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Abstract. Point Distribution Models (PDM) are one of the most exten-
ded methods to characterize the underlying population of set of samples,
whose usefulness has been demonstrated in a wide variety of applications,
including medical imaging. However, one important issue remains unsol-
ved: the large number of training samples required. This problem becomes
critical as the complexity of the problem increases, and themodeling of 3D
multiobjects/organs represents one of the most challenging cases. Based
on the 3D wavelet transform, this paper introduces a multiresolution hier-
archical variant of PDM (MRH-PDM) able to efficiently characterize the
different inter-object relationships, as well as the particular locality of each
element separately. The significant advantage of this newmethod over two
previous approaches in terms of accuracy has been successfully verified for
the particular case of 3D subcortical brain structures.
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1 Introduction

The segmentation and shape analysis of human subcortical structures is of cru-
cial importance in the treatment and study of certain diseases, diagnosis, and
patient follow-up [1]. Due to the inherent limitation of traditional bottom-up
segmentation methods which only utilize image information, the incorporation
of high level knowledge of the target structure has proven highly effective when
dealing with image inaccuracies (e.g., partial volume effects, occlusions, image
noise or low contrast). An important milestone in top-down approaches was the
parametric statistical shape model proposed by Cootes et al. [4]. This technique
consists of describing the population statistics from a set of examples by means
of point distribution models (PDMs). Despite the high popularity of this tech-
nique and its proven utility, PCA-based PDM presents an important limitation:
the high dependence on the training set used. This problem becomes more rel-
evant as the dimensionality of the structure increases, being especially critical

K. Mori et al. (Eds.): MICCAI 2013, Part II, LNCS 8150, pp. 641–648, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



642 J.J. Cerrolaza et al.

when dealing with 3D multiobject shapes like the set of subcortical structures.
Trying to overcome some of the drawbacks of PDMs, some authors have pro-
posed alternative approaches such as ICA-based shape models [14]. However,
the high-dimensionality issue remains a major problem, being necessary to per-
form a previous dimensionality reduction via PDM. From a different perspective,
other authors have shown the utility of incorporating multiresolution analysis
by means of the wavelet transform into the PDM framework. Nain et al. [2] pre-
sented a multiscale shape representation approach for 3D deep brain structures.
However, despite the good results obtained and the potential utility its applica-
tion is limited to isolated volumes, i.e. not taking into account the relationship
between different subcortical structures. In particular, the recent work of Cer-
rolaza et al. [3] presents a hierarchical multiobject segmentation framework to
characterize both, the different inter-object relationships and the particular local
variations of each single object. However, its application is restricted to planar
2D cases. Despite the promising preliminary results, the extension to 3D is far
from trivial, being precisely in this context where the potential benefits become
really necessary.

The aim of this work is to go one step further int the development of new
multiresolution hierarchical algorithms overcoming those difficulties involved in
the transition to the highly demanding 3D multiobject environment. By means
of the wavelets transform, we present a robust 3D multiresolution hierarchical
framework able to efficiently model the relationships between objects, of crucial
importance when considering complex anatomical structures such as subcortical
brain structures, as well as the peculiarities of each isolated shape in the set.

2 Shape Variation Modeling via PDM

In the context of PDMs [4] a volume is described using a parametric form con-
sisting of a set of 3-dimensional landmarks distributed across the surfaces. For
the general case of a shape composed of M single-object structures, the vector
form of the i-th training case, xi, can be defined concatenating the 3 coordinates
of the K (K ∈ N) landmarks. The statistical shape model is then built by Princi-
pal Component Analysis (PCA) of the N (N ∈ N) aligned training shapes. Any
instance of the shape space can be approximated by the equation x = x+Pb,
where x is the mean shape, P is a matrix formed by the eigenvectors, and b is a
vector defining the set of parameters of the statistical shape model. The number
of modes of variation, is commonly limited by the size of the training set since
in general N << K. That is, the capacity of the model to generate new shapes
is strongly conditioned by the training set. This limitation of PDM is known as
the high-dimension-low-sample-size problem (HDLSS).

3 Multiresolution Hierarchical PDM (MRH-PDM)

The HDLSS issue becomes more relevant as the complexity of the shape to
model increases, with the 3D multiobject case considered here being one of the
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most challenging and interesting problems to solve. Multiresolution analysis has
emerged as a powerful strategy to deal with the HDLSS problem. However most
of previous approaches consider only single-object structures [7][2]. Reflecting
the interactions between objects can help to not only adequately deal with un-
defined intermediate regions but also extract the relevant anatomic relationships
of potential relevance in the study of human anatomy and certain pathologies.
This section presents the MRH-PDM framework and its application to the study
of 3D multiobject subcortical structures.

3.1 Multiresolution Decomposition of 3D Multiobject Structures

A wavelet decomposition of a signal can be described as a sub-sampling and dif-
ferencing step [12]. The vertices of the coarser and the detail part are computed
as certain weighted averages and differences of the original vertices, respectively.
This operations are represented by the analysis filters A, and B. The construc-
tion of these matrices is not trivial since they must be constructed so that the
original mesh can be recovered exactly from the low-resolution version and the
wavelet coefficients. During this complementary process the coarser version of
the polyhedron is refined by subdividing each triangle into four subtriangles
by means of additional vertices at edge midpoints. The resulting refined mesh is
modified according to the wavelet coefficients previously obtained. These refining
and modifying steps are computed by two other filters, F, and G, respectively.

Lounsbery et al. [5] provide a convenient multiresolution framework to obtain
the analysis and synthesis filters for meshes with subdivision connectivity. In
particular, we define the multiresolution domain using the octahedron as the
reference mesh, with a 4-to-1 splitting step, and a lifter butterfly scheme for tri-
angular meshes [13]. The method proposed by Praun and Hoppe [6] is employed
to parameterize each structure onto an octahedron.

The matrix notation initially proposed in [5] was originally developed for
single-objects structures, and a generalization to the multiobject case was pro-
posed in [3], though only for the simple 2D case. Once the multiresolution
decomposition of the constituent objects is performed according to the pro-
cess described above, the extension to the 3D domain follows as presented be-
low. Suppose x0

j represents the remeshed version of the original j-th object xj

(1 ≤ j ≤ M). The superscript 0 defines the finest level of resolution. Thus, the
logarithmic tree two-band wavelet packet can be formulated as follows:

xr = Arxr−1 (1)

zr = Brxr−1 (2)

xr−1 = Frxr +Grzr (3)

where zr is a vector containing the lost details, and r (r ∈ N) indicates the level
of resolution. Applying this filtering process iteratively we create the filter bank
illustrated in Fig. 1.
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Fig. 1. Schematic representation of a common logarithmic tree 2-band wavelet packet.
From left to right fine-to-coarse representations of the subcortical brain structures
considered in the paper as they are processed by the wavelet filter bank.

3.2 Description of the Algorithm

With the method described in Section 3.1 it is possible to decompose the multi-
object structure into different levels of resolution. This allow us to create specific
statistical shape models to characterize different inter-object associations at each
scale. Thus, the peculiarities of each single object can be described independently
at the finest resolutions, i.e., by means of different PDMs for each object. Then,
as we move towards lower levels of resolution it can be appropriate to impose
certain spatial restrictions attending to the inter-object relationships by means
of more global statistical shape models. In particular a global statistical shape
model of the whole set is built at the coarsest resolution in order to guaran-
tee the coherent disposition of the elements. Thus, a specific division of the M

objects into Mr disjoint subsets, (Sr
1 , . . . , S

r
Mr

) is established at each level of
resolution. Each of these subsets, Sr

s , where s = 1, . . . ,Mr, is formed by the
indices of the objects that are modeled jointly at the r-th level of resolution, and
therefore:

⋂Mr

s=1 S
r
s = ∅ and

⋃Mr

s=1 S
r
s = (1, . . . ,M). An example of hierarchical

configuration is depicted in Fig. 2.
Once the multiresolution configuration has been defined, the underlying pop-

ulation of each subset is modeled via PDMs. The step by step description of
the process is presented in Fig.3-Alg.1. T r

s (line Alg.1.11) represents the training
set for the s-th subset of objects at the r-th level or resolution, and Λr

s (line
Alg.1.12) is the set of eigenvalues obtained after applying PCA to T r

s .
Suppose now we want to describe an image, y, using the new MRH-PDM; i.e.,

finding the best approximation of y in the subspace of allowed shapes described
by the statistical model. In the context of segmentation algorithms like ASM
[4], this procedure is part of an iterative process in which a statistical appear-
ance model guides the matching to a new image (i.e., a new image we want to
segment), whereas the statistical shape model guarantees that only plausible in-
stances are generated. Algorithm 2 (Fig. 3-Alg.2) details the hierarchical shape
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Fig. 2. Example of a hierarchical configuration used to model the inter-object relation-
ships of the eight subcortical brain structures. At each level of resolution, the objects
depicted with the same color are modeled jointly via PDM. At the finest resolution (x0)
the left and right lateral ventricles are shown in dark blue and red, caudate nucleus in
green and yellow, globus pallidus in light and dark purple, and putamen in orange and
light blue, respectively.

Algorithm 1: Hierarchical Statistical Modeling

1  : {x(i)}, (i=1,...,N)

2  :  for r = 0 to R do

3  :     for i =1 to N do

4  :        if r >0 then

5  :           xr
(i) = Ar xr-1

(i);

6  :        else

7  :           x0
(i) = x(i);

8  :        end if

9  :     end for

10:     for s = 1 to Mr do

11:       Tr
s = {xr

(i),j:j   S
r
s,   i};

12:       PCA(Tr
s)     {xr

s, P
r
s, t

r
s,   

r
s};

13:     end for

14:   end for   

Set	of	training	shapes;

Adapt	the	resolu on	
of	each	training	shape;

Create	the	sta s cal	shape	
model	of	each	subset;

Algorithm 2: Hierarchical Shape Constraint

1  :  x0 = y;

2  :  for r = 0 to R do

3  :      if r == 0

4  :          x0 = x0;

5  :      else

6  :          xr = Ar xr-1

7  :          zr = Br xr-1

8  :      end

9  :      for s = 1 to Mr do

10:          xr
{s} = {xr

j: j    S
r
s}; 

11:          PDMr
s(x

r
{s}) = xr

{s};

12:      end for

13:      xr = UMr xr
{s};

14:  end for

15:  for r = R to 1 do

16:      xr-1 = Fr xr + Gr zr;

17:  end for

18:  x = x0;  

~

~

~ ~

~

^

^^

^

^^

^ ^^

^

s=1

Adjust	the	sta stlcal	shape	model

to	the	target	shape	y;

Recover	the	original	resolu on;

    {xr
s, P

r
s, t

r
s,   

r
s}

  

Use	the	PDMs	built	in	Algorithm	1

Fig. 3. Algorithm 1: Hierarchical statistical modeling. Algorithm 2: Hierarchical shape
constraint procedure.

constraint process of y according to the hierarchical statistical shape model pre-
viously built (Fig. 3 -Alg.1). The algorithm applies the corresponding constraints
to each subset in which the shape has been divided at each level of resolution,
going from the finest to the coarsest level of detail.

4 Results and Discussion

To demonstrate and quantify the performance of this new approach we focus
our attention in the particular case of 3D subcortical brain structures, though
it can be applied in virtually any task involving deformable analysis of complex
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Table 1. MRH-PDM Configurations

Res. Config. 1 Config. 2 Config. 3

r = 0 S0

1 = (1);S0

2 = (2);S0

3 = (3);S0

4 = (4);S0

5 = (5);S0

6 = (6);S0

7 = (7);S0

8 = (8)

r = 1 S1

1 = (1);S1

2 = (2);S1

3 = (3);S1

4 = (4);S1

5 = (5);S1

6 = (6);S1

7 = (7);S1

8 = (8) S1

1 = (1, 3);S1

2 = (2, 4);S1

3 = (5);S1

4 = (6);S1

5 = (7);S1

6 = (8)

r = 2 S2

1 = (1, 3);S2

2 = (2, 4);S2

3 = (5, 7);S2

4 = (6, 8) S2

1 = (1, 2);S2

2 = (3, 4);S2

3 = (5, 6);S2

4 = (7, 8) S2

1 = (1, 3);S2

2 = (2, 4);S2

3 = (5, 7);S2

4 = (6, 8)

r = 3 S3

1 = (1, 2, 3, 4);S3

2 = (5, 6, 7, 8); S3

1 = (1, 2, 3, 4);S3

2 = (5, 6, 7, 8); S3

1 = (1, 3, 5, 7);S3

2 = (2, 4, 6, 8);

4 S4

1 = (1, 2, 3, 4, 5, 6, 7, 8) S4

1 = (1, 2, 3, 4, 5, 6, 7, 8) S4

1 = (1, 2, 3, 4, 5, 6, 7, 8)

Table 2. Accuracy Evaluation. Landmark-to-landmark errorsd Dice coefficients for the
compared methods (PDM, HPDM and MRH-PDM) over eight subcortical structures
(x1, . . . ,x8) (see Fig. 2). The last columns shows average results over all the structures.

Point-2-Point Err. (vox.) x1 x2 x3 x4 x5 x6 x7 x8 Avg.

MRH-PDM Config.1 1.48± 0.47 1.44± 0.53 1.19± 0.66 1.20 ± 0.40 ◦

•
0.77 ± 0.16 ◦

•
0.74 ± 0.12 ◦

•
0.58 ± 0.12 ◦

•
0.62 ± 0.18 ◦

•
1.00± 0.51

MRH-PDM Config.2 ◦1.28± 0.50 ◦1.24± 0.49 ◦

•
0.98± 0.48 ◦

•
0.86 ± 0.37 ◦0.88 ± 0.18 ◦

•
0.77 ± 0.20 0.79 ± 0.21 0.82 ± 0.19 ◦

•
0.95± 0.39

MRH-PDM Config.3 1.48± 0.42 1.45± 0.53 1.18± 0.64 1.20 ± 0.40 ◦

•
0.77 ± 0.17 ◦

•
0.75 ± 0.11 ◦

•
0.57 ± 0.12 ◦

•
0.62 ± 0.18 ◦

•
1.00± 0.50

HPDM 1.40± 0.36 1.40± 0.50 1.28± 0.67 1.16 ± 0.36 1.06 ± 0.28 0.98 ± 0.24 0.91 ± 0.24 0.93 ± 0.26 1.14± 0.43

PDM 1.63± 0.41 1.60± 0.56 1.30± 0.69 1.21 ± 0.39 1.13 ± 0.30 0.97 ± 0.19 0.86 ± 0.24 0.93 ± 0.25 1.20± 0.49

Dice Coef. x1 x2 x3 x4 x5 x6 x7 x8 Avg.

MRH-PDM Config.1 0.82± 0.04 0.83± 0.06 0.86± 0.05 0.87 ± 0.04 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.02 ◦

•
0.89± 0.06

MRH-PDM Config.2 ◦0.84± 0.05 ◦0.85± 0.06 0.88± 0.04 ◦

•
0.90 ± 0.04 ◦

•
0.92 ± 0.02 ◦

•
0.93 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 ◦

•
0.90± 0.05

MRH-PDM Config.3 0.82± 0.05 0.83± 0.06 0.87± 0.05 0.87 ± 0.04 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.01 ◦

•
0.93 ± 0.02 ◦

•
0.89± 0.05

HPDM 0.83± 0.05 0.83± 0.06 0.87± 0.04 0.87 ± 0.04 0.90 ± 0.02 0.91 ± 0.02 0.90 ± 0.03 0.90 ± 0.03 0.87± 0.05

PDM 0.80± 0.05 0.80± 0.07 0.86± 0.04 0.86 ± 0.04 0.89 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.90 ± 0.03 0.87± 0.06

multiobjects volumes. The set of cases to work with are from the Internet Brain
Segmentation Repository (IBSR) [8] consisting of 18 T1-weighted volumes, and
their manual segmentations of subcortical brain structures (slice thickness 1.5
mm, matrix 256× 256 pixels; volumes: 256× 256× 128 voxels.). All the volumes
are positionally normalized into the Talairach orientation, and processed for bias
field correction.

The multiobject shape considered here is composed of eight subcortical struc-
tures: left lateral ventricle (x1), right lateral ventricle (x2), left caudate nucleus
(x3), right caudate nucleus (x4), left putamen (x5), right putamen (x6), left
globus pallidus (x7) and right globus pallidus (x8) (see Fig. 2). The meshes
of each strucure where registrered through the software Elastix [9] to obtain
an adequate set of landmarks. The registration of 3D MR data used affine and
non-rigid (B-spline transformations and mutual information). After applying the
octahedron projection and the remeshing process (Section 3.1), each of the vol-
umes is described by means of 1026 landmarks at the most detailed level of
resolution. Since the aim of this study is to evaluate the ability of these different
methods to model new instances of the underlying population of shapes, no ap-
pearance model is used. Thus, the shape y in Alg.2 is directly the ground-truth
segmentation of the target shape.

To illustrate the performance of the new MRH-PDM we have chosen three dif-
ferent configurations following the general guidelines described in [3] (Table 1).
The behavior of the MRH-PDM algorithm is also compared with other two alter-
native methods: the classical PDM [4], and the hierarchical approach proposed
by Davatzikos et al. [7] (HPDM). The average landmark-to-landmark distance
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is used as a measure of the accuracy between the results of each method and the
ground truth from manual segmentations. We also provide the Dice coefficient as
additional error measure. Table 2 shows this information for all the algorithms
studied. The leave-one-out approach was used (i.e., 18 different training sets with
17 samples were created, using the remainder case for testing). Compared with
the traditional method (PDM), the results show an apparent improvement in ac-
curacy when using either of the two hierarchical methods, HPDM or MRH-PDM.
However, this improvement is not significant for HPDM. The mark (◦) in Table
2 indicates those cases whose p-value is less than 0.05 when compared HPDM
and MRH-PDM with the classical PDM (i.e., the observed improvement over
PDM is statistically significant according to the Wilcoxon rank sum test). The
mark (•) indicates those cases of MRH-PDM with a significant improvement over
HPDM. The best results were obtained by configuration 2 of MRH-PDM with
an average landmark-to-landmark error of 0.95±0.39 voxels and Dice coefficient
of 0.90± 0.05, averaged over the subcortical brain structures.

It can be observed that the ventricles in our model are not symmetric in
their occipital aspect. This region corresponds to the posterior horns, which are
very thin structures barely detectable in MRI, due to partial volume effects. As
a consequence, the manual segmentations provided by the IBSR database are
not always consistent, as some cases include both posterior horns, while oth-
ers are missing one or the other. A partial volume estimation technique could
be employed to obtain more complete segmentations [11], but we opted for not
modifying the ground truth, in order to avoid introducing any bias. This issue
suggests an interesting possible extension of our framework: the multi-structure
methodology could be adapted to deal with missing structures. The issue of
connected substructures is also interesting. Okada et al. [10] propose a method
for statistical shape models containing substructures modeled by separate PCA
models, while guaranteeing a good connection at the interface. We plan to com-
bine this approach with our multi-resolution 3D wavelets framework.

5 Conclusions

In this paper a 3D multiresolution hierarchical approach is introduced as al-
ternative to the classical PDM. In cases where multiple objects form a given
anatomical region (e.g., the set of subcortical brain structures), the characteriza-
tion of the relations between subparts provides valuable additional information
compared to the single-object modeling approach, i.e., capturing the interac-
tion between adjacent regions in addition to the shape variation of individual
regions. This MRH-PDM algorithm allowed to create statistical models to char-
acterize specific inter-object associations at each level of resolution, reducing
the HDLSS problem. Though an early and simpler version of this algorithm
was recently presented [3], only planar 2D cases were considered in that work.
However, the HDLSS issue becomes especially pressing as the complexity of the
problem increases, being particularly relevant in 3D multiobject applications.
Thus, the extension to 3D becomes necessary in order to obtain real and sig-
nificant advantages of such approaches for the analysis of medical image data.
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The algorithm was compared to two classical approaches, PDM and HPDM.
In particular, three different configurations of MRH-PDM were tested, provid-
ing significantly better results than the alternative methods, demonstrating the
usefulness of incorporating wavelet-based hierarchical approaches to deal with
problems of high dimensionality.
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