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Abstract. This paper presents a theoretically very simple yet efficienttin@solution
approach to gray scale and rotation invariant texture classificatgad lwan local binary pat-
terns and nonparametric discrimination of sample and prototype diginbuihe method is
based on recognizing that certain local binary patterns termed ‘uhdogrfundamental prop-
erties of local image texture, and their occurrence histogram pimbesa very powerful tex-
ture feature. We derive a generalized gray scale and rotationaimtvaperator presentation
that allows for detecting the ‘uniform’ patterns for any quantizatioth@efangular space and
for any spatial resolution, and present a method for combining multiple operators ticegsnul
olution analysis. The proposed approach is very robust in terms of grayacatens, since
the operator is by definition invariant against any monotonic transfornftitwe gray scale.
Another advantage is computational simplicity, as the operator caalmed with a few oper-
ations in a small neighborhood and a lookup table. Excellent experimesuébrobtained in
true problems of rotation invariance, where the classifier isetlaat one particular rotation
angle and tested with samples from other rotation angles, demotisatageod discrimination
can be achieved with the occurrence statistics of simple rotatianant local binary patterns.
These operators characterize the spatial configuration of lmegje texture and the perfor-
mance can be further improved by combining them with rotation invaria@inearimeasures
that characterize the contrast of local image texture. The joint distributidimssef orthogonal

measures are shown to be very powerful tools for rotation invariant texture analysis.
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1 Introduction
Analysis of two-dimensional textures has many potential applicatiensexample in

industrial surface inspection, remote sensing and biomedical imagsianhaut only a limited
number of examples of successful exploitation of texture exist. A rpepiiem is that tex-
tures in the real world are often not uniform, due to variationsi@ntation, scale, or other
visual appearance. The gray scale invariance is often important daoeven illumination or
great within-class variability. In addition, the degree of computational cartyptd most pro-
posed texture measures is too high, as Randen and Husoy [33] concluded in recém
extensive comparative study involving dozens of different spatial figenethods: “A very
useful direction for future research is therefore the developmeravedrful texture measures
that can be extracted and classified with a low computational complexity”.

Most approaches to texture classification assume, either exphlcitimplicitly, that the
unknown samples to be classified are identical to the training samih respect to spatial
scale, orientation and gray scale properties. However, real watldes can occur at arbitrary
spatial resolutions and rotations and they may be subjected to varymakion conditions.
This has inspired a collection of studies, which generally incorperaeiance with respect to
one or at most two of the properties spatial scale, orientation and gray scale.

The first few approaches on rotation invariant texture description includeatjeeé cooc-
currence matrices [12], polarograms [11] and texture anisotropy [/ Qftén an invariant
approach has been developed by modifying a successful noninvariant approachMRéh as
(Markov Random Field) model or Gabor filtering. Examples of MRF bastadion invariant
techniques include the CSAR (circular simultaneous autoregressod®)l toy Kashyap and
Khotanzad [17], the MRSAR (multiresolution simultaneous autoregressiodel by Mao
and Jain [24], and the works of Chen and Kundu [6], Cehah [9], and Wu and Wei [38]. In
the case of feature based approaches such as filtering with Gabor wavetbts basis func-
tions, rotation invariance is realized by computing rotation invariatiriesfrom the filtered
images or by converting rotation variant features to rotation invariaatures
[14][15][16][20][21][22][23][31][40]. Using a circular neighbor set, Porter arsh&garajah

[32] presented rotation invariant generalizations for all three maamtparadigms: wavelets,



GMRF and Gabor filtering. Utilizing similar circular neighborhoods Arof and Deravwiiodd
rotation invariant features with 1-D DFT transformation [2].

A number of techniques incorporating invariance with respect to botlalspedile and
rotation have been presented [1][9][21][23][39][40]. The approach based on Zernikentsom
by Wang and Healey [37] is one of the first studies to include invariath respect to all
three properties, spatial scale, rotation, and gray scale. Indch80sisurvey on scale and rota-
tion invariant texture classification Tan [36] called for momarkvon perspective projection
invariant texture classification, which has received a ratheiteld amount of attention
[51[8][18].

This work focuses on gray scale and rotation invariant texturefadagen, which has been
addressed by Chen and Kundu [6] and Wu and Wei [38]. Both studies approachethigray s
invariance by assuming that the gray scale transformation is afiimeion. This is a some-
what strong simplification, which may limit the usefulness of the proposed methods.nchen a
Kundu realized gray scale invariance by global normalization of the im@age using histo-
gram equalization. This is not a general solution, however, as global hist@gjualization
can not correct intraimage (local) gray scale variations.

In this paper, we propose a theoretically and computationally simpleaatpwhich is
robust in terms of gray scale variations and which is shown to disetegna large range of
rotated textures efficiently. Extending our earlier work [28][29][30], wesent a gray scale
and rotation invariant texture operator based on local binary patteansngfrom the joint
distribution of gray values of a circularly symmetric neighbor set of pixels in a laghloe-
hood, we derive an operator that is by definition invariant against any manatmsforma-
tion of the gray scale. Rotation invariance is achieved by recognizihghibagray scale
invariant operator incorporates a fixed set of rotation invariant patterns.

The main contribution of this work lies in recognizing that certa@all binary texture pat-
terns termed ‘uniform’ are fundamental properties of local imexggeite, and in developing a
generalized gray scale and rotation invariant operator for detebgisg tuniform’ patterns.
The term ‘uniform’ refers to the uniform appearance of the loery pattern, i.e. there is a

limited number of transitions or discontinuities in the circulars@ngation of the pattern.



These ‘uniform’ patterns provide a vast majority, sometimes over 80fe 3x3 texture pat-
terns in examined surface textures. The most frequent ‘uniform’ bo@dirgrns correspond to
primitive microfeatures such as edges, corners and spots, hencertleyregarded as feature
detectors that trigger for the best matching pattern.

The proposed texture operator allows for detecting ‘uniform’ local pipatterns at circu-
lar neighborhoods of any quantization of the angular space and at any regafiation. We

derive the operator for a general case based on a circularly sygonegghbor set oP mem-
bers on a circle of radil® denoting the operator hEBPRR”UZ. ParameteP controls the quan-

tization of the angular space, wheréadetermines the spatial resolution of the operator. In
addition to evaluating the performance of individual operators of a piartif®,R), we also
propose a straightforward approach for multiresolution analysis, which weslihe
responses of multiple operators realized with differBjR)(

The discrete occurrence histogram of the ‘uniform’ patterns fe.résponses of the
LBPP,Rriuz operator) computed over an image or a region of image is shown to bepowe

erful texture feature. By computing the occurrence histogram wetieéfly combine struc-
tural and statistical approaches: the local binary pattern detectsstructures (e.g. edges,
lines, spots, flat areas), whose underlying distribution is estimated by the histogram

We regard image texture as a two-dimensional phenomenon charadbgrizen orthogo-
nal properties, spatial structure (pattern) and contrast (the ‘anodlotal image texture). In
terms of gray scale and rotation invariant texture description, thesarénan interesting pair:
where spatial pattern is affected by rotation, contrast is notyie@dersa, where contrast is
affected by the gray scale, spatial pattern is not. Consequeniilyycgpas we want to restrict
ourselves to pure gray scale invariant texture analysis, contstasinterest, as it depends

on the gray scale.
The LBPRRIriuz operator is an excellent measure of the spatial structloealfimage tex-

ture, but it by definition discards the other important property of locage texture, i.e. con-

trast, since it depends on the gray scale. If only rotation invarigoréeanalysis is desired,

l.e. gray scale invariance is not required, the performancteB%'R””2 can be further



enhanced by combining it with a rotation invariant variance mea#gg that characterizes
the contrast of local image texture. We present the joint disuibofi these two complemen-
tary operatorsLBPRRriUZIVARRR, as a powerful tool for rotation invariant texture classifica-

tion.

As the classification rule, we employ nonparametric discriminati@ample and prototype
distributions based on a log-likelihood measure of the (dis)similafithistograms, which
frees us from making any, possibly erroneous, assumptions about the feature distributions.

The performance of the proposed approach is demonstrated with twarexmsri Excel-
lent results in both experiments demonstrate that the proposed tepéuegor is able to pro-
duce from just one reference rotation angle a representation lthves &br discriminating a
large number of textures at other rotation angles. The operatots@o®mputationally attrac-
tive, as they can be realized with a few operations in a small neighborhood and a lookup table.

The paper is organized as follows. The derivation of the operatortharalassification
principle are described in Section 2. Experimental results asergezl in Section 3 and Sec-

tion 4 concludes the paper.

2 Gray Scale and Rotation Invariant Local Binary Patterns
We start the derivation of our gray scale and rotation invariahireeoperator by defining

textureT in a local neighborhood of a monochrome texture image as the joinbulistn of
the gray levels oP (P>1) image pixels:

T =109:9 -9 _1) )
where gray valug; corresponds to the gray value of the center pixel of the local neighborhood
andg, (p=0,...P-1) correspond to the gray values Bfequally spaced pixels on a circle of
radiusR (R>0) that form a circularly symmetric neighbor set. If the coordinatgs afe 0,0),
then the coordinates of, are given by -Rsin(2p/P), Rcos(2p/P)). Fig. 1 illustrates circu-

larly symmetric neighbor sets for variowdR). The gray values of neighbors which do not fall

exactly in the center of pixels are estimated by interpolation.
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Fig. 1. Circularly symmetric neighbor sets for differ@?R).

2.1 Achieving Gray Scale Invariance
As the first step towards gray scale invariance we subtratiputilosing information, the

gray value of the center pixedd) from the gray values of the circularly symmetric neighbor-

hoodgj, (p=0.,...P-1) giving:
T =109 -9 91—9 9 _-1—0c) 2

Next, we assume that differenagsg. are independent af;, which allows us to factorize

Eq.(2):
T:t(gc)t(go_go gl_gc1 "'1gP_1_gc) (3)

In practice an exact independence is not warranted, hence the factorized distrgaiily
an approximation of the joint distribution. However, we are willing tteptthe possible small
loss in information, as it allows us to achieve invariance wipeaet to shifts in gray scale.

Namely, the distributiot(g.) in Eq.(3) describes the overall luminance of the image, which is

unrelated to local image texture, and consequently does not provide usefukitidn for tex-
ture analysis. Hence, much of the information in the original joint gragl Idistribution

(Eq.(1)) about the textural characteristics is conveyed by the joint differendgleutistr [29]:
T=t(09p— 9919 -»9p_1—09¢) 4)

This is a highly discriminative texture operator. It records theiroences of various pat-
terns in the neighborhood of each pixel iR-dimensional histogram. For constant regions, the
differences are zero in all directions. On a slowly sloped edge, the operator thednaghest
difference in the gradient direction and zero values along the eudfjdoraa spot the differ-

ences are high in all directions.



Signed differencegy,-g. are not affected by changes in mean luminance, hence the joint dif-

ference distribution is invariant against gray scale shifts. \Weae invariance with respect to
the scaling of the gray scale by considering just the signs of theeddfes instead of their

exact values:

T=t(s(9g—9c),S(91—9¢)s - »S(Fp_1—9¢)) (5)
where
M,x=0
s(x) = Ep <0 (6)

By assigning a binomial factoP 2or each sigrs(g,-go), We transform Eq.(5) into a unique

LBPpr number that characterizes the spatial structure of the local image texture:
P-1

LBPp g = 3 S(9,-00)2" W
p=0

The name ‘Local Binary Pattern’ reflects the functionality of theaipe, i.e. a local neigh-
borhood is thresholded at the gray value of the center pixel into a birttesngaBPp oper-
ator is by definition invariant against any monotonic transformation ofrine scale, i.e. as
long as the order of the gray values in the image stays the same, the outpuBsfiReper-
ator remains constant.

If we set P=8,R=1), we obtair.BPg 1 which is similar to th&.BP operator we proposed in
[28]. The two differences betwedBPg ; andLBP are: 1) the pixels in the neighbor set are
indexed so that they form a circular chain, and 2) the gray values dfatlpenal pixels are
determined by interpolation. Both modifications are necessary tomdb&circularly symmet-

ric neighbor set, which allows for deriving a rotation invariant versidiB&% .

2.2 Achieving Rotation Invariance

The LBPpR operator produce§°2jifferent output values, corresponding to thed#ferent

binary patterns that can be formed by Eh@ixels in the neighbor set. When the image is

rotated, the gray valueg will correspondingly move along the perimeter of the circle around

0o- Sincegy is always assigned to be the gray value of elemeR}, (@, the right ofg,,, rotating



a particular binary pattern naturally results in a diffetBfp value. This does not apply to

patterns comprising of only O’s (or 1's) which remain constant abtaltion angles. To remove
the effect of rotation, i.e. to assign a unique identifier to eachiawtavariant local binary

pattern we define:

LBPpg = MIn{ROR(LBRsg ,i) | i =0,1,..,P1 ®)

whereROR(x,i) performs a circular bit-wise right shift on tRebit numberxi times. In terms
of image pixels EQ.(8) simply corresponds to rotating the neighbor set céeckew many
times that a maximal number of the most significant bits, startingdpomare 0.

LBPP,Rri guantifies the occurrence statistics of individual rotation invapatterns corre-

sponding to certain microfeatures in the image, hence the patterns can be consifézrenea

detectors. Fig. 2 illustrates the 36 unique rotation invariant local bpadigrns that can occur
in the case oP=8, i.e.LBP&RIri can have 36 different values. For example, pattern #0 detects

bright spots, #8 dark spots and flat areas, and #4 edges. If chlséBP&l” corresponds to

the gray scale and rotation invariant operator that we designat®&PROT in [30].
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Fig. 2. The 36 unique rotation invariant binary patterns that can occuramabkarly symmeit
ric neighbor set o[BP&R“. Black and white circles correspond to bit values of 0 and 1
8-bit output of the operator. The first row contains the nine ‘unifortépas, and the numbx

inside them correspond to their uniolLal%lR'”u2 codes.



2.3 Improved Rotation Invariance with ‘Uniform’ Patterns and Finer Quantization of the
Angular Space

Our practical experience, however, has shownltB®ROT as such does not provide very
good discrimination, as we also concluded in [30]. There are two rediserscurrence fre-

quencies of the 36 individual patterns incorporatet BRROT vary greatly, and the crude

quantization of the angular space af #fervals.

We have observed that certain local binary patterns are fundameogaltps of texture,
providing vast majority, sometimes over 90%, of all 3x3 patterns pres#m: observed tex-
tures. This is demonstrated in more detail in Section 3 witlsstatof the image data used in
the experiments. We call these fundamental patterns ‘uniforrhegshiave one thing in com-
mon, namely uniform circular structure that contains very few spagiasitions. ‘Uniform’
patterns are illustrated on the first row of Fig. 2. They functideraplates for microstructures
such as spot (0), flat area or dark spot (8) and edges of varying positive and negative curvature
(1-7).

To formally define the ‘uniform’ patterns, we introduce a uniformigasureJ(‘pattern’),
which corresponds to the number of spatial transitions (bitwise Ofigebkpin the ‘pattern’.

For example, patterns 00000QGhd 1111111k1haveU value of O, while the other seven pat-

terns in the first row of Fig. 2 haw¢ value of 2, as there are exactly two 0/1 transitions in the
pattern. Similarly, other 27 patterns haveralue of at least 4. We designate patterns that have

U value of at most 2 as ‘uniform’ and propose the following operatayréor scale and rota-

tion invariant texture description insteachBPRR”:

%P—l
: B0
E P # otherwise
where
P-1
U(LBPp r) = [S(9p-1=9c) =S(9o—=0c)| + 5 [S(9p—9c) —S(9p 1~ 9c)| (10)
p=1

Superscript'2 reflects the use abtationinvariant uniform’ patterns that have value of



at most2. By definition exactlyP+1 ‘uniform’ binary patterns can occur in a circularly sym-
metric neighbor set d? pixels. Eq.(9) assigns a unique label to each of them, corresponding to
the number of ‘1’ bits in the pattern (@} while the ‘nonuniform’ patterns are grouped under

the ‘miscellaneous’ labelP¢-1). In Fig. 2 the labels of the ‘uniform’ patterns are denoted

inside the patterns. In practice the mapping ft@Rpp to LBPRR”UZ, which hasP+2 distinct

output values, is best implemented with a lookup tabl€ @lé@ments.

The final texture feature employed in texture analysis is thednet of the operator out-
puts (i.e. pattern labels) accumulated over a texture sample. 8w rehy the histogram of
‘uniform’ patterns provides better discrimination in comparison to tstedniam of all individ-
ual patterns comes down to differences in their statistical prepeftne relative proportion of
‘nonuniform’ patterns of all patterns accumulated into a histogram is sottaatheir proba-
bilities can not be estimated reliably. Inclusion of their noisymedés in the (dis)similarity

analysis of sample and model histograms would deteriorate performance.

We noted earlier that the rotation invarianceL8PROT (LBP8,1”) Is hampered by the

crude 48 quantization of the angular space provided by the neighbor set of eight pixels

straightforward fix is to use a larg@rsince the quantization of the angular space is defined by

(360°/P). However, certain considerations have to be taken into account ial¢icticn ofP.
First,P andR are related in the sense that the circular neighborhood correspondiglyénR
contains a limited number of pixels (e.g. 9 R¥1), which introduces an upper limit to the

number of nonredundant sampling points in the neighborhood. Second, an efficient implemen-
tation with a lookup of 2 elements sets a practical upper limitBotn this study we explore
values up to 24, which requires a lookup table of 16 MB that can be easily managed by a mod-

ern computer.

2.4 Rotation Invariant Variance Measures of the Contrast of Local Image Texture

The LBPRRIriuz operator is a gray scale invariant measure, i.e. its outpat iaffected by

any monotonic transformation of the gray scale. It is an excellemsune of the spatial pat-
tern, but it by definition discards contrast. If gray scale invariasaeot required and we

wanted to incorporate the contrast of local image texture asweetlan measure it with a rota-
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tion invariant measure of local variance:

P-1 P-1

1 2 1
VARp R =5 > (9p—H) ,wherep = 5% g (11)
p=0 p=0

VARpR is by definition invariant against shifts in gray scale. SI[BEP,R”UZ andVARpR

are complementary, their joint distributibBPRR”UZIVARRR Is expected to be a very powerful
rotation invariant measure of local image texture. Note that evammgh we in this study
restrict ourselves to using only joint distributionsJ_BPpRIriuz andVARpR operators that have

the sameRR) values, nothing would prevent us from using joint distributions of operators

computed at different neighborhoods.

2.5 Nonparametric Classification Principle
In the classification phase, we evaluate the (dis)similarigaofple and model histograms

as a test of goodness-of-fit, which is measured with a nonparametsticthtest. By using a
nonparametric test we avoid making any, possibly erroneous, assumptionshabfaature

distributions. There are many well known goodness-of-fit statistids @sithe chi-square sta-
tistic and theG (log likelihood ratio) statistic [34]. In this study a test sanfheas assigned to

the class of the mod® that maximized the log likelihood statistic:
B

L(SM) = Z S,logM,, (12)

b=1
whereB is the number of bins, arg andMy, correspond to the sample and model probabilities
at binb, respectively. Eq.(12) is a straightforward simplification of@gog likelihood ratio)
statistic:

B B

S
G(SM) = 2 log—2 =2 logS, —S,logM 13
(SM) Elsoog'v'b b;[SDOGJSD SylogMy] (13)

where the first term of the right hand expression can be ignored as a constant forsa given
L is a nonparametric (pseudo-)metric that measures likelihoodsatimgieS is from alter-

native texture classes, based on exact probabilities of features wdlpee-classified texture

11



modelsM. In the case of the joint distributidrBPRR”uzNARRR, Eqg.(12) was extended in a

straightforward manner to scan through the two-dimensional histograms.
Sample and model distributions were obtained by scanning the texture samglproto-

types with the chosen operator, and dividing the distributions of operator oimfjoutssto-
grams having a fixed number & bins. SinceLBPpRIriuz has a completely defined set of

discrete output values (0 P+1), no additional binning procedure is required, but the operator
outputs are directly accumulated into a histograf+& bins. Each bin effectively provides an
estimate of the probability of encountering the corresponding pattern fextioee sample or
prototype. Spatial dependencies between adjacent neighborhoods are inherergtyraned

in the histogram, because only a small subset of patterns can reside next to a given patter

Variance measuréARpR has a continuous-valued output, hence quantization of its feature

space is needed. This was done by adding together feature distributions for every single model
image in a total distribution, which was divided iBdins having an equal number of entries.
Hence, the cut values of the bins of the histograms corresponded to th#) (@€8entile of
the combined data. Deriving the cut values from the total distributidrabocating every bin
the same amount of the combined data guarantees that the highest resolution aftgqunaistiz
used where the number of entries is largest\acelversa. The number of bins used in the
guantization of the feature space is of some importance, as histogramsositmaedest num-
ber of bins fail to provide enough discriminative information about themisbns. On the
other hand, since the distributions have a finite number of entries,large number of bins
may lead to sparse and unstable histograms. As a rule of thumbicstatesature often pro-
poses that an average number of 10 entries per bin should be sufficidetelkperiments we

set the value dB so that this condition is satisfied.

2.6 Multiresolution Analysis
We have presented general rotation-invariant operators for characterizing ihlepsyigrn

and the contrast of local image texture using a circularly synometighbor set oP pixels
placed on a circle of radilR By alteringP andR we can realize operators for any quantiza-

tion of the angular space and for any spatial resolution. Multiresolutalgsas can be accom-

12



plished by combining the information provided by multiple operators of variAR)y. (
In this study we perform straightforward multiresolution analysis biyidefthe aggregate
(dis)similarity as the sum of individual log-likelihoods computed fromrésponses of indi-

vidual operators
N

=Y L(S", M") (14)
n=1
whereN is the number of operators, aBtandM" correspond to the sample and model histo-
grams extracted with operatoi(n=1,...N), respectively. This expression is based on the addi-
tivity property of theG statistic (Eqg.(13)), i.e. the results of sevéaksts can be summed to

yield a meaningful result. K andY are independent random events, 8dS, My, andMy

are the respective marginal distributions forand M, then G(S¢y,Mxy) = G(S¢,My) +

G(Sy;My) [19]
Generally, the assumption of independence between different textiunefedoes not hold.
However, estimation of exact joint probabilities is not feasibletdusatistical unreliability

and computational complexity of large multidimensional histograms. Forpeathe joint
histogram oLBPg g2, LBP1 g"Y2 andLBP,, g2 would contain 4680 (10x18x26) cells. To

satisfy the rule of thumb for statistical reliability, i.e. at least 10enfer cell on average, the
image should be of roughly (216RZ216+2R) pixels in size. Hence, high dimensional histo-
grams would only be reliable with really large images, which rertiers impractical. Large
multidimensional histograms are also computationally expensive, bothria tércomputing
speed and memory consumption.

We have recently successfully employed this approach also in texguners@ation, where
we quantitatively compared different alternatives for combining iddadi histograms for
multiresolution analysis [26]. In this study we restrict ourselvesotobinations of at most

three operators.

3 Experiments
We demonstrate the performance of our approach with two differeneprstf rotation

invariant texture analysis. Experiment #1 is replicated from atstedy on rotation invariant

13



texture classification by Porter and Canagarajah [32], for the purpo$¢anriing comparative
results to other methods. Image data includes 16 source textureseddpboun the Brodatz
album [4]. Considering this in conjunction with the fact that rotagetutes are generated
from the source textures digitally, this image data provideglatlslisimplified but highly con-
trolled problem for rotation invariant texture analysis. In additioméoadriginal experimental
setup, where training was based on multiple rotation angles, we also censide¥ challeng-
ing setup, where the texture classifier is trained at only onelartirotation angle and then
tested with samples from other rotation angles.

Experiment #2 involves a new set of texture images [27], which hawetuaal tactile
dimension and natural appearance of local intensity distortions causkd tactile dimen-
sion. Some source textures have large intra class variation is téroolor content, which
results in highly different gray scale properties in the intensity imagesnétia fact that the
textures were captured using three different illuminants of drffezelor spectra, this image
data presents a very realistic and challenging problem for illummaind rotation invariant
texture analysis.

To incorporate three different spatial resolutions and three eliff@ngular resolutions, we
realizedLBPpRIriuz andVARp R with (PR) values of (8,1), (16,2), and (24,3) in the experiments.
Corresponding circularly symmetric neighborhoods are illustrated in Hig.nultiresolution
analysis we use the three 2-resolution combinations and the one 3-oesclutibination
these three alternatives can form.

Before going into the experiments, we take a quick look at the is@tiktundation of
LBPRR”UZ. In the case oIf.BP&RIriuz we choose nine ‘uniform’ patterns out of the 36 possible
patterns, merging the remaining 27 under the ‘miscellaneous’ labalafdy, in the case of
LBPlG,R““2 we consider only 7% (17 out of 243) of the possible rotation invariant patterns

Taking into account a minority of the possible patterns, and merging atsnajahem, could
imply that we are throwing away most of the pattern information. Kewyéhis is not the case,
as the ‘uniform’ patterns appear to be fundamental properties ofifoagé texture, as illus-

trated by the numbers in Table 1.
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Table 1: Proportions (%) of ‘uniform’ patterns of all patterns dach texture used in the
experiments, and their average proportion over all textures.

) Experiment #2
Experiment #1
P=8,R=1 P=16,R=2 P=24,R=3
Texture Fp;? F,;,:zlzﬁ F,;::ZSS Texture inca’  ‘ti84’ ‘horizon' total total total
canvas 84.8 58.5 41.2 canvas001 91.4 90.9 90.4 90.9 71.2 53.4
cloth 91.8 74.2 52.8 canvaso02 926 917 911 918 73.2 54.2
cotton 88.9 67.0 46.3 canvas003 89.6 89.3 88.2 89.0 68.2 50.4
grass 85.5 63.3 45.6 canvas005 93.5 93.1 93.3 93.3 78.0 61.2
leather 87.7 66.6 49.1 canvaso06 87.4 864 865  86.8 60.8 422
matting 89.5 72.0 55.8 canvas009 83.2 82.3 81.9 82.4 59.3 43.8
paper 89.2 70.9 52.9 canvas01l 90.6 89.3 89.0 89.6 67.1 48.6
pigskin 87.6 67.9 50.9 canvas021 856 856 854 855 57.6 41.0
raffia 91.4 76.4 59.1 canvas022 92.3 91.1 91.0 91.4 78.1 65.0
rattan 86.1 68.5 52.4 canvas023 91.1 90.6 90.2 90.6 69.7 50.9
reptile 88.4 70.9 55.6 canvaso25 932 928 927 929 76.1 55.0
sand 89.1 70.7 53.4 canvas026 92.2 91.8 91.5 91.8 68.0 47.8
straw 83.8 56.6 40.7 canvas031 93.0 92.5 92.4 92.6 74.3 55.8
weave 76.6 50.9 321 canvas032 89.8 888 894  89.3 66.4 49.0
wood 86.1 65.1 46.1 canvas033 92.8 92.1 91.8 92.2 75.0 56.2
wool 88.9 71.0 55.0 canvas035 90.4 90.1 89.4 90.0 68.4 50.4
AVERAGE 87.2 66.9 49.3 canvas038 91.0 897 898  90.1 71.4 54.6
canvas039 92.7 91.7 91.6 92.0 75.8 59.0
tile005 90.0 89.6 88.3 89.3 715 54.3
tile006 91.0 905 897 904 74.0 57.8
carpet002 82.8 83.6 81.1 82.5 65.5 55.6
carpet004 87.6 87.1 86.3 87.0 70.8 57.8
carpet005 922 916  91.0 916 79.6 67.9
carpet009 90.8 90.5 89.7 90.3 77.4 64.5
AVERAGE 90.3 89.7 89.2 89.7 70.7 54.0

In the case of the image data of Experiment #1, the nine ‘uniforrtwérpzsltofLBP&lIriuz

contribute from 76.6% up to 91.8% of the total pattern data, averaging 87.2%.08hé&en

quent individual pattern is symmetric edge detector 000@Mith 18.0% share, followed by

0001111% (12.8%) and 0000013111.8%), hence these three patterns contribute 42.6% of the

textures. As expected, in the cas@ BP;g,""? the 17 ‘uniform’ patterns contribute a smaller

proportion of the image data, from 50.9% up to 76.4% of the total patternadataging
66.9%. The most frequent pattern is the flat area/dark spot detddttit111111111%Iwith

8.8% share.

The numbers for the image data of Experiment #2 are remarkablsgrsiime contribution
of the nine ‘uniform’ patterns oIf_BP&l'riuz totaled over the three illuminants (see Section

3.2.1) ranges from 82.4% to 93.3%, averaging 89.7%. The three most frequent paterns
again 000011%1(18.9%), 000001%1(15.2%) and 0001113%14.5%), totalling 48.6% of the

patterns. The contribution of the 17 ‘uniform’ patterns.BP;g ," "2 ranges from 57.6% to
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79.6%, averaging 70.7%. The most frequent patterns is again 111111111314ith 8.7%

share. In the case bBP24,3““2 the 25 ‘uniform’ patterns contribute 54.0% of the local texture.

The two most frequent patterns are the flat area/dark spotatgtatbits ‘1’) with 8.6% share
and the bright spot detector (all bits ‘0’) with 8.2% share.

3.1 Experiment #1
In their comprehensive study, Porter and Canagarajah [32] presemeddature extrac-

tion schemes for rotation invariant texture classification, empipthe wavelet transform, a
circularly symmetric Gabor filter, and a Gaussian Markov Randoitd Migh a circularly
symmetric neighbor set. They concluded that the wavelet-based approaitte wasst accu-

rate and exhibited the best noise performance, having also the tmegsutational complex-
ity.
3.1.1. Image Data and Experimental Setup

The image data included 16 texture classes from the Brodatz adbhshojvn in Fig. 3. For
each texture class there were eight 256x256 source images, of whidtstteas used for
training the classifier, while the other seven images were odedttthe classifier. Porter and

Canagarajah created 180x180 images of rotated textures from these source imgdebnisi

ear interpolation. If the rotation angle was a multiple of 90 dedfesr 9C in the case of
present ten rotation angles), a small amount of artificialvehg added to the images to simu-
late the effect of blurring on rotation at other angles. It shouldresssd that the source tex-
tures were captured from sheets in the Brodatz album and thabtdtedr textures were
generated digitally from the source images. Consequently, the rotated textures do aolhave
local intensity distortions such as shadows, which could be caused weantexture with a
natural tactile dimension was rotated with respect to an illumiaad a camera. Thus, this
image data provides a slightly simplified but highly controlled problendiation invariant
texture analysis.

In the original experimental setup, the texture classifiertvaased with several 16x16 sub-

images extracted from the training image. This fairly smadl siztraining samples increases

the difficulty of the problem nicely. The training set comprisedtiantaangles 6, 30°, 45,
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and 60, while the textures for classification were presented atioataingles 28 7¢°, 9C,

12¢°, 132, and 1568. Consequently, the test data included 672 samples, 42 (6 angles x 7
images) for each of the 16 texture classes. Using a Mahalanohbisceistiassifier, Porter and

Canagarajah reported 95.8% classification accuracy for the rotatiomamvevavelet-based

| cotton 30° \ grass 45°

pigskin - 120°

features as the best result.

cloth 20°

matting 70°

i

rattan 150 | reptile  Q° \

raffia 135°

straw  30°

< Ty b = I BEE= = |
g iy, W ety W
-
-

weave 45° | wood 60° \ wool 7Q°

Fig. 3. 180x180 samples of the 16 textures used in Experiment #1 at particular angles

3.1.2. Experimental Results
We started replicating the original experimental setup by dividind 8180 images of

the four training angles 03, 45°, and 60) into 121 disjoint 16x16 subimages. In other



words we had 7744 training samples, 484 (4 angles x 121 samples) in eaci®tekaire
classes. We first computed the histogram of the chosen operatacfoof the 16x16 samples.
Then we added the histograms of all samples belonging to a partiaskimnto one big model
histogram for this class, since the histograms of single 16x16 sampléd have been too
sparse to be reliable models. Also, using 7744 different models would havedr@sabenpu-
tational overhead, for in the classification phase the sample lastegwere compared to

every model histogram. Consequently, we obtained 16 reliable model histogyatasing
484(16-22)2 entries (the operators haveRgixel border). The performance of the operators

was evaluated with the 672 testing images. Their sample histogameined (180-I2)2
entries, hence we did not have to worry about their stability.

Results in Table 2 correspond to the percentage of correctly classified safmglleesting
samples. As expectethPls,Z””2 andLBP24,3riuz clearly outperformed their simpler counter-

partLBP&l“uz, which had difficulties in discriminating strongly oriented texturesnsslas-

sifications of rattan, straw and wood contributed 70 of the 79 misclassified samples.

Interestingly, in all 79 cases the model of the true class ranked second rigliteafterst sim-
ilar model of a false class that led to misclaxss.ificalllrlBPlG,z””2 did much better, classifying
all samples correctly except tgnass samples that were assigneddather. Again, in all ten
cases the model of the true class ranked sed;cBRi_M,g““Z provided further improvement by

missing just fivegrass samples and matting sample. In all six cases the model of the true

class again ranked second.

Combining theI_BPpRriuz operator with the/ARpr operator, which did not too badly by
itself, generally improved the performance. The lone exception was (24¢8¢ whe addition
of the poorly performing/ARy, 3 only hampered the excellent discriminationIIBP24,3””2.

We see thdr.BPlGVZ”UZIVARle,Z fell one sample short of a faultless result, asaw sample at

90° angle was labeled gsass.
The results for single resolutions are so good that there is notnomhfor improvement

by the multiresolution analysis, though two joint distributions provided agieftessification.
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The largest gain was achieved for W#Rp g operator, especially wherARy, 3 was excluded.

Table 2: Classification accuracies (%) for the original expenital setup, where training is
done with rotationsQ 3¢°, 45°, and 66.

R LBPpg"U2 VARpR LBPpR""?VARpR

BINS RESULT BINS RESULT BINS RESULT

8,1 10 88.2 128 95.5 10/16 98.4

16,2 18 98.5 128 88.4 18/16 99.9

24,3 26 99.1 128 86.6 26/16 96.4

8,1+16,2 10+18 99.0 128+128 98.7 10/16+18/16 99.7
8,1+24,3 10+26 99.6 128+128 98.4 10/16+26/16 100.0

16,2+24,3 18+26 99.0 128+128 87.9 18/16+26/16 99.1
8,1+16,2+24,3 10+18+26 99.1 128+128+128 96.6 10/16+18/16+26/16  100.0

Note that we voluntarily discarded the knowledge that training samples caméotur dif-
ferent rotation angles, merging all sample histograms into a sirmglelfor each texture class.
Hence the final texture model was an ‘average’ of the models &fuhéraining angles, which

actually decreased the performance to a certain extent. If dvedeal four separate models,

one for each training angle, for exampBP1g,""2/VAR;¢, would have provided a perfect

riu2

classification, and the classification errol&P;¢, "< would have been halved.

Even though a direct comparison to the results of Porter and Canagargjabtria mean-
ingful due to the different classification principle, the excellestlts for our operators dem-
onstrate their suitability for rotation invariant texture classification.

Table 3 presents results for a more challenging experimental setup, wheessifeecivas
trained with samples of just one rotation angle and tested withlssuof other nine rotation
angles. We trained the classifier with the 121 16x16 samples egtifacte the designated
training image, again merging the histograms of the 16x16 samples otalpatexture class
into one model histogram. The classifier was tested with the samptained from the other
nine rotation angles of the seven source images reserved fog testposes, totaling 1008
samples, 63 in each of the 16 texture classes. Note that the sty images in each texture
class are physically different from the one designated training imagee ki@s setup is a true

test for the texture operators’ ability to produce a rotation invargmesentation of local
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image texture that also generalizes to physically different samples.

Table 3: Classification accuracies (%) when training is donesabne rotation angle, and the
average accuracy over the ten angles.

TRAINING ANGLE

OPERATOR PR BINS AVERAGE
0° 20° 30° 45 60° 70° 90° 120° 135 150°
8,1 10 68.7 86.4 847 764 850 843 69.4 844 763 848 80.1
16,2 18 96.2 99.0 98.6 98.9 985 99.1 97.6 98.6 98.7 97.5 98.3
243 26 98.7 989 0.9 97.6 99.2 982 100 98.7 96.7 98.0 98.5
LBP riu2
PR 8,1+16,2 10+18 943 995 99.8 99.8 985 97.2 929 99.6 99.2 99.2 98.0
8,1+24,3 10+26 962 99.6 99.4 98.6 99.4 98.9 97.2 99.5 983 99.4 98.7
16,2+24,3 18+26  97.7 100 99.8 99.2 99.3 100 99.6 99.4 985 98.4 Q9.2
8,1+16,2+24,3  10+18+26 97.6 100 100 100 100 100 985 100 98.6 99.8 99.4
8,1 128 92.7 96.6 94.6 940 956 96.9 93.9 942 946 956 94.9
16,2 128 89.9 845 86.2 90.5 87.3 85.6 91.0 89.8 90.8 88.5 88.4
24,3 128 85.4 86.4 857 84.4 85.4 856 86.0 86.7 86.3 859 85.8
VARbR
8,1+16,2 128+128 97.5 96.9 98.8 99.0 97.9 97.7 97.5 99.1 988 97.9 98.1
8,1+24,3 128+128 952 97.0 98.7 989 97.5 985 961 99.5 99.0 97.9 97.8
16,2+24,3 128+128 88.3 86.5 86.8 86.9 855 865 89.3 86.9 875 87.1 87.1
8,1+16,2+24,3 128+128+12894.9 946 97.0 98.3 96.2 96.2 950 98.2 98.1 97.3 96.6
8,1 10/16 99.1 942 957 97.3 952 944 99.3 96.0 97.3 956 96.4
16,2 18/16 100 99.5 99.4 99.4 99.4 99.6 100 995 995 99.7 99.6
_ 24,3 26/16 958 950 96.2 97.4 96.0 955 956 97.2 97.9 97.9 96.5
LBP"2or VAR,
8,1+16,2 10/16+18/16 100 99.3 99.1 99.2 99.3 99.2 100 99.3 99.3 99.4 99.4
8,1+24,3 10/16+26/16 99.8 99.8 99.6 99.8 99.6 99.8 99.6 99.7 99.8 99.9 99.7
16,2+24,3  18/16+26/16 97.2 98.9 989 99.8 99.6 99.9 97.3 99.6 99.8 99.9 99.1
8,1+16,2+24,3 10/16+18/16+26/16 100 99.7 99.5 99.8 99.6 99.7 99.8 99.6 99.8 99.9 99.7

Training with just one rotation angle allows a more conclusive anabysise rotation

riu2

invariance of our operators. For example, it is hardly surprisind-Bfaf, < provides worst

performace when the training angle is a multiple &t £5ue to the crude quantization of the

angular space the presentations learned,a3, 9P, or 13% do not generalize that well to

other angles.

Again, the importance of the finer quantization of the angular space ,sbsM&Dlaz”uz
andLBP24,3riuz provide a solid performance with average classification accur&8.8% and
98.5%, respectively. In the case of the 173 misclassification8Byg ;"2 the model of the

true class ranked always second. In the case of the 149 misctdEsif byLBP24,3riuz the
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model of the true class ranked second 117 times and third 32 times.

riu2

There is a strong suspicion that the weaker resultsBBjg , ™ at training angles®and

90° were due to the artificial blur added to the original images at adsd 96. The effect

of the blur can also be seen in the results of the joint distributiBﬁ’gvlriUZIVAR&l and
LBP1.""2/VARy¢ 5, which achieved best performance when the training angle is eftioer 0

90°, the (16,2) joint operator providing in fact a perfect classificain these cases. Namely,
when training was done at some other rotation angle, test aRglad 98 contributed most of

the misclassified samples, actually all of them in the casBRfs ' /AR, ». Nevertheless,

the result forI_BPle,Z”UZIVARmz IS quite excellent, WhereaBP24,3””2NAR24v3 seems to suf-

fer from the poor discrimination of the variance measure.
Even though the results for multiresolution analysis generally exhibibwegrdiscrimina-
tion over single resolutions, they also serve as a welcome reminder thad ititenaof inferior

operator does not necessarily enhance the performance.

3.2 Experiment #2

3.2.1. Image Data and Experimental Setup
In this experiment we used textures from Outex, which is a publicyable bttp://

www.outex.oulu.fi) framework for experimental evaluation of texture analysis algosiflaT.
Outex provides a large collection of textures and ready-made tesdt Baritdifferent types of
texture analysis problems, together with baseline results for well known publishethaigori
The surface textures available in the Outex image databasa@eed using the setup
shown in Fig. 4a. It includes a Macbeth SpectraLight Il Luminare bBghtce and a Sony
DXC-755P three chip CCD camera attached to a robot arm. A waokstaintrols the light
source for the purpose of switching on the desired illuminant, the cdaretse purpose of
selecting desired zoom dictating the spatial resolution, the robdoathe purpose of rotating
the camera into the desired rotation angle and the frame grabbeaptoring 24-bit RGB
images of size 538 (height) x 716 (width) pixels. The relative positiomstexture sample,

illuminant and camera are illustrated in Fig 4b.
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Fig. 4. a) Imaging setup. b) Relative positions of texture sample, mamhiand camera. |
Spectra of the illuminants.

Each texture available at the site is captured using three difsanemited illuminants pro-
vided in the light source: 2300K horizon sunlight denoted as ‘horizon’, 2856K incantlesce
CIE A denoted as ‘inca’, and 4000K fluorescent tI84 denoted as ‘tI184’. ggwtra of the illu-
minants are shown in Fig. 4c. The camera is calibrated using theillogahant. It should be
noted that despite of the diffuse plate the imaging geometry iseditféor each illuminant,

due to their different physical location in the light source. Each &xsucaptured using six
spatial resolutions (100, 120, 300, 360, 500 and 600 dpi) and nine rotation aRgi8s10’,

15°, 3¢, 45°, 6, 75° and 908), hence 162 images are captured from each texture.

The frame grabber produces rectangular pixels, whose aspect ragha/(fielth) is roughly
1.04. The aspect ratio is corrected by stretching the images in halizingction to size
538x746 using Matlab’snresize command with bilinear interpolation. Bilinear interpolation
is employed instead of bicubic, because the latter may introducedradagra noise around
edges or in areas of high contrast, which would be harmful to texturgsisnafiorizontal
stretching is used instead of vertical size reduction, becaugdisgnmages captured by an
interline transfer camera along scan lines produces less noishggadl artifacts than sam-
pling across the scan lines.

In this study we used images captured at the 100 dpi spatial resab4tibit.RGB images

were transformed into eight bit intensity images using the standard formula:

I = 0.29R+ 0.587G + 0.114R (15)

20 nonoverlapping 128x128 texture samples were extracted from each inteagjéy s

22



centering the 5x4 sampling grid so that equally many pixels were lefoovesach side of the

sampling grid (13 pixels above and below, 53 pixels left and right).
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Fig. 5. 128x128 samples of the 24 textures used in Experiment #2 at particular angles

To remove the effect of global first and second order gray sagpenpies, which are unrelated
to local image texture, each 128x128 texture sample was individually mzethéd have an

average intensity of 128 and a standard deviation of 20. In every forthcomingrexehe
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classifier was trained with the samples extracted from imagptured using illuminant ‘inca’

and angle ®(henceforth termed the reference textures).

We selected the 24 textures shown in Fig. 5. While selecting theasxthe underlying
texture pattern was required to be roughly uniform over the whole sanacgej while local
gray scale variations due to varying color properties of the sourcegexéue allowed (e.g.
canvas023 andcanvas033 shown in Fig. 6). Most of the texture samples are canvases with
strong directional structure. Some of them have a large tactilendion (e.gcanvas025,
canvas033 andcanvas038), which can induce considerable local gray scale distortions. Taking
variations caused by different spectra of the illuminants into acomargan conclude that this

collection of textures presents a realistic and challenging probleitufomation and rotation

invariant texture analysis.

Fig. 6. nt Iass gray scale variations caused by varying color conten of surmtex
The selection of textures was partly guided by the requiremenththaéeterence textures
could be separated from each other. This allowed quantifying our textuetarpeability to
discriminate rotated textures without any bias introduced by the inttbifenilty of the prob-
lem. When the 480 samples (24 classes a’ 20) were randomly halved &8Gdarthat half of
the 20 samples in each texture class served as models for tthmidgssifier, and the other
10 samples were used for testing the classifier with the 3-Bitad (sample was assigned to
the class of the majority of the three most similar models), 9avErage classification accu-

racy was achieved with the simple rotation varlaBg 1 operator (Eq.(7)). The performance

loss incurred by considering just rotation invariant ‘uniform’ pattesrdemonstrated by the
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93.2% average accuracy obtained with the corresponding rotation invariartooparg, V2.
LBP;6, "2 andLBP,, 31'? achieved average classification accuracies of 94.6% and 96.3%, respec-

tively, in classifying the reference textures.

3.2.2. Experimental Results
We considered two different setups:

Rotation invariant texture classification (test suite Outex TC_00010): the classifier is

trained with the reference textures (20 samples of illuminarda “Eed angle Din each texture
class), while the 160 samples of the the same illuminant ‘incahbudther eight other rotation
angles in each texture class are used for testing the classéiere Hn this suite there are 480
(24x20) models and 3840 (24x20x8) validation samples in total.

Rotation and illuminant invariant texture classification (test suite Outex_TC_00012): the

classifier is trained with the reference textures (20 samples of illuminaatand angle ®in

each texture class) and tested with all samples captured lhismgpant ‘t184’ (problem000)

and ‘horizon’ (problen®01). Hence, in both problems there are 480 (24x20) models and 4320
(24x20x9) validation samples in total.

In Outex the performance of a texture classification algorithohasacterized with score
(S), which corresponds to the percentage of correctly classified esangdores for the pro-

posed operators, obtained using the 3-NN method, in rotation invariant teleisseication
(test suiteOutex_TC 00010) are shown in Table 4. Of individual operathBP24,3””2 pro-
duced the best score of 94.6%, which recalling the 96.3% score in skdicdion of refer-
ence textures demonstrates the robustness of the operator with tesp&ation.LBP,, 3%/
VAR, 3 achieved the best result of joint operators (97.8%), which is a coalsiglémprove-

ment over either of the individual operators, underlining their complenyamaéure. Multires-

olution analysis generally improved the performance, and the highest 830886) was

obtained with the combination 6BPg 1" "?/VARg 1 andLBP,4 3 1"2/VAR,, 3.
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Table 4: Scores (%) for the proposed texture operators in rotatiomiamyvaexture
classification (test suit®utex_TC_00010).

PR LBPpR"2  VARpr  LBPpRZVARsg
8,1 85.1 91.2 95.4
16,2 88.5 90.7 97.2
24,3 94.6 86.2 97.8
8,1+16.2 93.1 93.5 97.4
8,1+243 96.3 95.2 97.9
16,2 + 24,3 95.4 91.9 97.8
8,1+16,2+243 96.1 94.7 97.7

We offer the three employed combinations BR} ((8,1), (16,2), and (24,3)) as a reason-
able starting point for realizing the operators, but there is no gear#mdt they produce the

optimal operator for a given task. For example, when test Gutex_TC 00010 was tackled

with 189LBPF,,Rriuz operators realized using<£4, 5, ..., 24 R=1.0, 1.5, ..., 5.0), the best score
of 97.2% was obtained WiitBP22,4””2. 32 of the 189 operators beat the 94.6% score obtained

with LBP24,3””2. 14 of those 32 operators were realized Wh1(l...24 ;R=4.0) and they pro-
duced eight highest scores (97.2 - 97.0%). Task or even texture classdlaation of texture
operators could be conducted by optimizing cross validation classification oditiiad data,
for example.

Table 5 shows the numbers of misclassified samples for eachetextd rotation angle for

LBP,,3""2, VAR, 3 andLBP,, 3""?/VARy, 3, allowing detailed analysis of the discrimination of

individual textures and the effect of rotatiasp,, ;"2 classified seven out of the 24 classes
completely correct, having most difficulties withnvas033 (48/160 misclassified, 19 assigned
to canvas038, 16 tocanvas031). LBP,, 3 "4/VARy, 3 got 16 of the 24 classes correct, and well
over half of the 2.2% error was contributed by 50 misclassiiesas038 samples. In 20 of
the 24 classes, the joint operator did at least as wellles eit the individual operators, dem-
onstrating the usefulness of complementary analysis. However, the foeptiers
(canvas005, canvas023, canvas033, tile005) remind that joint analysis is not guaranteed to
provide the optimal performance. By studying the column totals and the cadotréaf indi-

vidual rotation angles to misclassifications, we see that eachtopbad most misclassifica-
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tions at high rotation angles. For example, angl@ &@ntributed almost 30% of the
misclassified samples in the case®#,, 5“2 This attributes to the different image acquisition
properties of the interline transfer camera in horizontal and verticalidivect

Table 5: The numbers of misclassified samples for each tesmgerotation angle for

LBP,, 32 (plain), VAR, 3 (italic) andLBP,, 3"?/VAR,, 3 (bold) in the base problem. Column

total % corresponds to the percentage of the column total of allassdfied samples. Only
textures with misclassified samples are included.

Rotation angle

Texture Total
5° 10° 15° 30 45° 60° 75° 9r°

canvas00l . 3. . 4. . 5. . 5. .2 . .2 . . 6 . . 10 . . 37
canvas002 L. L. L. L. L. 1. . L. 1. 1 1
canvas003 R N A .2 . .2 . .1 . 3. .4 . . 14 .
canvas005 L. L. L. L. L. 1. . 6 1 . 8 . 2 15 1 2
canvas011 R R R R 4 . . R 2 .. R 6 .
canvas021 .4 . . 3. .2 . . 3. .4 . 1. 1. .2 . . 20 .
canvas023 .11 . .18 . . 16 . 218 2 . 181 .17 1 .14 . .17 . 2 129 4
canvas025 1. 1. .2 . .2 . L. L. 1. 3. . 3 7
canvas031 P .2 . 1. . 6 . 1 1. 3 1. 6 2 . 11 6 . 21 20 .
canvas032 P P R 1. 1 1. 6 51 8 51 6 5 2 21 17 4
canvasO33 36 2 385 2106 2126 9137 9 85 10 10 10 10 11 9 48 78 50
canvaso35 P 3 . . 31 21 . 21 2 .. 21 . 1 1. 15 5 1
canvas038 .2 . R 3 2 3. 4 2 . 6 5 . 5 9 3 . 30 24
canvas039 1 3. 1 2 15 . 2 3 . 2 4 . 2 5 . 7 6 7 . 20 36 .

tile005 5 . 31 12 2 . 61 16 2 151 .11 9 3 3 37 11

tile006 6 1 5 . 151 171 251 2 8 . 353 56 4 14 47 11
carpet002 . . . . 1. 12 . 1. . 3 2 . 1 9
carpet004 . 3. . 3. . L2 . 1 . . 12 1. 2 11
carpet005 L. L. L. L. L. 1. 2 . . 2 . . 4 1 .
carpet009 .4 .51 .21 18 . .2 . . 3. 15 . 17 . 3 36 2

|_|3|324'3riuz 4 1.9% 7 33% 9 43% 12 57% 28 13.3% 33 15.7% 55 26.2% 626 29209 94.6%
VAR 3 50 9.4% 56 10.6% 54 10.2% 80 15.1% 63 11.9% 63 11.9% 72 13.6% 92 174% 530 86.2%

LBPy 3 VARy 3 3 3.5% 7 82% 10 11.8% 10 11.8% 12 14.1% 8 9.4% 15 17.7% 28.5% 85 97.8%

Scores in Table 6 illustrate the performance in rotation and i@min invariant texture

classification (test suit®utex TC 00012). The classifier was trained with the reference tex-

tures (‘inca’, §) and tested with samples captured using a different illuminantsddres for
‘horizon’ and ‘tI84’ include samples from all nine rotation angles186. samples of each tex-
ture were used for testing the classifier.

We see that classification performance deteriorated clednsn the classifier was evalu-
ated with samples captured under different illumination than tleeersfe textures used in

training. It is difficult to quantify to which extent this is due to th#ferences in the spectral
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properties of the illuminants affecting the colors of textures, andhich extent due to the dif-

ferent imaging geometries of the illuminants affecting the appearahdocal distortions

caused by the tactile dimension of textures.

Table 6: Scores (%) for the proposed operators in rotation and illuomnatvariant texture
classification (test suit®utex TC 00012). The classifier is trained with reference textures

(iluminant ‘inca’) and tested with samples captured using illums&t@4’ (problem 000)
and ‘horizon’ (problen®0l).

bR LBPRRriUZ VARP,R LBPRR”UZNARRR
‘184’ ‘horizon’ ‘1184’ ‘horizon’ ‘1184’ ‘horizon’
8,1 67.5 62.7 64.3 64.7 78.8 76.7
16,2 81.2 74.1 67.1 72.5 86.1 84.8
24,3 84.0 80.5 62.6 68.9 86.6 87.2
8,1+ 16,2 83.8 78.3 71.5 72.5 85.0 82.6
8,1+ 24,3 90.2 84.1 75.2 76.7 87.2 86.3
16,2 + 24,3 86.4 82.5 71.6 74.6 87.4 87.0
8,1+16,2+24,3 88.8 834 74.9 76.2 87.3 86.4

In terms of rotation and illumination invariant classificattamvas038 was the most diffi-
cult texture forLBP,, ;142 (143/180 ‘1184’ and 178/180 ‘horizon’ samples misclassified) and
LBP,, 3"?/VARy, 3 (140/180 ‘1184’ and 102/180 ‘horizon’ samples misclassified). This ig eas
to understand when looking at three different sampleafas038 in Fig. 6, which illustrate

the prominent tactile dimension canvasO38 and the effect it has on local texture structure

under different illumination conditions.

Y
(b)
Fig. 7. Three samples oénvas038: a) ‘inca’, @; b) ‘horizon’, 4%; c) ‘tI84’, 9C°.

For comparison purposes we implemented the wavelet-based rotatiomnh\aatures
proposed by Porter and Canagarajah, which they concluded to be a favorablerappera
Gabor-based and GMRF-based rotation invariant features [32]. We tedtrde features
using two different image areas, the 16x16 suggested by Porter and Canagarajah and 128x128.

As classifier we used the Mahalanobis distance classifier, just like Bode€Canagarajah.
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Table 7 shows the scores for the wavelet-based features extnaittémage area 128x128,
since they provided slightly better performance than the featurestextraith image area
16x16. When these features were employed in classifying the refeeghaes$ using 100 ran-
dom halvings of the samples into training and testing sets, an aveaagéichtion accuracy
of 84.9% was obtained.

In the rotation invariant classification (test suitatex TC 00010) the wavelet-based based
features achieved score of 80.4%, which is clearly lower than the scamgsedlwith the pro-
posed operators. Wavelet-based features appeared to tolerate tilmam@anges moderately
well, as demonstrated by the scores for the rotation and illumina@mniant classification

(test suiteDutex TC 00012, problem<s000 and001).

Table 7: Scores (%) for the wavelet-based rotation invariatirésaproposed by Porter and
Canagarajah and the percentages of misclassifications contributed by each rogg¢ion a

. lllumination Rotation angle
Test suite train / test Score
ran 7tes ° 5 1 1 3° 45 60° 7 o
Outex_TC_00010 ‘inca’ / ‘inca’ 80.4 - 7.7 6.7 79 137 220 143 124 155
Outex_TC 00012 : 000 ‘inca / ‘t184’ 71.2 8.8 9.3 9.7 99 116 16.0 123 10.6 11.9
Outex_TC 00012 001 ‘inca’/ ‘horizon’ 72.4 101 90 9.0 98 118 155 121 10.91.8

Table 7 also shows the percentages of misclassifications contributed by each aoigie.

We observe that £contributed the largest number of misclassified samples in a# ttases.
This is expected, for the rotation invariance of wavelet-basedrésat achieved by averaging

horizontal and vertical information by grouping together LH and HL channescim level of

decomposition [32], which results in the weakest estimate in thdidstion.

In rotation invariant classification (test suidetex TC_00010) wavelet-based features had
most difficulties in discriminating texturesanvasO35 (86/160 samples misclassified),
canvas023 (78/160),canvas0l (76/160) andccanvas033 (72/160). In rotation and illumination
invariant classification (test suit®utex TC_00012) the highest classification errors were

obtained forcanvasll (158/180 ‘tI84’ and 163/180 ‘horizon’ samples misclassified).

4 Discussion
We presented a theoretically and computationally simple yet efficreultiresolution
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approach to gray scale and rotation invariant texture classificatigedbon ‘uniform’ local
binary patterns and nonparametric discrimination of sample and protostpbudions. ‘Uni-
form’ patterns were recognized to be a fundamental property of teagiteey provide a vast
majority of local texture patterns in examined textures, corresponditextiore microstruc-
tures such as edges. By estimating the distributions of these mictosts, we combined
structural and statistical texture analysis.

riu2

We developed a generalized gray scale and rotation invariant opelsigg <, which

allows for detecting ‘uniform’ patterns in circular neighborhoods of any tpadian of the
angular space and at any spatial resolution. We also presentgaarsiethod for combining
responses of multiple operators for multiresolution analysis, by assuh@hghe operator
responses are independent.

Excellent experimental results obtained in two problems of truéaoteavariance, where
the classifier was trained at one particular rotation angle estdd with samples from other
rotation angles, demonstrate that good discrimination can be achieved with the ocaiaence
tistics of ‘uniform’ rotation invariant local binary patterns.

The proposed approach is very robust in terms of gray scale varighossd e.g. by
changes in illumination intensity, since tIhSPRR”UZ operator is by definition invariant

against any monotonic transformation of the gray scale. This should magg attractive in
situations where nonuniform illumination conditions are a concern,re\gsual inspection.
Gray scale invariance is also necessary if the gray scale fiespalthe training and testing
data are different. This was clearly demonstrated in our retelyt gn supervised texture seg-
mentation with the same image set that was used by Randen and Htisay iacent exten-
sive comparative study [33]. In our experiments, the basid_-B¥8operator provided better
performance than any of the methods benchmarked by Randen and Husoy for teweli/the
texture mosaics, and in most cases by a clear margin [29]. Results in Expé&@merblving
three illuminants with different spectra and large intra class colati@ars in source textures,
demonstrate that the proposed approach is also robust in terms of color variations.
Computational simplicity is another advantage, as the operators caalized with a few

comparisons in a small neighborhood and a lookup table. This facilitat®ay atraightfor-
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ward and efficient implementation, which may be mandatory in time critical ajiptisa

If gray scale invariance is not required, performance can be further improved byicgmbi
the LBPRRIriuz operator with the rotation invariant variance measMfep that characterizes

the contrast of local image texture. As we observed in the expesintieatjoint distributions
of these orthogonal operators are very powerful tools for rotation invariant textuysignal

The spatial size of the operators is of interest. Some mayptfindxperimental results sur-
prisingly good, considering how small spatial support our operators have foplexansom-
parison to much larger Gabor filters that are often used in texture anbllggisver, the built-
in spatial support of our operators is inherently larger, as onlyi@diraubset of patterns can
reside adjacent to a particular pattern. Still, our operators mayengiitable for discriminat-
ing textures where the dominant features appear at a very largeTualcan be addressed by
increasing the spatial predica® which allows generalizing the operators to any neighbor-
hood size.

The performance can be further enhanced by multiresolution analysipréslented a
straightforward method for combining operators of different spatialutsns for this pur-
pose. Experimental results involving three different spatial reeakishowed that multireso-
lution analysis is beneficial, except in those cases where a sigpution was already
sufficient for a very good discrimination. Ultimately, we would wamtiricorporate scale
invariance, in addition to gray scale and rotation invariance.

Regarding future work, one thing deserving a closer look is the use of a task specific subset
of rotation invariant patterns, which may in some cases provide petfermance than ‘uni-
form’ patterns. Patterns or pattern combinations are evaluategavite criterion, e.g. classifi-
cation accuracy on a training data, and the combination providing the besti@cis chosen.
Since combinatorial explosion may prevent from an exhaustive search tratbymissible
subsets, suboptimal solutions such as stepwise or beam search shaulsithered. We have

explored this approach in a classification problem involving 16 textures tlie Curet data-

base [10] with a 11.25degree tilt between training and testing images [25]. Thanks to its
invariance against monotonic gray scale transformations, the methodoéquplicsble to tex-

tures with minor 3D transformations, corresponding to such textures whigiman can easily,
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without attention, classify to the same categories as the ortgiktales. Successful discrimi-
nation of Curet textures captured from slightly different viewpointaatestrates the robust-
ness of the approach with respect to small distortions caused by kargtions, local
shadowing, etc.

In a similar fashion to deriving a task specific subset of pattématead of using a general
purpose set of operators, the paramd®eaadR could be ‘tuned’ for the task in hand, or even
for each texture class separately. We also reported that Wdmesification errors occur, the
model of the true class very often ranks second. This suggesttatisti@ation could be car-
ried out in stages, by selecting operators which best discriminaiegaremaining alterna-
tives.

Our findings suggest that complementary information of local spati@rpatand contrast
plays an important role in texture discrimination. There are statidgiman perception that
support this conclusion. For example, Tametral. [35] designated coarseness, edge orienta-
tion and contrast as perceptually important textural propertiesLBRehistograms provide
information of texture orientation and coarseness, while the localsgedg variance charac-
terizes contrast. Similarly, Beek al. [3] suggested that texture segmentation of human per-
ception might occur as a result of differences in the first-astigistics of textural elements

and their parts, i.e. in tHeBP histogram.
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Note

Images used in Experiment #1, together with other imagery used in our pdblisie and
Matlab implementation of the experiment can be downloaded fibpy/www.ee.oulu.fi/

research/imag/texture. Test suites used in Experiment #2 are available at the Outexiteeb
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http://mwww.outex.oul u.fi.
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