelation shegibrted wavelets and are symmetric.
representation; 3) selecting relevant MLP inputs from the By definition, the autocorrelation functions of a compactly
overcomplete shell representation using the Bayesian technigugported scaling functiof(z) and the corresponding wavelet
ARD; and 4) demonstrating performance using a realistit(x) are as follows:
money management system and trading model. -

This paper is organized as follows. In the next section, we (z) = / () ply — ) dy
briefly describe the wavelet transform and the autocorrelation —oo
shell representation. The principle of the Bayesian method of e
ARD is IZ\Iso introduced. S(Fe)ctionplll presents gur hybrid neuro- U(z) = /_Ooz/}(y)z/’(y — ) dy @
wavelet scheme for time-series prediction and system details.
The simulation results and performance comparison over dif-The family of functions{(@Lk(l‘)}lﬁjgno’ o<k<nN—1 and
ferent data sets using a realistic trading simulator are summa,, 1(x)o<k<n—1, Wherew; ,(z) = 27912027 (x — k)
rized in Section IV followed by discussions and conclusions ind®,,, 1(x) = 27"/2&(27 " (x — k)), is called an autocor-
Section V. relation shell. Then a set of filtet® = {px}_r4+1<rx<r—1 and
@ = {qx}—L+1<rk<r—1 can be defined as

j=—o0 k=—o0

II. COMBINING BAYESIAN AND WAVELET BASED

PREPROCESSING 1 L-1
A. Discrete Wavelet Transform and Autocorrelation Shell 75(1)(”5/2) = Z pe®(z — k)
Representation ’“ZL_:“
Generally speaking, a wavelet decomposition provides a way L\p(x/g) - Z Pz — k) ()
of analysing a signal both in time and in frequency. i§ a func- V2 ke T4l
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Fig. 1.
transformed, only the last coefficient is retained.

lllustration of the procedure for preparing data in the hybrid neuro-wavelet prediction scheme. Note that each time a segment of the tame serie

Using the filtersP” and @, we obtain the pyramid algorithm gives an increasingly more accurate approximation of the orig-

for expanding into the autocorrelation shell

L—1

(k)= > picja(k+271)
I=—L+1
L—1

wik) = > qei_1(k+2771).
I=—TL+1

4

As an example of the coefficients,}, for Daubechies’s
wavelets with two vanishing moments ahd= 4, the coeffi-

H —-1/2 1 9 9 1
cients are~/2(—L. 0,2 1,2 0,—1).

A very important property of the autocorrelation shell coef-
ficients is that signals can be directly reconstructed from them.
Given a smoothed signal at two consecutive resolution levels,

the detailed signal can be derived as

w;(k) = V2c;_1(k) — ¢;(k). (5)

inal signal. The additive form of reconstruction allows one to

combine the predictions in a simple additive manner.

To make predictions we must make use of the most recent
data. To deal with this boundary condition we usetitme-based
atrousfilters algorithm proposed in [2], which can be briefly de-
scribed as follows. Consider a sigeél ), ¢(2), . .., c(n), where
n is the present time-point and perform the following steps.

1) Forindexk sufficiently large, carry out tha troustrans-
form (4) on{c¢(1),¢(2),...,¢(n)} using a mirror exten-
sion of the signal when the filter extends beydnd

2) Retain the coefficient values as well as
residual values for the kth time-point only:
wi(k), wa(k), ..., wy(k),cp(k). The summation of
these values giveg k).

3) If kis less tham, setk to & + 1 and return to Step 1).

This process produces an additive decomposition of the signal

c(k),e(k+1),...,c(n), which is similar to the trouswavelet

transform decomposition ari1), ¢(2), . .., c(k), ..., ¢(n). The

the

Then the original signato(k) can be reconstructed fromalgorithm is further illustrated in Fig. 1.

the coefficients {w;(k)}1<j<no, o<k<nv—1 and residual
{eno (k) bogkan—1
L]
co(k) =270 %y, (k) + > 27 2w;(k) (6)
j=1

fork =0,..., N—1,wherec,, (k) is the final smoothed signal.

At each scalegj, we obtain a set of coefficient&w; }. The

B. Application of Automatic Relevance Determination (ARD)

When applying neural networks to time series forecasting,
it is important to decide on an appropriate size for the
time-window of inputs. This is similar to a regression problem
in which there are many possible input variables, some of
which may be less relevant or even irrelevant to the prediction
of the output variable. For a finite data set, there may exist

wavelet scale has the same number of samples as the signal,some random correlations between the irrelevant inputs and

it is redundant. The set of values @f, provide a “residual”
or “background.” Addingw; to this, forj = ng,no — 1,...,

the output, making it hard for a conventional neural network
to set the coefficients for useless inputs to zero. The irrelevant
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Fig. 2. Overview of the wavelet/neural net multiresolution forecasting system.. . , w, are wavelet coefficients; is the residual coefficient series.

inputs however will degrade the model's performance. Thivided into classes, with independent scales.. For a net-
ARD method [16] gives us a principled way for choosing thevork having one hidden layer, the weight classes are: one class
length of past windows to train neural networks. In our hybritbr each input, consisting of the weights from that input to the
neuro-wavelet scheme, we apply ARD to choose a short-tehidden layer; one class for the biases to the hidden units; and one
history for higher temporal resolution (i.e., a higher samplingass for each output, consisting of its bias and all the weights
rate and higher frequencies) while a long-term history fsom the hidden layer. Assuming a Gaussian prior for each class,
used for lower temporal resolution. Through this, substantiale can defineyy (., = >_, .. w? /2, then the ARD model uses
information on both the “detailed” and “general” history of thehe prior of equation
time-series can be effectively exploited.

ARD stems from a practical Bayesian framework for adap- 1
tive data modeling [15], in which the overall aim is to developp({wi}Hac}’HARD) = HZ— exp <_ Z O‘CEW@) :
probabilistic models that are well matched to the data, and make wie) ¢
optimal predictions with those models. Given a data set, neural- ()

network learning can be considered as an inference of the most ) o
probable parameters for a model. In most cases, there are a"€ €vidence framework can be used to optimize all the

number of advantages of introducing Bayesian optimization Efgularization constants simultaneously by finding their most
model parameters [5]. In particular, they provide a means to éfobable value, i.e., the maximum ovgr.} of the evidence,
plicitly model prior assumptions by constructing the prior distril (P[{ac}, Harp). We expect the regularization constants
bution over parameters and model architectures. In neural-ri9f-irrelevant inputs to be inferred to be large, preventing those
work learning problems with high-dimensional inputs, generdfPuts from causing significant overfitting.

ization performance can often be improved by selecting those

inputs relevant to the distribution of the targets. In the ARD lll. HYBRID NEURO-WAVELET SCHEME FORTIME-SERIES

1€c

scheme, we define a prior structure with a separate prior vari- PREDICTION
ance hyperparameter associated with each input. These hypefig. 2 shows our hybrid neuro-wavelet scheme for time-series
parameters correspond to separate weight decay regulanser@f@aiction_ Given the time serig§n),n = 1,..., N, our aim

each input. In other words, ARD is effectively able to infe[s tg predict thdth sample ahead( NV + 1), of the series. That
which inputs are relevant and then switch the others off by a@-; — 1 for single step prediction; for each valuelofe train
tomatically assigning large values to the decay rates for irrelgseparate prediction architecture. The hybrid scheme basically
vant inputs, thus preventing those inputs from causing signifivolves three stages, which bear a similarity with the scheme
cant overfitting. in [11]. In the first stage, the time series is decomposed into
The ARD scheme used in this paper approximates the posdfferent scales by autocorrelation shell decomposition. In the
rior distribution over weights by a Gaussian distribution. Usingecond stage, each scale is predicted by a separate NN and in
this approximation, the “evidence” for a nonlinear model caghe third stage, the next sample of the original time series is
be readily calculated by an iterative optimization to find the opredicted, using the different scale’s prediction, by another NN.
timal values for the regularization parameters. The optimizatidwore details are expounded as follows.
of these hyperparameters is interleaved with the training of theFor time series prediction, correctly handling the temporal
neural-network weights. More specifically, the parameters asspect of data is our primary concern. Ttiee-based a trous
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transform as described above provides a simple method. Here -0.4

we set up ara trouswavelet transform based on the autocor-
relation shell representation. That is, (5) and (6) are applied to -0.6 M

successive values of As an example, given a financial index 08

with 100 values, we hope to extrapolate into the future with 1 or 0 20 40 80 80 100
more than 1 subsequent values. Bytinge-based a trousans- 0.02

form, we simply carry out a wavelet transform on valuggo

z100- The last values of the wavelet coefficients at time-point 0 i
t = 100 are kept because they are the most useful values for

prediction. Repeat the same procedure at time poiat 101 002 T 40 e 80 100
and so on. We empirically determine the number of resolution 0.02

levels.J, mainly depending on the inspection of smoothness of
the residual series for a giveh Much of the high resolution 0 q
coefficients are noisy. Prior to forecasting, we get an overcom-
plete, transformed data set. 002 0 40 s a0 100
In Fig. 3, we show the behavior of the three wavelet coeffi- 0.02
cients over a 100-day period for a bond rating series. The orig-
inal time series and residual are plotted at the top and bottom in 0
the same figure, respectively. As the wavelet level increases, the
corresponding coefficients become smoother. As we will show 002 T 40 0 80 100
in the next section, the ability of the network to capture dynam- ~0.4
ical behavior varies with the resolution level.
In the second stage, different predictors are allocated for -0.6 — ]
different resolution levels and are trained by the following
wavelet's coefficientslzf (t), 7=0,....J,i=1,...,N. Al _0'80 20 40 6.0 8.0 100
the networks used to predict the wavelets’ coefficients share the
same structure of a feedforward multilayer perceptron (MLPjig. 3. lllustration of thea trouswavelet decomposition of the closing price
The network for scalg hasDj input units, one hidden layer series. From top to bottom: normalized pries,, w-, w5 and residual series.
with K; sigmoid neurons, and one linear output neuron. Each
neuron in the networks has an adjustable bias. Dhenputs In the third stage, the predicted results of all the different
to the jth network are the previous samples of the waveletsbaleabjuri(t),j =0,...,.J are appropriately combined. Here
coefficients of thejth scale. In our implementation, eachwe discuss four methods of combination. In the first method, we
network is trained by the backpropagation algorithm using tiémply apply the linear additive reconstruction property of the
scaled conjugate gradient (SCG) method and a weight decagroustransform, as expressed in (6). The fact that the recon-
regularization of the fornl/A) 3", w;? was used [5]. struction is additive allows the predictions to be combined in an
The procedure for designing neural-network structure esseiditive manner. In the following we denote it as method |I.
tially involves selecting the input layer, hidden layer, and output A hybrid strategy can also be empirically applied to determine
layer. A basic guideline that should be followed is Occamiwhat should be combined to provide an overall prediction. In the
razor principle, which states a preference for simple modefsecond method, the predicted results of all the different scales
The fewer weights in the network, the greater the confideneee linearly combined by a single-layer perceptron in order to
that over-training has not resulted in noise being fitted. The geredict the desired following sample of the original time series.
lection of input layer mainly depends on the considerations bf order to improve the prediction accuracy, a multilayer percep-
which input variables are necessary for forecasting the targebn (MLP) with the same structure as for wavelet coefficients
From the complexity viewpoint it would be desirable to reducgrediction is employed for price series and the corresponding
the number of input nodes to an absolute minimum of essentimkdiction results are incorporated into the third stage, as shown
nodes. In this regard, we applied ARD to empirically decide the Fig. 2. For brevity, we call it method II. Depending on the
number of inputs in each resolution level. forecasting horizon on the second stage, the number of inputs
The optimum number of neurons in the hidden layer is hightp the third-stage network is equal to the number of all the pre-
problem dependent and a matter for experimentation. In all diction outputs in the first stage. For example, if four resolution
our experiments, we set the number of hidden neurons by uslagels are exploited and an MLP for direct price prediction is
half the sum of inputs plus outputs. Accordingly, for 21 inputsicorporated in the second stage, then for forecasting horizon 7,
and one output, 11 hidden units are used. It is worthy to ndtee number of inputs in the third stage perceptraswisy = 42.
that the selection of input and hidden layer neurons also deterin our experiments we have also applied a third stage MLP
mines the number of weights in the network and an upper limit place of the simple perceptron. The humber of hidden neu-
on the weight number is dictated by the number of training vemns is also set to half of the sum of the number of inputs and
tors available. A rough guideline, based on theoretical consildtputs. We denote this as method Il for the combination of
erations of the Vapnik—Chervonenkis dimension, recommengidiction results from the second stage. For comparison pur-
that the number of training vectors should be ten times or mgueses, we trained and tested an MLP on the original time series,
the number of weights [3]. denoted as method IV, without the wavelet preprocessing stage.
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As pointed out in [3], target selection is an important issue 96
in applying neural networks to financial series forecasting. We 94
follow the guideline suggested by Azoff to minimize the number
of targets required for a given problem. A neural network whose 92}
output neurons are reduced from two to one, will have half
the number of network weights required, with important con- 90
sequences for the generalization capability of the network. A

) . ; ) 88
single output neuron is the ideal, as the network is focused on
one task and there is no danger of conflicting outputs causing g6l
credit assignment problems in the output layer. Accordingly, we
prefer a forecasting strategy which proceeds separately for each 840 1000 2000 3000 2000

horizon in the second stage.

Fig. 4. Closing price for ten-year Treasury bonds traded on the Sydney Futures

Exchange.
IV. SIMULATIONS AND PERFORMANCES xchange

Our simulations involved the closing prices of four different . o .
futures contracts: The three-year and ten-year Treasury boﬁ&gh MLP input. H.e nce,'the regularization constants for noisy
(sfe3yb, sfelOybtraded on the Sydney Futures Exchange, tHBp_UtS are automatically inferred to be !arge. In _Table | we give
Australian US dollar contract(medolau$ and the Swiss Franc typlcql results of hyper-parametensfor input variables when
US dollar contractgmesfug traded on the Chicago Mercantileapplylng ARD to MLP_S on different Ieve_ls_. From the r_esults
Exchange. In order to derive a continuous time series from a can see that the first two level poefhu_ents are noisy a.”d
of individual futures contracts, special care must be taken at ave little reIeyance to the target distribution. To exploit t his
expiry of a contract. The price change from one contract to t ctto fu_rther improve perfor_mancg and_ reduc_e compl_JtatlonaI
next cannot be directly exploited in a trading system. Inste 8mpIeX|ty, we apply MLPs with variable input sizes to different

a contract must be rolled from the expiry month to a forwal 8vels, as shown in Table ”.' . .
month. We found that the four securities we are considering V& decomposed all the time-series into four resolution levels

are characterized by a price gap at roll over in the range of A th_e reS'd”"%' series become quite smooth. Al training sets
close to close price variation. The concatenation of spot morﬁﬂnS'St of the first 2000 data values (one cllo_smg price per day).
contracts is therefore a reasonable approximation. In Fig. 4, \glgr the;fe3yband§fe10yb we use the remaining 60.0 and 1000
show thesfe10ybclosing price over a ten-year period. ata points for testing, respecuvelly. For the Australian US dollar
We study the approach of forecasting each wavelet derivfantract ¢medolaug and the Swiss Franc US dollar contract

coefficient series individually and then recombining the ma cmesfug, we use the remaining 600 data points for testing.

ginal forecasts. Our objective is to perform seven days aheﬁdFig' 5, we show the one step ahead predictions for each of

forecasting of the closing price. As a byproduct, the corrdi€ four coefficient seriegtw, }, {w.}, {ws} and {ws}) and
gﬁ residual series over a 100 days period on a testing set (from

sponding price changes are simultaneously derived. To comp . . 2

with other similar work in the literature, we also construct five " 15, 1993 to April 13, 1994). As the reS|_duaI SEries Is very

days ahead forecastes of the relative price change,the smooth, a simple AR model shows quite satisfactory prediction
| grformance. The ability of the networks to capture dynamical

relative difference percent (RDP) between today’s closing prig havi . thth lution level [21 and b
and the closing price five days ahead, dend®ddP(¢), which ehavior varies wi e resolution level [2] and we can observe

is calculated aRDP(f) = (x(t + 5) — a(£))/x(t) [2]. The two facts. First, the higher the scale (em;, is “h|gher" thgn
data sets used consist of the date, the closing priteand the wy), the smoother the curve and thus, the less information the
target forecast. A separate MLP r,1etwork for each level of tﬁgtwork canretrieve. Second, the lower the scale, the more noisy
coefficients series is constructed. The scaled conjugate grad%rf‘ﬁl irregular the coefficients are, thus making the prediction

(SCG) algorithm was used for training. As the residual serig%ore difficult. The smooth wavelet coefficients at higher scale

are quite smooth, we simply apply linear AR models to them P2y & more important role.

At first, the raw price data requires normalizing, a process of.In Figs. 6 _and 7, we |Ilust_rate the forecastlng ofone _day ahead
standardising the possible numerical range that the input ve oFe and price change series (RDP)? respectlvely, using the pre-
elements can take. The procedure involves finding the maxim tion met.hqu I, and IV as prgwogsl_y described. The dif-
(max) and minimum (min) elements and then normalizing t gre.ntpredlctlon method; show_qwte similar results on the same

; ‘ . testing set. But a close inspection reveals a better accuracy re-
price z; to the rangd—1, 1] [3]: . . . .

sulting from method Il, i.e., using a perceptron to combine the
] prediction results of wavelet coefficients. To quantitatively cal-
po— o te ML g (8) culate the prediction performance, we used mean square error
max — min (MSE) to describe the forecast performance for price predic-
tion, which is defined as MSE- (1/N) S"r_, (x(k) — &(k))?,

Since many of the high resolution coefficients are very noiswherex(k) is the true value of the sequendgf) is the pre-
we applied the ARD technique to determine the relevant inpudgction. For price change prediction, we used two other mea-
of the MLPs on different levels. At first, each network had 2%ures. The first measure is the normalized mean squared error
inputs. The ARD scheme was used with a separate prior lMSE = (1/0?N) Eff:l(a:(k) — 2(k))?, wherez(k) is the



ZHANG et al: MULTIRESOLUTION FORECASTING FOR FUTURES TRADING

HYPER-PARAMETERS a@ FOR THE MLP NETWORK INPUTS ONDIFFERENT LEVELS FOR THESfel0ybDATA SET. THE ORDER OF THE

TABLE |

PARAMETERS ARE FROMPAST TO FUTURE

level 1 720.15 1168.98 2663.91 2420.56 2396.89 4061.82 3649.14
1013.36  846.29 11721 276.96 332.98 713.17 365.93
894.17 1029.06 1895.64 21.52 10.46 6.06 5.25
level 2 712.44 1138.76 1434.47 2636.82 6413.63 82777.96 47055.76
45475.55 9673.50 725.20 191.87 106.32 3741 25.13
18.07 11.67 6.73 4.28 3.41 3.64 3.45
level 3 2.20 3.40 3.09 2.47 417 9.29 3.46
3.46 1.20 1.12 1.01 1.47 1.60 1.34
2.33 2.56 2.38 1.94 0.99 0.87 0.75
level 4 0.17 0.34 0.55 0.87 2.27 2.50 1.65
1.72 1.77 2.54 1.32 0.66 1.21 1.54
1.40 0.79 0.84 1.23 0.18 0.10 0.11
TABLE 1

STRUCTURE OFMLPS ON DIFFERENTLEVELS

level 1

level 2 level 3 level 4 residual

#input 3 8

21 21 21
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A second measure of interest for price change prediction is
the directional symmetry (DS), i.e., the percentage of correctly
predicted directions with respect to the target variable, defined
asDS = (1/N) fo:l ¥(z(k)-z(k)), wherey is the Heaviside
unit-step function, namelyj(z) = 1 if z > 0 andy = 0 oth-
erwise. Thus, the DS provides a measure of the number of times
the sign of the target was correctly forecast. In other words,
DS = 50% implies that the predicted direction was correct for
half of all predictions.

In Table Il we used thesfelOybdata to compare the four
prediction methods with regard to MSE performance for price
prediction and NMSE and DS performance for price change pre-
dictions, respectively. From the results we can see that all four
methods have similar performance with regard to the MSE for
price prediction and NMSE and DS for price change prediction
and that method Il shows better generalization performance.

The evaluation of the overall system is a very important issue.
By some performance measures, we can evaluate whether tar-
gets have been met and compare different strategies in a trading
system. Criteria in setting up a trading strategy will vary ac-
cording to the degree of risk exposure permitted, so the assess-
ment criteria selected are a matter of choice, depending on pri-
orities.

The most commonly used measure is the Sharpe ratio, which
is a measure of risk-adjusted return [22]. Denoting the trading
system returns for periodas R, the Sharpe ratio is defined to
be

B AverageR;)
~ Standard DeviatiofR;)

St 9)
where the average and standard deviation are estimated over
returns for period¢ = {1,...,7T7}.

As another measure of interest we evaluate the quality of our
forecasts in a trading simulator. Trading results are simulated

Fig. 5. From top to bottom: one step ahead predictions for the four waveld#!N9 the ”SI_( evalugnon and money managemen-t (REMM)
coefficient seriesu;, ws, ws andw, and residual series, over a 100 days trade simulation environment that has been used in previous

period on the testing set. In each figure, the dashed line is the target series giflylations [10] [8] REMM has been developed and tested
the solid line is the prediction. '

true value of the sequence(k) is the prediction, and? is the
variance of the true sequence over the prediction period.

with the help of expert futures traders. It is currently used by a
number of financial institutions to analyze and optimize trading
strategies. A description of the functionality of REMM is given
in the following. REMM facilitates the testing of a trade entry
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Fig. 6. Demonstration of one day ahead forecasting for the closing priceify. 7.  One step ahead price changes (RDP) forecasts (dashed lines) vs the true
sfelOybon a testing data set over a 100 days period (from Nov. 15, 1993 HDP series (solid line) for a segment of 100 days in the testing set (from Nov.
April 13, 1994), using the prediction methods (1, II, and IV). In each figure, thes, 1993 to April 13, 1994). See text for explanation for the prediction methods
solid line is the target price and the dashed line is the prediction. I, Iland IV.

strategy by accurately modeling the market dynamics. As an TABLE Il
input REMM requires the time and price information and &OR sfe10ybDATA, PREDICTION PERFORMANCES FROM THEFOUR DIFFERENT
sequence of trade entry signals. The latter is obtained from the PREDICTION METHODS
forecaste output of the various prediction systems. Accurate ¢ Price/MSE RDP/DS RDP/NMSE
realistic risk and trade management strategies can be selei_data set | training | testing | training | testing | training | testing
to test the quality of the prediction system. This includes tt mitﬁlocflilll ggégi 88123 ;;gggﬂ ;gi’? g-ig;‘f g-igg
H H H H s metno . . . . . .
consideration of trgnsactlon costs. They are mcurrgd each tlmethod TTFT6.0002 1 00065 78.40?2 75.78‘72 51555 04799
a futures contract is purchased or sold. Slippage is a COMTy;, 4104 TV | 0.0080 | 0.0117 | 78.60% | 76.20% | 0.4262 | 0.4837
phenomenon in trading futures. It is the discrepancy betweeri
the theoretical entry or exit price and the actual price. In
REMM slippage is modeled using a volatility based approacallow assessment of the quality of the trading system over the
REMM allows the selection of a number of realistic trade exgiven training period. The most relevant measures are listed in
strategies like profit take and partial profit take at various targtte following. The profit per trade is the average profit per trade
levels, trade expiry and stop loss levels. The exit conditionsyer the trading period. The win/loss ratio is the ratio of winning
e.g., target and stop loss levels, are dynamically adjusted dragles to loosing trades over the trading period. The Sharpe ratio
to changing market conditions. Risk management strategisshe ratio of the annualised monthly return. The worst monthly
are implemented by providing trading capital of $1 million antbss is the total of losses from trades in the worst calendar month.
applying risk limits of $10 000 for each trade. An optimal trading strategy is derived from the training set and
For a given sequence of trade entry signals and a set of ragbplied to the test set.
and trade management parameters the trading system is simjsing the REMM simulator, we further compared the prof-
lated using a forward stepping approach. At each time step itability related performances of the four forecasting methods,
system is updated by checking for new trade entries and amely, directly summing up the wavelet coefficients predic-
justing the exit conditions for open positions caused by the neions from the linear reconstruction property (6) (method I),
market price. When an exit condition is satisfied, e.g., due tauging a perceptron (method Il) or an MLP (method IlI) to com-
target being reached or a stop loss level hit, etc. the open e the wavelet coefficients prediction and simply applying an
sition is novated and the overall portfolio position is updatedlLP without wavelet features involved (method 1V). For the
More than 50 different performance measures are derived thett-year bond contract on the test set (consisting of 1000 days of
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TABLE IV
FOR sfe10ybDATA, COMPARISON OF THEPROFITABILITY RELATED PERFORMANCES FROM THEFOUR DIFFERENT FORECASTINGMETHODS
method 1 method 11 method III method IV
data set training/testing | training/testing | training/testing | training/testing
# Trades 49/71 52/162 57/170 68/190
Profit/Trade 692.78/2002.74 | 5141.89/1753.30 | 4542.94/1808.62 4700/819
Profit/Loss 1.1553/1.5269 2.2306/1.6307 2.0801/1.6110 2.1396/1.2870

Sharpe Ratio 0.0009/0.7049 0.6238/0.7321 0.5926/0.3850 0.7186/0.3677
Worst Loss/month 22835/24450 22354/40814 22354/46351 26159/24450
TABLE V x 10°
PERFORMANCE COMPARISON FORDIFFERENTDATA SETS
sfel0yb | sfe3yb | cmedolsf | cmedolaus
Price/MSE 0.0110 0.0063 | 1.5100e-05 | 2.3000e-05
RDP/DS 76.41% | 77.24% 80.17% 79.02%
RDP/NMSE | 0.4815 0.4589 0.4194 0.4583

data), the measures shown in Table IV were calculated to eval-
uate the performance of the system under realistic trading con-
ditions. Table IV summarizes the profit per trade, the win/loss
ratio, the Sharpe ratio and the worst monthly loss. Each trade is
based on a number of contracts determined by the risk per trade. 0
From Table IV, it is obvious that method Il has the highest
values of both Sharpe ratio (0.7321) and profit/loss ratio
(1.6307), together with a satisfactory trading number and profit
per trade. Though a plain MLP (method IV) generates the most
trades, it yields the worst performance with regard to the profit
per trade, profit-loss ratio and Sharpe ratio. Simply combining
wavelet coefficients using (6) (method 1) offers reasonable
results of profit per trade and profit-loss ratio, but leads to
the most conservative trading activity (only 71 trades in more
than three years!). Overall, we can recommend method Il as a
practical forecasting strategy for a trading system.
We have also tested the neuro-wavelet prediction method on
the closing prices of other futures contract&3yb, cmedolaus
and cmesfus In Table V, we show MSE for price prediction, 0
NMSE and DS for RDP series prediction, all for testing data
sets. Profit/loss results are given in Figs. 8 and 9 for the
sef3yb data andseflOyh respectively. Prediction method |
was compared with method IV in Fig. 8 while method Il wa§ig. 8. Comparison of profit/loss results from applying the neuro-wavelet
compared with method | in Fig. 9. From these evaluation@ecaslno scheme methad | ane e MLE slone (methoc 1) using he
we can conclude that multiscale neural-network architecturiesy applying the linear reconstruction property (6) while the dashed line
generally show better profitability than applying an MLP aloneorresponds to the plain MLP. (a) profit and loss on the training set in \$AUD
and the hybrid scheme exploiting a second-stage percept?@ﬂmSt trading days. (b) profit and loss for the testing set.
has best performance.

500 1000 1500

(@)

2000

x 10

200 600

on an accurate trading system model. Our results show signif-
icant advantages for the neuro-wavelet technique. Typically, a
doubling in profit per trade, Sharpe ratio improvement, as well
Forecasting of financial time series is often difficult ands significant improvements in the ratio of winning to loosing

complex due to the interaction of the many variables involvettades were achieved compared to the MLP prediction.

In this paper, we introduced the combination of shift invariant Although our results appear promising, additional research is
wavelet transform preprocessing and neural-network predictinacessary to further explore the combination of wavelet tech-
models trained using Bayesian techniques at the different leveigues and neural networks, particularly over different market
of wavelet scale. We compared this with a conventional MLP lopnditions. Financial time series, as we have noted, often show
simulation on four sets of futures contract data and determineshsiderable abrupt price changes; the extent of outliers often
both forecasting performance and profitability measures bas#etides the success or otherwise for a given model. While the

V. DiscussION ANDCONCLUSION
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Fig. 9. Comparison of profit/loss results from applying neuro-wavelet

forecasting scheme method | and method Il, using the ten-year séettDyh)
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(2]

(3]
[4]

(5]
(6]
(71

(8]

9]

(10]

(11]

(12]

(23]

(14]

(15]

[16]

data. The solid line results from the hybrid architecture using a perceptron for
combining the wavelet coefficients (method 1) while the dashed line is the[17]
simpler architecture (method I), in which the wavelet coefficients are directly
summed up. (a) profit and loss on training set in AUD against trading days. (bP18]

profit and loss for the testing set.

(19]

prediction performance is improved, the neuro-wavelet hybridzo]
scheme is still a global model, which is susceptible to outliers.

Ongoing work includes 1) the integration of ttime-based a

trous filters studied here and mixture of local expert model,
which may explicitly account for outliers by special expert net-
works and 2) direct volatility forecasting by a similar hybrid

(21]

(22]

architecture. Other research areas include the online adaptati@s]
of the network models including ARD hyper-parameters, the in-
vestigation of wavelet based denoising techniques and squtioT§4]
to the associated boundary condition problems for the online
learning case in order to further improve generalization perforg2s]

mance and the investigation of the joint optimization of fore-

casting and money management systems.
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