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Abstract—In this paper, we investigate the effectiveness of a
financial time-series forecasting strategy which exploits the mul-
tiresolution property of the wavelet transform. A financial series
is decomposed into an over complete, shift invariant scale-related
representation. In transform space, each individual wavelet series
is modeled by a separate multilayer perceptron (MLP). To better
utilize the detailed information in the lower scales of wavelet coef-
ficients (high frequencies) and general (trend) information in the
higher scales of wavelet coefficients (low frequencies), we applied
the Bayesian method of automatic relevance determination (ARD)
to choose short past windows (short-term history) for the inputs
to the MLPs at lower scales and long past windows (long-term
history) at higher scales. To form the overall forecast, the indi-
vidual forecasts are then recombined by the linear reconstruction
property of the inverse transform with the chosen autocorrelation
shell representation, or by another perceptron which learns the
weight of each scale in the prediction of the original time series.
The forecast results are then passed to a money management
system to generate trades. Compared with previous work on
combining wavelet techniques and neural networks to financial
time-series, our contributions include 1) proposing a three-stage
prediction scheme; 2) applying a multiresolution prediction which
is strictly based on the autocorrelation shell representation, 3)
incorporating the Bayesian technique ARD with MLP training
for the selection of relevant inputs; and 4) using a realistic money
management system and trading model to evaluate the forecasting
performance. Using an accurate trading model, our system
shows promising profitability performance. Results comparing
the performance of the proposed architecture with an MLP
without wavelet preprocessing on 10–year bond futures indicate
a doubling in profit per trade ($AUD1753:$AUD819) and Sharpe
ratio improvement of 0.732 versus 0.367, as well as significant
improvements in the ratio of winning to loosing trades, thus
indicating significant potential profitability for live trading.

Index Terms—Autocorrelation shell representation, automatic
relevance determination, financial time series, futures trading,
multilayer perceptron, relevance determination, wavelet decom-
position.
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I. INTRODUCTION

DURING the last two decades, various approaches have
been developed for time series prediction. Among them

linear regression methods such as autoregressive (AR) and au-
toregressive moving average (ARMA) models have been the
most used methods in practice [18]. The theory of linear models
is well known, and many algorithms for model building are
available.

Linear models are usually inadequate for financial time se-
ries as in practice almost all economic processes are nonlinear
to some extent. Nonlinear methods are widely applicable nowa-
days with the growth of computer processing speed and data
storage. Of the nonlinear methods, neural networks have be-
come very popular. Many different types of neural networks
such as MLP and RBF have been proven to be universal func-
tion approximators, which make neural networks attractive for
time series modeling, and for financial time-series forecasting
in particular.

An important prerequisite for the successful application of
some modern advanced modeling techniques such as neural net-
works, however, is a certain uniformity of the data [14]. In most
cases, a stationary process is assumed for the temporally ordered
data. In financial time series, such an assumption of stationarity
has to be discarded. Generally speaking, there may exist dif-
ferent kinds of nonstationarities. For example, a process may be
a superposition of many sources, where the underlying system
drifts or switches between different sources, producing different
dynamics. Standard approaches such as AR models or nonlinear
AR models using MLPs usually give best results for stationary
time series. Such a model can be termed as global as only one
model is used to characterize the measured process. When a se-
ries is nonstationary, as is the case for most financial time series,
identifying a proper global model becomes very difficult, unless
the nature of the nonstationarity is known. In recent years, local
models have grown in interest for improving the prediction ac-
curacy for nonstationary time series [25].

To overcome the problems of monolithic global models, an-
other efficient way is to design a hybrid scheme incorporating
multiresolution decomposition techniques such as the wavelet
transform, which can produce a good local representation of the
signal in both the time domain and the frequency domain [13].
In contrast to the Fourier basis, wavelets can be supported on an
arbitrarily small closed interval. Thus, the wavelet transform is
a very powerful tool for dealing with transient phenomena.

There are many possible applications of combining wavelet
transformations into financial time-series analysis and fore-
casting. Recently some financial forecasting strategies have
been discussed that used wavelet transforms to preprocess the
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data [1], [2], [19], [27]. The preprocessing methods they used
are based on the translation invariant wavelet transform [7] or
à trouswavelet transform [4], [23].

In this work, we have developed a neuro-wavelet hybrid
system that incorporates multiscale wavelet analysis into a
set of neural networks for a multistage time series prediction.
Compared to the work in [11], our system exploits a shift
invariant wavelet transform called the autocorrelation shell
representation (ASR) [4] instead of the multiscale orthogonal
wavelet transform as was originally presented in [13]. It is
cumbersome to apply the commonly defined DWT for real-time
time series applications due to the lack of shift invariance,
which plays an important role in time series forecasting. Using
a shift invariant wavelet transform, we can easily relate the
resolution scales exactly to the original time series and preserve
the integrity of some short-lived events [2].

Basically, we suggest the direct application of theà trous
wavelet transform based on the ASR to financial time series and
the prediction of each scale of the wavelet’s coefficients by a
separate feedforward neural network. The separate predictions
of each scale are proceeded independently. The prediction re-
sults for the wavelet coefficients can be combined directly by
the linear additive reconstruction property of ASR, or prefer-
ably, as we propose in this paper, by another NN in order to
predict the original time series. The aim of this last network is
to adaptively choose the weight of each scale in the final pre-
diction [11]. For the prediction of different scale wavelet coef-
ficients, we apply the Bayesian method of automatic relevance
determination (ARD) [16] to learn the different significance of
a specific length of past window and wavelet scale. ARD is a
practical Bayesian method for selecting the best input variables,
which enables us to predict each scale of wavelet coefficients
by an appropriate neural network, thus simplifying the learning
task as the size of each network can be quite small.

Comparing the previous work on applying wavelet tech-
niques together with connectionist methods to financial time
series in [1], [2] our contributions consist of 1) applying
some three-stage prediction schemes; 2) a multiresolution
prediction which is strictly based on the autocorrelation shell
representation; 3) selecting relevant MLP inputs from the
overcomplete shell representation using the Bayesian technique
ARD; and 4) demonstrating performance using a realistic
money management system and trading model.

This paper is organized as follows. In the next section, we
briefly describe the wavelet transform and the autocorrelation
shell representation. The principle of the Bayesian method of
ARD is also introduced. Section III presents our hybrid neuro-
wavelet scheme for time-series prediction and system details.
The simulation results and performance comparison over dif-
ferent data sets using a realistic trading simulator are summa-
rized in Section IV followed by discussions and conclusions in
Section V.

II. COMBINING BAYESIAN AND WAVELET BASED

PREPROCESSING

A. Discrete Wavelet Transform and Autocorrelation Shell
Representation

Generally speaking, a wavelet decomposition provides a way
of analysing a signal both in time and in frequency. Ifis a func-

tion defined on the whole real line, then, for a suitably chosen
mother wavelet function , we can expand as

(1)

where the function are all orthogonal to one another.
The coefficient conveys information about the behavior of
the function concentrating on effects of scale around
near time . This wavelet decomposition of a function is
closely related to a similar decomposition [the discrete wavelet
transform (DWT)] of a signal observed at discrete points in time.

The DWT has the property of being very good at compressing
a wide range of signals actually observed in practice—a very
large proportion of the coefficients of the transform can be set
to zero without appreciable loss of information, even for sig-
nals that contain occasional abrupt changes of level or other
behavior. It is this ability to deal with heterogeneous and in-
termittent behavior that makes wavelets so attractive. Classical
methods of signal processing depend on an underlying notion
of stationarity, for which methods such as Fourier analysis are
very well adapted.

One problem with the application of the DWT in time-series
analysis is that it suffers from a lack of translation invariance.
This means that statistical estimators that rely on the DWT are
sensitive to the choice of origin. This problem can be tackled by
means of aredundantor nondecimatedwavelet transform [7],
[21]. A redundant transform based on an-length input time se-
ries has an -length resolution scale for each of the resolution
levels of interest. Hence, information at each resolution scale is
directly related at each time point. To accomplish this, we use
anà trousalgorithm for realizing shift-invariant wavelet trans-
forms, which is based on the so-called autocorrelation shell rep-
resentation [21] by utilizing dilations and translations of the au-
tocorrelation functions of compactly supported wavelets. The
filters for the decomposition process are the autocorrelations of
the quadrature mirror filter coefficients of the compactly sup-
ported wavelets and are symmetric.

By definition, the autocorrelation functions of a compactly
supported scaling function and the corresponding wavelet

are as follows:

(2)

The family of functions and
, where

and , is called an autocor-
relation shell. Then a set of filters and

can be defined as

(3)
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Fig. 1. Illustration of the procedure for preparing data in the hybrid neuro-wavelet prediction scheme. Note that each time a segment of the time series is
transformed, only the last coefficient is retained.

Using the filters and , we obtain the pyramid algorithm
for expanding into the autocorrelation shell

(4)

As an example of the coefficients , for Daubechies’s
wavelets with two vanishing moments and , the coeffi-
cients are .

A very important property of the autocorrelation shell coef-
ficients is that signals can be directly reconstructed from them.
Given a smoothed signal at two consecutive resolution levels,
the detailed signal can be derived as

(5)

Then the original signal can be reconstructed from
the coefficients and residual

(6)

for , where is the final smoothed signal.
At each scale , we obtain a set of coefficients . The

wavelet scale has the same number of samples as the signal,i.e.,
it is redundant. The set of values of provide a “residual”
or “background.” Adding to this, for ,

gives an increasingly more accurate approximation of the orig-
inal signal. The additive form of reconstruction allows one to
combine the predictions in a simple additive manner.

To make predictions we must make use of the most recent
data. To deal with this boundary condition we use thetime-based
à trousfilters algorithm proposed in [2], which can be briefly de-
scribed as follows. Consider a signal , where

is the present time-point and perform the following steps.

1) For index sufficiently large, carry out theà troustrans-
form (4) on using a mirror exten-
sion of the signal when the filter extends beyond.

2) Retain the coefficient values as well as the
residual values for the th time-point only:

. The summation of
these values gives .

3) If is less than , set to and return to Step 1).
This process produces an additive decomposition of the signal

, which is similar to theà trouswavelet
transform decomposition on . The
algorithm is further illustrated in Fig. 1.

B. Application of Automatic Relevance Determination (ARD)

When applying neural networks to time series forecasting,
it is important to decide on an appropriate size for the
time-window of inputs. This is similar to a regression problem
in which there are many possible input variables, some of
which may be less relevant or even irrelevant to the prediction
of the output variable. For a finite data set, there may exist
some random correlations between the irrelevant inputs and
the output, making it hard for a conventional neural network
to set the coefficients for useless inputs to zero. The irrelevant
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Fig. 2. Overview of the wavelet/neural net multiresolution forecasting system.w ; . . . ; w are wavelet coefficients,c is the residual coefficient series.

inputs however will degrade the model’s performance. The
ARD method [16] gives us a principled way for choosing the
length of past windows to train neural networks. In our hybrid
neuro-wavelet scheme, we apply ARD to choose a short-term
history for higher temporal resolution (i.e., a higher sampling
rate and higher frequencies) while a long-term history is
used for lower temporal resolution. Through this, substantial
information on both the “detailed” and “general” history of the
time-series can be effectively exploited.

ARD stems from a practical Bayesian framework for adap-
tive data modeling [15], in which the overall aim is to develop
probabilistic models that are well matched to the data, and make
optimal predictions with those models. Given a data set, neural-
network learning can be considered as an inference of the most
probable parameters for a model. In most cases, there are a
number of advantages of introducing Bayesian optimization of
model parameters [5]. In particular, they provide a means to ex-
plicitly model prior assumptions by constructing the prior distri-
bution over parameters and model architectures. In neural-net-
work learning problems with high-dimensional inputs, general-
ization performance can often be improved by selecting those
inputs relevant to the distribution of the targets. In the ARD
scheme, we define a prior structure with a separate prior vari-
ance hyperparameter associated with each input. These hyper-
parameters correspond to separate weight decay regularisers for
each input. In other words, ARD is effectively able to infer
which inputs are relevant and then switch the others off by au-
tomatically assigning large values to the decay rates for irrele-
vant inputs, thus preventing those inputs from causing signifi-
cant overfitting.

The ARD scheme used in this paper approximates the poste-
rior distribution over weights by a Gaussian distribution. Using
this approximation, the “evidence” for a nonlinear model can
be readily calculated by an iterative optimization to find the op-
timal values for the regularization parameters. The optimization
of these hyperparameters is interleaved with the training of the
neural-network weights. More specifically, the parameters are

divided into classes, with independent scales . For a net-
work having one hidden layer, the weight classes are: one class
for each input, consisting of the weights from that input to the
hidden layer; one class for the biases to the hidden units; and one
class for each output, consisting of its bias and all the weights
from the hidden layer. Assuming a Gaussian prior for each class,
we can define , then the ARD model uses
the prior of equation

(7)

The evidence framework can be used to optimize all the
regularization constants simultaneously by finding their most
probable value, i.e., the maximum over of the evidence,

. We expect the regularization constants
for irrelevant inputs to be inferred to be large, preventing those
inputs from causing significant overfitting.

III. H YBRID NEURO-WAVELET SCHEME FORTIME-SERIES

PREDICTION

Fig. 2 shows our hybrid neuro-wavelet scheme for time-series
prediction. Given the time series , our aim
is to predict theth sample ahead, , of the series. That
is, for single step prediction; for each value ofwe train
a separate prediction architecture. The hybrid scheme basically
involves three stages, which bear a similarity with the scheme
in [11]. In the first stage, the time series is decomposed into
different scales by autocorrelation shell decomposition. In the
second stage, each scale is predicted by a separate NN and in
the third stage, the next sample of the original time series is
predicted, using the different scale’s prediction, by another NN.
More details are expounded as follows.

For time series prediction, correctly handling the temporal
aspect of data is our primary concern. Thetime-based à trous
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transform as described above provides a simple method. Here
we set up anà trouswavelet transform based on the autocor-
relation shell representation. That is, (5) and (6) are applied to
successive values of. As an example, given a financial index
with 100 values, we hope to extrapolate into the future with 1 or
more than 1 subsequent values. By thetime-based à troustrans-
form, we simply carry out a wavelet transform on valuesto

. The last values of the wavelet coefficients at time-point
are kept because they are the most useful values for

prediction. Repeat the same procedure at time point
and so on. We empirically determine the number of resolution
levels , mainly depending on the inspection of smoothness of
the residual series for a given. Much of the high resolution
coefficients are noisy. Prior to forecasting, we get an overcom-
plete, transformed data set.

In Fig. 3, we show the behavior of the three wavelet coeffi-
cients over a 100-day period for a bond rating series. The orig-
inal time series and residual are plotted at the top and bottom in
the same figure, respectively. As the wavelet level increases, the
corresponding coefficients become smoother. As we will show
in the next section, the ability of the network to capture dynam-
ical behavior varies with the resolution level.

In the second stage, different predictors are allocated for
different resolution levels and are trained by the following
wavelet’s coefficients , , . All
the networks used to predict the wavelets’ coefficients share the
same structure of a feedforward multilayer perceptron (MLP).
The network for scale has input units, one hidden layer
with sigmoid neurons, and one linear output neuron. Each
neuron in the networks has an adjustable bias. Theinputs
to the th network are the previous samples of the wavelets’
coefficients of the th scale. In our implementation, each
network is trained by the backpropagation algorithm using the
scaled conjugate gradient (SCG) method and a weight decay
regularization of the form was used [5].

The procedure for designing neural-network structure essen-
tially involves selecting the input layer, hidden layer, and output
layer. A basic guideline that should be followed is Occam’s
razor principle, which states a preference for simple models.
The fewer weights in the network, the greater the confidence
that over-training has not resulted in noise being fitted. The se-
lection of input layer mainly depends on the considerations of
which input variables are necessary for forecasting the target.
From the complexity viewpoint it would be desirable to reduce
the number of input nodes to an absolute minimum of essential
nodes. In this regard, we applied ARD to empirically decide the
number of inputs in each resolution level.

The optimum number of neurons in the hidden layer is highly
problem dependent and a matter for experimentation. In all of
our experiments, we set the number of hidden neurons by using
half the sum of inputs plus outputs. Accordingly, for 21 inputs
and one output, 11 hidden units are used. It is worthy to note
that the selection of input and hidden layer neurons also deter-
mines the number of weights in the network and an upper limit
on the weight number is dictated by the number of training vec-
tors available. A rough guideline, based on theoretical consid-
erations of the Vapnik–Chervonenkis dimension, recommends
that the number of training vectors should be ten times or more
the number of weights [3].

Fig. 3. Illustration of theà trouswavelet decomposition of the closing price
series. From top to bottom: normalized price,w , w ,w and residual series.

In the third stage, the predicted results of all the different
scales , are appropriately combined. Here
we discuss four methods of combination. In the first method, we
simply apply the linear additive reconstruction property of the
à troustransform, as expressed in (6). The fact that the recon-
struction is additive allows the predictions to be combined in an
additive manner. In the following we denote it as method I.

A hybrid strategy can also be empirically applied to determine
what should be combined to provide an overall prediction. In the
second method, the predicted results of all the different scales
are linearly combined by a single-layer perceptron in order to
predict the desired following sample of the original time series.
In order to improve the prediction accuracy, a multilayer percep-
tron (MLP) with the same structure as for wavelet coefficients
prediction is employed for price series and the corresponding
prediction results are incorporated into the third stage, as shown
in Fig. 2. For brevity, we call it method II. Depending on the
forecasting horizon on the second stage, the number of inputs
to the third-stage network is equal to the number of all the pre-
diction outputs in the first stage. For example, if four resolution
levels are exploited and an MLP for direct price prediction is
incorporated in the second stage, then for forecasting horizon 7,
the number of inputs in the third stage perceptron is .

In our experiments we have also applied a third stage MLP
in place of the simple perceptron. The number of hidden neu-
rons is also set to half of the sum of the number of inputs and
outputs. We denote this as method III for the combination of
prediction results from the second stage. For comparison pur-
poses, we trained and tested an MLP on the original time series,
denoted as method IV, without the wavelet preprocessing stage.
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As pointed out in [3], target selection is an important issue
in applying neural networks to financial series forecasting. We
follow the guideline suggested by Azoff to minimize the number
of targets required for a given problem. A neural network whose
output neurons are reduced from two to one, will have half
the number of network weights required, with important con-
sequences for the generalization capability of the network. A
single output neuron is the ideal, as the network is focused on
one task and there is no danger of conflicting outputs causing
credit assignment problems in the output layer. Accordingly, we
prefer a forecasting strategy which proceeds separately for each
horizon in the second stage.

IV. SIMULATIONS AND PERFORMANCES

Our simulations involved the closing prices of four different
futures contracts: The three-year and ten-year Treasury bonds
(sfe3yb, sfe10yb) traded on the Sydney Futures Exchange, the
Australian US dollar contract (cmedolaus) and the Swiss Franc
US dollar contract (cmesfus) traded on the Chicago Mercantile
Exchange. In order to derive a continuous time series from a set
of individual futures contracts, special care must be taken at the
expiry of a contract. The price change from one contract to the
next cannot be directly exploited in a trading system. Instead
a contract must be rolled from the expiry month to a forward
month. We found that the four securities we are considering
are characterized by a price gap at roll over in the range of the
close to close price variation. The concatenation of spot month
contracts is therefore a reasonable approximation. In Fig. 4, we
show thesfe10ybclosing price over a ten-year period.

We study the approach of forecasting each wavelet derived
coefficient series individually and then recombining the mar-
ginal forecasts. Our objective is to perform seven days ahead
forecasting of the closing price. As a byproduct, the corre-
sponding price changes are simultaneously derived. To compare
with other similar work in the literature, we also construct five
days ahead forecastes of the relative price change,i.e., the
relative difference percent (RDP) between today’s closing price
and the closing price five days ahead, denoted , which
is calculated as [2]. The
data sets used consist of the date, the closing priceand the
target forecast. A separate MLP network for each level of the
coefficients series is constructed. The scaled conjugate gradient
(SCG) algorithm was used for training. As the residual series
are quite smooth, we simply apply linear AR models to them.

At first, the raw price data requires normalizing, a process of
standardising the possible numerical range that the input vector
elements can take. The procedure involves finding the maximum
(max) and minimum (min) elements and then normalizing the
price to the range [3]:

(8)

Since many of the high resolution coefficients are very noisy,
we applied the ARD technique to determine the relevant inputs
of the MLPs on different levels. At first, each network had 21
inputs. The ARD scheme was used with a separate prior for

Fig. 4. Closing price for ten-year Treasury bonds traded on the Sydney Futures
Exchange.

each MLP input. Hence, the regularization constants for noisy
inputs are automatically inferred to be large. In Table I we give
typical results of hyper-parametersfor input variables when
applying ARD to MLPs on different levels. From the results
we can see that the first two level coefficients are noisy and
have little relevance to the target distribution. To exploit this
fact to further improve performance and reduce computational
complexity, we apply MLPs with variable input sizes to different
levels, as shown in Table II.

We decomposed all the time-series into four resolution levels
as the residual series become quite smooth. All training sets
consist of the first 2000 data values (one closing price per day).
For thesfe3ybandsfe10yb, we use the remaining 600 and 1000
data points for testing, respectively. For the Australian US dollar
contract (cmedolaus) and the Swiss Franc US dollar contract
(cmesfus), we use the remaining 600 data points for testing.
In Fig. 5, we show the one step ahead predictions for each of
the four coefficient series and and
the residual series over a 100 days period on a testing set (from
Nov. 15, 1993 to April 13, 1994). As the residual series is very
smooth, a simple AR model shows quite satisfactory prediction
performance. The ability of the networks to capture dynamical
behavior varies with the resolution level [2] and we can observe
two facts. First, the higher the scale (e.g., is “higher” than

), the smoother the curve and thus, the less information the
network can retrieve. Second, the lower the scale, the more noisy
and irregular the coefficients are, thus making the prediction
more difficult. The smooth wavelet coefficients at higher scale
play a more important role.

In Figs. 6 and 7, we illustrate the forecasting of one day ahead
price and price change series (RDP), respectively, using the pre-
diction methods I, II, and IV as previously described. The dif-
ferent prediction methods show quite similar results on the same
testing set. But a close inspection reveals a better accuracy re-
sulting from method II, i.e., using a perceptron to combine the
prediction results of wavelet coefficients. To quantitatively cal-
culate the prediction performance, we used mean square error
(MSE) to describe the forecast performance for price predic-
tion, which is defined as MSE ,
where is the true value of the sequence, is the pre-
diction. For price change prediction, we used two other mea-
sures. The first measure is the normalized mean squared error
NMSE , where is the
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TABLE I
HYPER-PARAMETERS� FOR THE MLP NETWORK INPUTS ONDIFFERENT LEVELS FOR THEsfe10ybDATA SET. THE ORDER OF THE

PARAMETERS ARE FROMPAST TO FUTURE

TABLE II
STRUCTURE OFMLPS ON DIFFERENTLEVELS

Fig. 5. From top to bottom: one step ahead predictions for the four wavelet
coefficient seriesw , w , w andw and residual seriesc, over a 100 days
period on the testing set. In each figure, the dashed line is the target series and
the solid line is the prediction.

true value of the sequence, is the prediction, and is the
variance of the true sequence over the prediction period.

A second measure of interest for price change prediction is
the directional symmetry (DS), i.e., the percentage of correctly
predicted directions with respect to the target variable, defined
as , where is the Heaviside
unit-step function, namely, if and oth-
erwise. Thus, the DS provides a measure of the number of times
the sign of the target was correctly forecast. In other words,

implies that the predicted direction was correct for
half of all predictions.

In Table III we used thesfe10ybdata to compare the four
prediction methods with regard to MSE performance for price
prediction and NMSE and DS performance for price change pre-
dictions, respectively. From the results we can see that all four
methods have similar performance with regard to the MSE for
price prediction and NMSE and DS for price change prediction
and that method II shows better generalization performance.

The evaluation of the overall system is a very important issue.
By some performance measures, we can evaluate whether tar-
gets have been met and compare different strategies in a trading
system. Criteria in setting up a trading strategy will vary ac-
cording to the degree of risk exposure permitted, so the assess-
ment criteria selected are a matter of choice, depending on pri-
orities.

The most commonly used measure is the Sharpe ratio, which
is a measure of risk-adjusted return [22]. Denoting the trading
system returns for periodas , the Sharpe ratio is defined to
be

Average
Standard Deviation

(9)

where the average and standard deviation are estimated over
returns for periods .

As another measure of interest we evaluate the quality of our
forecasts in a trading simulator. Trading results are simulated
using the risk evaluation and money management (REMM)
trade simulation environment that has been used in previous
simulations [10], [8]. REMM has been developed and tested
with the help of expert futures traders. It is currently used by a
number of financial institutions to analyze and optimize trading
strategies. A description of the functionality of REMM is given
in the following. REMM facilitates the testing of a trade entry
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Fig. 6. Demonstration of one day ahead forecasting for the closing price of
sfe10ybon a testing data set over a 100 days period (from Nov. 15, 1993 to
April 13, 1994), using the prediction methods (I, II, and IV). In each figure, the
solid line is the target price and the dashed line is the prediction.

strategy by accurately modeling the market dynamics. As an
input REMM requires the time and price information and a
sequence of trade entry signals. The latter is obtained from the
forecaste output of the various prediction systems. Accurate and
realistic risk and trade management strategies can be selected
to test the quality of the prediction system. This includes the
consideration of transaction costs. They are incurred each time
a futures contract is purchased or sold. Slippage is a common
phenomenon in trading futures. It is the discrepancy between
the theoretical entry or exit price and the actual price. In
REMM slippage is modeled using a volatility based approach.
REMM allows the selection of a number of realistic trade exit
strategies like profit take and partial profit take at various target
levels, trade expiry and stop loss levels. The exit conditions,
e.g., target and stop loss levels, are dynamically adjusted due
to changing market conditions. Risk management strategies
are implemented by providing trading capital of $1 million and
applying risk limits of $10 000 for each trade.

For a given sequence of trade entry signals and a set of risk
and trade management parameters the trading system is simu-
lated using a forward stepping approach. At each time step the
system is updated by checking for new trade entries and ad-
justing the exit conditions for open positions caused by the new
market price. When an exit condition is satisfied, e.g., due to a
target being reached or a stop loss level hit, etc. the open po-
sition is novated and the overall portfolio position is updated.
More than 50 different performance measures are derived that

Fig. 7. One step ahead price changes (RDP) forecasts (dashed lines) vs the true
RDP series (solid line) for a segment of 100 days in the testing set (from Nov.
15, 1993 to April 13, 1994). See text for explanation for the prediction methods
I, II and IV.

TABLE III
FOR sfe10ybDATA, PREDICTION PERFORMANCES FROM THEFOUR DIFFERENT

PREDICTION METHODS

allow assessment of the quality of the trading system over the
given training period. The most relevant measures are listed in
the following. The profit per trade is the average profit per trade
over the trading period. The win/loss ratio is the ratio of winning
trades to loosing trades over the trading period. The Sharpe ratio
is the ratio of the annualised monthly return. The worst monthly
loss is the total of losses from trades in the worst calendar month.
An optimal trading strategy is derived from the training set and
applied to the test set.

Using the REMM simulator, we further compared the prof-
itability related performances of the four forecasting methods,
namely, directly summing up the wavelet coefficients predic-
tions from the linear reconstruction property (6) (method I),
using a perceptron (method II) or an MLP (method III) to com-
bine the wavelet coefficients prediction and simply applying an
MLP without wavelet features involved (method IV). For the
ten-year bond contract on the test set (consisting of 1000 days of
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TABLE IV
FOR sfe10ybDATA, COMPARISON OF THEPROFITABILITY RELATED PERFORMANCES FROM THEFOUR DIFFERENTFORECASTINGMETHODS

TABLE V
PERFORMANCECOMPARISON FORDIFFERENTDATA SETS

data), the measures shown in Table IV were calculated to eval-
uate the performance of the system under realistic trading con-
ditions. Table IV summarizes the profit per trade, the win/loss
ratio, the Sharpe ratio and the worst monthly loss. Each trade is
based on a number of contracts determined by the risk per trade.

From Table IV, it is obvious that method II has the highest
values of both Sharpe ratio (0.7321) and profit/loss ratio
(1.6307), together with a satisfactory trading number and profit
per trade. Though a plain MLP (method IV) generates the most
trades, it yields the worst performance with regard to the profit
per trade, profit-loss ratio and Sharpe ratio. Simply combining
wavelet coefficients using (6) (method I) offers reasonable
results of profit per trade and profit-loss ratio, but leads to
the most conservative trading activity (only 71 trades in more
than three years!). Overall, we can recommend method II as a
practical forecasting strategy for a trading system.

We have also tested the neuro-wavelet prediction method on
the closing prices of other futures contracts:sfe3yb, cmedolaus
andcmesfus. In Table V, we show MSE for price prediction,
NMSE and DS for RDP series prediction, all for testing data
sets. Profit/loss results are given in Figs. 8 and 9 for the
sef3yb data andsef10yb, respectively. Prediction method I
was compared with method IV in Fig. 8 while method II was
compared with method I in Fig. 9. From these evaluations,
we can conclude that multiscale neural-network architectures
generally show better profitability than applying an MLP alone
and the hybrid scheme exploiting a second-stage perceptron
has best performance.

V. DISCUSSION ANDCONCLUSION

Forecasting of financial time series is often difficult and
complex due to the interaction of the many variables involved.
In this paper, we introduced the combination of shift invariant
wavelet transform preprocessing and neural-network prediction
models trained using Bayesian techniques at the different levels
of wavelet scale. We compared this with a conventional MLP by
simulation on four sets of futures contract data and determined
both forecasting performance and profitability measures based

Fig. 8. Comparison of profit/loss results from applying the neuro-wavelet
forecasting scheme method I and the MLP alone (method IV), using the
three-year Treasury bonds datasfe3yb. The solid line results from method
I by applying the linear reconstruction property (6) while the dashed line
corresponds to the plain MLP. (a) profit and loss on the training set in \$AUD
against trading days. (b) profit and loss for the testing set.

on an accurate trading system model. Our results show signif-
icant advantages for the neuro-wavelet technique. Typically, a
doubling in profit per trade, Sharpe ratio improvement, as well
as significant improvements in the ratio of winning to loosing
trades were achieved compared to the MLP prediction.

Although our results appear promising, additional research is
necessary to further explore the combination of wavelet tech-
niques and neural networks, particularly over different market
conditions. Financial time series, as we have noted, often show
considerable abrupt price changes; the extent of outliers often
decides the success or otherwise for a given model. While the
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(a)

(b)

Fig. 9. Comparison of profit/loss results from applying neuro-wavelet
forecasting scheme method I and method II, using the ten-year bond (sfe10yb)
data. The solid line results from the hybrid architecture using a perceptron for
combining the wavelet coefficients (method II) while the dashed line is the
simpler architecture (method I), in which the wavelet coefficients are directly
summed up. (a) profit and loss on training set in AUD against trading days. (b)
profit and loss for the testing set.

prediction performance is improved, the neuro-wavelet hybrid
scheme is still a global model, which is susceptible to outliers.
Ongoing work includes 1) the integration of thetime-based à
trous filters studied here and mixture of local expert model,
which may explicitly account for outliers by special expert net-
works and 2) direct volatility forecasting by a similar hybrid
architecture. Other research areas include the online adaptation
of the network models including ARD hyper-parameters, the in-
vestigation of wavelet based denoising techniques and solutions
to the associated boundary condition problems for the online
learning case in order to further improve generalization perfor-
mance and the investigation of the joint optimization of fore-
casting and money management systems.
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