
Multiresolution Indexing of XML for Frequent Queries∗

Hao He Jun Yang
Department of Computer Science, Duke University, Durham, NC 27708, USA

{haohe,junyang}@cs.duke.edu

Abstract

XML and other types of semi-structured data are typ-
ically represented by a labeled directed graph. To speed
up path expression queries over the graph, a variety of in-
dexes, e.g., 1-index, A(k)-index, and D(k)-index, have been
proposed. They usually work by partitioning the nodes in
the data graph into equivalence classes and storing these
equivalence classes as index nodes. A(k)-index introduces
the concept of local bisimilarity for partitioning. It accu-
rately supports path expressions of length up to some tun-
able constant k, allowing the trade-off between index size
and query answering power. However, all index nodes in
A(k)-index have the same local similarity value k, which
cannot take advantage of the fact that a workload may con-
tain path expressions of different lengths, or that different
parts of the data graph may have different local similarity
requirements.

To overcome these limitations, we propose M(k)- and
M*(k)-indexes. The basic M(k)-index is workload-aware:
Like the previously proposed D(k)-index, it allows different
index nodes to have different local similarity requirements,
providing finer partitioning for parts of the data graph tar-
geted by longer path expressions, and coarser partitioning
for those targeted by shorter path expressions. Unlike D(k)-
index, however, M(k)-index is never over-refined for irrel-
evant index or data nodes. However, the workload-aware
feature of M(k)-index incurs overrefinement due to over-
qualified ancestors. To solve this problem, we further pro-
pose the M*(k)-index. An M*(k)-index consists of a collec-
tion of indexes whose nodes are organized in a partition
hierarchy, allowing successively coarser partitioning infor-
mation to co-exist with the finest partitioning information
required. Experiments show that our indexes are superior
to previously proposed indexes in terms of index size and
query performance.

∗ This work was supported by a National Science Foundation CAREER
Award under grant IIS-0238386.

1. Introduction

XML has become a popular standard for exchanging and
querying data over the Internet. An XML document con-
sists of tagged (or labeled) elements (or nodes) that are
nested hierarchically. A reference can be made from one
element to another using an ID/IDREF pair. Therefore, in
general, an XML document can be represented by a labeled
directed-graph. XML is a semi-structured data model [1],
which means that XML data might be irregular or incom-
plete. Thus, it is expensive to maintain all structural infor-
mation of XML data.

Several query languages for XML and semi-structured
data have been proposed [3, 4, 2]. Path expressions are the
basic building blocks of XML queries. To speed up query
processing, we can construct a structural index to summa-
rize the structure of a data graph. Then, we can process path
expressions using the index without referring to the original
data graph, which may be much bigger than the index. A
number of structural indexes for XML data have been pro-
posed [8, 15, 10, 6, 11, 18]. Usually, a structural index is
a graph defined using a specific equivalence relation on the
nodes of the data graph. Each index node corresponds to an
equivalence class of data nodes.

The 1-index [15] is based on the notion of bisimula-
tion [16]. If two nodes are bisimilar, they are reachable by
the same set of label paths. Therefore, the 1-index can be
used to evaluate any path expression accurately without ac-
cessing the data graph. However, the size of 1-index can be
quite large for irregular XML data. Moreover, not all struc-
tures are interesting and most queries probably only involve
short path expressions.

Based on the above observations, the A(k)-index [11] in-
troduces the notion of k-bisimilarity to capture the local
structures of a data graph. The A(k)-index can accurately
support all path expressions of length up to k. For a path
expression longer than k, the index may return some false
positives, so they must be validated in the data graph. Tak-
ing advantage of local similarity, the A(k)-index can be sub-
stantially smaller than the 1-index. The parameter k controls
the “resolution” of the entire A(k)-index; all index nodes
have the same local similarity of k. If k is too small, the in-



dex cannot support long path expressions accurately. If k is
too large, the index may become so large that evaluating any
path expression over this index will be expensive. Further-
more, not all path expressions of length k are equally com-
mon. The A(k)-index lacks the ability to make certain parts
of the index have higher resolution than others, so it can-
not be optimized for common path expressions.

The D(k)-index, proposed recently in [5], allows differ-
ent index nodes to have different local similarity require-
ments that can be tailored to support a given set of fre-
quently used path expressions (or FUP’s for short). For
parts of the data graph targeted by longer path expressions,
a larger k can be used for finer partitioning. For parts tar-
geted only by shorter path expressions, a smaller k can be
used for coarser partitioning. The values of k can be ad-
justed dynamically to adapt to changing query workloads.
The general approach of the D(k)-index is flexible and pow-
erful, but the index design still has several limitations that
need to be overcome. These limitations are outlined below,
with detailed discussions to follow in Section 2.

• Over-refinement of irrelevant index nodes. The con-
struction procedure of the D(k)-index forces all index
nodes with the same label to have the same local simi-
larity, which is unnecessary and restrictive. For exam-
ple, a FUP //branch/dept/employee/name/lastname
would cause all index nodes labeled lastname to ac-
quire similarity values of at least 4, even if there ex-
ists such an index node, say, in fact for data nodes
targeted by a rarely queried path expression //fo-
rum/support/message/from/name/lastname, which
cannot be reached by the path expression that we are
interested in. In general, over-refinement causes the
size of the index to increase unnecessarily, with ad-
verse effects on query performance.

• Over-refinement for irrelevant data nodes. The D(k)-
index also proposes a promoting procedure that in-
crementally refines the index to support a given FUP.
This procedure increases the local similarity of an in-
dex node if it can be reached by the given FUP in the
index graph. This index node will be partitioned into
smaller nodes, all with the same increased local simi-
larity. However, the problem is that in general the index
node to be refined also points to data nodes that are ir-
relevant to the given FUP. For example, we start with a
D(k)-index containing an index node that corresponds
to //name/lastname data nodes (including last names
of employees as well as support forum posters), and
we wish to refine the index to support the path expres-
sion //branch/dept/employee/name/lastname. The
D(k)-index promoting procedure correctly refines the
index for the last names of employees, but in doing
so it also unnecessarily refines the index for the last
names of support forum posters.

• Over-refinement due to overqualified parents. To in-
crease the local similarity of an index node to k, the
D(k)-index promoting procedure uses the information
about the node’s parents in the index graph. If any par-
ent is “overqualified,” i.e., its local similarity is greater
than k − 1, the algorithm will over-refine the index
node, creating more partitions than necessary. In gen-
eral, there is no guarantee that the local similarity is
less than k for all parents.

• Single resolution per node. Once the D(k)-index has
been refined to support a long path expression, e.g.,
//branch/dept/employee/name/lastname, the index
nodes corresponding to the targeted data nodes will
have a large local similarity value. Such a fine par-
titioning can potentially result in many index nodes.
Now, a shorter path expression targeting the same data
nodes (among others), e.g., //name/lastname, will be
more expensive to evaluate, because it has to examine
potentially many more index nodes. In general, if we
insist that each data node can only be indexed at par-
ticular resolution, we will inevitably run into this prob-
lem for workloads containing both short and long path
expressions targeting the same data nodes.

To overcome the first two of the above limitations, we
propose the M(k)-index (for “mixed-k”). Like the D(k)-
index, the M(k)-index uses the k-bisimilarity equivalence
relation but allows different k values for different nodes;
it is also incrementally refined to support new FUP’s ex-
tracted from the query workload. Unlike the D(k)-index,
however, M(k)-index is never over-refined for irrelevant in-
dex or data nodes. Thus, the M(k)-index has a smaller size
without sacrificing support for any FUP’s. Unfortunately,
like the previously proposed indexes, the M(k)-index still
can be over-refined due to overqualified parents, and does
not work well for workloads that require multiple index res-
olutions per node.

To overcome the last two limitations, we further intro-
duce the M*(k)-index, which consists of a collection of
M(k)-indexes whose nodes are organized in a partition hi-
erarchy, allowing successively coarser partitioning informa-
tion to co-exist with the finest partitioning information re-
quired. The M*(k)-index maintains k-bisimilarity informa-
tion for all k up to some desired maximum, which can be
different across nodes and adjusted dynamically according
to the query workload. This feature allows the M*(k)-index
to avoid over-refinement due to overqualified parents and
support both short and long path expression queries over
the same data nodes at the same time.

An understandable concern about the M*(k)-index is its
size, since this index essentially trades off space for effi-
ciency of queries and quality of refinement operations. Our
experiments on XMark and NASA datasets indicate that
over-refinement due to overqualified parents is a significant



0


1


2
 3
 4


7
 8
 9


10
 11
5
 6


12
 13
 14
 15
 16
 17
 18
 19
 20


root


site


regions
 people
 auctions


africa
 asia


person
 person
 person


auction
 auction


item
 item
 item

item


seller
bidder
 bidder
 seller
 item


Figure 1. Example graph-structured data.

cause for index size inflation, so by avoiding this type of
over-refinement, the M*(k)-index actually has size compa-
rable to (and in many cases much smaller than) that of the
M(k)-index.

The rest of this paper is organized as follows. Section 2
covers background and related work, focusing on discus-
sion and critique of the three seminal papers on bisimilarity-
based XML indexing [15, 11, 5]. We introduce the M(k)-
index in Section 3 and the M*(k)-index in Section 4. Sec-
tion 5 presents the performance results of experiments for
M(k)- and M*(k)-indexes, in comparison with A(k)- and
D(k)-indexes. Finally, Section 6 summarizes the paper and
discusses future work.

2. Background and Related Work

An XML document is generally presented by a labeled
directed graph G = (VG, EG, rootG,ΣG). Each node in
the vertex set VG is uniquely identified by its oid and has
a string-literal label from the alphabet ΣG. The root node
is denoted rootG. There are two types of edges in the edge
set EG. The regular edges represent parent-child relation-
ships between elements in the XML document. The refer-
ence edges represent reference relationships defined using
ID/IDREF attributes. A small example data graph is shown
in Figure 1. The dashed lines represent reference edges.

A label path is a sequence of labels l0l1 · · · ln. A node
path is a sequence of nodes, v0v1 · · · vn, such that an edge
exists from vi−1 to vi, for 1 ≤ i ≤ n. A node path pn(=
v0v1 · · · vn) is an instance of a label path pl(= l0l1 · · · ln)
if label(vi) = li for each i. There are usually multiple node
paths in G that are instances of a given label path pl. The set
of end nodes (vn) of these node paths is called the target set
of pl. In this paper, we define length(pl), the length of a path
pl = l0l1 · · · ln, to be n. Several query languages [3, 4, 2]
for XML and semi-structured data define the notion of path
expressions. For example, in XPath [3] syntax, the path ex-

pression /site/people/person returns the target set {7, 8, 9}
for the data in Figure 1; a slightly more complicated path
expression involving a wildcard, /site/regions/*/item, re-
turns the target set {12, 13, 14}. In this paper, we focus on
simple path expressions, which are basically label paths.

Lore [13] supports path expressions using a structural
summary called the DataGuide [8]. The basic idea is to
build a summary, or an index graph, from the data graph,
which preserves all label paths in the data graph but has far
fewer nodes and edges. Following this approach, a variety
of structural indexes for data have been proposed [15, 10, 6,
11]. In general, an structural index for a data graph G is a
labeled directed graph IG = (VI(G), EI(G), rootI(G),ΣG),
defined using an equivalence relation on VG (specific to the
index). Each index node in VI(G) represents a set of data
nodes equivalent under this relation. The extent of an index
node is defined as the set of data nodes associated with this
index node. There is an index edge (ui, vi) in EI(G) if and
only if a data edge (ud, vd) exists in G and ud ∈ ui.extent ,
vd ∈ vi.extent .

1-index The 1-index [15] is based on the no-
tions of bisimulation [16] and bisimilarity defined be-
low. Only bisimilar data nodes are grouped into the same
1-index node.

Definition 1 (Bisimulation) A symmetric, binary relation
≈ on VG is called a bisimulation if the following holds: For
any two data nodes u and v, u ≈ v if and only if

1. u and v have the same label;

2. If u′ is a parent of u, that is, (u′, u) is an edge and
u′ is closer to the root, then there exists a parent v′ of
v such that u′ ≈ v′, and vice versa.

Two data nodes u and v are bisimilar if there exists some
bisimulation≈ such that u ≈ v. This relation implies that if
two nodes are bisimilar, the sets of label paths into them
are the same. However, the converse is not true: Even if
the sets of label paths into two nodes are the same, these
nodes may not be bisimilar. An example is shown in Fig-
ure 2. The two nodes labeled d have the same incoming la-
bel paths: r/a/c/d and r/b/c/d. However, these two nodes
are not bisimilar because their parents (labeled c) are not.

A(k)-index The A(k)-index [11] introduces the notion
of k-bisimilarity defined below, which captures the local
structures of a data graph.

Definition 2 (k-bisimilarity ≈k) k-bisimilarity is defined
inductively:

1. For any two nodes, u and v, u ≈0 v if and only if u

and v have the same label.



r


a
 b


c
 c


d


r


a
 b


c


d


Figure 2. Two d nodes that are not bisimilar.

2. u ≈k v iff u ≈k−1 v and for every parent u′ of u,
there is a parent v′ of v such that u′ ≈k−1 v′, and vice
versa.

The A(k)-index uses k-bisimilarity as the equivalence rela-
tion to partition data nodes. The parameter k controls the
resolution of the entire A(k)-index, providing a trade-off
between index size and query answering power. The A(k)-
index has the following properties:

1. If nodes u and v are k-bisimilar, then the sets of label
paths of length up to k into them are the same.

2. The set of label paths of length up to k into an A(k)-
index node is the set of label paths of length up to k

into any data node in its extent.
3. The A(k)-index is precise for any simple path expres-

sion of length up to k.
4. The A(k)-index is safe, i.e., the result of evaluating any

simple path expression on the index graph always con-
tains the result of evaluating the same expression on
the data graph.

5. The (k+1)-bisimulation is either equal to or a refine-
ment of the k-bisimulation.

We note here that the definition of k-bisimilarity can be
simplified by the following lemma. Besides the (k − 1)-
bisimilarity requirement on their parents, we only require
the two nodes to have the same label (as opposed to being
(k − 1)-bisimilar). In Section 3, we will exploit this lemma
to refine nodes in the M(k)-index, raising their local simi-
larity to a large value in one step instead of increasing it one
at a time.

Lemma 1 u ≈k v if and only if u ≈0 v and for every par-
ent u′ of u, there is a parent v′ of v such that u′ ≈k−1 v′,
and vice versa.

Proof: ⇒: If u ≈k v, then by Defintion 2, u ≈i v for
i = k− 1, . . . , 0, and the requirement on parents is also ob-
viously met. ⇐: Since for every parent u′ of u, there is a
parent v′ of v such that u′ ≈k−1 v′, which implies u′ ≈0 v′,
we can conclude u ≈1 v from u ≈0 v according to Defin-
tion 2. From u ≈1 v, by noting that u′ ≈1 v′, we can

further conclude that u ≈2 v. Using the same argument re-
peatedly we can prove that u ≈i v for i = 3, . . . , k−1, k.¤

D(k)-index The D(k)-index [5] is an adaptive struc-
tural summary that supports different local similarity re-
quirements on different index nodes. For each index node
v, let v.k denote the local similarity requirement on v, i.e.,
all data nodes in v.extent must be v.k-bisimilar. The D(k)-
index has the property that a parent’s local similarity re-
quirement cannot be lower than that of a child by more
than 1. More precisely, for any two index nodes v and v′,
v.k ≥ v′.k − 1 if there is an edge from v to v′.

We have mentioned earlier in Section 1 the construc-
tion and promoting procedures of the D(k)-index. The con-
struction procedure is used to construct a D(k)-index from
scratch to support a given set of FUP’s. As we have seen
in Section 1, this procedure over-refines irrelevant index
nodes. Here, we focus more on the PROMOTE procedure,
which refines an existing D(k)-index incrementally to sup-
port a given FUP.

PROMOTE(v, kv , IG)
1: if v.k ≥ kv then
2: Return IG

3: for each parent u of v in IG do
4: IG = PROMOTE(u, kv − 1, IG)
5: for each parent u of v in IG do
6: Split v.extent into v.extent ∩ Succ(u.extent) and v.extent −

Succ(u.extent)
7: Return the final IG

Here, v is the index node to be refined and kv is the re-
quired new local similarity. Succ(s) returns all data nodes
that are children of some data nodes in a set s. In general,
PROMOTE is first invoked on an index node v reachable by
the given FUP. If v does not have the required local simi-
larity to support the FUP, v.extent may contain irrelevant
data nodes that do not belong to the target set of the FUP.
PROMOTE then refines v by recursively promoting all of its
parents (lines 3–4) and then partitioning v.extent to meet
the new local similarity requirement (lines 5–6). In doing
so, PROMOTE has effectively refined the index to support
not only the given FUP, but also all incoming paths to v of
length up to kv . These paths may include those that do not
lead to the target set of the given FUP but instead to the ir-
relevant data nodes in v.extent . Consequently, PROMOTE
has over-refined the D(k)-index.

A concrete example of over-refinement is shown in Fig-
ure 3. The data graph is shown in part (a). The oid for each
data node is shown on its left. Part (b) is the index graph be-
fore PROMOTE. The extent of each index node is shown on
its left and the local similarity is shown on its right. At this
point, all local similarities are 0, which means that all data
nodes with the same label belong to the same index node.



r


a


b
b


(a) Datagraph


0


1


4
 5

b
b


6
 7

b
b


8
 9


d
c

2
 3


r


a


b
b


(c) D(k)-index

after Promote


{0}


{1}


{4}
 {5}

b
b


{6}
 {7}


b
b

{8}
 {9}


d
c

{2}
 {3}


r


a


{0}


d
c

{2}
 {3}


b

{4,5,6,7,8,9}


{1}


(b) The index

after initialization


r


a


{0}


d
c

{2}
 {3}


b

{5,6,7,8,9}


{1}


(b) M(k)-index

after Promote


b

{4}


0


0


0


0
0


1


1


2
 2
 2
 2
 2
 2


1
 1


0


1


0


0
 0


2


Figure 3. Comparison of D(k)- and M(k)-index refinement.

Suppose that r/a/b is the FUP to be supported. The refined
D(k)-index after PROMOTE is shown in part (c). As we can
see from the figure, the refined index becomes essentially a
copy of the data graph, with irrelevant data nodes 5–9 be-
longing to different index nodes. In contrast, part (d) shows
the M(k)-index after our refinement procedure, which is sig-
nificantly more compact and groups all irrelevant data nodes
into one index node.

Another source of over-refinement is overqualified par-
ents, mentioned briefly in Section 1. A concrete example is
presented in Figure 4. Again, the data graph is shown in
part (a), and the index graph before PROMOTE is shown
in part (b). Suppose we need to increase the local simi-
larity of the index node c from 0 to 1. The refined D(k)-
index after PROMOTE is shown in part (c), where the index
node c has been split into two. However, their correspond-
ing data nodes 4 and 5 are actually 1-bisimilar, and should
have stayed together in one index node with local similar-
ity of 1, as shown in part (d). The source of the problem
is that PROMOTE uses the 2-bisimilarity information of the
parents, but instead it should use the 0-bisimilarity informa-
tion, which is not directly available. Our M*(k)-index will
be able to avoid this problem since it keeps track of such in-
formation also.

Other indexes APEX [6] is another adaptive path in-
dex for XML tuned for supporting FUP’s. Our work is sim-
ilar to APEX in the workload-aware aspect. However, our
indexes can capture significantly more structural informa-
tion from the data. APEX maintains two structures, a graph
and a hash tree. The graph represents a structural summary
of the data. However, except for the FUP’s with entries in
the hash tree, APEX cannot directly answer other path ex-
pressions of length more than one. In some sense, APEX be-
haves more like an efficiently organized cache of answers to
FUP’s.

UD(k, l)-index [18] generalizes the A(k)-index by ex-
tending local bisimilarity to up-bisimulation and down-
bisimulation, corresponding to upward and downward paths
respectively. The index is especially efficient for branching

r


a


b
b


c


r


a


b
b


c
c


r


a


b
b


c
c


(a) Datagraph
 (b) Before 
Promote
 (c) After 
Promote


1


1


2
2


0


r


a


b
b


c


(d) Without

overrefinement


1


1


2
2


1


1


1


2
 2


1
 1


0


1


2
 3


4
 5


{0}
 {0}
 {0}


{1}


{2}
 {3}


{4,5}


{1}


{2}
 {3}


{4,5}


{1}


{2}
 {3}


{4}
 {5}


Figure 4. Over-refinement due to overqualified
parents.

path expressions. However, it also inherits the static nature
of the A(k)-index.

Many other XML indexing techniques have also been
developed. In [7], paths in the data graph are viewed as
strings and stored in a multilevel Patricia trie. The inverted
index [19] and the numbering scheme [12] support efficient
ancestor queries. However, they all focus mostly on tree-
structured data.

3. The M(k)-Index

In this section we describe the M(k)-index, which
achieves the same goal of adaptively and selectively sup-
porting FUP’s as the D(k)-index, but without the problems
of over-refinement for irrelevant index and data nodes. For-
mally, the M(k)-index graph of a data graph G is a la-
beled directed graph IG = (VI(G), EI(G), rootI(G),ΣG).
Each node in VI(G) has two attributes: v.k, the local simi-
larity, and v.extent , the set of data nodes associated with
v. The M(k)-index has the following three basic proper-
ties that are preserved by all index operations.

Property 1 All data nodes in v.extent are v.k-bisimilar in
G.



Property 2 (v, v′) ∈ EI(G) if and only if ∃o ∈ v.extent

and ∃o′ ∈ v′.extent , such that (o, o′) ∈ EG.

Property 3 For all parent vp of v in VI(G), vp.k ≥ v.k− 1.

These three properties are identical to those of the D(k)-
index, meaning that it is functionally equivalent to our
M(k)-index. However, as we will see later in this section,
our approach to maintaining these properties is quite dif-
ferent from the D(k)-index, and can potentially produce a
much smaller index than the D(k)-index.

The following lemma follows from the above three basic
properties of the M(k)-index.

Lemma 2 For any index node v and any data node o ∈
v.extent , the set of label paths of length up to v.k going
into v in IG is the same as the set of label paths of length
up to v.k going into o in G.

Proof: According to Property 2 of the M(k)-index, any
node path in G can be mapped to a node path in IG (by
mapping each edge along the path to a corresponding edge
in IG). Therefore, any label path going into o in G must also
go into v in IG. The converse remains to be proven. Since
the data nodes in v.extent are v.k-bisimilar, they have the
same of set of incoming label paths of length up to v.k (Sec-
tion 2). Thus, it suffices to show that for any label path of
length up to k ≤ v.k going into v in IG, there exists some
data node in v.extent with this incoming path in G.

We use induction on the value of k. The claim is ob-
viously true for k = 0, because there is only one la-
bel path of length 0 into v, which is the label of all
data nodes in v.extent . Assume that the claim is true
for k = k′ − 1. Consider any label path l0l1 · · · li go-
ing into v, where i ≤ k′ ≤ v.k. Let u be the parent of
v in the instance of l0l1 · · · li going into v. There ex-
ist m and n, such that m ∈ u.extent , n ∈ v.extent ,
and (m,n) is an edge in G. According to Property 3 of
the M(k)-index, u.k ≥ v.k − 1 ≥ k′ − 1. By the in-
duction hypothesis, since u has l0l1 · · · li−1 as an in-
coming path, where i − 1 ≤ k′ − 1 ≤ u.k, m must
also have l0l1 · · · li−1 as an incoming path in G. Be-
cause (m,n) is an edge in G, we know that n has
l0l1 · · · li as an incoming path in G. The proof is com-
plete. ¤

From the basic properties of the M(k)-index and the
lemma above, we can show that the M(k)-index has the fol-
lowing safety and precision properties for answering path
expression queries:

• The M(k)-index is safe, i.e., it produces no false neg-
atives. To be specific, the result of evaluating any path
expression on IG always contains the result of evalu-
ating the same expression on G. This property follows
from Properties 1 and 2 of the M(k)-index.

Initialize


FUP processor


Refine processor


M(k)-Index

Query


processor


Data Graph


Queries


Accurate

answer?


Answers

Y


N


FUPs & target sets


Figure 5. Overview of M(k)-index operations.

• The M(k)-index is precise for a label path expression
of length k if each node v in its target set in IG satisfies
v.k ≥ k. That is, the result contains no false positives.
This property follows from Lemma 2.

We now give an overview of how the M(k)-index is con-
structed, queried, and refined dynamically at runtime. The
process is outlined below and illustrated in Figure 5:

1. Initialize the index with k = 0 for all index nodes,
resulting essentially in an A(0)-index. This index can
only precisely answer path expressions of length 0, i.e.,
those with a single label.

2. Answer incoming queries using the index graph. If
the answer is not guaranteed to be precise, validate it
against the data graph.

3. Extract FUP’s (frequently used path expressions) from
queries.

4. Refine the index to support the FUP’s.
5. Go to step 2.

Next, we present the details of the query algorithm in Sec-
tion 3.1 and the refinement algorithm in Section 3.2.

3.1. Query Algorithm

To answer a simple path expression l using the M(k)-
index, we take the following steps:

1. Find the target set of l in the index graph, i.e., the set
of index nodes with l as an incoming path.

2. For each index node v in the target set, if v.k ≥
length(l), we return all of v.extent to the user; other-
wise, we must validate the nodes in v.extent and only
return to the user those that really do have l as an in-
coming path in the data graph.

The check in the second step reflects the precision prop-
erty of the M(k)-index discussed earlier. As a result of val-
idation, we know which data nodes in v.extent are true
answers to the query. This information about “relevant”



data nodes will be passed on to the refinement algorithm
if the query is a FUP to be supported. As we will see in
the next section, this information is vital in avoiding over-
refinement.

3.2. Refinement Algorithm

The goal of refinement is to increase the index resolution
for selected parts of the index, so that it would be able to an-
swer a given FUP precisely. As discussed in the previous
section, the target set of the FUP in the data graph has been
acquired by the query algorithm before refinement. The sin-
gle most important difference between our refinement algo-
rithm and the previous algorithms is our use of this target
set to avoid over-refinement.

The refinement algorithm, REFINE, is presented below.
The input to REFINE includes l, the FUP to be supported;
S, the target set of l in the index graph; and T , the target set
of l in the data graph.

REFINE(l, S, T )
1: for each v in S do
2: REFINENODE(v, length(l), v.extent ∩ T )
3: while ∃v ∈ IG such that v has l as an incoming path and v.k <

length(l) do
4: PROMOTE’(v, length(l))

The algorithm attempts to promote the local similarity val-
ues to at least length(l) for the index nodes in S. To main-
tain Property 3 of the M(k)-index, the ancestors of S nodes
may need to be promoted too. These tasks are accomplished
by a recursive procedure REFINENODE. To avoid over-
refinement, we pass in the relevant data nodes in v.extent

to REFINENODE.
Procedure REFINENODE is shown below. Here, Pred(s)

returns all data nodes that are parents of some data nodes in
a set s. To understand how REFINENODE works and how
it differs from the D(k)-index, we can compare it side by
side with the PROMOTE algorithm used by the D(k)-index
discussed in Section 2. Lines 2–7 of REFINENODE corre-
spond to lines 1–4 of PROMOTE; both recursively refine the
parents. Lines 9–17 of REFINENODE correspond to lines
5–6 of PROMOTE; both split the index node according to
the Succ set of parents. REFINENODE only processes a par-
ent if its extent contains some parents of the relevant data
nodes, while PROMOTE blindly processes all parents recur-
sively. This optimization translates into significant size re-
duction for the M(k)-index.

REFINENODE(v, k, relevantData)
1: // Lines 2–7: recursively refine parent nodes:
2: if v.k ≥ k then
3: Return
4: for each parent u of v in IG do
5: predData = Pred(relevantData) ∩ u.extent
6: if predData 6= ∅ then
7: REFINENODE(u, k − 1, predData)

r


a


a
b


b
c


(a) Datagraph


0


1


4
 5


7
 8


b


c


3


6


d
2


r


a

{1,5}


b


c


{3,4,8}


{6,7}


d


0


0


0


0

0
{2}


{0}
 r


a


a
b


c


{0}


{1}


{4}
 {5}


{7}


b


c


{3,8}


{6}


d
{2}


0


1


2


0

0


0


3


0


(b) Before refinement
 (c) After refinement


Figure 6. False positive created by RefineNode.

8: // Lines 9–17: split v:
9: kold = v.k

10: V = {v}
11: for each parent u of v in IG do
12: if Pred(relevantData) ∩ u.extent 6= ∅ then
13: for each w in V do
14: Replace w (in both V and IG) with w1 and w2, where:
15: w1.extent = w.extent ∩ Succ(u),
16: w2.extent = w.extent − Succ(u), and
17: w1.k = w2.k = k
18: // Lines 19-26: merge unnecessary splits
19: remainderExtent = ∅

20: for each w in V do
21: if relevantData ∩ w.extent = ∅ then
22: remainderExtent = remainderExtent ∪ w.extent
23: Remove w from IG

24: Add vrest to IG, where:
25: vrest .k = kold , and
26: vrest .extent = remainderExtent

As a concrete example, consider again Figure 3, where
r/a/b, with its target set of {4}, is the FUP to be supported.
Among index node b’s parents, only a needs to be consid-
ered since it is the only parent whose extent contains parents
of the data nodes in the target set. It turns out that a already
has the required local similarity, so we proceed to split b. In-
stead of forcing all partitions of b to have local similarity of
2, we only require it for those partitions that contain data
nodes in the target set. All irrelevant data nodes are grouped
into one index node, which retains the old local similarity
value. The refined M(k)-index is shown in part (d), com-
pared with the result of refining the D(k)-index in (c).

After all REFINENODE calls have completed, we would
like every instance of l in the index graph to lead to an in-
dex node that contains no false positives. Indeed, at this
point, we can guarantee that all data nodes in T , the tar-
get set of l, belong to index nodes with local similarity of
at least length(l). However, there is still a very small possi-
bility that, after refinement, a new instance of l is created in
the index graph that does not lead to any data nodes in T .
A concrete example is shown in Figure 6. Suppose we re-
fine the index to support the path expression r/a/b/c. Af-
ter all REFINENODE calls have completed, we have the in-
dex graph shown on the right. Note that a second instance
of r/a/b/c has been created, which leads only to false pos-
itives.

The last loop of REFINE guards against this possibility.



As long as there still exists an instance of l that leads to
false positives, we use PROMOTE’, a modified version of
PROMOTE, to “break” this instance by splitting the index
nodes along the instance. Since the purpose of PROMOTE’
is not refinement per se, but to break a false instance of l by
refinement, we do not need to carry out the promoting al-
gorithm to completion. Instead, we simply add a check be-
tween lines 6 and 7 of PROMOTE: If no more false instances
of l are found, just do a long jump out of the procedure (and
terminate all recursions).

4. The M*(k)-Index

Although the M(k)-index avoids over-refinement of ir-
relevant index and data nodes, it still has two remaining
problems: over-refinement due to overqualified parents, and
expensive short path expression queries. These problems
expose a key deficiency of the M(k)-index, which is that
each index node can have only one single local similarity
value. Once the local similarity of an index node increases
from k to k′ > k, it is difficult to tell which k-bisimilarity
partition this node belongs to.

To solve the above problems, we propose the M*(k)-
index. Conceptually, the M*(k)-index consists of a se-
quence of component indexes I0, I1, . . . , Ik with differ-
ent resolutions. Each component can be regarded as an
M(k)-index that supports the FUP’s as much as possi-
ble, abiding by the restriction that the maximum local simi-
larity in component Ii is i. Hence, I0 maintains the coarsest
(0-bisimilarity) partitioning information and is able to pro-
cess single-label path expressions efficiently, whereas Ik

maintains the finest (up to k-bisimilarity) partitioning in-
formation and is able to answer all FUP’s accurately.
Each index node in component Ii is possibly parti-
tioned by the next component Ii+1 further into a set of
index nodes, with a local similarity value one greater. For-
mally, we say that an index node v in Ii is the supern-
ode of an index node v′ in Ii+1 (and v′ is a subnode of
v) if v.extent ⊇ v′.extent . The M*(k)-index uses spe-
cial links to connect a supernode with its subnodes,
thereby forming a partitioning hierarchy across the compo-
nents. A concrete example of an M*(k)-index is illustrated
in Figure 7, where the dashed lines represent the spe-
cial links across components. The properties of the
M*(k)-index are summarized below:

Property 1 Each component index Ii has all properties of
the M(k)-index.

Property 2 The maximum local similarity value for the in-
dex nodes in Ii is i.

Property 3 Component Ii+1 is a refinement of component
Ii. More precisely, the extent of every index node in
Ii is the disjoint union of the extents of its subnodes

in Ii+1, and every index node in Ii+1 has exactly one
supernode in Ii.

Property 4 If v is the supernode of v′, then v.k ≤ v′.k ≤
v.k + 1. That is, the local similarity value of an index
node cannot increase by more than one from one com-
ponent index (Ii) to the next (Ii+1). This property en-
sures that the M*(k)-index maintains partitioning in-
formation for all resolutions from 0 up to the finest lo-
cal similarity value required. (Technically, this prop-
erty follows from Properties 2 and 5.)

Property 5 If v is an index node in Ii and v.k < i, then
for any subnode u of v, u.k = v.k. That is, once the
local similarity stops “growing” from one component
index to the next, it stays the same in all subsequent
component indexes.

In the example of Figure 7, the index nodes labeled r and
b keep the same local similarity value of 0 across all in-
dex components. The index node labeled a in I0 is parti-
tioned into two nodes in I1 with local similarity 1, which
stays the same in I2. The index node labeled c in I0 is par-
titioned into two nodes in I1 with local similarity values of
0 and 1, respectively; the node with local similarity 0 can-
not be refined further in I2 (Property 5), while the node with
local similarity 1 is further partitioned into two nodes in I2.

The M*(k)-index inherits the dynamic and adaptive na-
ture of the M(k)-index. Component indexes are created
and refined only when it is necessary to support additional
FUP’s. The unique feature of the M*(k)-index is that it also
maintains successively coarser partitioning information in
addition to the finest partitioning information required. This
feature enables a much more efficient query algorithm and
a refinement algorithm that avoids over-refinement due to
overqualified parents. These two algorithms are described
in detail in the remainder of this section.

It may appear that the M*(k)-index needs more space
than the M(k)-index in order to maintain partitioning in-
formation at multiple resolutions. However, the implemen-
tation of the M*(k)-index can be made much more space-
efficient than its logical representation by exploiting the fact
that many index nodes and edges remain unchanged from
one component index to the next. A supernode in Ii does
not need to be duplicated in Ii+1 if this node has only one
subnode. An edge in Ii does not need to be duplicated in
Ii+1 if the two nodes connected by this edge each have only
one subnode. For simplicity of presentation, the algorithms
discussed in this section still assume the less efficient log-
ical representation illustrated in Figure 7. In practice, our
experiments reveal that the M*(k)-index is actually smaller
than the M(k)-index in most cases because the M*(k)-index
completely avoids over-refinement due to overqualified par-
ents. The performance advantage of the M*(k)-index will
be quantified in Section 5.



I
0
 I
1
 I
2


r


a
 b
a


c
c


(a) Datagraph


0


1
 2
 3


4
 5

c
c


6
 7


r


b

a


c


{0}


{1,2}

{3}


{4,5,6,7}


0


0

0


0


r


b

a


c


{0}


{1}

{3}


{6,7}


0


1

0


0

c


{4,5}


1


a

{2}


1


r


b

a


c


{0}


{1}

{3}


{6,7}


0


1

0


0

c


{5}


2


a

{2}


1


c

{4}


1


(b) The M*(k) (supporting 
//b/a/c
)


Figure 7. An example of the M*(k)-index.

4.1. Query Algorithm

The coarser partitioning information available in the
M*(k)-index obviously improves the performance of short
path expression queries. For example, in Figure 7, evalua-
tion of the path expression //a/c can be done in component
index I1 without accessing the larger component index I2.
In contrast, for the M(k)-index, evaluation of any path ex-
pression must use the finest (and the only) partitioning in-
formation available.

Evaluation of long path expressions also benefits from
the M*(k)-index, because long path expressions can be
evaluated in steps starting with short path expressions. For
a very simple example, to evaluate the path expression
//b/a/c using the M*(k)-index in Figure 7, we can evaluate
//b in I0 first. The target set contains the only index node
labeled b, and we follow the dashed link to find its subn-
ode in I1. Starting from this node, we continue to evaluate
the path expression //b/a in I1, obtaining an index node la-
beled a (the one on the right), which leads us to the subn-
ode in I2. Starting from that subnode, we can finish evalu-
ating //b/a/c in I2. This toy example does not really show
the performance advantage of this evaluation strategy. How-
ever, consider a larger M*(k)-index where b nodes are par-
titioned into many index nodes in the finest component in-
dex. In this case, evaluating //b in I0 would be much more
efficient in comparison.

In general, the rich structure of the M*(k)-index supports
many strategies for evaluating path expressions. We briefly
discuss three strategies below. The decision of which strat-
egy to use is an interesting query optimization problem, but
it would be beyond the scope of this paper.

Naive evaluation Suppose the length of the path ex-
pression is l. Simply go to component index Il and process
the path expression using the query algorithm of the M(k)-
index.

Top-down evaluation The top-down strategy pro-
cesses a path expression by evaluating its prefixes in in-
creasing order of length. A prefix path expression of
length l can be evaluated in Il, starting with the subn-
odes of the results of evaluating the prefix of length l − 1.
The M*(k)-index allows us to evaluate each prefix us-
ing the coarsest (thus smallest) component index possible,
without using the finest (thus largest) component in-
dex.

An example of using this strategy to evaluate //b/a/c in
Figure 7 was given earlier in this section. Here we present
the detailed algorithm below. For simplicity, this algorithm
performs validation at the very end. In practice, it would be
more efficient to validate after evaluating each prefix.

QUERYTOPDOWN(l0l1 · · · lj )
1: Q = {v ∈ I0 | label(v) = l0}
2: for i = 1 to j do
3: S = {u ∈ Ii | supernode(u) ∈ Q}
4: Q = {v ∈ Ii | label(v) = li ∧ (∃u ∈ S :

(u, v) is an edge in Ii)}
5: A = ∅

6: for each v ∈ Q do
7: if v.k = j then
8: A = A ∪ v.extent
9: else

10: Validate the data nodes in v.extent
11: Add those that pass the validation to A
12: Return A

Subpath pre-filtering This strategy exploits the fact
that a subsequence of the labels in a path expression may be
highly selective. Instead of evaluating the original path ex-
pression of length l in the component index Il, we evaluate
a subpath of length l′ < l in the coarser and smaller com-
ponent index Il′ . From the result set, we follow the cross-
component links to find the corresponding index nodes in
Il. Then, we evaluate the rest of the original path expres-
sion in Il starting from these nodes.

For example, to evaluate the path expression



//branch/dept/employee/name/lastname, we can start by
evaluating a short subpath employee/name in I1 and find
the corresponding name nodes in I4. This pre-filtering step
can potentially eliminate many name nodes in I4 from fur-
ther consideration. Furthermore, it is likely that most of the
name nodes that passed the filter indeed lead to the target
set of //branch/dept/employee/name/lastname. The re-
maining task is to process branch/dept/employee/name
and name/lastname in I4 starting from these names nodes,
and validate the final answer if necessary. This strat-
egy might outperform the top-down strategy if there are
many possible branches coming out from branch, dept,
and employee nodes, but there are few branches go-
ing into them.

Other approaches In addition to top-down evaluation,
bottom-up and hybrid (combining top-down and bottom-
up) approaches have also been proposed in the XML query
processing literature [14]. With the M*(k)-index, the idea
would be to evaluate progressively longer suffixes of a
path expression in progressively finer component indexes.
Specifically, we can find the nodes in Il with an outgoing
path of length l, and then look for the parents of their subn-
odes in Il+1 with an outgoing path of length l+1. Unfortu-
nately, indexes based on k-bisimilarity only guarantee that
the data nodes belonging to the same index node have the
same set of incoming paths of length up to k; there is no
guarantee on the outgoing paths. Therefore, in the M*(k)-
index, a subnode may have fewer outgoing paths than its su-
pernode even if the supernode has a high enough local sim-
ilarity value. That means whenever we move to a finer com-
ponent index, we need to check downwards to ensure that
the suffix path still exists. This overhead makes bottom-up
and hybrid approaches less efficient than the top-down ap-
proach, which does not need to check upwards for the ex-
istence of the prefix path. Note that if we incorporate the
feature of the recently proposed UD(k, l)-index [18], the
M*(k)-index would also be able to efficiently support the
bottom-up or hybrid evaluation approaches.

4.2. Refinement Algorithm

The M*(k)-index is initialized with a single component
index I0, which is identical to the A(0)-index (or a newly
initialized M(k)-index). To refine the M*(k)-index, we use
the REFINE* procedure presented below. The input to RE-
FINE* includes l, the FUP to be supported; S, the target set
of l in the finest component index; and T , the target set of l

in the data graph. To support a FUP of length k, we need at
least k + 1 component indexes (from I0 to Ik). If there are
fewer, new component indexes will be created by copying
the last existing component index. The remainder of RE-

FINE* has the same outline as REFINE discussed in Sec-
tion 3.2.

REFINE*(l, S, T )
1: for i = 1 to length(l) do
2: if Ii does not exist then
3: Construct a new component Ii by copying Ii−1

4: S = S nodes (or copies thereof) in Ilength(l)
5: for each v in S do
6: REFINENODE*(v, k, v.extent ∩ T )
7: while ∃v ∈ Ilength(l) such that v has l as an incoming path and

v.k < length(l) do
8: PROMOTE*(v, length(l))

Procedure REFINENODE*, presented below, is called by
REFINE* to increase the local similarity of an index node
v ∈ Ik to the desired value k. To avoid over-refinement, we
also pass in the relevant data nodes in v.extent .

REFINENODE*(v, k, relevantData)
1: // Lines 2–7: recursively refine parent nodes:
2: if v.k ≥ k then
3: Return
4: for each parent u of supernode(v) in Ik−1 do
5: predData = Pred(relevantData) ∩ u.extent
6: if predData 6= ∅ then
7: REFINENODE*(u, k − 1, predData)
8: // Lines 9–13: refine v and its ancestor supernodes:
9: istart = min{i | supernode∗(v, Ii).k < i}

10: for i = Istart to k do
11: p = supernode∗(v, Ii)
12: SPLITNODE*(p, i, p.extent ∩ relevantData)
13: Propagate changes made to Ii to all subsequent component indexes

The structure of REFINENODE* is similar to REFINEN-
ODE, its counterpart for the M(k)-index. Lines 2–7 cor-
respond to those of REFINENODE, serving the same pur-
pose of recursively refining parent index nodes. The rest of
the procedure is less similar to REFINENODE, because the
M*(k)-index needs to maintain partitioning information at
all resolutions. The “ancestor supernode” of v in Ii, denoted
by supernode∗(v, Ii), is computed by following the cross-
component links from v to Ii. Before refining v in Ik, RE-
FINENODE* first refines v’s ancestor supernodes in all ap-
plicable component indexes, starting from the first compo-
nent index in which the local similarity value of v’s ances-
tor supernode is lower than the maximum permissible value.
Once we finish refining a component index Ii, we propagate
all changes to all subsequent component indexes.

Note that it is necessary to propagate the changes to sub-
sequent component indexes immediately after each node is
refined (Line 13). If not, Properties 3 and 4 might be vi-
olated in the following case. Suppose there are two irrele-
vant data nodes d and d′, both of which are not i-bisimilar
to any relevant data node. However, d is (i− 1)-bisimilar to
some relevant data node while d′ is not. In component in-
dex Ii−1, d should belong to the same index node as the
(i − 1)-bisimilar relevant data node, whereas d′ should be-
long to a different index node. On the other hand, if we re-



fine Ii independently without immediately propagating the
changes from Ii−1, we would group d and d′ into one index
node together with all other irrelevant data nodes that are
not i-bisimilar to any relevant data node. That means Ii is
not a refinement of Ii−1. Furthermore, the index node con-
taining d in Ii may have a lower local similarity value than
the index node containing d in Ii−1. Therefore, we must
propagate the changes on Ii−1 to Ii before refining Ii.

The actual partitioning of p (v’s ancestor supernode) in
Ii is handled by procedure SPLITNODE* detailed below,
which corresponds to Lines 8–26 of REFINENODE. As with
the M(k)-index, SPLITNODE* uses the information about
relevant data nodes to avoid over-refinement. A seemingly
minor but very important difference is that SPLITNODE*
uses the parents of supernode(v) in Ik−1 to split v, instead
of using v’s parents directly. From Property 2 of the M*(k)-
index, we know that the local similarity values of the parents
in Ik−1 cannot be more than k−1. Furthermore, REFINEN-
ODE* refines these parents before calling SPLITNODE*, so
their local similarity values must be exactly k − 1, mean-
ing that they are “perfectly qualified” for splitting v. In con-
trast, the M(k)-index and the D(k)-index might over-split v

because v’s parents in these indexes might have local simi-
larity values higher than k − 1, i.e., they are overqualified.

SPLITNODE*(v, k, relevantData)

1: // Split v:
2: kold = v.k
3: V = {v}
4: for each parent u of supernode(v) in Ik−1 do
5: if Pred(relevantData) ∩ u.extent 6= ∅ then
6: for each w in V do
7: Replace w (in both V and Ik) with w1 and w2, where:
8: w1.extent = w.extent ∩ Succ(u),
9: w2.extent = w.extend − Succ(u), and

10: w1.k = w2.k = k
11: // Merge unnecessary splits:
12: remainderExtent = ∅

13: for each w in V do
14: if relevantData ∩ w.extent = ∅ then
15: remainderExtent = remainderExtent ∪ w.extent
16: Remove w from Ik

17: Add vrest to Ik , where:
18: vrest .k = kold , and
19: vrest .extent = remainderExtent

Finally, procedure PROMOTE* is used by REFINE* to
break false positives that might have been introduced during
refinement, analogous to procedure PROMOTE’ discussed in
Section 3.2. PROMOTE* is basically the same as REFINEN-
ODE*, except it does not take relevant data as input and
therefore promotes all data nodes. It also makes a long jump
out of itself as in PROMOTE’ once all false positives are re-
moved.

5. Experiments

The experiments in this section are aimed at comparing
query performance and space consumption for M(k)- and
M*(k)-indexes as well as previously proposed A(k)- and
D(k)-indexes. We have implemented all four indexes in Java
as main-memory data structures.

Datasets We use two XML datasets in our experi-
ments: XMark and NASA. The XMark generator from the
ongoing XML Benchmark Project [17] generates synthetic
data about the activities of an auction Web site. The syn-
thetic document we use is about 11MB in size and contains
about 120, 000 nodes. The NASA dataset contains synthetic
data generated by the IBM XML generator for a real DTD
from NASA [9]. The synthetic document we use is about
11MB in size and contains about 90, 000 nodes. The NASA
DTD is deeper, broader, has a more irregular structure, and
contains more references than the XMark DTD.

The same two data generators were used in [5] to evalu-
ate the D(k)-index. In [5], more than half of the references
were removed from the NASA dataset in order to keep the
index size manageable. We do not modify the generated
datasets in any way for our experiments.

Cost metrics To measure query performance,
we adopt the same main-memory cost metric simi-
lar to those used for evaluating the A(k)-index [11] and
the D(k)-index [5]. The cost of a query consists of two
parts: (1) the cost of evaluating the query on the in-
dex graph, and (2) the cost of validating the answer on data
graph (to remove false positives when necessary). We mea-
sure the first part by the number of index nodes visited
during query evaluation, and the second part by the num-
ber of data nodes visited during validation. Note that
we do not count the data nodes in the extents of in-
dex nodes in the target set, unless they are visited in the
data graph during validation.

One measure of the index size commonly used in previ-
ous work is the total number of index nodes. For the M*(k)-
index, we count the total number of nodes across all com-
ponent indexes. However, we do not count duplicate nodes
such as those labeled r and b in I1 and I2 in Figure 7, who
are the only subnode of their respective supernodes. These
duplicate nodes exist only in the logical representation of
the M*(k)-index and do not need to be stored by an imple-
mentation.

A second measure of the index size is the number of
edges in the index graph. For the M*(k)-index, we count
the total number of edges in all component indexes as well
as cross-component links. Duplicates edges that connect du-
plicate nodes are not counted because they do not need to
be stored.



0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
P

er
ce

nt
ag

e

Query length

Figure 8. Query distribution on NASA dataset
(max path length: 9)

Query workload We use a synthetic query workload
generated in a similar fashion as in previous work. First,
we generate all possible label paths of length up to 9 in the
data graph. The length limit prevents paths containing infi-
nite loops from being generated. Next, to generate a path ex-
pression query, we select a label path at random and extract
a subsequence with random start position and length. The
self-or-descendent axis (//) is placed in front of the subse-
quence to form a path expression query. Given a label path
of length no more than 9, since we randomly choose the
start position of the query, the possible length of the query
is restricted. Thus, short queries are more likely to be gen-
erated than long ones, which captures the observation that
short path expressions are more common than long ones in
reality. The cumulative distribution of queries by length is
showing in Figure 8. Our workload consists of 500 queries
for each dataset as FUP’s.

We have also experimented with two query workloads
where the maximum length of path expressions is 4 instead
of 9. Recall that in our context, the path length is defined by
the edge number of a path, which is one less than the con-
vention of using the node number as the path length in [5].
The cumulative distribution of queries by length is shown in
Figure 9. These workloads are similar to those used in [5]
and allow us to reproduce similar performance results for
A(k)- and D(k)-indexes.

5.1. Performance Results

Maximum query length of 9 Figures 10–13 summa-
rize the performance results of various indexes for XMark
and NASA datasets, respectively. In Figures 10 and 12, the
horizontal axes show the index size in terms of the num-
ber of index nodes. In Figures 11 and 13, the horizontal
axes show the number of index edges. For the adaptive in-

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Query length

P
er

ce
nt

ag
e

Figure 9. Query distribution on NASA dataset
(max path length: 4)

dexes (D(k), M(k), and M*(k)), we show their final sizes af-
ter they have been refined to support all queries in the query
workload. The vertical axes show the average performance
of queries in the workload (in the number of nodes accessed
during query evaluation). For the adaptive indexes, we rerun
the workload to measure the average performance, after the
indexes have been refined to support all workload queries;
therefore, no validation cost is reflected by the average per-
formance of rerun queries. For the A(k) family of indexes,
however, queries in general do incur validation costs.

We plot the results for the family of A(k)-indexes, where
k = 0, 1, . . . , 7. For the D(k)-index, we experiment with
two options. The first option, D(k)-construct, uses the D(k)-
index construction procedure to construct an index from
scratch to support all queries in the workload. For the sec-
ond option, D(k)-promote, we start with an A(0)-index and
incrementally refine it using the D(k)-index promoting pro-
cedure for each query in the workload. The final D(k)-index
obtained for the second option can be quite different from
the one constructed for the first option. For the M(k)- and
M*(k)-indexes, we also start from an A(0)-index and incre-
mentally refine it using the M(k)- and M*(k) refinement al-
gorithms for each query in the workload. We use the top-
down strategy to evaluate queries on the M*(k)-index.

From the figures, we see that the average query cost of
the A(k)-index drops dramatically as k increases from 0 to
4 (Figures 10 and 11 ) or 2 (Figures 12 and 13), because
a finer index significantly reduces the need for validation.
However, the improvement quickly diminishes as k reaches
5 (Figures 10 and 11 ) or 3 (Figures 12 and 13), and the cost
tends to rise afterwards. The reason is that the index has
grown so large that it becomes expensive to evaluate path
expressions on the index itself.

Both D(k)-construct and D(k)-promote offer good query
performance. In terms of index size, D(k)-construct is



0 0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of index nodes

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) 

A(3) A(7) 

A(6) 

A(5) 

A(4) 

Figure 10. Query cost vs. number of index nodes
on XMark dataset (max path length: 9)

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of index edges

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) 

A(3) 
A(4) A(5) 

A(6) A(7) 

Figure 11. Query cost vs. number of index edges
on XMark dataset (max path length: 9)

smaller for XMark, while D(k)-promote is smaller for
NASA. This discrepancy can be explained by the differ-
ent types of over-refinement possible under these two ap-
proaches. Both approaches suffer from over-refinement
for irrelevant data nodes. In addition, D(k)-construct
has over-refinement of irrelevant index nodes, while
D(k)-promote has over-refinement due to overqualified par-
ents. Irrelevant index nodes occur quite frequently in the
NASA experiment, because many elements are used multi-
ple times in different parts of the NASA DTD (e.g., name
is used in seven different contexts); XMark reuses el-
ements much less often. On the other hand, compared
with NASA, XMark has a much simpler DTD, so it is

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

2500

3000

Number of index nodes

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) A(3) A(4) A(5) 

A(6) A(7) 

Figure 12. Query cost vs. number of index nodes
on NASA dataset (max path length: 9)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

500

1000

1500

2000

2500

3000

Number of index edges

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry
A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) A(3) A(4) A(5) A(6) A(7) 

Figure 13. Query cost vs. number of index edges
on NASA dataset (max path length: 9)

very easy for workload queries to “collide,” thereby creat-
ing more opportunities for the parents to be overqualified
due to previous queries.

The M(k)-index outperforms D(k)-promote in both ex-
periments, achieving lower query cost with much smaller
index size, primarily because the M(k)-index avoids over-
refinement for irrelevant data nodes. However, like D(k)-
promote, the M(k)-index suffers from over-refinement due
to overqualified parents. Therefore, while it outperforms
D(k)-construct for NASA, it underperforms D(k)-construct
for XMark, for the same reason discussed in the previous
paragraph.

Compared with all other indexes, the M*(k)-index pro-



vides substantially lower query cost for both datasets.
Interestingly, the M*(k)-index is also smaller than
D(k)-promote, D(k)-construct, and the M(k)-index in
terms of number of index nodes. The reason is that
the M*(k)-index eliminates all three types of over-
refinement: over-refinement of irrelevant index nodes
(possible for D(k)-construct), over-refinement for ir-
relevant data nodes (possible for D(k)-construct and
D(k)-promote), and over-refinement due to overqual-
ified parents (possible for D(k)-promote and M(k) ).
Although the M*(k)-index maintains additional parti-
tioning information for lower resolutions, the overhead
is small compared with savings achieved by avoid-
ing over-refinement.

In Figures 11 and 13 we show results from the same
two experiments, this time using the number of in-
dex edges instead of index nodes as the horizontal axis. The
M*(k)-index could potentially have a higher edge-to-node
ratio than other indexes because we count cross-component
links as edges. The relative size comparison of the vari-
ous adaptive indexes is only slightly different from Fig-
ures 10 and 12. In terms of index edges, the M*(k)-index
also remains to be competitive to other adaptive in-
dexes, and beats them in the case of XMark.

Finally, for incrementally refined indexes (D(k)-
promote, M(k), and M*(k)), we show how they grow in
size as more queries are added to the FUP set. For ev-
ery 50 queries added, we measure index size in terms
of both number of nodes and number of edges. The re-
sults are shown in Figures 14–17. Note that all incre-
mentally refined indexes exhibit similar growth patterns.
The first batch of 50 FUP’s tend to have the largest im-
pact on index size, although several later batches also
result in sudden size increases for certain indexes. The rel-
ative ordering of index sizes does not change during the
course of refinement except for the NASA dataset when in-
dex size is measured in number of edges. Such an ex-
ception highly depends on the query set and the order of
queries. Since queries are randomly generated, the relation
among indexes with regard to their edge sizes are not de-
termined. Our experiment shows that the number of edges
in the M*(k)-index increases much faster than other in-
dexes, as well as its own node size during the same period,
in this exceptional case. This phenomenon can be ex-
plained by the conjunct effect of large fan-in or fan-out
and multiple resolution. If an index node connects to many
nodes, when it is split to several index nodes, the increase
of new edges over that of new nodes is approximately fac-
tored by its degree. Meanwhile, when a target set of re-
finement is given, the M*(k)-index may incur much more
nodes to split in multiple component indexes, since all lo-
cal similarity information has to be maintained. There-
fore, the increase of new edges in the M*(k)-index is also

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of queries

N
um

be
r o

f i
nd

ex
 n

od
es

D(k)−index promote
M(k)−index
M*(k)−index

Figure 14. Index node size growth over queries
on XMark dataset (max path length: 9)

more than those in other indexes. However, even in this
case, its edge size is just slightly larger than others’. Con-
sidering the much smaller size in terms of index nodes,
the M*(k)-index is the most space-efficient index in gen-
eral.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of queries

N
um

be
r o

f i
nd

ex
 e

dg
es

D(k)−index promote
M(k)−index
M*(k)−index

Figure 15. Index edge size growth over queries
on XMark dataset (max path length: 9)

Maximum query length 4 This second set of experi-
ments compares the performance of various indexes for rel-
atively shorter queries. Since the maximum length of path
expressions is 4, we only show the results of the A(k)-index



0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r o

f i
nd

ex
 n

od
es

Number of queries

D(k)−index promote
M(k)−index
M*(k)−index

Figure 16. Index node size growth over queries
on NASA dataset (max path length: 9)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10

4

N
um

be
r o

f i
nd

ex
 e

dg
es

Number of queries

D(k)−index promote
M(k)−index
M*(k)−index

Figure 17. Index edge size growth over queries
on NASA dataset (max path length: 9)

for k ≤ 4. For A(k)-indexes and D(k)-construct, the results
are consistent with those reported in [5].

Figures 18–22 plot the average cost of a workload query
against the index size, both in terms of the number of nodes
and in terms of the number of edges. Note that for XMark,
both D(k)-promote and the M(k)-index suffer heavily from
over-refinement due to overqualified parents. To visualize
the rest of Figure 18 better, we plot Figure 19 without A(0),
A(1), D(k)-promote, and M(k). In this figure, we see that
both D(k)-construct and the M*(k)-index work clearly bet-
ter than the A(k)-indexes. Furthermore, the M*(k)-index
has much lower query cost than D(k)-construct, while using
only slightly more space. The other figures lead to observa-

0 0.5 1 1.5 2 2.5

x 104

0

1000

2000

3000

4000

5000

6000

Number of index nodes

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construce
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) 

A(3) 

A(4) 

Figure 18. Query cost vs. number of index nodes
on XMark dataset (max path length: 4)

200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

Number of index nodes

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry
A(k)−index
D(k)−index
M*(k)−index

A(3) 

A(4) 

A(2) 

Figure 19. Query cost vs. number of index nodes
on XMark dataset without D(k)-promote and
M(k) (max path length: 4)

tions and conclusions similar to those for experiments on
longer queries. In Figures 23–26, we also show how the in-
crementally refined indexes grow in size as more FUP’s are
supported. Again, we see that the M*(k)-index is almost al-
ways superior to the others.

6. Conclusion

We have introduced the M(k)- and M*(k)-indexes,
which are incrementally refined structural indexes
geared toward supporting a set of frequent path expres-
sion queries. Compared with previous proposals, these
indexes avoid various types of over-refinement that ad-



0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

Number of index edges

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index
M*(k)−index

A(2) 

A(3) 

A(4) 

Figure 20. Query cost vs. number of index edges
on XMark dataset without D(k)-promote and
M(k) (max path length: 4)

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

Number of index nodes

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) A(3) A(4) 

Figure 21. Query cost vs. number of index nodes
on NASA dataset (max path length: 4)

versely affect index performance. The M(k)-index avoids
over-refinement by targeting only the data nodes rele-
vant to frequent queries. The M*(k)-index further elim-
inates over-refinement due to overqualified parents by
maintaining partitioning information at multiple resolu-
tions. The M*(k)-index is truly multiresolution, in the sense
that it supports not only multiple resolutions across dif-
ferent parts of the data graph, but also multiple resolu-
tions for the same part of the data graph. Besides avoiding
over-refinement, the M*(k)-index is much more effi-
cient for querying than previously proposed structural
indexes, as the multiresolution partitioning informa-
tion also serves as a multilevel index. Our experiments

0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Number of index edges

A
ve

ra
ge

 c
os

t p
er

 q
ue

ry

A(k)−index
D(k)−index construct
D(k)−index promote
M(k)−index
M*(k)−index

A(0) 

A(1) 

A(2) A(3) A(4) 

Figure 22. Query cost vs. number of index edges
on NASA dataset (max path length: 4)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

N
um

be
r o

f i
nd

ex
 n

od
es

Number of queries

D(k)−index promote
M(k)−index
M*(k)−index

Figure 23. Index node size growth over queries
on XMark dataset (max path length: 4)

have demonstrated that the overhead of storing partition-
ing information at different resolutions is small com-
pared with savings achieved by avoiding over-refinement,
and well worthwhile because of the substantial improve-
ment to query performance. We are currently studying
how to make the M*(k)-index I/O-efficient by turn-
ing it into a disk-resident structure that can be loaded into
memory selectively and incrementally during query pro-
cessing.



0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

N
um

be
r o

f i
nd

ex
 e

dg
es

Number of queries

D(k)−index promote
M(k)−index
M*(k)−index

Figure 24. Index edge size growth over queries
on XMark dataset (max path length: 4)

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r o

f i
nd

ex
 n

od
es

Number of queries

D(k)−index promote
M(k)−index
M*(k)−index

Figure 25. Index node size growth over queries
on NASA dataset (max path length: 4)

References

[1] S. Abiteboul. Querying semi-structured data. In Proc. of the
1997 Intl. Conf. on Database Theory, 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener.
The lorel query language for semistructured data. Journal of
Digital Libraries, November 1996.

[3] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Siméon. Xml path language (xpath)
2.0. http://www.w3.org/TR/xpath20, August 2002.

[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Ro-
bie, and J. Siméon. Xquery 1.0: An xml query language.
http://www.w3.org/TR/xquery, August 2002.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of queries

N
um

be
r o

f i
nd

ex
 e

dg
es

D(k)−index promote
M(k)−index
M*(k)−index

Figure 26. Index edge size growth over queries
on NASA dataset (max path length: 4)

[5] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adap-
tive structural summary for graph-structured data. In Proc.
of the 2003 ACM SIGMOD Intl. Conf. on Management of
Data, June 2003.

[6] C. Chung, J. Min, and K. Shim. Apex: An adaptive path in-
dex for xml data. In Proc. of the 2002 ACM SIGMOD Intl.
Conf. on Management of Data, June 2002.

[7] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A fast index for semistructured data. In Proc.
of the 2001 Intl. Conf. on Very Large Data Bases, January
2001.

[8] R. Goldman and J. Widom. Dataguides: Enabling query for-
mulation and optimization in semistructured databases. In
Proc. of the 1997 Intl. Conf. on Very Large Data Bases, pages
436–445, August 1997.

[9] NASA XML Group. available at http://xml.gsfc.nasa.gov/.
[10] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth.

Covering indexes for branching path queries. In Proc. of the
2002 ACM SIGMOD Intl. Conf. on Management of Data,
June 2002.

[11] R. Kaushik, P. Sheony, P. Bohannon, and E. Gudes. Exploit-
ing local similarity for efficient indexing of paths in graph
structured data. In Proc. of the 2002 Intl. Conf. on Data En-
gineering, February 2002.

[12] Q. Li and B. Moon. Indexing and querying xml data for reg-
ular path expressions. In Proc. of the 2001 Intl. Conf. on Very
Large Data Bases, 2001.

[13] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. In SIGMOD Record 26(3), 1997.

[14] J. McHugh and J. Widom. Query optimization for xml. In
Proc. of the 1999 Intl. Conf. on Very Large Data Bases, 1999.

[15] T. Milo and D. Suciu. Index structures for path expressions.
In Proc. of the 1999 Intl. Conf. on Database Theory, pages
277–295, January 1999.



[16] R. Paige and R. Tarjan. Three partition refinement algo-
rithms. SIAM Journal of Computing, 16:973–988, 1987.

[17] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The xml bench-
mark project. Technical report, CWI, 2001.

[18] H. Wu, Q. Wang, J. X. Yu, A. Zhou, and S. Zhou. Ud(k,l)-
index: An efficient approximate index for xml data. In Proc.
of the 2003Intl. Conf. on Web-Age Information Management,
August 2003.

[19] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman.
On supporting containment queries in relational database
management systems. In Proc. of the 2001 ACM SIGMOD
Intl. Conf. on Management of Data, 2001.


