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Abstract

This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling
and processing. These MR methods have found application and permeated the literature of a widely scattered
set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework.
A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in
particular making ties to topics such as wavelets and multigrid methods. A third is to provide several
alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number
of other fields.

The principle focus of our presentation is the class of MR Markov processes defined on pyramidally-
organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit
and their expressive power and broad applicability. We show how a variety of methods and models relate
to this framework including models for self-similar and 1/f processes. We also illustrate how these methods
have been used in practice.

We discuss the construction of MR models on trees and show how questions that arise in this context make
contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Markov models. We also discuss the limitations of tree-based models and algorithms and the artifacts that
they can introduce. We describe when these are of concern and ways in which they can be overcome. This
leads to a discussion of MR models on more general graphs and ties to well-known and emerging methods
for inference on graphical models.
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1 Introduction

Multiresolution (MR) concepts and methods for the statistical analysis of phenomena and data have been
and remain topics of tremendous interest in a wide variety of disciplines (see, for example, two special issues
devoted to this subject [87, 194] as well as the book [304]). The reasons for the intensity of activity and the
dizzying variety of methods that have been developed are myriad, and it is not the intent of this paper to put
this entire subject into one simple and coherent picture. Rather, our objective is to provide an introduction to
one significant component of this vast field that has provided fertile ground for both theory and application.
Moreover, we have personally found that the perspective that this framework yields provides a very useful
platform for organizing ones understanding of the broader field of MR analysis and processing.

One of the distinguishing characteristics of the framework we describe is that it does not start with
algorithms for processing or analyzing phenomena at multiple resolutions–e.g., as in the use of wavelet
transforms to produce decompositions of signals at multiple resolutions–but rather begins with the modeling
of phenomena at multiple resolutions. Much as in the development of methodologies for modeling time series
or random fields, the intent is to construct statistical models that (a) are rich enough to capture large and
important classes of phenomena of broad interest; (b) possess structure that can be exploited both to gain
insight into these phenomena and to design powerful classes of algorithms; and (c) provide statistical tools
for analyzing with precision both when these models are appropriate and how well the resulting algorithms
perform.

1.1 What is it that is multiresolution?

A principle objective of this modeling framework is capturing the several important ways in which a data
analysis or signal processing problem can have MR characteristics. The first is that the phenomenon that
is to be modeled can exhibit distinctive behavior over a range of scales or resolutions. For example, many
physical processes–e.g., geophysical fields such as atmospheric or oceanographic phenomena–possess behavior
over vast ranges of spatial or spatio-temporal scales [31, 112, 219, 352, 354, 220, 198]. Studies of large classes
of natural imagery also show characteristic variability at multiple scales [298, 218, 297, 140, 47, 268, 281,
261, 157, 46, 299, 300, 250, 243, 333], as do mathematical models of self-similar or fractal processes [288]
such as fractional Brownian motion (fBm) [232, 30, 83, 116, 313], motivating examinations of the properties
of the wavelet transforms of such signals and images [117, 293, 346, 347, 348, 320, 114, 83, 102, 176, 350,
191, 154, 349, 359, 69, 235, 273].

Secondly, whether the phenomenon displays MR behavior or not, it may be the case that the available
data are at multiple resolutions. While this might be the simple result of transforming the data–e.g., using
wavelet transforms–there are also many problems in which the collected data directly measure the quantities
of interest at multiple resolutions. For example, large-scale data assimilation problems in the geosciences
quite frequently involve the fusion of several distinct sources of data, representing not only very different
measurement phenomenologies but also probing a geophysical medium at very different resolutions. One
example is the fusion of satellite measurements [354, 112, 113] of oceanographic variables with measurements
made from surface ships [242, 227, 162, 331] and perhaps also data from oceanacoustic tomographic collections
[253, 241]. Similar examples can be found in a variety of other problems involving remotely sensed or probed
data including the fusion of SAR imagery [77] and geophysical inversion and data fusion [198, 247, 139, 84].
In addition, advances in biomedical sensing [317] require the development of new methods for fusing data
sets with very different characteristics (e.g., PET and MRI images).

Thirdly, whether or not the phenomenon or the data are multiresolution, it may be the case that the
objectives of the user or users may be at multiple resolutions. This is certainly the case in large-scale
geophysical mapping, in which different scientific studies focus on behavior over different ranges of scales, so
that variability of concern to one scientist is simply “noise” to another. In addition, in many contexts other
than those of pure scientific inquiry, the objective of data assimilation can be stated at very high levels: the
mapping of an oil reservoir to assess production rates and total yield or the characterization of the threat of
subsurface contaminants to populated areas. One also finds this in military applications in which maps of
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both environmental and situational variables (e.g., maps of terrain elevation and vegetation for the former
and of the disposition of friendly and unfriendly forces for the latter) are required by multiple users: typically
large-scale maps at comparatively coarse scales by strategic planners and much more localized finer-scale
maps by tactical forces.

Finally, whether or not the phenomenon, the data, or the objectives are naturally described at multiple
resolutions, there may still be compelling reasons to consider developing algorithms at multiple resolutions.
In particular, MR algorithms offer the promise of computational efficiency. This can be seen in a variety of
methods for the solution of large systems of equations (e.g., representing discretizations of partial differential
equations). Multigrid methods [44, 45, 109, 190, 319] represent one class of examples, in which coarser (and
hence computationally simpler) versions of a problem are used to guide (and thus accelerate) the solution
of finer versions, with finer versions used in turn to correct for coarsening or aliasing errors in the coarser
versions. Multipole algorithms [280, 256, 115] approximate the effects of distant parts of a random field with
coarser aggregate values, providing substantial computational gains for many problems. Similarly, wavelet-
based methods [37, 228, 329, 89, 215, 95, 264, 361, 38, 276, 247, 335, 286] provide potentially significant
speed-ups for a variety of computationally intensive problems.

1.2 Our starting point

A key characteristic of MR methods or models is that they introduce a one-dimensional quantity, namely
scale or resolution, that can be exploited to define recursions or dynamics, much as time is used for temporal
phenomena. The point of departure for this paper, and for our exploitation of recursions in scale, is the
investigation of statistical models defined on multiresolution trees. Two examples of such trees are depicted
in Figure 1. The dyadic tree in Figure 1(a) is a prototypical structure used in MR representations of 1-D
signals and processes, i.e., of signals that are functions of a single independent variable. Here each level
in the tree corresponds to a distinct resolution of representation, with finer representations at the lower
levels of the tree. Similarly, the quadtree in Figure 1(b) is one example of tree structures used in the MR
representation of 2-D signals, images, or phenomena. While these two figures represent the structures that
are most widely used, much of what we describe here does not require such regular tree structure and could,
for example, work equally well on trees in which the number of branches descending from each node was
different from either 2 (as in Figure 1(a)) or 4 (Figure 1(b)) and, in fact, might vary from node to node and
resolution to resolution.

In the models we describe, each node s has associated with it a random variable or random vector x(s).
Roughly speaking each such variable represents some set of information relevant to the phenomenon or
available data at the resolution and location corresponding to that node. However, what these variables
actually are and how they are related to the signals, images, phenomena, or data of interest varies consid-
erably from application to application. For example, in some situations all of the fundamental, physical
variables–i.e., both the signals that are observed and the variables that we wish to estimate or about which
we wish to reason–reside at the finest scale only. The coarser scale variables in such a case might simply
represent decompositions of the finest-scale variables into coarser-scale components–e.g., as in the use of
wavelet decompositions or Laplacian pyramid [6, 47] representations of images. In other problems some of
these coarser-scale variables may be measured directly, as occurs in problems in which we wish to fuse data
sets collected at differing resolutions. More generally the coarser-scale variables may or may not be directly
observed and may or may not be deterministic functions of the finest-scale variables, and their inclusion in the
representation may serve purposes such as exposing the statistical structure of the phenomenon under study
and/or capturing more global quantities whose estimation is desired. For example, in analogy with stochastic
realization theory [8, 9, 214] and the concept of state for dynamic systems, such variables may simply play
the role of capturing the intrinsic memory in the signals that are observed or of primary interest. The models
we describe also have close ties to Hidden Markov Models (HMM’s) [272, 265, 222, 80, 261, 281, 302], in
which the hidden variables may represent higher-level descriptors which we wish to estimate, as in speech
analysis, image segmentation, and higher-level vision problems [42, 199, 323, 183, 53, 59, 179, 180, 283, 175].

Whatever the nature of the variables defined on such a tree, there is one critical property that they must
satisfy, namely that collectively they define a Markov process on the tree, a concept we discuss in more detail
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in subsequent sections. As we will see, MR processes possessing such a Markov property make contact with
standard Markov processes in time, with Markov random fields (MRF’s), and with the large class of Bayes’
nets, belief networks, and graphical models [204, 170, 267, 35, 36, 169, 108, 128, 339, 89, 294, 295, 143, 168,
123, 197, 236, 337, 357, 302]. It is the exploitation of this Markovian property that leads to the efficient
algorithms that we describe.

1.3 Getting oriented

A fair question to ask is: for whom is this paper written? A reply that is only partially frivolous is: for
the author. The reason is not self-promotion (although the author pleads guilty to frequently resorting to
notation and examples from work with which he is most familiar) but rather an ambitious set of personal
goals for this paper. In particular, the field of MR analysis is sufficiently involved and interconnected (forming
something much more complex than the singly-connected graphical structures in Figure 1) and makes contact
with so many other disciplines that the writing of this paper has provided an opportunity for the author to
sort some of this for himself from a particular point of reference (namely MR models on trees). The result
is this paper which is intended to reach several overlapping but distinct audiences: scientists and engineers
interested in applying these methods for problems of complex data analysis; researchers in signal and image
processing who are interested in understanding the current state of this active area of research as well as its
relationship to others; and researchers in other fields who may find the connections to their specialties of
intellectual interest.

To meet this rather ambitious objective our presentation makes several detours along the way in order to
touch on topics ranging from graphical models to stochastic realization theory to solution methods for large
systems of linear equations. On several occasions we also step back and provide additional “navigation tools”
for the reader, in particular by explaining how the methods we describe relate to other MR frameworks, most
notably wavelets, multigrid/renormalization methods, and MR methods for inverse problems. In addition
throughout the paper we provide pointers to areas of current research and pointers, both forward and
backward, to relationships among the concepts we describe that cannot be accommodated within the severe
constraints of linearly ordered text. As a result, the path followed in this paper is not optimized for any
of the audiences we have in mind, but we hope that each finds the detours, pointers, and navigation aids
interesting, or at least minimally distracting, diversions.

In the next section we begin by providing an initial look at a sampling of applications that provide
context, motivation, and vehicles for illustrating the methods that we describe in later sections of the paper.
In Section 3 we then introduce the class of MR models on which we focus, provide a few initial simple
examples of processes described by such models, and take a first look at ties to graphical models, MRFs,
factoring sparse matrices, and recursive modeling of time series. As is the case in much of the paper, our
discussion focuses in most detail (but not exclusively) on linear and often linear/Gaussian models. Our
reasons for doing this include: the importance of these models in many applications; the simple and explicit
form of many computations that allow certain points to be made more clearly; and the relationships that
this setting provides to fields such as linear state space modeling of time series and linear algebra. Of course
not everything that we describe for the linear case extends quite so nicely to more general nonlinear models,
and we have attempted to make clear what concepts/algorithms extend directly to more general models and
what, if any, other issues arise in such cases.

In Section 4 we describe the structure and illustrate the application of the very efficient inference algo-
rithms that these MR models admit. We also take a detour to examine in a bit more detail why these models
do admit such powerful algorithms, making contact again with graphical models and with the solution of
large, sparse linear systems of equations. In Section 5 we take a step back and examine the question of how
the models and methods of Sections 3 and 4 relate to wavelet-based methods and multigrid algorithms, and
in the process also describe relationships with research in inverse problems and image reconstruction. Our
intent in so doing is not to provide reviews or tutorials for these very important and substantial lines of
research but rather to make clear where these methods intersect with those on which we focus and where,
how, and why they diverge.
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One of the principal conclusions from Section 4 is that if a problem can be modeled within this MR
framework of Section 3, then a very efficient solution can be constructed. That, of course, begs the question
of what can be modeled effectively within this MR framework and how such models can be constructed.
Examination of that question in Section 6, uncovers further connections with a number of topics includ-
ing state-space realization theory, HMM’s, graphical models, wavelets, maximum entropy modeling, and
algorithms for constructing sample paths of processes that have found use in both the theory of stochastic
processes and in fractal generation.

As with any useful modeling framework, this one has a nontrivial and extensive domain of applicability,
and we return on several occasions to the applications introduced in Section 2 in order to provide insight
into the classes of processes that can be effectively modeled with MR models and also to illustrate the power
of these methods and how they can be used in practice. In addition, as must also be the case for any truly
useful modeling framework, its utility isn’t universal, and in Sections 4 and 6 we provide insights into some
of these limitations. In Section 7 we then take a brief look at one of the characteristics that, not surprisingly,
is critical both to the power of these models and to their limitations, and by making ties to the richer class
of graphical models not restricted to trees, we provide a brief glimpse into recent and emerging extensions of
our framework that expand its domain of applicability. Section 8 concludes our paper with some perspective
on this framework and some prospective thoughts.

2 A Sampling of Applications

The methods we describe in this paper have been employed in a wide variety of applications, including: low-
level computer vision and image processing problems (image denoising [67, 80, 281, 59, 261], deblurring [19],
edge detection [292], optical flow estimation [223, 10], surface reconstruction [111], texture classification [225],
and image segmentation [324, 42, 212, 199, 58], to name a few); higher-level recognition and vision problems
[323, 183]; photon-limited imaging [322, 188, 261, 263]; network traffic modeling [279]; oceanographic, atmo-
spheric, and geophysical remote sensing, data assimilation, and data fusion [112, 113, 242, 158, 255, 184, 326];
speech [175, 162, 331, 241, 249, 42]; multisensor fusion for hydrology applications [84, 198, 139]; process con-
trol [306, 196, 327, 18]; synthetic aperture radar image analysis and fusion [309, 77, 160, 119, 185]; geographic
systems [93, 189]; medical image analysis [290]; models of neural responses in human vision [274]; and mathe-
matical physics [136, 15, 94]. In this section we introduce several of these applications which serve to provide
context, motivation, and illustrations for the development that follows, as well as to indicate the breadth of
problems to which these methods can be applied.

2.1 Ocean Height Estimation

A first application, described in detail in [112, 113] is to the problem of mapping variations in sea level
based on satellite altimetry measurements (from one or several satellites). Figure 2 (from [112]) shows
an example of a region of the Pacific Ocean and the tracks over which the TOPEX/POSEIDON satellite
provides measurements to be used to estimate sea level variations.2 The challenges in this as well as in
other oceanographic data assimilation problems [227] are several. First, the dimensionality of such mapping
problems can be enormous, involving estimates on grids of 105 − 107 points. Second, as Figure 2 illustrates,
the data that are collected have an irregular sampling pattern. Third, there are substantial non-stationarities
both in sea level variations and in the fidelity of the measurements derived from the altimetry data. For
example, the statistical structure of sea level variations in regions of strong currents, such as the Gulf Stream
or Kuroshio Current in the Pacific, are quite different than they are in other ocean regions. Also, since the
quantity to be estimated is actually the variation of sea level relative to the geoid (the equipotential surface
of the Earth’s gravitational field), the raw satellite data must be adjusted to account for spatial variations
in the geoid. Since the geoid is not known with certainty and in fact can have significant errors near
large features such as the Hawaiian Islands and extended subsurface sea mounts and trenches, the resulting

2What is actually estimated is sea height, relative to the geoid, with additional corrections to remove effects such as tidal
variations and, quite frequently, the overall temporally-averaged ocean circulation pattern (see [354, 353]).

6



adjusted altimetry measurements have errors with spatially varying uncertainties. Fourth, there is a need
to compute not only estimates of sea level variations but also the statistical quality of these estimates (e.g.,
error variances), as such statistics are needed to fuse these estimates with other information (e.g., ocean
circulation models) and to identify statistically significant anomalies. Finally, oceans display variations over
an extremely large range of scales–indeed the typical wavenumber spectral models for sea level variations
have fractal, 1/fγ spectra [130, 354].3

The dimensionality of the sea-level estimation problem and our desire to compute error variances as
well as estimates, present a daunting computational task, precluding brute force solution methods. Further,
because of the non-stationarity of the phenomenon, the varying quality of the data, and the sampling pattern
of measurements, efficient methods, such as those based on the FFT, are not applicable. However, as we will
see in Section 4, by taking advantage of the fractal character of sea-level variations, a surprisingly simple
MR model yields an effective solution.

2.2 Surface Reconstruction

A second, closely related problem is one that has been widely studied in the field of computer vision, namely
that of reconstructing surfaces from regular or irregularly sampled measurements of surface height and/or of
the normal to the surface (as in the shape-from-shading problem [152, 153, 34]). One well-known approach
to reconstruction problems such as this involves the use of a variational formulation. In particular, let I

denote the 2-D planar region over which the surface, z(r), r = (r1, r2) ∈ I is defined, and let

∇z(r) = (p(r), q(r)) =

(

∂z(r)

∂r1
,
∂z(r)

∂r2

)

(1)

denote the gradient of the surface. Similarly, let y(r) denote measurements of the surface and g(r) =
(u(r), v(r)) denote measurements of the gradient.4 Given that these measurements are likely to be noisy
and may also be available only at irregular locations (or have spatially-varying quality), we take as our
estimate of the surface and its gradient the quantities z(r) and (p(r), q(r)) that minimize the following
functional:

∫

I

α1(r) [y(r) − z(r)]
2
dr +

∫

I

α2(r)‖g(r) −∇z(r)‖2dr +

∫

I

α3(r)‖∇z(r)‖2dr +

∫

I

α4(r)
{

‖∇p(r)‖2 + ‖∇q(r)‖2
}

dr (2)

The non-negative coefficients α1(r) and α2(r) in the first two terms in (2) allow us to control how closely
we wish the reconstruction to follow the measurements,5 while the third and fourth terms in (2) represent
smoothness penalties on the reconstructed surface. In particular, the first of these terms is often referred to
as a thin membrane penalty, as it penalizes nonzero surface gradients, while the last term is referred to as a
thin plate penalty, as it penalizes curvature or bending of the surface. By adjusting α3(r) and α4(r) we can
adjust the relative strengths of these penalties.

One further complication is the integrability constraint: namely that (p(r), q(r)) is, in fact, the gradient
of a surface. In particular, from (1), it is clear that we must have that

∂p(r)

∂r2
=

∂q(r)

∂r1
(3)

3As these references indicate, the power law exponent, γ, can and generally does vary with frequency and spatially (i.e., the
statistics of ocean height variation are only locally stationary in space).

4More generally, we might have a measurement of the dot product of this normal with a known vector, a situation that
requires only a minor variation in the variational formulation.

5For example, if we don’t have measurements of one type or the other over subregions of I, we simply set α1(r) or α2(r) to
be zero over those subregions.
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Minimizing (2) with the constraint (3) or variations of this problem, where, for example, the hard constraint
(3) is relaxed and replaced by a quadratic penalty on the difference between the two sides of this equation,
is a classic variational problem [152].

Alternatively, as discussed in [312, 223, 111] (see also Section 6.2.1), optimization problems such as this
can also be interpreted as estimation problems with “fractal” priors. Computing the optimal estimates
for such problems involves solving partial differential equations [152], a computationally intensive, but not
overwhelming task in itself. However, the computation of the statistics of the errors in these estimates
is a daunting task. As we discuss and illustrate in Section 6.2.1, (and as is developed in much greater
detail in [111]), an alternative is to replace the smoothness penalties in (2), which correspond to a prior
model on the surface to be reconstructed, with a different MR prior model which has the same qualitative
fractal characteristics but which leads to very efficient algorithms for the computation of estimates and error
statistics.

2.3 Image Denoising

The problem of removing additive noise from images is one that has been the subject of a vast number of
studies. Linear methods such as Wiener filters (for spatially stationary models) or those based on Gaussian
MRF models have a long history (see, e.g., [13, 163, 345, 343]). However, such methods, which generally aim
to minimize mean-squared estimation error using only second-order statistics of the images to be restored,
have serious limitations for many applications in which the image or field to be restored has edges or areas
of substantial high-frequency/high contrast behavior. In particular, the generally low-pass nature of linear
methods implies that they will reduce noise at the expense of blurring or distorting such important features.
For example, Figure 3(b) depicts a noisy image of a scene (shown without noise in Figure 3(a)) with a great
deal of edge-like, high-frequency behavior. As can be seen in Figure 3 (c) and (d), performing linear Wiener
filtering offers a comparatively poor tradeoff in the amount of noise rejection versus the amount of blurring
of features.

Numerous approaches have been developed to combat such problems–in essence attempting to remove
noise in regions of images away from such features while preserving those features with minimal distortion.
Included in the literature are methods based on explicit modeling of edges and other boundary-like features
(see, for example, [132, 234]), approaches that use non-Gaussian models in order to better capture the “heavy
tail” nature of imagery (for example the generalized Gaussian models studied in depth in [41]), and an array
of procedures using wavelet transforms (e.g.,[104, 301, 57, 2, 68, 330, 80, 192, 193, 261, 59, 281, 58, 333]). For
this latter set of methods the general idea is to exploit the localization properties of wavelets to allow much
easier and more transparent adaptive processing in order to minimize distortion of important image features
while removing noise. As we will see, some of these methods explicitly involve the modeling framework
developed in this paper, while many others have close ties to it.

2.4 Texture Discrimination

Another problem of importance in computer vision and in other image processing applications is that of
texture discrimination. One well-known class of statistical texture models is that based on MRF’s [50, 178,
71, 233]. For example, Figure 4 shows two synthetic MRF textures, one modeling pigskin and one sand.
The problem of discriminating textures such as these given noisy measurements is a standard hypothesis
testing problem whose solution hinges on the computation of the likelihood ratio for the two textures based
on the observed imagery. However, calculating these likelihoods can be a prohibitively complex operation
if the data correspond to irregularly-spaced samples, if the region over which the data are available has an
irregular shape, or if the data have spatially-varying statistics (so that FFT methods aren’t applicable).

As we discuss in Section 4, likelihood calculations for the class of MR models on trees are far simpler
and remain tractable even for very high-dimensional image processing problems. Further, as we describe in
Section 6, it is possible to develop MR models that capture the statistical variability of textures such as in
Figure 4. These alternate models are not identical to the MRF models used to generate these examples, but
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they are sufficiently close so that they represent equally valid mathematical models for real textures, at least
for the the task of discrimination for which they admit very efficient solutions.

2.5 Image Segmentation

Another image processing and low-level computer vision problem that arises in many applications is that of
segmentation. Segmentation of images such as the multispectral image or document page shown in Figure 5
is a challenging and computationally intensive task, as it involves both accounting for image variability
within each class as well as the potentially combinatorially explosive set of candidate segmentations that
must be considered. For example, MRF models such as those described in [132, 234] include discrete
hidden label variables whose estimation corresponds to the specification of a segmentation. However, the
search for the optimal estimates for such models is computationally demanding, requiring methods such
as simulated annealing for their solution or leading to suboptimal methods such as iterated conditional
mode (ICM) [36]. These problems have led a variety of authors to consider MR algorithms and models
[48, 14, 135, 40, 144, 179, 180, 42, 59, 53, 58]. We will describe how some of these methods fall directly into
the framework on which we focus and how others relate to it.

2.6 Multisensor Fusion for Groundwater Hydrology

As we mentioned in Section 1, one of the motivations for using multiresolution methods comes from appli-
cations in which the available measurements are at multiple resolutions and/or in which the variables to
be estimated may also represent aggregate, coarser-scale variables. One application in which this has been
examined is in the field of groundwater hydrology [84].

The objective in this application is to estimate (and characterize the estimation errors for) the travel
time of solutes (e.g., contaminants) traveling in groundwater. This travel time is highly uncertain because
of the considerable uncertainty, large dynamic range, and spatial variability in hydraulic conductivity, which
controls the spatially-varying transport behavior of a groundwater system (see [84]). Specifically, let f(r)
denote the log-conductivity field6 as a function of spatial location. Then, the basic governing equation is:

∇ · [ef(r)∇h(r)] = Qrc(r) (4)

where h(r) is the potential field known as hydraulic head and Qrc(r) is the so-called recharge rate, which is
often (and in particular in [84]) assumed to be known.7 Further, the local groundwater velocity u(r) is a
function of conductivity and head, and, in particular, is proportional to the product of conductivity and the
gradient of the potential field:

u(r) ∝ ef(r)∇h(r) (5)

The data that are available generally come from a sparse and irregularly-spaced set of wells in which
both log-conductivity and hydraulic head are measured. From these measurements we wish to estimate the
travel time between two specified points (e.g., a point representing a central contaminant source location and
a point on the boundary of a containment region). That travel time is in turn determined by the velocity
field in (5).

The complexity of this problem should be evident. As discussed in [84], while our measurements of log-
conductivity represent point measurements of the random field f(r) at the well locations, the measurements
of hydraulic head are related to f(r) in a much more complicated and nonlocal manner through (4). In
Section 6 we will see how the MR framework we describe can be used to capture both the statistical structure
of f(r) as well as the nonlocal head measurements. We will also see that the MR methodology provides two
alternative methods for the fusion of these measurements for the estimation of travel time. In the first of

6Because of the large dynamic range of conductivity, it is common to use log-conductivity as the fundamental variable.
7See [84] for a discussion of the boundary conditions that accompany (4).
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these, we simply model travel time as another nonlocal quantity included explicitly in the MR model and
thus estimated directly by the MR estimation methodology described in Section 4. An alternative approach
involves the widely used geostatistical concept of conditional simulation [171, 173, 172], in which samples are
generated of the entire log-conductivity field, where these samples are drawn from the distribution for the
field conditioned on the available measurements. As we will see, drawing samples from MR models is also
extremely efficient–comparable in complexity to generating sample outputs of a time series model driven by
white noise and much more efficient than corresponding methods for many other random field models.

2.7 Image reconstruction and inverse problems

In the preceding section we described an application in which the data to be combined included both local
measurements of the quantities of interest and nonlocal measurements resulting from indirect probing of
the medium or field to be imaged. Data of this latter type are the rule rather than the exception in many
applications, including tomographic reconstruction and deblurring or deconvolution problems. In the former
the observed data correspond to projections or sets of line integrals through the field of interest. In the latter
the field to be estimated or reconstructed is blurred by the measurement process. Such image reconstruction
or inverse problems present challenges for a variety of reasons. One such reason is purely computational:
Performing a reconstruction is a nontrivial task. Another is the ill-posedness of many such problems. For
example, operations that involve integration or smoothing (as both tomography and convolution do) can
significantly attenuate high-frequency features, and, as a result, some operators of this type may not be
invertible or their inverses may have very undesirable properties (in particular amplification of high-frequency
noise). As a result, regularization methods, often interpretable as specifying a prior statistical model on the
field to be estimated (as in Section 2.2), are often employed. In Section 5 we will see an example of such a
reconstruction algorithm based on a MR model of the type on which we focus in this paper.

3 Multiresolution Models on Trees

3.1 Basic model structure

The general class of models of interest to us are Markov processes defined on trees organized into levels
or resolutions such as in Figure 1. In Section 3.3 we review the concept of Markovianity for more general
graphs, but it suffices here to point out that the Markov property for trees is particularly simple: If we
condition on the value of the process at any node s on the tree other than a leaf node (e.g., other than one
of the nodes at the finest scale in Figure 1), the sets of values of the process on each of the disconnected
components formed by removing node s are mutually independent.

One way in which to specify the complete probabilistic description of such a process is the following
generalization of the specification of a temporal Markov process in terms of an initial distribution and its
transition probabilities. Specifically, let 0 denote the root node, namely the single node at the “top” of the
tree–i.e., at the coarsest resolution. For this node we specify a marginal distribution p(x(0)).8 For each node
s on the tree other than 0, let sγ̄ denote its parent (i.e., the node to which it is connected at the next coarser
scale–see Figure 1), and we then specify the one-step coarse-to-fine transition probability p(x(s)|x(sγ̄)).
The initial distribution together with the full set of these transition probabilities at all nodes other than 0
completely specifies the joint probability distribution for x(·) over the entire MR tree.

One such class of MR models, which we will use to illustrate many of the concepts in this paper, is the
class of linear-Gaussian models in which x(0) is a Gaussian random vector and the values of the process at
finer-scale nodes are specified via coarse-to-fine linear stochastic dynamics:

x(s) = A(s)x(sγ̄) + w(s) (6)

8Here p(.) denotes a probability density function if x(0) is a continuous variable, a discrete probability mass function if x(0)
takes on only a discrete set of values, and a combination of the two if x(0) is a hybrid continuous-discrete quantity.
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where A(s) is a matrix, specified at each node other than 0 and possibly varying from node-to-node, and
where w(s) is a Gaussian white noise process, i.e., a set of mutually independent Gaussian random vectors
defined at each node other than 0. Such a model is a simple generalization of the usual linear state space
model for temporal processes and systems.9 In an analogous manner one can define other classes of processes
such as the generalization of finite-state Markov chains to trees [42, 80, 261, 199]. On numerous occasions
we will find the comparison to temporal Markovianity useful both to interpret results and to identify places
in which the extension to trees introduces issues not encountered for time series.

3.2 A first few examples

To help gain some initial intuition about these models and about their breadth and variability, we present a
few initial examples.

Example 1. Perhaps the first example of a MR model of the form of (6) is that introduced in [67] in the
context of image denoising (see also [355]). Specifically, suppose we are interested in modeling a 2-D random
field defined over a square region, where, for simplicity, we assume that the number of pixels along each edge
of the square is a power of 2, allowing us to use the simple quadtree structure of Figure 1(b). In this case the
index s at each node can be thought of as a 3-tuple, (m(s), i(s), j(s)), where m(s) denotes the scale of node
s, and the pair (i(s), j(s)) specifies the spatial coordinates of the coarsened spatial region corresponding to s
(note that the root node node 0 does not need spatial coordinates; also, we number resolutions consecutively,
with m(0) = (0), and with increasing scale corresponding to finer resolutions). Let x(0) be a scalar, Gaussian
random variable, and define the entire process via the following tree recursion:

x(s) = x(sγ̄) + w(s) (7)

Here w(s) is a scalar Gaussian white noise process on the tree, and x(s) can intuitively be thought of as a
coarse-scale representation of the random field being modeled at the scale and spatial location corresponding
node s.

Even this very simple model allows us to introduce some of the concepts and issues that arise with MR
models. The first concerns the choice of the variance of w(s). One simple choice is a constant variance over
the entire tree. Note that in this case, if we examine the 1-D sequence of values corresponding to the path in
the tree from the root node to any leaf node, we see that this sequence is a simple constant-variance Gaussian
random walk. If, on the other hand, we choose the variances of w(s) to be constant at each scale but to
decrease geometrically from scale to scale (e.g., variances that decrease with scale by a factor of 4−m), the
resulting process has a rudimentary type of self-similarity or fractal character: The variance of the variation
at any scale has a power law dependence on scale. We will have more to say about self-similarity and fractal
processes later and will also see a somewhat different example next.

A second observation is that (7) corresponds to perhaps the simplest coarse-to-fine interpolation process:
Interpolation consists simply of copying the value at the coarser node (the first term on the right-hand side
of (7)) and then adding independent “detail”. This interpretation of multiscale dynamics as coarse-to-fine
interpolation combined with the addition of new detail at each resolution clearly rings of concepts common in
other areas of multiresolution analysis, most notably wavelets. We will have more to say about relationships
to wavelets later. However, as the next point makes clear, the tie to wavelets or other ideas in interpolation
requires considerably more thought.

In particular, for any standard multiresolution decomposition of a signal or image, the values of the
variables at coarser nodes are simply functionals (i.e., weighted averages or smoothed differences) of the
values at finer scales. Indeed that is certainly the case for wavelet analysis. However, note that for the
process defined by (7), it is certainly not the case that x(sγ̄) is the average of its four descendent values
(since the four white noise values added to these children are independent). As a consequence, if our primary

9As is also true for standard temporal models and signals, while for simplicity we assume that the variables in the model (6)
are Gaussian, all of the results and concepts for these models that make use only of second-order properties (means, covariances)
hold more broadly as wide-sense concepts. For example, if we only assume that w(s) is uncorrelated from node to node (i.e., is
wide-sense white noise on the tree) then the estimation algorithm in Section 4.2 represents the best linear estimator.
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interest is in the random field at the finest scale, the values at coarser scales in this model represent true
hidden variables, as they are not deterministic functions of that finest-scale process. As in other contexts,
among the reasons for building models with such hidden variables is that they lead to efficient algorithms.
In addition, later in this paper we will also discuss the class of so–called internal MR models in which the
coarser scale variables are not hidden.

Example 2. In [224] a class of MR models is introduced for 1-D Gauss-Markov processes and for 2-D
Markov random fields. The simplest example of this uses Paul Lévy’s construction of Brownian motion via
midpoint deflection [211].10 Specifically, suppose that we wish to construct a sample path of a Brownian
motion process, B(t) over a time interval, say [T0, T1], where the length of the interval is T = T1 − T0.
To begin, we first generate samples of the two-dimensional Gaussian random vector (B(T0), B(T1))

T . As
illustrated in Figure 6(a), we then draw a straight line between the generated values of our process at these
two endpoints. This represents the best estimate of the values of the process at any of the points between
T0 and T1 given the values at the endpoints. Consequently, the error in this estimate at any specific point
is independent of the values at the end points. At the midpoint of the interval, T0 + T/2, we then generate
an independent, zero-mean random variable, D(T0 + T/2), with variance equal to the error variance in the
estimate of B(T0 + T/2) based on the two endpoint values. If we then “deflect” the straight line at this
midpoint by adding this new random variable, we now have three samples, B(T0), B(T1), and B(T0 + T/2),
that have the desired joint distribution of a sample path of Brownian motion.

The process continues, taking advantage of a critical fact: Because Brownian motion is a Markov process,
conditioned on the value at the midpoint, the values of the Brownian motion on the two half-intervals are
mutually independent, and thus the subsequent deflection of midpoints of each of these half-intervals can be
carried out independently. The result is a procedure for generating denser and denser samples of Brownian
motion, which is depicted in Figure 6(b). As this figure suggests, the procedure we have described corresponds
exactly to a linear-Gaussian MR model of the form in (6): Here the three-dimensional “state”x(s) at any
node s consists of the two endpoint and midpoint values of B(t) over the subinterval identified with node
s. The coarse-to-fine dynamics are precisely the midpoint deflection scheme we have just described. Each
node corresponds to half of the interval associated with its parent node. As a result, two of the components
of the three-dimensional state at each child node are simply copied from the parent node (namely one of the
two endpoints of the parent interval and its midpoint value), and a new midpoint value is generated for the
child interval by taking the average of its endpoints and adding an independent zero-mean Gaussian random
variable with variance equal to that of the error in the estimate of that new midpoint given the endpoint
values.

It is a straightforward calculation to write down the dynamics of (6) for this example (see [224]), but even
without doing that explicitly, we can make several important observations. The first is that the procedure
we have just described works equally well for other Gauss-Markov processes, including those of higher-order.
The only difference is that the best estimate of a midpoint value given the two endpoint values will in general
be a more complex linear function of the endpoint values, depending on the correlation structure of the field.
Note also that because of the fact that increments of Brownian motion have variances that scale linearly
with the length of the interval over which the increment is taken, the MR model depicted in Figure 6 has
self-similar scaling behavior (i.e., the variances of the midpoint deflections decrease geometrically as we move
to finer scales). In addition, as in Example 1, each step in the Brownian motion construction does, indeed
involve coarse-to-fine interpolation plus the addition of independent detail (to deflect midpoints), although
the nature of the interpolation and the detail are very different in this example as is the fact that the state
of the MR process at each node doesn’t represent a spatial average of the process but rather a different type
of coarse-scale representation, namely a simple three-point piecewise linear approximation to the Brownian
motion sample path as illustrated in Figure 6(a). Finally, note that in contrast to Example 1, the MR
model for Brownian motion is internal, as the state at each node is a completely deterministic function of
its children.

Example 3. A class of nonlinear MR models that plays just as important a role in theory and practice as
the linear model in (6) is the class of MR Markov chains on trees. In such a model each of the variables x(s)

10See [129] for related constructions for the so-called Brownian bridge.
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on the tree takes on one of a finite set of values (where the nature and cardinality of that set may vary from
node-to-node or from scale-to-scale). As described previously, such a model can be completely specified in
terms of the distribution p(x(0)) at the root node and the parent-child transition distributions p(x(s)|x(sγ̄))
for every node s �= 0.

Such models have a long history, extending back to studies in statistical physics [26], dynamic program-
ming [32], artificial intelligence and other investigations of graphical models [267, 294, 295, 89, 128, 7, 169],
and signal and image processing [42, 80, 261, 199, 58, 59, 283, 175, 281, 213]. Later in this paper we will
illustrate examples of such models for two different purposes. One is a class of image segmentation problems
[42, 199, 58], as introduced in Section 2.5 in which the discrete variable at each node represents a coarse-level
label for the image region corresponding to the resolution and location of that node. A standard example
used in such problems is a multiscale variant of the Potts model [26, 132] in which each child node takes on
the same value of its parent with some probability and is equally likely to take on any value different from
its parent, i.e.:

p(x(s) = i | x(sγ̄) = j) =







θm(s) , i = j

1−θm(s)

N−1 , i �= j

(8)

where the label index set for each node is {1, . . . , N} and where we allow the probability θm of the child
label equaling the parent to vary with scale, m (e.g., as described in [42], one may wish to increase this
probability at finer scales).

The second example in which we will see such discrete models is in the context of wavelet-based image
denoising problems [80, 261, 59], in which the MR Markov chain represents hidden variables used at each
node to control the distribution of a wavelet coefficient at that same node. As we will see such a model can
capture the “cascade” behavior seen in real imagery in which large wavelet coefficients occur in localized
patterns across scale corresponding to the locations of abrupt changes, edges, or other high-frequency, high-
contrast signal or image features. Including these hidden variables then leads to denoising algorithms that
automatically adapt to the presence of edges, alleviating the blurring that occurs if space-invariant linear
filtering is performed.

3.3 Some first ties to graphical models, time series, and matrix factorization

As we have indicated, MR models on trees are a special class of graphical models [204, 170, 267, 35, 36,
169, 108, 128, 339, 89, 294, 295, 143, 168, 123, 197, 236, 337, 357, 302]. With an eye toward some of the
generalizations we describe later and to lay the foundation for relating our framework to other work, we
briefly summarize some of the basic graph-theoretic concepts associated with this larger class of models.

A graph G = (V, E) consists of a set V of vertices and a set E of edges between pairs of vertices (i.e.,
E ⊂ V × V). In general one can distinguish between directed graphs in which an edge (s, t) is directed from
node s to node t (so that the edges (s, t) and (t, s) represent different objects) or an undirected graph in
which (s, t) and (t, s) do not represent different objects (so that inclusion of one of these in E is equivalent
to inclusion of the other or both). For our purposes, it is sufficient to focus on the latter for the moment
and to make a few comments about the former shortly.11

Consider an undirected graph G, and a random process x(s), s ∈ V, defined over the index set V. Of
particular importance to us is the class of MRF’s over the graph G. Specifically, for each node s ∈ V, let
N (s) denote the set of neighbors of s, i.e., the set of all nodes other than s itself that are connected to s by
an edge. Then x(s) is Markov on G if for each node s

p(x(s) | {x(t), t ∈ N (s)}) = p(x(s) | {x(t), t �= s}) (9)

11For simplicity we assume throughout that G is connected, i.e., that there exist paths of edges that connect every pair of
nodes in V.
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That is, conditioned on the values of the process at all its neighbors, x(s) is independent of the remaining
values of the process at other nodes. An alternative characterization of Markovianity requires a bit more
graph-theoretic terminology. A path in the graph G is a sequence of nodes in V such that there is an edge
corresponding to each successive pair in this sequence. A subset A of V cuts the graph if the remaining
nodes in V (i.e., V/A) can be partitioned into two disconnected subsets U and W, i.e., two subsets so that
any path in G from any u ∈ U to any w ∈ W includes an element of A. Also, we introduce the notation xS

for the set of values {x(s) | s ∈ S} for any subset S (although for S = V, we will generally denote xV simply
as x). Then, x(s) is Markov if for any subset A that cuts V into disconnected subsets U and W,

p(xU , xW | xA) = p(xU | xA)p(xW | xA) (10)

That is, conditioned on the values of x(.) on A, the set of values of x(.) on U is independent of the set of
values of x(.) on W. Note that if A actually separates V into K disconnected subsets and if x(.) is Markov,
then the sets of values of the process over each of these subsets are mutually independent given the values
on A.

The specification of Markov models on general graphs requires some care. In particular, in contrast to
temporal Markov processes (or, as we will see, tree models as well), Markov models on graphs are not, in
general, specified in terms of the marginal density at a single node and transition probabilities between
pairs or small groups of nodes, thanks to the fact that a general graph has loops or cycles, i.e., nontrivial
paths that begin and end at the same node. Such loops imply that there are constraints (typically complex
and numerous) among such marginal and transition probabilities, so that they do not represent a simple
parametrization of Markov distributions.

The Hammersly-Clifford theorem [35], however, provides such a parametrization in terms of so-called
clique potentials. In particular, a clique C of V is a fully connected subset of V (so that (s, t) ∈ E for every
pair of distinct nodes s, t ∈ C). Let C denote the set of all cliques in G. Then the Hammersley-Clifford
theorem states that x(.) is Markov with respect to G if its probability density can be written in the following
form:12

p(x) =
1

Z
exp

{

∑

C∈C

ϕC(xC)

}

(11)

Here ϕC(xC) is a function of the values of x(.) over the clique C and is known as a clique potential. Also, Z
is a normalizing constant, often referred to as the partition function.

Several points are worth noting. First, if x(.) is a Gaussian process, then we know that the exponent in
(11) is a quadratic form in the vector x minus its mean, where the matrix appearing in that quadratic form
is the inverse of the covariance matrix, P , of x. An examination of the Hammersley-Clifford theorem for
such a process yields the observation that x(.) is Markov with respect to G if and only if:

P−1(s, t) = 0 ∀(s, t) �∈ E (12)

(where for any matrix M whose blocks are indexed by the nodes in V, M(s, t) denotes its (s, t)-block).

In general the specification of a Markov process according to (11), while providing a natural and uncon-
strained parametrization, leads to significant computational challenges. For example, recovering the marginal
probability distributions of the process at any individual node from this specification has complexity that can

12Note that the exponential form in (11) implies that p(x) > 0 for all x and in this case (11) is a necessary and sufficient
condition for Markovianity. There are conditions for Markovianity that can be stated if that is not the case; however, that
detail is unnecessary for our exposition. We refer the reader to the references at the start of this section for more on this and
other aspects of graphical models.
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grow explosively with the size of the graph, even in the Gaussian case.13 Similarly, estimating parameters
of such models or performing estimation of the process given measurements can also be extremely complex.

The situation, however, is far simpler if G is acyclic (i.e., loop-free), such as the tree illustrated in
Figure 7(a). One way in which to see why this is the case is to consider the relationship between directed
graphical models and undirected ones. In a directed graphical model, the quantities that must be specified
include the conditional distribution at each node, s, given the values of all of its parents (where t is a parent
of s if there is a directed edge from t to s). It is straightforward to convert a directed graphical model
into an undirected one (e.g., see [169]), but the construction of a directed graphical model equivalent to
an undirected one is generally very complex and, in fact, requires defining new node and edge sets where
the nodes consist of entire cliques of nodes of the original undirected graph (see the references on graphical
models and also Section 6.1 for more insight into this). For a tree, however, the construction of a directed
graphical model from an undirected one is straightforward 14 and in fact does not change the nodes of the
graph nor the graphical structure (except that edges become directed rather than undirected).

Specifically, consider an undirected graphical model over a tree and choose any node to designate as the
“root” node. Consider then “hanging” the tree from this node–i.e., redraw the graph with the root node at
the top level, with its neighbors at the next level, etc. For example, in Figure 7(a) we have labeled one node,
0, as the root node, with its neighbors denoted as nodes s, t, and u. In Figure 7(b) we have redrawn the
tree as it appears when we hang it from 0. It is then straightforward to see that the overall distribution for
this graphical model can be specified, exactly as we did in Section 3.1, in terms of the marginal distribution
at the root node and the set of parent-child transition distributions. In particular, note that for an acyclic
graph any single node other than a leaf node cuts the graph into disconnected components. As a result, for
an MRF on the graph in Figure 7, the processes on each of the subtrees rooted at s, t, and u are mutually
independent when conditioned on the value of x(0). Thus, the overall probability distribution for x(.) can be
factored in terms of the individual marginal distribution for x(0) and the conditional distributions for each
of the three subtrees rooted at s, t, and u conditioned on x(0). Continuing this process, each of these subtree
conditional distributions can be specified in terms of the individual transition densities for x(s), x(t), and
x(u) conditioned on x(0) and the transition densities for each of the leaf nodes conditioned on its parent.

While the preceding discussion is framed in graph-theoretic language, the ideas here become quite familiar
to those in the signals and systems community if we describe them in terms of time series and matrix
factorizations. Specifically, consider a discrete-time Gauss-Markov process (scalar-valued for simplicity),
x[n] defined over the interval [N0, N1], and form the vector x by ordering the values of x[.] sequentially.
In this case, the graph of interest is simply the set of integers in the interval [N0, N1], with edges between
consecutive integers. Thanks to (12), we know that the inverse of the covariance, P , of x is tridiagonal. Such
a tridiagonal inverse covariance corresponds to an undirected representation of the statistical structure of this
process. However, we also know that such a process has a simple sequential–i.e., a directed–representation
with the same graphical structure connecting each time point to its successor. Specifically, if we take the
point N0 as the root node of the (acyclic) graph for this process, the corresponding directed representation
of this Markov process is the familiar first-order autoregressive (AR) model:

x[n] = a[n]x[n − 1] + w[n], n = N0 + 1, . . . , N, (13)

where w[N0 + 1], . . . w[N1] are a set of independent Gaussian random variables, which are also independent
of the initial condition, i.e., the value of x[N0] at the “root” node. The representation in (13) is precisely in
the form of a directed model.

The matrix interpretation of this representation is equally simple. Specifically, define the vector w =
[x[N0], w[N0 + 1], . . . w[N1]]

T , which as we have just seen has a diagonal covariance which we denote by Q.
13For discrete-state processes, the complexity can be combinatorially explosive, while in the linear-Gaussian case the com-

plexity of the linear-algebraic computations grows polynomially. In either case, the required computations can be prohibitive
for Markov processes on arbitrary graphs. We will have more to say about this in subsequent sections and also refer the reader
to the references at the start of this section.

14Discussions of this can be found in or inferred from many of the graphical model references given at the start of this section.
Other discussions of this can be found in [156] and in the discussion of so-called reciprocal processes on trees in [101].
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If we then collect the set of equations in (13), together with the trivial equation x[N0] = x[N0], we obtain a
vector equation of the form

Fx = w (14)

where the matrix F is lower bidiagonal, reflecting the fact that each equation in (13) involves a single value
of x[n] and its predecessor (while the trivial first equation we have added involves only the initial value
x[N0]). Note that a simple calculation using (13) reveals that

P−1 = FT Q−1F (15)

which corresponds to a very simple square root-factorization of the tridiagonal inverse covariance matrix
(which also in this case is in the form of a UDL- factorization). Several points are of particular note. The
first is that the upper and lower triangular factors in (15) are bidiagonal, and thus have no fill15 compared to
the tridiagonal structure of P−1, which is equivalent to the statement that the graph for the corresponding
causal recursion in (13) has the same first-order directed graphical structure as that for the original undirected
graphical model (corresponding to the tridiagonal inverse covariance). Further the computation of these
factors is very simple, as can be seen from (13): The calculation of a[n] and the variance of w[n + 1] involve
only the joint statistics of x[n] and x[n + 1].

In contrast, for a general Gaussian graphical model, calculating a square root-factorization of P−1 is
computationally involved and results in additional fill in the square root (implying in particular that a
directed version of such a model has a more complicated graphical structure). However, for a Gaussian
Markov model on a tree, the procedure we outlined for hanging the tree from a root node and then proceeding
recursively down the tree implies that (a) the calculation of the parameters analogous to those in (13) from
one node to its child are exactly as simple as those for a temporal Markov process; and (b) there is again no
fill. It is precisely these special properties of tree models that lead to efficient algorithms such as those we
describe in the next section.

As a final point, it is interesting to note that the procedure we have outlined here to convert an undirected
graphical model on a tree into a directed representation of the type we specified in Section 3.1 allowed us
to choose any node as the root node and then to define recursions relative to that choice. One of the
implications of this for standard temporal Markov processes is well-known: We can define a recursive model
either forward or backward in time. However, what is perhaps not as widely known or at least as widely used
is the fact that we also can define a recursive model that proceeds from the center (or any interior point)
out toward the two ends of the interval (see [321]).

4 Estimation and Inference Algorithms for MR Models on Trees

As the preceeding discussion suggests and as is well-known in fields such as graph theory, theoretical computer
science, artificial intelligence, and linear algebra, computations on tree structures can be performed very
efficiently. In this and subsequent sections we will see that the implications of this efficiency for statistical
signal and image processing and large-scale data assimilation are substantial, and this in turn leads to
our asking different questions than those that typically arise in other contexts involving tree-structured
computations.

4.1 Computation of prior statistics and simulation of MR models

Before discussing optimal estimation and other inference problems for MR models, we examine two related
problems, namely the computation of the prior statistics of a MR process x(.) and the generation of a sample

15That is, there is no element of F that is nonzero for which the corresponding element of P−1 is zero.
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path–i.e., the simulation–of such a process. These computations are not only important in their own right,
but also provide an initial look at the computational challenges in performing statistical calculations and how
these challenges are met effectively if we have a MR model on a tree. For each of these problems we focus
primarily on the linear-Gaussian model (6) and comment on the analogous issues that arise for discrete-state
models.

As discussed in Section 3, the specification of a Gaussian model that is Markov on a general graph
corresponds directly to specifying the inverse of the covariance of that process. However, calculating the
actual elements of the covariance from such a specification–i.e., calculating the marginal and joint statistics of
the values of x(.) at individual or pairs of nodes–is far from a computationally easy task for a general graph.
In particular, a naive approach to this would simply be to invert the inverse covariance, a computation that
has complexity possibly as large as O((Nd)3), where N is the number of nodes in the graph and d is the
dimension of the “state” x(s) at any node in the graph16 Such complexity, however, can be prohibitive and
in fact is for the applications we describe in this paper and for many contexts in which graphical models are
used. For example, consider a MR model on a quadree as in Figure 1(b). A simple calculation shows that N
in this case is roughly 4/3 times the number of pixels at the finest scale. Thus for a 512 × 512 image N is on
the order of 350,000, while for remote sensing problems such as that introduced in Section 2.1, N can easily
be in the millions. For such applications, computations that scale any worse than linearly with N–i.e., that
have more than constant complexity per pixel for spatial estimation problems–are prohibitive. Moreover, for
applications such as in remote sensing one would never be able to store or even look at the full covariance
which contains billions or trillions of distinct elements. However, what we would like to be able to do is to
compute, in an efficient manner, selected elements of the covariance–e.g., the diagonal blocks corresponding
to the covariances of the variables at individual nodes and perhaps a small number of off-diagonal blocks
capturing the correlation in space and scale among selected variables.

To be sure more efficient methods can be devised that exploit the structure of particular graphs, but it is
for trees that we obtain especially simple and scalable algorithms [225, 226, 23, 61, 60] for such computations.
In particular, consider the linear model (6), where, w(s) is a white noise process, with covariance Q(s),
independent of the state x(0) at the root node whose covariance we denote by Px(0). From (6) we then see
that the covariance of x(s) satisfies a coarse-to-fine recursion itself:

Px(s) = A(s)Px(sγ̄)AT (s) + Q(s) (16)

which is nothing more than the generalization of the usual Lyapunov equation for the evolution of the state
covariance of temporal state space systems driven by white noise [174, 182, 12]. Note that this computation
directly produces the diagonal blocks of the overall covariance matrix for x, and the total complexity of
this calculation is O(Nd2). The quadratic dependence on the dimension of each x(s) reflects the matrix
multiplies and additions in (16), while the linear dependence on N reflects the fact that the recursion passes
through each node on the tree only once.

Calculation of any individual off-diagonal block of the covariance of x can also be performed in an efficient
manner. In particular, for any two nodes s and t on the tree, let s ∧ t denote the closest common ancestor
to s and t. Then using the statistical structure of the model, we find that the covariance between x(s) and
x(t) is given by:

Px(s, t) = Φ(s, s ∧ t)Px(s ∧ t)ΦT (t, s ∧ t) (17)

where for any two nodes s and u, in which u is an ancestor of s, we have that Φ(s, u) denotes the state
transition matrix from node u to its descendent s, which satisfies a recursion in scale analogous to that for
the usual state transition matrix for state space models:

Φ(s, s) = I (18)

Φ(s, u) = A(s)Φ(sγ̄, u) s < u

16In some situations the dimension of states at different nodes may vary. In this case the dimension of the vector of all states
is simply the sum of the dimensions of these variables (which reduces to Nd if all states have the same dimension, d), and
complexity of operations involving this matrix are polynomial in this dimension–possibly with cubic complexity unless special
structure is exploited, as we do with tree models.
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It is interesting to note that (17) is a strict generalization of the formula for temporal models. In the temporal
context, in which the index set is completely ordered, s∧ t equals either s or t, and as a result, a nonidentity
state transition matrix appears on only one side or the other in (17). However, for MR models on more
general trees, both of these will appear in general. Also, note that the calculation of (17) for any particular
value of s and t is computationally simple,17 with complexity bounded by O((log N)d2), where the factor of
log N comes from the fact that the path from s or t to s ∧ t can have this length.18

While we have described the computation of statistics for the linear-Gaussian case, the same concepts
and conclusions hold as well for more general models. For example, consider the case in which x(.) is a
finite-state process, taking on any of d values at each node. As we discussed in the preceding section, the
computation of marginal distributions at individual nodes or joint distributions at small sets of nodes can be
extremely complex for a loopy graph (i.e., a graph with cycles). In particular, in this case the distribution
of the process over the entire graph involves a state set of size dN , i.e., that grows exponentially with N , and
explicit computation of projections of this distribution corresponding to particular marginals or joints has
been shown to be NP-Hard for general graphs [76]. However, for a MR process on a tree, x(.) represents a
generalization of a Markov chain, and computations of marginals at all nodes can be computed by a coarse-
to-fine tree recursion generalizing the usual Chapman-Kolmogorov equation for recursive computation of
distributions in Markov chains [266]. Similarly, joints for one node and several of its descendents can be
calculated efficiently, and, then by averaging over that ancestor node we can obtain joints for any set of
nodes (yielding the counterpart to (17)). In each of these cases, the complexity of computation grows at
most linearly with N and exponentially in the number of nodes whose joint distribution is required. As in
the linear case, computing or even storing all such joints is prohibitively complex. Typically one is interested
in calculating only a modest number of very low-dimensional joint probabilities, and such computations can
indeed be performed efficiently.

MR models also admit very efficient simulation methods. For example, generation of a sample path for
the linear MR model (6) is a simple generalization of the straightforward simulation of a linear state space
model driven by white noise. We need only generate a sample of the Gaussian random vector corresponding
to the root node x(0) and independent samples of each of the w(s), and then perform the coarse-to-fine
computation corresponding to (6). Similarly for a discrete-state MR model we draw a sample from the
distribution for x(0) and then, in a coarse-to-fine manner draw samples from the distribution for each node
x(s) conditioned on the previously drawn sample value for its parent. In contrast, the simulation of MRF’s
on graphs with loops can be very complex. For example, for discrete-state processes, iterative procedures
such as the Metropolis or Gibbs sampling algorithms [132, 234, 339, 35] must often be employed. Such
procedures generally require many revisits of each node of the graph, compared to the single pass through
each node for MR models.19

As a final comment, it is important to note that the complexity of the MR algorithms we have described
here and that we will describe in the rest of this section scale extremely well with problem size as measured by
N , the number of nodes in our MR tree. However, it is also the case that these algorithms scale polynomially
in d, which measures the “size” of the variables stored at each node of the tree–e.g., the dimension of the
state in a linear model or the cardinality of the state set in a finite-state model. Consequently, the utility
of all of these methods depends critically on d being quite small compared to N , and it is this observation
that in essence provides the “acid test” to see if any particular problem can be successfully addressed using
the methods described in this section. The issues of constructing models with manageable state sizes and
characterizing processes for which that is or may be possible is the subject of Section 6.

17Note that, essentially with a bit of additional storage and a modest level of additional computation, the calculation of (17)
for a particular pair of nodes s and t also yields the values for the covariances for any other pairs of nodes on the path from s
to t.

18This assumes a more-or-less balanced tree such as in Figures 1 or 7 in which the diameter of the tree (i.e., the length of
the longest direct path between any pair of nodes) is O(log N).

19There are classes of Gaussian graphical models on loopy graphs for which simulations can be performed with efficiency
approaching or comparable to the O(N) complexity for tree models. For example, FFT-based methods can be used to simulate
spatially stationary random fields with O(N logN) operations (this follows directly from the fact that the Fourier transform
whitens stationary processes [266]). Alternatively, efficient sparse matrix methods (e.g., those used to solve elliptic partial
differential equations) can often be exploited for loopy but sparsely connected graphs, resulting in procedures for sample
generation that also have O(N) complexity (see Section 4.4 for a related discussion).
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4.2 Two-Pass Estimation Algorithms

In this section we consider the problem of estimating a MR process given noisy measurements of some or
all of its values. As we did in the previous section, we begin with a discussion of the linear case, i.e., with
a MR model as specified by (6), where for simplicity of exposition only we assume that x(s) is zero mean.
The problem to be considered is that of estimating this MR process given a set of linear measurements:

y(s) = C(s)x(s) + v(s) (19)

Here v(s) is a zero-mean white noise process on the tree, independent of w(s), and with covariance R(s),
while the matrix C(s) specifies what is measured at each node of the tree. Note that in principle this model
allows measurements at multiple resolutions, and thus the estimation algorithm we describe here provides a
means for seamlessly fusing such multiresolution data. In addition, as we will see here and in the applications
introduced in Section 2 and revisited here and in later sections, even if we only have measurements at the
finest scale (i.e., even if C(s) = 0 for all nodes other than those at the finest scale), the algorithm we describe
has substantial computational advantages.

Let x̂s(s) denote the optimal estimate20 of x(s) given all of the data in (19) throughout the tree (i.e.,
{y(s)|s ∈ V}, where V denotes the set of all nodes in the MR tree), and let Pe(s) denote the covariance of
the error in this estimate. As developed in detail in [60] the computation of these quantities throughout the
entire tree can be accomplished using a two-pass algorithm analogous to the two-pass Rauch-Tung-Striebel
(RTS) smoother [12, 277, 174] for temporal state space models.21 That smoother consists of a two-sweep
algorithm. The first sweep, forward in time, yields the optimal causal estimate (i.e., the optimal estimate
at each time t given all data before and including time t), a computation performed using a Kalman filter
[174, 182, 12]. At the end of the time interval, T , the forward sweep yields the optimal estimate at that final
point given all of the data–i.e., this is the optimal smoothed or noncausal estimate at this terminal point as
well, since there are no data beyond time T . That smoothed estimate then serves as the initial condition
for a second sweep backward through the data to compute the optimal smoothed estimate at every point
in time. At time t this backward sweep combines the optimal causal estimate at time t, computed during
the first sweep, with the smoothed estimate just computed at time t + 1, in order to determine the optimal
smoothed estimate at that time t, together with the covariance of the error in this estimate.

For more general trees, such as those in Figure 1, the situation requires a modest amount of additional
care and notation. First of all, while the RTS algorithm for time series can be equally well applied from
either end of the interval (i.e., we could just as easily start with a Kalman filter that runs in reverse time,
starting from time T , followed by a sweep forward in time), there is an asymmetry between the fine-to-
coarse and coarse-to-fine directions in MR trees as in Figure 1. As a result, the generalization of the RTS
smoother to such a tree must begin with a fine-to-coarse, child-to-parent sweep, starting at the finest nodes,
followed by a coarse-to-fine parent-to-child sweep.22 The first fine-to-coarse sweep, whose computational
flow is illustrated in Figure 8(a), is a generalization of the temporal Kalman filter. The objective of this
sweep is the computation, at each node s of x̂(s|s), the optimal estimate of x(s) based on all of the data in
Vs, the subtree rooted at node s (i.e., node s and all of its descendents), together with P (s|s), the covariance
of the error in this estimate. As in the temporal Kalman filter, the recursive computation of these estimates
involves several steps and intermediate quantities. In particular, suppose that we have computed the best
estimate x̂(s|s−) and corresponding error covariance, P (s|s−), at node s, given all of the data in Vs except for
the measurement at node s itself. The computations to produce the updated estimate (and associated error
covariance) that incorporates the measurement at node s are identical in form to the analogous equations
for the usual Kalman filter:

20Optimality here is defined in the least-squares sense, so that the optimal estimate is simply the conditional mean based on
the available data.

21In addition, there are other smoothing algorithms for graphical models on trees which have somewhat different computational
structures, with the same general complexity. See, for example, [267, 259, 169, 338, 285, 332, 334] and, in particular, [110] for
the general characterization of any algorithm that yields the optimal smoothed estimates in a finite number of steps.

22Actually, one can equally well define a smoothing algorithm that takes any node as its “root” and which then first sweeps
from leaf nodes to the root node, followed by a root-to-leaf sweep. Note that any such procedure has the property that data
from each node does in fact find its way into the computations of the smoothed estimate at every other node in the tree.
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Measurement Update. Given x̂(s|s−), P (s|s−), and y(s):

x̂(s|s) = x̂(s|s−) + K(s)ν(s) (20)

where ν(s) is the measurement innovations:

ν(s) = y(s) − C(s)x̂(s|s−) (21)

which is zero-mean with covariance

V (s) = C(s)P (s|s−)CT (s) + R(s) (22)

and where the gain K(s) in (20) and the updated error covariance P (s|s) are given by:

K(s) = P (s|s−)CT (s)V −1(s) (23)

P (s|s) = [I − K(s)C(s)]P (s|s−) (24)

The second component of the fine-to-coarse recursion is a step that has no counterpart in temporal
Kalman filtering, as it involves the fusion of estimates that come from all of the immediate children of node
s. Specifically, let x̂(s|sαi) denote the optimal estimate for node s based on all of the data in Vsαi

, the
subtree rooted at node sαi, and let P (s|sαi) denote the corresponding error covariance. Fusing all of these
estimates produces the estimate (and error covariance) at node s based on all of the data at nodes descendent
from s:

Fusion of Subtree Estimates: Given x̂(s|sαi) and P (s|sαi) for all i (where we let Ks denote the number
of descendents of node s)

x̂(s|s−) = P (s|s−)

Ks
∑

i=1

P−1(s|sαi)x̂(s|sαi) (25)

P−1(s|s−) = P−1
x (s) +

Ks
∑

i=1

[P−1(s|sαi) − P−1
x (s)] (26)

(where Px(s) is the prior covariance at node s, computed from (16)).

The third step of the recursion involves the computation of the estimates of x̂(s|sαi) (and error covari-
ances) for each child of node s. This step is identical in nature to the one-step prediction step in the usual
Kalman filter (in which we predict the state at time t based on data through time t−1). The only difference
in detail is that the “prediction” we must do here is from fine to coarse, while the MR model (6) is specified
in a coarse-to-fine manner. As a result, the form of the following step involves a so-called “backward” model
analogous to that for temporal models [328]:

Fine-to-Coarse Prediction. Given x̂(sαi|sαi) and P (sαi|sαi):

x̂(s|sαi) = F (sαi)x̂(sαi|sαi) (27)

P (s | sαi) = F (sαi)P (sαi|sαi)F
T (sαi) + U(sαi) (28)

where

F (s) = Px(sγ̄)AT (s)P−1
x (s) (29)

U(s) = Px(sγ̄) − Px(sγ̄)AT (s)P−1
x (s)A(s)Px(sγ̄) (30)
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Finally, this recursion must be initialized, where, in contrast to the temporal Kalman filter, we must
provide initial conditions at all of the finest-scale leaf nodes of the tree. This is done by setting the initial
estimate at each leaf node to the prior mean (here assumed to be 0) and the initial covariance to the prior
covariance:

Initialization at the Finest Scale. For each finest scale leaf node s:

x̂(s|s−) = 0 (31)

P (s|s−) = Px(s) (32)

Note also that as for temporal Kalman filters, the gain and covariance matrices can be precomputed, and,
in fact, (22)-(24),(26), (28)-(30), and (32) together form the MR tree generalization of the Riccati equation
for the error covariance [61].

When the fine-to-coarse sweep reaches the root node, the estimate and covariance computed at that node
provide initial conditions for the second, coarse-to-fine sweep, exactly as in the temporal RTS algorithm:

x̂s(0) = x̂(0|0) (33)

Pe(0) = P (0|0) (34)

As derived in [60], the computations in this second sweep are identical in form to those in the temporal
RTS algorithm. In particular, the computation at node s in the tree involves fusing together the optimal
smoothed estimate and covariance just computed at its parent sγ̄ with the statistics computed at node s
during the first Kalman filtering sweep. The only difference in the case of trees is that the node sγ̄ has
several children, so that the following computation is carried out in parallel (as illustrated in Figure 8(b))
at each of the children of node sγ̄:

x̂s(s) = x̂(s|s) + J(s)[x̂s(sγ̄) − x̂(sγ̄|s)] (35)

Pe(s) = P (s|s) + J(s)[Pe(sγ̄) − P (sγ̄|s)] (36)

where

J(s) = P (s|s)FT (s)P−1(sγ̄|s) (37)

Note again that the covariance computations (34), (36), (37) can be precomputed.

As with the computation of prior statistics described in Section 4.1, the smoothing algorithm just de-
scribed has very significant computational advantages. In particular, note that the computations at any node
on either the upward or downward sweep involve matrix-vector and matrix-matrix multiplies, as well as ma-
trix inversions, where the matrices and vectors involved have dimension d (or perhaps less for those involving
the measurement y(s) and its associated matrices). In addition, each node in the tree is visited twice–once
in each sweep. Consequently the total complexity of this algorithm is at worst O(Nd3), which does scale
linearly with the number of nodes in the tree. Furthermore, the result of this computation produces both
estimates and their error covariances.

To understand the significance of this result a bit more deeply, consider an alternate vector form of the
estimation equations. Specifically, as before, let x denote the vector of values of x(s) throughout the tree,

21



and let Px denote its covariance. Similary, let y and v denote the corresponding vectors of measurements
and measurement noises, respectively, so that

y = Cx + v (38)

where v has covariance R, and where C and R are block-diagonal matrices formed, respectively, from the
values of C(s) and R(s) throughout the tree. Then one form for the equations for the optimal estimate is
the following:

(P−1
x + CT R−1C)x̂s = CT R−1y (39)

where x̂s denotes the vector of optimal smoothed estimates, which has corresponding error covariance given
by

P−1
e = P−1

x + CT R−1C (40)

Thanks to the fact that x(s) is Markov on the MR tree, P−1
x has a tree-structured pattern of nonzero elements.

Further, since C and R are block-diagonal (signifying that we have measurements with independent noise at
individual nodes), the matrix on the left-hand side of (39), namely P−1

e , also has the same tree structure.
There are two implications of this observation.

The first is that (39) can be solved very efficiently via the tree-structured generalization of Gaussian
elimination (the fine-to-coarse Kalman filtering sweep) followed by back-substitution (the RTS smoothing
step), yielding the O(N) complexity discussed previously. To be sure, other methods of numerical linear
algebra (e.g., conjugate gradient or multipole methods [138, 280, 256]) could be used to solve this equation
with this same order complexity. However, what is particularly important about the MR algorithm are both
its non-iterative nature and especially the fact that it also yields the diagonal blocks of the error variance
matrix Pe as part of this same computation. Since these error statistics are extremely important in many
applications (see, Example 4, 5, 8, and 9 to follow in this and subsequent sections), this is a major benefit
of the use of MR tree models.

The second implication of the tree structure of P−1
e , which directly generalizes known results for temporal

models [226, 28, 27, 17] is that this implies that the error process e(s) = x(s) − x̂s(s) is a MR process on
the same tree, with parameters (i.e. matrices analogous to A(s) and Q(s) for the original process) that are
automatically available as a result of the RTS smoothing computations. Since those computations already
yield the individual covariances of the values of this error process at every node, the method described in
Section 4.1 (in particular, equations analogous to (17) and (18) for the smoothing error model) can be used
to compute any of the covariances between errors at different nodes. More importantly, we see that the result
of the smoothing process produces a model for the remaining errors that has the same form as the original
model and which therefore can be used directly for the fusion of any subsequent measurements that become
available. Moreover, this error model provides the basis for extremely efficient conditional simulation of MR
processes, a feature that is illustrated in Example 9.

It is interesting to note also that there are connections of the preceding development (and much of the
discussion in this paper for that matter) to problems arising in the field of decentralized control. In such
problems, different “nodes” in a network correspond to different “agents” or controllers who observe and can
influence the behavior of a dynamical system. If all of the data collected by these agents could be centralized,
in principle one could determine the optimal estimate of the system given all of the measurements as well
as determine the optimal coordinated control policy for all of the agents. However, because of constraints
that might include computation but in many cases are dominated by other issues (such as communication
constraints or the geographic separation among agents), such centralization of information is not possible, and
instead one must consider alternative strategies for coordination that, in particular, may produce estimates
that are suboptimal. While there are many issues in decentralized control that do not arise in the processing
problems considered here,23 it is worth noting that one case in which relatively simple solutions can be found
is that in which the agents have what are referred to in [148, 149] as partially nested information patterns,

23For example a significant complication arises due to the indirect “communication” that occurs when each agent’s control
actions influences the subsequent measurements of other agents.
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a construct that is directly related to the singly connected structure of our MR models and of MRF’s on
acyclic graphs more generally.

Example 4. As a first example, consider the optimal estimation of sea level variations given satellite al-
timetry measurements such as in Figure 2, as briefly described in Section 2.1 and in much more detail in
[112, 113]. As mentioned in Section 2.1, sea-level variations have a fractal-like spectrum. Thus the model
(7), with variances of the noise process w(s) that decrease geometrically at finer scales, represents a simple
MR model that captures statistical behavior with this type of spectral fall-off. The finest scale in this rep-
resentation corresponds to pixels of the same size as the resolution of the satellite data. These data, then,
are simply modeled as measurements at those finest-scale nodes corresponding to locations along the tracks
in Figure 2 (so that C(s) = 0 in (19) except for this irregular pattern of finest-scale nodes). Figure 9 shows
the results of applying the MR estimation algorithm described in this section to data along the tracks shown
in Figure 2. Figure 9(a) shows the optimal estimates of sea level variations, while Figure 9(b) shows the
corresponding error variances over the entire field.

There are several clarifying remarks to make about this example. The first is simply the observation that
the dimensionality of this example is nontrivial: We are attempting to estimate roughly 250,000 pixels from
approximately 20,000 measurements, and, at the same time calculate the diagonal elements of the 250,000
× 250,000 error covariance matrix. Using the MR estimation algorithm and this simple model, this is a
relatively modest computational task. A second point is that, as described in [112], the measurement noise
model used in this case is highly non-stationary, due to the fact that errors in knowledge of the geoid were
known to be much larger in regions in which there were significant gradients in the geoid, due, for example, to
significant bathymetric features (i.e., variations in the sea floor, such as sea mounts, trenches, etc.). Indeed,
one of the advantages of having the error variances computed by the MR estimation algorithm is that we
can use these to detect statistically significant anomalies, that is differences between measurements and
estimates that are large compared to what the estimation algorithm would expect based on the computed
error variances. Figure 9(c) shows the locations of the set of the detected anomalies superimposed on a
map of ocean bathymetry, showing substantial correlation with significant features of the ocean floor. This
suggests, among other things, using these anomalies, together with maps of bathymetry, to provide localized
corrections to the geoid.

A third point is that having error variances at multiple scales allows one to identify the optimal scale for
reconstruction at different points in the field. In particular, it seems reasonable that one would have greater
confidence in higher resolution reconstructions nearer to the regions covered by satellite measurements than
in regions farther from any such satellite track. One method for quantifying this is to identify, at each finest
scale pixel, its coarser-resolution ancestor with the smallest error variance. Thus, at that location, estimation
at finer resolutions leads to an increase in uncertainty. An example of this, applied to a different application
(namely the estimation of optical flow in image sequences) is given in [223].

It is also possible to use the MR algorithm together with more sophisticated models that attempt to
capture what is known about the ocean surface more accurately. For example, as discussed in [112], knowledge
of spatial inhomogeneities such as the Kuroshio current can be used to adapt the model locally, e.g., by
increasing the variances of the w(s) in particular spatial regions and at particular scales. In addition, it is
also possible to use higher-order models, such as those that have been developed for surface reconstruction
problems (see Example 8 in Section 6.2.1). Further, using the likelihood function computation methodology
described in the next section, we can also tune our models by finding the maximum likelihood estimates of
the parameters in the model–e.g., the rate of geometric fall-off in noise variances in (7) (see [113]).

Finally, it is important to note that the results shown in Figure 9 are not obtained quite as simply as the
discussion to this point might imply. In particular, as we discuss in Section 6.2.1 and as has been pointed
out by other authors [67, 281, 322, 188, 261],24 MR models on trees and especially very simple models such
as (7) can produce results that have significant artifacts across major tree boundaries (i.e., at points at the
finest scale that are close together spatially but far apart as measured by the path from one to the other
along the tree). There are several approaches to dealing with this, including those described in Section 6

24Note that analogous methods have also been proposed and used for other wavelet-based algorithms (see, for example,
[72, 298, 270]).
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and also in Section 7. What was used to produce the results in Figure 9 is the same simple method used by
others, namely averaging the estimation results using several different tree models, each of which is shifted
slightly with respect to the others, so that the overall average smoothes out these artifacts. We refer the
reader to Section 6.2.1 for further discussion of this important issue.25

While the preceding discussion is couched in the context of linear-Gaussian models, the same two-sweep
structure for optimal estimation holds for any Markov model on a MR tree, although instead of propagating
means and covariances in the upward and downward sweeps, we now propagate probability distributions. For
example, consider a finite-state MR process as discussed in Example 3, and suppose that we have observations
y(s) which we assume are conditionally independent measurements of the MR variables at individual nodes.
That is,

p(y(s), s ∈ V | x(s), s ∈ V) =
∏

s∈V

p(y(s) | x(s)) (41)

The discrete case raises a number of issues not encountered in the linear-Gaussian case, one of which is the
specific objective of processing. In particular, in the Gaussian case, the algorithm described previously in
this section can be viewed as solving several problems simultaneously: it provides the overall joint conditional
distribution for the entire MR process (implicitly specified as a tree model itself); it also yields the individual
marginal conditional distribution for each individual node; and it yields estimates that not only are the least-
squares optimal estimates but also are the individual node maximum a posteriori (MAP) estimates and the
overall MAP estimate of the entire MR process. For discrete processes, however, computing the node-by-
node MAP estimates or computing the overall MAP estimate for the entire process are quite different,
and, depending on the application, one or the other of these may be preferable. For example, for image
segmentation applications, strong arguments can be made [234] that the computation of individual node
estimates rather than an overall MAP estimate is decidedly preferable as it reflects directly the objective of
minimizing the number of misclassified pixels. Nevertheless, both of these criteria (as well as a third that
we briefly discuss in Example 10) are of considerable interest, and for graphical models on trees, algorithms
for each have been studied and developed by many authors.

In particular variety of algorithms have been developed for the computation of the conditional marginals
at individual nodes. One class, namely so-called “message passing” algorithms, are briefly described in
Section 4.4. Another, which can be found explicitly or implicitly in several places (e.g., [267, 294, 295,
205, 7, 199, 332, 169]) involves a structure exactly as that described previously for the linear-Gaussian
case (see, in particular [199] for a detailed development). As a preliminary step we first perform a coarse-
to-fine Chapman-Kolmogorov computation to compute the prior marginal distribution at each node. The
algorithm then proceeds first with a fine-to-coarse step, analogous to the MR Kalman filter in (20) – (32),
for the computation of the distribution at each node conditioned on all of the measurements in the subtree
rooted at that node. Finally, there is a coarse-to-fine sweep, analogous to the RTS sweep in (33) – (37), which
yields the marginals at each node conditioned on data throughout the entire tree. Choosing the mode of each
of these marginals yields the so-called MPM (mode of the posterior marginals) estimate. Furthermore, as in
the linear-Gaussian case [225], the distribution of the entire MR process conditioned on all of the data has
the same tree structure, and the model parameters of this conditional model–i.e., the conditional distribution
at the root node and the conditional parent-child transition distribution–are also immediately available as a
result of the two-sweep estimation algorithm [332].

25Note that as discussed in [281, 322, 188, 262, 261], obtaining shift-invariant algorithms (which are devoid of the artifacts
noted in the text) requires, in principle, considering a full set of possible shifts of the MR tree. Such models can be thought of as
mixtures of trees [240, 237]–i.e., a probabilistic draw is made of one of these tree models. Note that while straight averaging of
the estimates from all of these trees does result in a shift-invariant algorithm, it is technically not the optimal Bayesian estimate.
In particular, the optimal Bayesian estimate would require weighting each tree estimate by the conditional probability (based
on the observed data) that that particular tree was the one drawn from the mixture. While it is certainly possible to do this
using the likelihood computation methods described in the next section, to our knowledge this has never been used. Further,
the benefit of this additional complexity is, we believe, negligible.
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The computation of the MAP estimate for the entire process involves somewhat different computations
but with very much the same structure and spirit, something that has been emphasized in several investiga-
tions [294, 295, 7, 169]. Computing the MAP estimate involves a generalization of the well-known Viterbi
algorithm [118], one that can be traced at least back to the study of so-called “nonserial dynamic program-
ming” [32] and to the work of others in artificial intelligence and graphical models [267, 294, 295, 89, 7, 169].
A description of the algorithm that mirrors very closely the two-pass structure of the estimation algorithms
we have described so far (and that also makes clear how this algorithm generalizes standard dynamic pro-
gramming procedures) can be found in [89, 199]. A first fine-to-coarse sweep is performed in which two
functions are computed at each node. One of these specifies the optimal estimate at that node given the
optimal estimate at its parent. The second is the optimal “cost-to-go,” namely the maximum value of the
conditional distribution for the entire subtree rooted at that node given both the data in the subtree and
the state value at the parent node. This latter quantity is passed back to the parent node for use in the
computation of the analogous pair of quantities at that node. When the top of the tree is reached, the
optimal estimate at that node is easily computed, initiating a coarse-to-fine recursion in which the estimate
of each parent node, together with the function computed on the upward sweep yield the optimal estimate
at each child. As with the MPM algorithm and the computation of likelihoods described in the next section,
the key to the existence of this very efficient structure is the fact that the conditional distribution of a MR
process on a tree can be recursively factored.

4.3 Likelihood functions

In addition to the optimal estimation algorithms described in the preceding section, very efficient algorithms
also exist for the computation of likelihood functions, quantities that are needed in the solution of problems
such as hypothesis testing and parameter estimation. Specifically, by exploiting recursive factorizations
of MR processes, one can develop an algorithm for computing the likelihood function p(y(s), s ∈ V) that
involves a single fine-to-coarse sweep through the data (see, e.g., [267, 336, 333, 169]). Such an algorithm
follows from the following equalities, displayed here for the discrete-state case.

p(y(t), t ∈ Vs | x(sγ̄)) =
∑

x(s)

p(y(t), t ∈ Vs | x(s))p(x(s) | x(sγ̄)) (42)

p(y(t), t ∈ Vs | x(s)) = p(y(s) | x(s))

Ks
∏

i=1

p(y(t), t ∈ Vsαi
| x(s)) (43)

Note that for s = 0, the root node, sγ̄ doesn’t exist, and at this node the right-hand side of (42) is simply
the overall likelihood function, while the transition probability p(x(s) | x(sγ̄)) is simply the prior marginal
for x(0). Also, in the case of continuous variables, the summation in (42) becomes an integral, which reduces
to simple matrix/vector equations in the linear-Gaussian case.

While the fine-to-coarse application of (42), (43) is quite efficient and most likely the method of choice
if the sole objective is the computation of likelihoods, there is an alternative two-pass method for the
linear-Gaussian case, which also has total complexity that is linear in N , although with a slightly larger
proportionality constant. Further, this alternate method computes quantities that can be of value for other
problems (such as anomaly detection) and also brings out interesting and important similarities and differ-
ences with well-known ideas in state space estimation for temporal processes. In particular, one of the keys to
the computation of likelihood functions for temporal state models–and in fact one of the key concepts more
generally for temporal models of other forms [217, 216]–is the concept of whitening the measurements; i.e., of
recursively producing predictions of each successive measurement (using a temporal Kalman filter), which,
when subtracted from the actual measurement values yields a sequence of independent random vectors, re-
ferred to as the innovations, whose covariance depends in a known way on the temporal state model. Since
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these whitened measurements are informationally equivalent to the original ones, the likelihood function can
be written in terms of the joint distribution for the innovations, which is nothing more than the product of
the marginals for the innovations at each successive time point.

The estimation algorithm described in the preceding section–and in particular the fine-to-coarse MR
Kalman filtering sweep–does produce a set of measurement “prediction” errors, namely ν(s) in (21). However,
because of the tree structure, this process is not white over the entire tree. In particular, thanks to the
structure of the fine-to-coarse sweep (as depicted in Figure 8(a)), each value of this process involves predicting
y(s) based only on the data in the subtree below node s. For that reason, it is not difficult to see that ν(s)
and ν(t) are most certainly independent if s and t are on the same path from a leaf node to the root node
(i.e., if one of these nodes is a direct descendent of the other), but ν(s) and ν(t) are generally not independent
otherwise.26

As described in [225], to complete the whitening operation (so that the overall likelihood can be written as
a product of distributions for the individual innovation values), we define a total ordering on V, extending the
partial order of the tree (in essence placing orders on cousins, kth cousins n-times removed, uncles, etc.) and
then complete the whitening operation. By choosing this ordering in a systematic fashion–e.g., as illustrated
in Figure 8(c)–we can accomplish this remaining whitening very efficiently, in fact using a somewhat different
coarse-to-fine sweep complementing the Kalman filtering fine-to-coarse computation. The result, again, is
an algorithm with total computational load that scales linearly with N .

Example 5. One application of the MR likelihood function computations is the texture discrimination
application introduced in Section 2.2 and developed more thoroughly in [225]. As mentioned in Section 2,
many textures, such as those shown in Figure 4, can be modeled effectively using MRF models. However,
likelihood function computations for MRF’s are highly nontrivial, so that suboptimal methods (such as those
in [50]) are often used.

Another approach starts with the simple and obvious statement that such an MRF model does not
represent “truth” but rather is itself an idealization of real textures. As a result, it is reasonable to seek
alternate models that lead to much simpler likelihood computations resulting in performance essentially as
good as what one would be able to achieve using the original MRF models. Figure 10 illustrates the results
of such a texture discrimination system, that is one based not on MRF models but rather on MR models
constructed using reduced-order “cutset” models of the type described subsequently in Section 6.1.1. This
figure depicts the probability of error in texture discrimination between two models, where one of these
models is the MRF model for the sand texture in Figure 4, while the other model is parametrized by a scalar
parameter, ω, where, ω = 0 corresponds to the model for the pigskin texture in Figure 4, ω = 1 corresponds
to the sand texture, and intermediate values of ω correspond to MRF’s with parameters that are a weighted
average of the parameters for the pigskin and sand textures (so that the two textures being discriminated
are the most different for ω = 0 and become increasingly similar as ω increases toward 1, at which value
they are identical).

Figure 10(a) shows that discrimination performance using very simple approximate MR models for these
textures yields performance significantly better than the suboptimal method of [50] and nearly as good as
the performance achieved if likelihoods using the exact MRF models are used. Figure 10(b) shows how
the MR-based algorithm’s performance varies as the order of the MR model is increased (see Section 6 for
a detailed discussion of modeling).27 As this figure indicates, the use of low-order MR models results in
performance essentially as good as that achieved using the exact MRF models for these textures.

4.4 Further Ties to graphical models

To provide some additional perspective on the algorithms described in the preceding sections, we now take a
brief glimpse at inference algorithms for models on more general graphs, a topic which has been and remains
the subject of numerous investigations (see, e.g., [267, 204, 170, 35, 132, 36, 208, 339, 164, 200, 269, 222,

26As discussed in [225], ν(.) represents a martingale increment process on the partially-ordered set defined by the tree.
27Here the “order” of the MR model refers to the dimension, d, of the state at each node.
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128, 169]) and to which we return again in Section 7. To begin, consider the estimation of the state x(s)
(assumed to be zero-mean for simplicity) of a Gaussian graphical model on a possibly loopy graph G, given
a set of linear measurements, as in (19).28 As we did in Section 4.2, if we collect all of the state values into
a single vector x, with covariance Px, and similarly collect all of the measurements into a vector y, so that
the measurement equation is as in (38), then the optimal estimate x̂s is once again the solution to (39), and
the error covariance matrix is given by (40). Moreover, just as in the analysis in Section 4.2, we see that
the block-diagonal structure of CT R−1C implies that the structure of P−1

e is the same as that of P−1
x –i.e.,

off-diagonal blocks are nonzero only for those blocks corresponding to edges in the graph G. As a result the
estimation error also is Markov with respect to the same graph, a result that can be found in a number of
places in the literature (e.g., [208]) and that generalizes the results for time series and MR trees discussed in
Section 4.2. The same is also true for nonlinear and discrete-state models, namely that conditioning an MRF
with independent measurements at individual nodes yields a conditional distribution that is also Markov
over the same graph.

As the results in Section 4.2 indicate, if the graph G is loop–free, there are efficient methods for computing
estimates and error covariances in the linear-Gaussian case and marginal conditional distributions in the
more general nonlinear case. The reason for this efficiency can be explained in terms of the existence of
elimination orders–i.e., orders in which variables are eliminated in a first sweep and then added back in the
second sweep–for which there is no fill.29 From a random field/graph-theoretic perspective the lack of fill
for such elimination orders has a simple interpretation: If we subsample the random field or graphical model
by eliminating a set of variables, this restricted model remains Markov with respect to a restriction of the
original graph. That is, no additional edges need to be added (see [164, 200] and, in particular, [269] for
discussions of this issue for general graphical models).

Similarly and as we saw in Section 4.3, the computation of likelihoods for loop-free models can also
be performed efficiently. While this can also be interpreted in terms of the existence of elimination orders
without fill, it can also be directly tied to factorizations of the probability distribution over such graphs (e.g.,
in terms of a root node marginal and parent-child transition densities or as in (42), (43) in Section 4.2). In
particular, the existence of such factorizations implies that the partition function Z in (11) is not a function
of the values of the parameters of the model on a loop-free graph (e.g., the matrices A(s) and Q(s) in a
linear-Gaussian MR model), a fact that greatly simplifies maximum likelihood estimation of parameters for
such models.

In addition to the MR models on which we focus here, there are other loop-free graphs and processes
that have been examined in the literature, primarily in the context of image processing. One such class
that received much early attention in the investigation of recursive estimation algorithms for random fields
(see, e.g., [163, 345, 343] and the references therein) involves imposing a complete order on a regular 2-D
grid of points–typically a “raster scan” order in which the “past” of each point in the lattice consists of all
points in previous lines of the 2-D lattice plus the points on the same line that come earlier in the scan
order. Another example is the class so-called “Markov mesh” models (for both Gaussian and discrete-state
processes), which impose a partial order on pixels in 2-D [1, 98, 78, 88, 213]. However, in many problems
imposing such total or partial orders is clearly artificial. Moreover, often very high-order models of these
types are needed to capture accurately the statistics of random fields of interest. As a result, there has
been considerable work in developing stochastic models for images that do not impose orderings of pixel
locations. For example, MRF models, such as so-called first-order MRF’s on the nearest-neighbor graph
associated with a regular 2-D lattice [132, 234], represent one widely studied class of this type. Consequently
the investigation of inference on loopy graphs, which are the rule rather than the exception in many other
fields including artificial intelligence and turbo coding, is also of great interest in image processing.

As we have indicated previously, distributions for Markov models on loopy graphs do not admit elimi-

28In the graphical model literature, there is often no distinction made between measurements and the variables defined at
nodes on the graph; we simply have knowledge of some of these variables and wish perform inference (estimation or likelihood
calculation, for example) based on this information. This is a cosmetic rather than substantive difference, as we can easily add
nodes to our graph corresponding to each nodal measurement y(s) and a single edge for each such node connecting it to the
corresponding original node, s. We then wish to perform inference based on observation of the variables at these new nodes.

29In particular, when such an order is used to solve (39) by Gaussian elimination and back-substitution, no new nonzero
elements are introduced into the matrix on the left-hand side as variables are eliminated.
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nation orders without fill or simple factorizations in terms of local marginal distributions. Furthermore the
partition function for such a graphical model is generally a complex function of the parameters of the graph-
ical model–e.g., of the clique potentials in (11). Indeed, in the linear-Gaussian case, in which the partition
function is proportional to the square root of the determinant of the process covariance, this has been known
at least since the work of Whittle [340, 341] (see also [344]) on 2D random fields, Thus, while the computation
of likelihoods and optimal parameter estimates for models on loop–free graphs is computationally tractable
and straightforward, the absence of simple factorizations and the dependence of the partition function on
model parameters make optimal parameter estimation and hypothesis testing far more challenging compu-
tationally. Analogous challenges arise in solving estimation problems–i.e., computing conditional marginal
distributions for general nonlinear and discrete-valued models or, in the linear-Gaussian case, solving (39)
and determining at least the diagonal elements of the error covariance whose inverse is given in (40). In
particular, in general for such graphical models successive elimination of variables in any order induces fill,
implying both that the set of variables remaining after such an elimination step is Markov with respect to
a graph with additional (and frequently many additional) edges (see, [269]), and that subsequent stages of
computation may be increasingly complex.

As a result of these complications, there has been considerable interest in developing either exact or
approximate, computationally feasible methods for such inference problems. For example, for simple graphs
consisting of a single loop, very efficient non-iterative algorithms exist that are closely related to methods
for solving two-point boundary value problems: One first performs two-sweep computations analogous to
RTS computations but ignoring the boundary conditions, e.g., the fact that the two endpoints of the sweep
are linked. A subsequent correction step, taking these boundary conditions into account, then produces the
correct estimates and covariances or the correct likelihood function.30 Also, as described in Section 6.1, it
is always possible in principle to construct exact, non-iterative algorithms for inference on loopy graphs,
essentially by converting them to problems on loop-free graphs with nodes that correspond to groups of
nodes in the original graph. Such methods, which correspond to eliminating groups of variables at once, also
can be found in the linear algebra literature (e.g., so-called nested dissection methods [133]). However, such
exact methods are not computationally feasible for many graphs, and as a result, there has been considerable
interest in developing approximate and/or iterative algorithms as well.

For the linear estimation problem in (39) a variety of methods exist, especially when the underlying
graph, while loopy, is far from fully connected so that the matrix P−1

e on the left-hand side of (39) is
sparse. For example, solving such an equation [208] for a first-order MRF essentially corresponds to solving
(a discretized version of) an elliptic partial differential equation [208] for which extremely fast algorithms
(conjugate gradient, multipole, etc. [138, 280, 256]) exist. However, these methods do not compute the error
covariances–i.e., either the diagonal blocks of Pe or any of the off-diagonal blocks–a difficulty that we briefly
discussed in Section 4.1. and that also implies that such methods do not allow one to compute likelihood
functions.

The graphical model literature also contains a variety of iterative methods that apply to both linear
and nonlinear/discrete models and that directly yield approximations to the conditional distributions (i.e.,
estimates and covariances in the linear-Gaussian case) and in some cases to the computation of likelihoods.
Among these are the methods based on generating samples from the conditional distribution for the entire
process using techniques such as the Metropolis or Gibbs sampling algorithms [132, 234, 339, 35], which can be
used either to estimate marginal distributions at individual nodes (from which approximate MPM estimates
can be obtained) or as part of a simulated annealing procedure for the computation of the MAP estimate.
Also, a variety of alternative deterministic methods exist. One is the method of iterated conditional modes
(ICM) [36] in which the value at each node is iteratively modified to maximize the conditional distribution
for that node given the current iteration’s values at its neighbors (a method that reduces to Gauss-Seidel
iteration for the solution of (39)). Others include so-called mean-field methods [359] and the rich class of
variational methods, [170, 169]. Another method that deserves mention is that developed in [351] using
the so-called Bethe tree approximation. In this approximation, the computation of statistics at a specific
individual node is approximated by replacing the original graph by a tree rooted at that node, where each

30See [4, 5, 258, 141, 210, 260] for a methodology applied to time series, [101] for analogous results for MR trees, and [337]
for results for discrete-state graphical models on single loops.
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path away from the node in the original graph is replaced by a path in the tree. If the path in the original
graph contains a loop and thus goes through some node a second time, the corresponding path in the Bethe
tree passes through a “distinct” node corresponding to a second “copy” of the actual node in the original
graph. Tree algorithms can then be used to compute approximations to the desired statistics.

Several alternate methods for setting boundary conditions on such a tree are described in [351]. If one
uses the particular approach of extending the tree without terminating it at some finite point, the concept
explored in [351] intersects with a very important class of iterative methods that is widely known in the
graphical model literature and that is the subject of considerable current interest both as an object of
analysis in itself and as a point of departure for developing and understanding other emerging methods.
This is the class of so-called Belief Propagation (BP) [267] algorithms, originally developed in the context of
discrete models. While there are a variety of forms for BP, especially for trees, one version that is introduced
in [267] and that applies to loopy graphs as well is a “message passing” iterative algorithm, in which each
node iteratively passes messages to and incorporates messages from its neighbors. After a single step of the
iteration, each node has information from its nearest neighbors, while the next step includes information from
nodes that are a distance two from the node in question, etc., providing an expanding “sphere of influence”
for each node as the iteration proceeds.

The key to the algorithm is the method for incorporating successive messages from a set of neighbors
and then generating the next messages to be passed back to the same set of neighbors. Intuitively, a BP
message passing algorithm incorporates each such message assuming that the new information it contains is
independent of previously incorporated information as well as the information provided by messages from
other neighbors. This is the case as long as messages do not propagate around loops of the graph. For a
tree such an algorithm yields the optimal estimate after a number of iterations equal to the diameter of the
tree (so that information propagates from each node to every other node). Thus for a linear or nonlinear
MR model on a tree, this local message passing version of BP represents an alternative to the two-sweep
algorithms described in Section 4.2, with total computational load that is a slightly greater than that of the
two-sweep algorithm (roughly speaking, each of the N nodes performs computations during each iteration,
with the number of iterations corresponding to the diameter of the tree, which, for a balanced tree such
as in Figure 1, is on the order of log N). Furthermore, as elucidated in [332], for a tree BP also provides
all of the parameters needed to construct factorizations of the distribution of the entire graphical process,
providing the basis for both efficient likelihood function computation and the construction of equivalent
directed models for any choice of root node.

When BP is applied to a graph with loops, the sets of information provided by different neighbors
and on successive iterations are not independent, since, for example, a message sent by some node will be
incorporated into a succession of messages that eventually make their way back to the originating node
through a loop in the graph. Such dependencies are not accounted for in the BP inference computations, so
that, roughly speaking, information is counted multiple times as it propagates around loops in the graph.
As a result, BP may not converge, and if it does converge, it will typically not converge to the correct
statistical answers. Nevertheless, empirical success of this algorithm in a number of applications, including
turbo-decoding [7, 236, 278] and artificial intelligence, as well as known failures of BP in other cases, has led
to an intensification of efforts to analyze BP and to develop enhancements and variants of it [285, 334, 332,
338, 337, 357]. For example, as shown in [338, 285], BP applied to the approximate solution of the linear-
Gaussian estimation problem in (39) and to the simultaneous approximate computation of the diagonal error
covariance blocks of Pe may or may not converge. If it converges, the estimate x̂s will, in fact converge to
the exact solution to (39). However, the computed approximations to the error covariances do not converge
to the correct values (and typically underestimate the size of the estimation errors.)

As this discussion indicates, the complexity of inference on graphs with loops has sparked a considerable
body of research and very active lines of inquiry, both to develop new algorithms and also to analyze the
performance of existing procedures. In Section 7 we return briefly to this topic to describe several lines
of current inquiry that exploit the efficiency of inference on trees in order to develop new algorithms for
inference on more complex graphs.
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5 Some Orientation: Wavelets, Multigrid, and Inverse Problems

As we pointed out in the Introduction, MR methods span a very broad array of concepts and approaches,
and in this section we examine several other components of this large field. Our objective in doing this is to
help the reader both navigate through this larger domain and understand how these other lines of inquiry
relate to the MR models and algorithms on which we focus.

5.1 Wavelets

The use of wavelets [86, 329, 228] to analyze stochastic processes is, perhaps, the most familiar concept that
comes to mind when the idea of MR analysis of stochastic processes is raised. Much of the reason for this
stems either from analyses that demonstrate that wavelet transforms provide substantial decorrelation of
important classes of processes such as fBm [117, 293, 346, 114, 83, 146, 100, 102, 176, 191, 154, 137, 273,
235, 69, 360, 320] or from constructions of processes using wavelet synthesis [350, 349, 62, 346, 347, 348, 114,
358, 275, 151, 100, 80, 83]. In this section we take a brief look at some of the relationships between wavelets
and MR models on trees, a subject we have divided into two components. The first of these describes a
set of important examples that are explicitly in the form of MR models on trees with variables at nodes
corresponding to individual detail or scaling coefficients of a wavelet decomposition of a signal or image.
The second focuses on the interpretation of wavelet synthesis as a coarse-to-fine, scale-dynamic system, a
viewpoint that has also received significant attention in the literature but whose explicit connection to tree
models (a topic we defer to Section 6.2) is not as obvious.

5.1.1 Elementary wavelet models on trees, hidden Markov models, and wavelet cascades

The fact that wavelet coefficients of many stochastic processes are nearly decorrelated leads directly to a
first, elementary method for multiresolution modeling in which we simply assume that these coefficients are
completely decorrelated. Such an approach, for example, was proposed and developed in [350, 346, 347] for
the modeling of fractal Gaussian processes. Such models can be trivially identified with simple MR models
on trees, in which individual detail coefficients serve as the variables that populate nodes at different levels
of the tree. For example, for a 1-D signal and the dyadic tree of Figure 1(a), each node s corresponds
to a particular scale m and shift n, and the coefficient placed at that node would be the detail coefficient
corresponding to that scale and shift. Identifying that variable with the state x(s) of a linear MR model
leads to a model as in (6) with A(s) = 0, capturing the fact that in this very simple model all coefficients are
independent and Gaussian. In the 2-D case, using the quadtree in Figure 1(b), each node corresponds again
to a scale and a 2-D shift, and the variables resident at each node are the three detail coefficients associated
with that scale and shift.31 Once again, taking A(s) = 0 implies that the coefficients are independent from
node to node. If we also take the covariance Q(s) of w(s) to be diagonal (as is often done in the literature),
we then have that each of the coefficients at each node is independent of the others.

While the class of MR models described in the preceding paragraph have degenerate coarse-to-fine dy-
namics, it serves as a useful point of departure for the examination of other wavelet-based model constructs.
A first of these involves an issue of great importance in image processing applications in particular, in
which wavelet coefficients, while often nearly decorrelated, are most definitely neither Gaussian nor inde-
pendent. In particular, as discussed by many authors (e.g., [299, 300, 157, 46, 250, 218]), the distribution
of wavelet coefficients tends to be highly kurtotic and have heavy tails–resulting from the fact that many
coefficients come from relatively smooth regions of an image and thus are quite small, while others, corre-
sponding to locations of edges, can be very large. Furthermore, as is also discussed in the literature (e.g.,
[296, 299, 80, 300, 46, 333]), large wavelet coefficients generally form cascades that are localized in space and
propagate across scale, reflecting the presence of edges. Indeed so-called embedded zerotree approaches to
image coding [296] take explicit advantage of these properties of wavelet coefficients.

31As is standard in wavelet analysis of images, these three coefficients correspond to (a) high frequency detail in both
dimensions; (b) low frequency in the horizontal and high in the vertical; and (c) high frequency in the horizontal and low in
the vertical.
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A class of MR models that captures the non-Gaussianity of wavelet coefficients but not their dependence
involves a simple modification to the model described previously. In particular, we still use (6) with A(s) = 0,
but we use a non-Gaussian, distribution for w(s). One possibility is a heavy-tailed distribution from the
class of so-called generalized Gaussian distributions [41, 250], of the form Kexp{−|x|a}, with 0 < a < 2.
An alternate class of choices for the distributions of w(s) are mixture distributions [218, 80]. For example,
one of the simpler models introduced in [80] consists of modeling wavelet coefficients as independent with
distributions consisting of finite weighted Gaussian mixtures. Such a model, while not truly heavy tailed
(since the Gaussian fall-off is still present as | x |→ ∞), can capture a substantial range of non-Gaussian
behavior. For example, a very simple two-component mixture (consisting of low-variance and high-variance
Gaussians) is used in [80]. Note that in this case, we can think of each node of the tree as having a hidden
variable in 1-D or a set of three hidden variables in 2-D corresponding to the random choices of which mixture
component is used for each wavelet coefficient. Alternatively, as discussed in [333] (see also [46, 300, 308]) one
can obtain a rich variety of truly heavy-tailed distributions as so-called “scale mixtures”–i.e., by multiplying
a unit mean Gaussian random variable by a positive random variable, generated as a nonlinear function of
a second independently drawn Gaussian random variable. Both of these Gaussians are, in essence, hidden
variables, as it is only the heavy-tailed product that is observed. Optimal estimation for any of the choices
of distribution mentioned in this paragraph corresponds to performing nonlinear operations on individual
wavelet coefficients. Among the algorithms that result from such models are so-called wavelet shrinkage
algorithms [104, 301, 57, 2, 68, 330, 49, 192, 251, 193].

As described in [80], such independent mixture models result in very simple nonlinear operations on
individual wavelet coefficients for optimal estimation. Moreover, both the discrete-state hidden models as
well as the continuous ones in [333] open the door to building MR models on trees that not only capture
the non-Gaussianity of wavelet coefficients but also the dependencies displayed by these coefficients in real
imagery. A number of approaches to capturing such dependency have been developed (see, e.g., several
contributions in [251]). One method is described in [155], where wavelet shrinkage is first used to obtain a
coarse estimate of denoised wavelet coefficients, and once these denoised coefficients are subtracted from the
observed data a linear MR model is used, together with the two-sweep algorithm in Section 4, to estimate
smaller-scale fluctuations. Other approaches attempt to capture directly cascade behavior in which the
occurrence of a large wavelet coefficient at one scale implies that nearby coefficients at other scales are also
likely to be large. The following example illustrates one important method for accomplishing this:

Example 6. In a series of papers [80, 261, 59, 281, 282] a methodology is developed for signal and image
processing applications based on so called Hidden Markov Trees. The basic idea behind these models builds
on the Gaussian mixture model just described. In particular, the MR model in this case is a finite-state
model as described in Example 3. In the basic version of this model, each state x(s) consists of either a single
binary random variable (for 1-D signals) or a set of three binary random variables (for 2-D), which correspond
to choices of low-or high-variance Gaussians for the corresponding wavelet coefficients. In order to capture
cascade effects of large wavelet coefficients, one can choose the parent-to-child transition probabilities so that
the choice of “high” at a parent node makes it likely that “high” will be chosen at a child node. The wavelet
coefficients are then modeled as being conditionally independent given the value of the corresponding discrete
state x(s). Given such a model the discrete-state version of the two-sweep estimation algorithm described
in Section 4 can be directly applied in order to perform image denoising. Figure 11 depicts the result of
applying this methodology to the noisy image depicted in Figure 3(b) using a set of complex-valued wavelets
[186] chosen to minimize the problem of non-shift-invariance that arises with the use of decimated wavelet
decompositions [282]. Comparing Figure 11 with the Wiener filtering results in Figures 3 (c) and (d), we
see visually that the nonlinear processing inherent to the MR Hidden Markov Tree model leads to excellent
noise rejection without the blurring evident in the linear Wiener filter.

We also refer the reader to [333] in which the cascade and heavy-tailed behavior of image wavelet coef-
ficients are captured through the use of a linear MR Gaussian model as in (6) for the hidden state, where
the measurement model involves multiplying a nonlinear function of this hidden state with a white noise
sequence to produce a model for the actual wavelet coefficients. These coefficients, then, are uncorrelated
but not independent and, in fact, display the same type of cascade behavior seen in real imagery. Further-
more, as mentioned previously such a model can capture truly heavy-tailed distributions. Estimation for this

31



nonlinear model, however, requires iterative relinearization. Thanks to the linear MR model for the hidden
variables, each iteration can be performed efficiently using the two-sweep algorithm described in Section 4.

The idea of using multiplicative models to capture cascades in multiresolution decompositions actually
has its own rich literature, in areas ranging from mathematical physics and the study of random cascades
and multifractals [136, 15, 94] to multiscale models for counting processes [322, 188, 261, 263] to multifractal
cascade models for communication network traffic [279]. One example of such a model (in which the state
variables at each node are scaling rather than wavelet coefficients) is described in Example 7 in Section 5.3.

The lack of shift-invariance associated with decimated wavelet representations has led a variety of authors
[298, 72, 203, 270, 282, 333] to consider alternatives generally involving the use of overcomplete, undecimated
wavelet representations in 1-D and overcomplete “steerable” pyramids in 2-D that allow one to avoid artifacts
due to a lack of rotational invariance as well. The use of such overcomplete representations, however, implies
that any faithful statistical model must capture the fact that there are constraints among the coefficients in
this representation. Since including such constraints greatly complicates any statistical model, it is common
in practice to ignore them and thus to use a model that produces estimates of sets of variables that are
inconsistent in that they do not correspond to the coefficients in the overcomplete representation of any
signal. In practice a variety of methods for projecting such estimates onto a consistent set–or, equivalently,
for directly reconstructing a signal given these estimates–have been developed and we refer the reader to
the references cited previously in this paragraph. Note also that this inconsistency is closely related to the
concept of internal models first introduced in Example 1 and discussed further later in this section and in
Section 6.2.

Finally, there is also a substantial body of work on so-called adaptive representations (e.g., [73, 229, 52,
228, 192, 193]) using entire families or “dictionaries” of bases, which taken together generally form vastly
overcomplete sets. The objective in each of these methods is to select one basis from this collection that
leads to the “best” representation–in terms of maximal decorrelation among and/or sparsity in the resulting
expansion coefficients for the signal in question. The argument can be made that such an approach produces
a tree-structured signal decomposition in which the correlation or dependence among coefficients in the tree
is minimized. As a result, using such an optimized representation can improve the accuracy of a resulting
MR model for the signal–e.g., the trivial linear model (with A(s) = 0) or a more complex model such as one
using Hidden Markov Trees.

5.1.2 Scale-recursive models based on wavelet synthesis

We now turn to an alternate approach to using wavelets in scale-dynamic models. A first method, described
by several authors [137, 62, 100] is based on the wavelet synthesis equation. Specifically, let xm denote the
vector of all scaling coefficients at the mth scale in an orthogonal wavelet decomposition, and let wm denote
the corresponding vector of wavelet coefficients at the same scale. Then, assuming that we use a compactly
supported wavelet, corresponding to a particular pair of wavelet and scaling filters [86, 329, 228], the wavelet
synthesis equation can be written as a scale-to-scale recursion:

xm+1 = Hmxm + Gmwm (44)

where Hm and Gm are matrices corresponding to the conjugate filter pair for the particular wavelet decompo-
sition chosen, and where the first term on the right-hand side corresponds to the coarse-to-fine interpolation
of scaling coefficients and the second to the insertion of the additional detail at that next finer scale.32

Eq. (44) is the starting point for several important observations and investigations. The first involves
its direct use in both multiscale modeling and estimation when the wavelet coefficients are modeled as

32Note that in the representation of 1-D signals, xm+1 has twice the dimension as xm, each corresponding to the full set of
variables at the corresponding level of a pyramidal representation. In 2-D the number of coefficients increases by a factor of 4
as we move from one scale to the next finer scale. For this reason the linear operators Hm and Gm are rectangular and also
have dimensions that vary with scale.
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being white noise. In this case, estimation based on such a model given noisy measurements of the wavelet
coefficients corresponds to a standard scale-recursive Kalman filter with state at scale m corresponding to the
entire vector of scaling coefficients xm. Note that this model allows the direct fusion of nonlocal measurements
as long as they correspond to observations of individual wavelet or scaling coefficients [62, 151, 100].

Second, one can do better than this in both modeling and estimation by taking any residual correlation
into account. Indeed several authors have considered methods for doing this [358, 275, 146, 85], and (44)
suggests a very simple method of this type, similar to an approach described in Section 6.2. In particular,
suppose that the objective is to construct a model as in (44) so that the finest scale process has covariance
that closely approximates a given covariance (e.g., of fBm). Since the coefficients xm and wm are the scaling
and wavelet coefficients of the finest scale process, xM , we can directly use the specified, desired statistics
of this fine-scale process to determine the statistics of the coefficients at coarser scales. For example, such a
computation can be used to determine the variances of the wavelet coefficients wm. If we then ignore any
correlations–i.e., if we use these computed variances but otherwise assume that the wm are white–we obtain
an approximate model of the type we have already described. However, it is easy to obtain a more accurate
approximation analogous to (44) without any increase in dimensionality. Specifically, suppose that rather
than assuming that the wm are white, we make the weaker assumption that xm forms a Markov sequence
in scale. In this case, we can capture any correlation between wm and xm by writing:

wm = Lmxm + µm (45)

where Lmxm is the best estimate of wm based on xm and where µm is uncorrelated with xm and, in fact, is
a white sequence in scale under the assumption that xm is Markov. Further, both Lm and the covariance of
µm are directly computable in terms of the target fine-scale statistics. Substituting (45) into (44) we obtain
the following dynamic model:

xm+1 = (Hm + GmLm)xm + Gmµm (46)

which represents a more accurate approximation as it captures some of the residual correlation among
wavelet and scaling coefficients. Of course one can consider higher-order approximations (e.g., modeling xm

as a higher-order Markov process in scale), although such approximations will require defining a “state”
for recursive estimation that consists of several successive resolutions of scaling coefficients. Similarly, by
attaching a hidden Markov tree to µm we can, in principle, synthesize the approach described here with that
introduced in Example 6, a possibility that to date has not been examined in the literature.

In addition, other nonlinear variations of this type of structure can be found in [125, 124] in which the
estimation of wm based on xm takes on a form that is in some sense both more general and more restrictive
than (46). In particular, in the models in these references, the individual detail coefficients comprising wm

are assumed to be conditionally independent when each is conditioned on a specified window of neighboring
scaling coefficients (i.e., a corresponding subvector of xm). Both the dependence of each such coefficient on
only a local window of scaling coefficients and the resulting conditional independence of the entire vector
of coefficients represent what in principle are restrictions compared to the general form of (46), although
such restrictions are generally required in order to obtain computationally tractable models (e.g., we will see
something similar in Section 6.2). What is more general in [125, 124] is that the conditional distribution for
each component of wm is modeled as Gaussian, with mean and variance that are nonlinear functions of the
window of neighboring scaling coefficients (see Section 6.3.3 for a further brief discussion).

Note that both of the models (44) and (46) represent consistent models in that the values of the vectors
xm and wm are, with probability 1, the scaling and wavelet coefficients of the finest scale process xM .
However, as discussed in [62], it is also possible to specify models that do not have this consistency but
which still exploit wavelet structure. In particular, a model studied in [62] is the following variant of (44):
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xm+1 = Hmxm + wm (47)

where wm is white noise. We note here only that the additional degrees of freedom in models such as (47)
provide additional flexibility–and hence the potential for greater accuracy– in approximating the statistics of
any process. However, while examples exist demonstrating the potential of such models (see, e.g., [223, 111]
and the discussion in Section 6.2) exploiting this flexibility in a systematic fashion remains an open problem.
What is true, however, is that estimation for such models admits efficient solution in exactly the same cases
as for (44) and (46).

In particular, note that the dimensions of the state variables in (44) and (45) are substantial, corre-
sponding to all of the scaling coefficients at a single scale. As a result, direct implementation of Kalman
filtering equations is prohibitively complex for signals or images of even modest size. However, as discussed
in [62], if the data that are available are either independent-noise-corrupted measurements of the wavelet or
scaling coefficients or can be transformed into this form, the Kalman filter can be implemented in decoupled,
diagonalized form using the wavelet transform. One case in which this occurs is if there are dense measure-
ments of the process at one or more scales, corrupted by independent additive noise of variance that can
vary from scale to scale but is constant at each scale. In this case, application of the wavelet transform to
these data transform them into independent measurements of individual wavelet coefficients.33 On the other
hand, if the available data are sparse or irregularly sampled or simply have varying noise variances within
any scale, the wavelet transform does not yield such a simplification, and the complexity of the Kalman filter
associated with these models becomes prohibitive. One of the reasons for this apparent complexity is that
the models (44) and (46) do not correspond to MR models on trees, while (47) does only for the case of the
Haar wavelet. Fortunately, however, a more careful, component-by-component look at the structure of the
wavelet synthesis equation–and a very different definition of the MR state–does indeed allow us to construct
MR models on trees such as in Figure 1. The construction of such wavelet-based models is described in
Section 6.2.3.

5.2 Multigrid and Coarse-to-Fine Algorithms

In this section we discuss several classes of algorithms using multigrid and coarse-to-fine algorithmic struc-
tures. With the exception of the last few approaches we describe, these methods are fundamentally different
from those on which we focus in this paper. For that reason we will be rather brief in our descriptions and
not as exhaustive in our review of the literature.

Most of the algorithms that fall within the category on which we focus here correspond to problems
that can originally be described at a single, finest resolution–i.e., the data and desired estimates are only
available or required at that single resolution. For a variety of reasons, however, direct solution of that
single-resolution problem is either too complex to consider directly or is subject to large numbers of local
minima many of which are far from the optimal solution. The general idea of coarse-to-fine methods for such
problems is to construct approximate, coarser versions of the problem (typically at multiple resolutions) and
to use the solution of the coarser, and hopefully simpler, problems to guide solutions at finer (and eventually
the finest) scales. Perhaps the simplest examples of such approaches are to problems in which the spatial
phenomenon to be estimated is not modeled as a random field but rather is simply viewed as an unknown,
which is represented in a multiresolution fashion to allow coarse-to-fine algorithms for maximum likelihood
estimation. One example of such an approach is given in [63] in the context of an inverse conductivity
estimation problem, in which the unknown conductivity field is modeled as piecewise constant at a sequence
of resolutions from coarse-to-fine (corresponding to Haar wavelet approximations), and the solution of the
problem at one resolution is used as an initial condition for the solution at the next finer resolution. Similarly,
coarse-to-fine approaches for the detection and localization of significant anomalies (modeled as unknowns)

33We refer the reader to [110] for a significant extension of these ideas to a construction using wavelet packets [73] rather
than wavelets and in which taking the wavelet packet transform of dense measurements at one or more scales transforms the
problem into a set of almost-decoupled MR tree estimation problems, coupled only through a common root node.
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in a background field (modeled as a random field) [245, 120] have been developed to allow efficient zooming
in on features of interest.

There is also an extensive literature on the use of MRF models34 together with either full multigrid
computational algorithms or purely coarse-to-fine algorithmic structures. Examples of the former can be
found in [319, 70, 109, 356], where the treatment in [319] represents what to the author’s knowledge is
the first thorough examination of the application of multigrid methods to image processing/computer vision
problems. Full multigrid methods, such as those used in [319] and discussed in much more depth in references
devoted to the subject such as [44, 45], involve both coarse-to-fine and fine-to-coarse operations in an iterative
algorithmic structure. The idea in the coarse-to-fine step is essentially the same as for the methods described
in the preceding paragraph: We interpolate a coarser approximation of the estimate to the next finer scale to
provide a starting point for the optimization at that scale. Various types of interpolation can be used. For
example, there is the general class of wavelet-based interpolation schemes, in which the interpolation from
one scale to the next involves simply propagating a scaling coefficient from one scale to the next finer one with
the corresponding detail coefficient set to zero (e.g., (44) with wm set to 0). In other interpolation schemes,
the coarser variables might simply represent subsampled versions of the field, with sparser subsamplings at
coarser scales. In this case the coarse-to-fine interpolation might correspond to replication or to something
more complicated such as bilinear interpolation.

As discussed in [44, 45], the fine-to-coarse operations in multigrid reflect the fact that in most applications
of multigrid, the problem that is actually solved at a coarser scale represents an approximation to the
original problem. For example, in approximating the solution to partial differential equations (as often arise
in continuous-space MRF estimation problems [208]), derivatives at each scale are replaced by differences.
Such approximations suffer from aliasing errors, which can, in principle be reduced once we have estimates
at the next finer scale. Indeed, as discussed perhaps for the first time in [209], a general interpretation
of multigrid algorithms as applied to random field estimation is that at each resolution such an algorithm
computes the optimal estimate assuming that there is no finer scale detail in the field–i.e., that the coarse-
to-fine interpolation process is exact so that any finer-scale detail coefficients are 0. For example, if we were
to assume that an image is constant over a 2x2 block of pixels, then noisy measurements of those 4 pixels
would simply be averaged in computing the corresponding optimal estimate at that resolution. However, if
we subsequently have available finer-scale estimates, which in general will vary over these coarser 2x2 blocks,
this fine-scale detail could then be used to correct for the erroneous averaging at the coarser scale, allowing
new, coarser-scale estimates to be computed. This is exactly what the fine-to-coarse multigrid correction
step does.

In a number of other MRF estimation algorithms [135, 40, 145, 257, 144, 140, 195, 126] the full multigrid
structure is not used, and only coarse-to-fine operations are performed. In some of these (e.g, see [40, 145,
144, 140]) the problems that are solved at coarser scales correspond exactly to the original problems but
with a constrained set of allowed reconstructions (e.g., finding the optimal estimate among all fields that are
piecewise constant at each resolution), while in others this is not the case.

While it is certainly possible to view such coarse-to-fine algorithms as purely computationally-motivated
constructs, [209] makes clear that there are statistical interpretations of at least some of the computations
and representations embedded in such algorithms. As a result, a number of authors [164, 200, 144, 269] have
looked in more detail at the following question: Suppose we begin with an MRF model at the finest resolution;
what is the corresponding statistical structure of a coarsened version of the field (e.g., corresponding to a
coarse wavelet approximation or to a subsampled version of the field)? As discussed in [145, 144, 140] (and as
can be inferred from the discussion in [40]), if one begins with a nearest-neighbor MRF in 2-D and then uses
Haar-based coarsening–i.e., block-averaging at a set of increasingly coarse scales–then each of these coarser
fields is also a nearest-neighbor MRF.35

34In some of these treatments, e.g., [319], MRF models are not explicitly discussed. However, the regularization formulations
used, which involve variational penalties on the reconstructed field (e.g., on smoothness), have direct interpretations as MRF
models. See Section 6.2.1 for more on this.

35This is closely related to the fact, mentioned in the preceding paragraph, that these methods produce exact, solutions to
the original estimation problem at each resolution under the constraints that there is no finer-scale detail present in the random
field.
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However, as discussed in detail in [269, 164, 200], in all but a special set of circumstances, coarser-scale
fields resulting from other coarsening procedures such as subsampling [200, 195] and so-called renormalization
group methods [135, 257, 131, 99] do not have such simple exact descriptions–and indeed may correspond
to graphical models with fully connected graphs. In such cases, what are generally used at coarser scales
are approximations to the exact statistics of the coarsened representation that are much more tractable
computationally. For example, methods for constructing MRF models that represent optimized approxima-
tions for such coarsened fields are described in [200, 195], while [135] and other renormalization approaches
use statistical methods as a means of averaging over finer-scale fluctuations in order to construct approx-
imate coarser-scale MRF models. Using such approximate models implies that the problems being solved
at coarser-scales are only approximations to (rather than constrained versions of) the finest-scale problem.
Of course this is completely consistent with the philosophy of multigrid, in which coarse-scale computations
are of no intrinsic interest in themselves but rather serve the purpose of helping to guide the finer-scale
computations.

As the preceding discussion makes clear, in all of the multigrid/coarse-to-fine image processing and ran-
dom field estimation algorithms described so far (and in the vast majority of such methods in the literature),
coarse-scale representations of the phenomenon of interest are introduced primarily for computational pur-
poses, and any explicit or implied statistical structure is isolated from scale to scale–i.e., there is no single,
consistent statistical model across scale. As a result, these methods are rather different from those on which
this paper focuses. However, there are several investigations that both fall into the general category of multi-
grid or coarse-to-fine procedures and do involve random quantities at multiple resolutions that are explicitly
linked statistically across scale through a graphical model. One such example using MR models on trees for
coarse-to-fine SAR segmentation can be found in [119]. Another, which involves graphs other than trees for
image segmentation is that originally developed in [42] (see also [323, 183, 53]), which we describe and illus-
trate in Section 7. In addition, there are several other such modeling frameworks described in the literature,
including those in [179, 180], in which the basic graphical structure superficially resembles the quadtree of
Figure 1(b), except that there are also edges within each resolution–so that each scale by itself has connec-
tivity exactly as with a MRF (e.g. nearest-neighbor edges for first-order models or larger neighborhoods for
higher-order dependencies at each resolution). Such a graph has complexity36 that is considerably greater
than a single-scale first-order MRF, and methods such as simulated annealing need to be applied in order
to obtain solutions. In fact the authors of [179, 180] develop multi-temperature, multiresolution annealing
algorithms and demonstrate that there are potentially some advantages to this approach that result from the
usual multigrid/coarse-to-fine philosophy of using coarser grids to guide solutions at finer ones. We also refer
the reader to other multiresolution models [289, 212, 125, 74, 127, 213] that involve structures other than
trees, together with algorithmic structures that are reminiscent of multigrid and coarse-to-fine procedures.

One final point to make about the methods mentioned in the preceding paragraph concerns the modeling
of the measurements. One of the critical properties of the graphical estimation problems and algorithms
discussed in the preceding sections is the assumption that each observation consists of a measurement of the
state at a single node on the graph corrupted by independent noise. If this is not the case, then the actual
graphical structure of the estimation problem must reflect the additional dependencies introduced by the
measurements. In some methods, such as [42], the assumption of conditional independence is clearly satisfied,
as all of the measurements are of individual finest-scale pixels. However, in others, such as [179, 180, 74, 213],
the original finest-scale measurements are transformed–e.g., simply by replicating the same measurements
at different resolutions, by transforming the raw data using wavelet transforms, or by extracting features at
multiple resolutions. Furthermore, the algorithms in these papers implicitly assume that these transformed
data are conditionally independent, a condition that in some cases (e.g., measurement replication) is clearly
not true and in others represents an implicit assumption of whitening resulting from wavelet transformation
or feature extraction.

36Where “complexity” can be assessed in terms of the loop structure of the graph or, more precisely, in terms of the complexity
of the associated junction tree–see Section 6.1
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5.3 Multiresolution Algorithms for Inverse Problems

In this section we take a look at multiresolution algorithms for inverse problems, i.e., problems in which
the measurements are nonlocal functions of the random field to be reconstructed. Inverse problems span a
broad array of applications and mathematical formulations, and the literature investigating their properties
and developing methods for their solution is equally vast (see, for example, [33]). Many of the problems
and methods in this field have no or at most tangential connection with the MR statistical models and
processing algorithms with which we are primarily concerned. Consequently our discussion here is brief,
focusing exclusively on aspects of work in this area that intersects with the main themes of this paper.

As a first comment, we note that multiresolution methods for inverse problems have significant over-
laps with the topics of both of the preceding sections. For example, the use of multigrid or coarse-to-fine
algorithms to combat problems of computational complexity and local minima is well-documented (with
[63, 215, 289, 290, 126, 125, 356] representing examples). As for the use of wavelets, the motivations include
not only the fact that wavelets decorrelate many stochastic processes but also that in many cases they lead
to significant sparsification of the nonlocal operator relating the measurements and the underlying random
field which we wish to reconstruct. For example a number of authors [271, 286, 264, 95, 38, 276, 287, 361]
have exploited this fact in the specific context of tomographic reconstruction in order to develop determin-
istic inversion algorithms that are either very efficient or that allow fast high-resolution reconstructions of
localized regions. Also, a number of authors [103, 335, 246, 248, 247, 362, 305, 39, 107] have used both the
decorrelation and sparsification properties of orthogonal wavelet decompositions in order to develop statis-
tical reconstruction algorithms for tomography, deblurring, and other inverse problems. For the most part
such methods involve the use of the simplest class of statistical models described in Section 5.1, namely
those resulting from assuming that the wavelet coefficients are uncorrelated random variables. If one were
then also to assume that the wavelet transform truly diagonalized the measurement operator, the associated
measurement model would have the form of (19) corresponding to uncorrelated measurements of individual
wavelet coefficients.

Given the discussion in Section 5.1, an obvious variation of such methods is one in which we use
wavelet shrinkage techniques–e.g., corresponding to modeling the wavelet coefficients as independent but
non-Gaussian random variables. Several such methods have been developed (see, for example, [244]), but
the predominant use of wavelet shrinkage for inverse problems, introduced and popularized by Donoho [105],
uses a variation, known as the wavelet-vaguelette decomposition (WVD). As shown in [105] and in other
references in this area (see, e.g., [187, 3, 206]), WVD’s can be designed for important classes of inverse
problems (including tomography). Such decompositions correspond to using an orthogonal wavelet decom-
position for the random field to be reconstructed and a biorthogonal basis for the measurement domain that
together exactly diagonalize the measurement operator. Shrinkage in this transformed domain then corre-
sponds to projecting the measurements onto the nonorthogonal measurement basis, shrinking component
by component, and then reconstructing using the orthogonal image domain basis. As with other shrinkage
applications, these algorithms have important asymptotic optimality properties, many of which are related
either explicitly or implicitly to the heavy-tailed nature of wavelet coefficients of imagery.37 We refer the
reader to the references for details.

While some of the approaches described in the preceding paragraphs can be interpreted as employing
degenerate MR models (i.e., in which A(s) = 0 in (6) and where w(s) is modeled as either Gaussian or
heavy-tailed), there are other statistical approaches to inverse problems that involve more complex MR
models. One that suggests itself based on the development in Section 5.1, but that, to our knowledge has
not been explored, is to combine models that capture cascade behavior in wavelet coefficients (e.g., as in the
Hidden Markov Trees described in Example 6) with the WVD decompositions described in the preceding
paragraph. A second that has been studied in detail is that in [125, 124] which uses nonlinear models (as
briefly introduced in Section 5.1 and again in Section 6.2) that relate wavelet and scaling coefficients across

37Note that shrinking individual coefficients of WVD decompositions implicitly corresponds to assuming that these trans-
formed measurement coefficients are independent (see, e.g., [206] for an explicit discussion of this and related issues). While this
is a perfectly valid probabilistic model–and one that leads to impressive results for many applications–it is worth noting that
if the measurements are corrupted by white noise, the coefficients of the measurement expansion are not exactly uncorrelated
since the basis used is not orthogonal (but rather is half of a biorthogonal pair).
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scale in a pyramidal graphical structure that is generally more complex than a tree, leading the authors to
employ an iterative estimation algorithm for the tomographic reconstruction problem on which they focus.
Also, while the random field model that is used in that work is a multiresolution model in the wavelet domain,
the reconstruction for the tomographic reconstruction problem is performed directly in the image domain (to
ensure positivity of the reconstruction), using the full nonlocal tomographic measurement operator so that
the measurements are not local with respect to the nodes of this graph (which implies that the estimation
structure is quite different than that described in Section 3).38

While the examples described so far in this section are only tangentially related to MR models on trees
or can be interpreted as involving degenerate MR models, there are also investigations that make much more
explicit and substantive contact with the primary focus of this paper. One such example, involving Poisson
data and multiplicative scale-to-scale dynamics is illustrated in the following example.

Example 7. In this example we take a brief look at MR models introduced and studied in [261, 322, 188]
in the context of Poisson measurements and in [279] for the modeling of traffic in communication networks.
The idea of modeling counting processes at multiple resolutions has a substantial history, including a number
of examinations of models for self-similar counting processes for a variety of applications [311, 231, 165, 318,
221, 201, 202].

The models introduced in [322, 188] make use of very simple properties of Poisson counting processes,
namely the facts that (a) the numbers of counts of such a process over non-overlapping intervals are in-
dependent; and (b) the sum of independent Poisson random variables is also Poisson. For a 1-D Poisson
process over a time interval I these properties suggest a simple “dyadic partitioning” [188] of the interval in
which we construct a MR tree exactly as in Figure 1(a) in which each node is identified with a corresponding
dyadic subinterval of I (so that, for example, the nodes sα1 and sα2 in Figure 1(a) correspond to the two
halves of the interval corresponding to their parent s). The variable, x(s) placed at each node is then simply
the number of counts over that subinterval. These variables have an obvious fine-to-coarse relationship, i.e.,
x(s) is the sum of the two child values, x(sα1) and x(sα2), so that this model is what we have termed
internal since the value at each node is a deterministic function of its descendents. This leads directly to a
coarse-to-fine model, reflecting the fact that x(sα1) and x(sα2) are complementary fractions of x(s):

x(sα1) = δ(s)x(s) (48)

x(sα2) = [1 − δ(s)]x(s)

where δ(s) is a random variable, independent from node to node, taking on values between 0 and 1. As
discussed in [322, 188, 263], the conditional distribution for each child conditioned on its parent is a binomial
distribution with parameter corresponding to the “fractional rate” of counts in one half interval versus the
other. That is, if we let λ(s) denote the mean of the number of counts over the interval corresponding to
node s, then

p(x(sα1) | x(s), λ(s), λ(sα1)) = B
(

x(sα1) | x(s),
λ(sα1)

λ(s)

)

(49)

where B(m | n, ρ) is the binomial distribution

B(m | n, ρ) =

(

n

m

)

ρm(1 − ρ)n−m (50)

38In [289, 290] some of these same authors develop an alternate MR modeling framework that works directly with MR pixels
as state variables rather than wavelet and scaling coefficients. The approach to tomographic reconstruction in these references
involves a coarse-to-fine/multigrid algorithm in which the data are used at each resolution to perform estimation assuming that
the finer scale detail is absent, and a simple scale-to-scale pyramidal MR model. This graphical structure and the algorithms
used are closely related to the one introduced in [42] which is illustrated in Example 10 in Section 7.
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Thus, if the rate function of the Poisson counting process were known, (48) would be a simple MR tree
model for x(s).39 However of central interest for Poisson estimation and imaging applications is the case in
which the rate function λ(.)itself is random and is to be estimated from the observations of the count process
x(s). Since the mean of the sum of Poisson random variables is the sum of their individual means, the
count function λ(s) also has the same additivity property as the count process. Thus, we have the following
parent-child relationships for the rate as well:

λ(sα1) = ρ(s)λ(s) (51)

λ(sα2) = [1 − ρ(s)]λ(s)

where ρ(s), which takes on values between 0 and 1, is precisely the fractional rate λ(sα1)/λ(s) appearing as
the binomial parameter in (49).

To complete the formulation of the problem of estimating λ(s) given observation of x(s), we need to
specify the distributions for the independent random variables ρ(s), as well as the random variable λ(0)
corresponding to the total mean count over the entire interval. As discussed in [322, 188, 263], a particularly
judicious set of choices are to model λ(0) with a gamma distribution and each ρ(s) with a beta distribution.
In particular this choice is conjugate to the choice of a Poisson distribution for the total number of counts
x(0) and binomial distributions in (49). With these choices the conditional distribution for the rates and
fractional rates have the same forms as their priors and are simply obtained by updating the parameters of
these distributions using the observed count values x(s). The estimation problem can then be put exactly
in the form considered in Section 3, leading to a two-sweep algorithm. Thanks to the internality and special
structure of this model, the upward, fine-to-coarse sweep consists simply of summing counts over intervals–
i.e., computing the unnormalized Haar scaling coefficients of the numbers of counts over dyadic intervals–
followed by a nonlinear coarse-to-fine sweep to specify the parameters of the conditional distributions and
hence the optimal estimates at each node. We refer the reader to [322, 188, 263] for details.

It is important to make several comments at this point. First, the use of Haar scaling coefficients
in this case is critical, as the structure of this model depends crucially on the summing of independent
Poisson random variables. Hence, the same ideas do not work using other wavelets. Secondly, as mentioned
in Section 5.1, the multiplicative form of the models in (48) and (51) makes contact with other research
on wavelet cascades and multifractals (e.g., see [136, 15, 94, 279]). Furthermore, by carefully choosing the
parameters of the beta distributions for ρ(s) or by using mixture models instead, one can obtain a wide variety
of count models, including ones with self-similar or with bursty behavior, and to estimation algorithms that
have shrinkage-like characteristics. We refer the reader to [322, 188] for details. Also, the extension of the
models to 2-D deserves some comment. In particular, the approach described in [322, 188, 263] uses an
asymmetric model in which a coarse-level square at one resolution is first split horizontally and then each
half is split vertically. Each of these two steps corresponds to a splitting a region into two halves, resulting
in models analogous to (48) and (51). As pointed out in [261, 263], one could directly consider a quadtree
structure in which counts over a square are split into 4 separate child counts over each of the quadrants.
In this case, the conditional distributions for each child given the parent becomes multinomial rather than
binomial, and the corresponding conjugate distributions for the fractional rates then become Dirichlet rather
than beta. In either case, the resulting two-sweep estimation algorithm has exactly the same structure as in
the 1-D case.

Finally, the estimation problem we have considered so far in this example is one in which we directly
observe the counts as a function of time or space–i.e., we have direct measurements of counts for each time
interval or each pixel. However, in many applications such as emission computed tomography, the estimation
problem is a true inverse problem in that the total count recorded by each measurement detector is the sum
of counts corresponding to photons from each pixel in the field to be imaged that impinge on the detector.

39Actually, (48) is not quite a tree model as x(sα1) and x(sα2) are not independent conditioned on x(s), since their sum
must equal x(s). This is the same issue as mentioned in Section 5.1 concerning the relationship of (44) to tree models and
which is examined and solved in Section 6.2 by very simple state augmentation (in particular, in this example, x(s) and δ(s)
together become the state in the MR tree model.)
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At first glance, this problem seems to require very different solution techniques from the ones that we
described previously in this example, since we do not directly observe the total number of photons emitted
at each location in the image. However, in [263] the iterative expectation-maximization (EM) algorithm 40

is employed, each step of which involves MR algorithms of the type just described and which is guaranteed
to converge to the optimal estimate. The key to this method is a clever choice of the so-called “complete
information” for the EM algorithm, namely the number of photons impinging on each measurement detector
from each individual image pixel. An example of the application of this procedure to simulated emission
computed tomographic data is illustrated in Figure 12.

As a final comment, we note that most of the methods for inverse problems described in this section–
and certainly those that involve taking wavelet transforms of the observed data–assume the availability of
a regular set of nonlocal measurements. For example, the near-diagonalization of many such measurement
operators using wavelet transforms rely on this regularity to transform the observed data into what can be
modeled as measurements of individual wavelet coefficients. Of interest as well are problems in which we
may have only a relatively few and irregularly spaced nonlocal measurements–e.g., as arises in data fusion
problems such as described in Section 2.6. In such a situation, wavelet-based methods do not apply (except
in the very special and unlikely case that the nonlocal measurements correspond exactly or approximately
to measurements of individual wavelet coefficients), and instead other methods are required to fuse and
invert these data together with other measurements. In Section 6.2.2 we describe a way in which this can
be accomplished using MR models on trees

6 Multiresolution Model Construction and Identification

As the development in Section 4 makes clear, MR models offer the possibility of very efficient and scalable
algorithms. A caveat to this, of course, is the requirement that the phenomenon and data of interest be
well-modeled within the MR framework, where “well-modeled” refers not only to capturing the desired
statistics to the required level of fidelity but also to the parsimony of the resulting model. In particular,
while the complexity of various MR tree-based computations scales linearly with problem size as measured
by the number of nodes in the tree, estimation algorithms for linear-Gaussian problems scale quadratically or
cubically in the dimension of the state of the model at each node, while inference algorithms for discrete-state
processes are polynomial in the cardinality of the state set at each node. Thus, a requirement for a useful
MR model is that its state dimension or cardinality be comparatively small or increase at most modestly
with problem size.

The examples in the preceding sections make clear that there is a substantial body of inference problems
that can, indeed, be well-modeled and solved using MR models on trees. In this section we step back
from specific examples and, for the most part from predetermined notions of what variables (e.g., wavelet
coefficients) populate the nodes of our model, and take a more careful look at the topic of MR modeling
from several different vantage and starting points. Modeling and model estimation are, of course, vast topics
taking on a variety of guises in different fields, and we will make contact with several of these. While we
certainly cannot explore all of these connections in real depth, we hope that the following serves not only to
show the unique blend of ideas that enter into MR modeling but also to provide points of entry for further
exploration.

The starting point for MR modeling has two components: a) the available data or statistical information
whose characteristics we wish to capture in our model; and b) the model class that is available to us. For the
former we have several possibilities, namely sets of measurements of some or all of the variables that we wish
to model; an explicit and complete probabilistic specification of the variables whose statistical variability
we wish to capture in our model; or an implicit specification of that probabilistic specification in terms of a
graphical model. (e.g., an MRF model). As for the specification of the class of models available to us, there
are also several possibilities: models in which the nature of all of the variables at every node in the MR
tree are already specified so that what is required for MR modeling is the identification of the coarse-to-fine

40See Section 6.3.1 for a brief description of the EM algorithm.
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probabilistic dynamics; models in which the tree structure is specified but only some of the variables are
already specified (so that we must determine both the nature of the “hidden” variables and then the MR tree
dynamics); and models in which not even the tree structure is specified so even that needs to be identified or
learned. Interestingly, some of these possibilities are standard in some fields (e.g., signal processing, systems
and control, or graphical models) and completely foreign to others, a point we highlight on several occasions
in what follows.

6.1 From Graphical Model to Tree Model

We begin with some ideas that are well known in the graphical models field but not nearly as common in the
fields of signals and systems, as not only do they involve one idea that is known in those fields (namely the
aggregation of variables or state augmentation) but one that is not usually considered, namely a complete
redefinition of the index set of the graph. For the purposes of discussions to follow it is useful to describe two
alternate viewpoints for such graphical constructions, namely one based explicitly on seperators or cutsets
and one on the construct of a junction tree [204, 169, 314, 339, 207, 291, 108, 143, 128, 168].

6.1.1 Cutset Models

Consider a graphical model x(.) on a graph G = (V, E), and suppose that A is a cutset of the graph (see
Section 3.3), so that V/A is partitioned into two disconnected subsets U and W separated by A. Each of
the subsets U and W has its own induced graph (e.g., G1 = (U , E1), where E1 is the subset of E of all edges
between elements of U), and thus we can repeat this process (i.e., finding cutsets that partition graphs into
disconnected subsets) on each of these two subgraphs and continue until we reach small enough subsets of
nodes (i.e., until an ultimate “finest” scale of singleton nodes).

Eq.(10) then allows us to construct a tree model. For example, since xU and xW are conditionally
independent given xA, we place the vector xA at the root node of our tree and then continue the process
using finer and finer cutsets and partitions. An example of this is depicted in Figure 13. As shown in
Figure 13(b), the set A = {3, 5, 7} is a cutset, with U = {1, 2, 6} and W = {4, 8, 9}, and in Figure 13(c) we
have indicated that xA = {x(3), x(5), x(7)} plays the role of the state at the root node of the tree. Further,
the singleton set B = {1} is a cutset for the subgraph on U , which might lead one to take x(1) as the state
at the corresponding second-level node. However, x(2) and x(6) are not independent when conditioned on
x(1), since in the full graph, there are other connections between nodes 2 and 6. However, if we augment
the value of the state at this second-level cutset with the values at its parent, i.e., at the first level, then,
conditioned on all of these values, x(2) and x(6) are independent. The result is a tree model as shown in
Figure 13(c) in solid lines.

There are several points worth noting about this construction. The first is that the individual values
of the graphical process in the model in solid lines show up at nodes at different levels in the tree. It is
straightforward, however, to extend the model, as shown in Figure 13(c) with the additional dashed lines,
to a model in which all of the individual values of the process do indeed appear at the finest scale. This
corresponds simply to a deterministic copying of some of the variables from the parent node, much as the
root node value is copied to each of its children. Secondly, note that when we incorporate the dashed part
of the model in this figure, the resulting model is almost internal in the sense introduced in Section 2. In
particular, each of the states on the left branch of the tree (from root to leaf) is a deterministic function of
its finest-scale descendents. The same is not true on the right side, but this could easily be accomplished by
a redundant copying of the values of x(3), x(5), and x(7) to the finest scale.

Obviously these models (corresponding to the solid lines in Figure 13(c) or the solid and dashed lines
together) have considerable redundancy, which may or may not be of value in a representation but certainly
do increase dimensionality and thus raw computational complexity for algorithms using these models. In-
deed, the simple fact of augmenting the state at a given node with the full state at its parent is generally
unnecessarily complex. For example, if we examine the graph in Figure 13(a) or (b), we see that nodes 2
and 6 are independent conditioned on less information than that contained in the U-cutset {1} augmented
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with the full cutset A. Indeed, we only need to add the boundary values {x(3), x(7)}(and not the internal
value x(5)) to accomplish this. Similarly, we only need augment the W-cutset {8} with a single boundary
value x(3) in order to achieve the desired conditional independence. Thus a considerably more parsimonious
tree model is that shown in Figure 13(d). We refer the reader to [156] for further discussion and examples
of the construction of such reduced-dimension tree models.

Note that the model for Brownian motion described in Example 2 is a cutset model, and we now see that
that style construction could be equally well used to construct a MR model for any temporal Markov chain or
process. In this case the dimensions of the states do not depend on the level in the MR representation nor on
the extent of the time interval of interest essentially because of the very simple structure of minimal cutsets
of the linear graph of a Markov chain. For more complex graphs, however, state dimensions can vary and, in
particular, grow with the size of the original graph. For example, consider the regular 2-D nearest neighbor
graph shown in Figure 14. In this case an obvious cutset is the red line of nodes in the center of this grid:
conditioned on the values of a graphical process on this cutset, the sets of values in the two remaining halves
of the graph are independent.41 Note, however, that in this case the cardinality of the cutset equals the linear
dimension of the grid which (for square grids) is the square root of the total number of nodes, implying that
the dimension of the state of a linear-Gaussian MR model using such a cutset is O(

√
N), while for a discrete–

state model the cardinality of the state set corresponding to this cutset is exponentially large. Consequently,
the resulting MR representations, which are closely related to so-called nested dissection methods in scientific
computing and numerical linear algebra [133], lead to inference algorithms with complexities that do not
scale linearly with problem size.

Finally, as we develop in more detail in Section 6.2.2, it is often possible to construct reduced dimension
approximate models in which we keep only a lower-dimensional projection of the vector of cuset values at
each node on the tree, neglecting the residual dependency that remains among descendent nodes when we
condition only on this projection. A simple version of this approach was used in the texture discrimination
problem described in Section 2.2 (Example 5) and [225]. In particular, rather than assuming that the four
quadrants in Figure 14 are independent given the entire set of values of the field along the red and blue
boundaries, we assume that they are independent given only a coarser version of the values along these
boundaries (essentially coarser 1-D wavelet approximations of these sets of boundary values). As shown
in [224], such models can have artifacts across tree boundaries (which can be reduced somewhat by more
judicious choice of lower-dimensional projections as described in Section 6.2.2), but they are more than
adequate for texture discrimination problems, as the results in Figure 10 indicate.

6.1.2 Junction Tree Models

A second viewpoint on constructing a tree model from a given graphical model involves the concept of a
junction tree. The first step in the construction of a junction tree representation is the addition of edges in
order to triangulate the graph resulting in what is also referred to as a chordal graph. In particular such a
graph is defined by the property that every cycle through the graph passing through 4 or more nodes contains
a chord (i.e., an edge in the graph that connects two nonconsecutive nodes on the cycle). For example, in
Figure 15(a) we have depicted one triangulation of the graph from Figure 13(a).

The second step in the construction is to identify a set of maximal cliques42 of the triangulated graph
that form the junction tree.43 Such a tree is shown in Figure 15(b). Note that each node of this graph

41Note also that the choice of a somewhat larger cutset–e.g., taking both the red and blue lines in Figure 14–leads to
partitioning of the graph into four disjoint components, which in turn leads to a quadtree MR structure. Obviously one can
find other sets of cutsets that lead to more general MR trees (e.g., unbalanced trees, trees with differing numbers of children at
each node, etc.).

42A maximal clique is a clique that is not contained as a proper subset of any other clique.
43In some treatments of graphical models the junction tree explicitly includes intermediate nodes, representing separator

sets, that is sets of nodes that are common to the two cliques to which the separator is connected. For example, in Figure 15
this would lead to including a node labeled {3, 8} between the root node {3, 5, 6, 8} and the node {3, 4, 8}. Including such
nodes is often convenient, as it facilitates checking the junction tree property and identifying the explicit form of the resulting
factorization of the overall distribution. However, such nodes are unnecessary probabilistically, since the coarse-to-fine dynamics
can just as easily be defined on the model in Figure 15(b).
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corresponds to a maximal clique of the graph in Figure 15(a). Furthermore, the corresponding vectors of
values of the original graphical process that now populate this junction tree do, indeed form a Markov
model on the tree. For example, it is straightforward to see from the original graph that, conditioned
on {x(3), x(5), x(6), x(8)}, the vectors {x(5), x(6), x(7), x(8)}, {x(1), x(2), x(3)}, and {x(3), x(4), x(8)} are
mutually independent. Further, the clique tree in the figure has the property required for it to be a junction
tree: If a node of the original graph appears in cliques corresponding to two of the nodes in the junction tree,
then it must also appear in the cliques of every node on the path between those two junction tree nodes.
For example, node 8 of the original graph appears in both the root node and the bottom-right node {8, 9},
and it also appears in the intervening node {3, 4, 8}. The reason for this is very simple: The statistical
model we wish to construct on this tree should be equivalent to the statistical model of the variables on the
original graph, and thus must provide unambiguous values for each of the variables in the original model.
Consequently variables such as x(8) must, with probability 1, take on the same value in each of the vectors
of clique variables involving node 8. This can be ensured if the junction property is satisfied–e.g., the MR
dynamics for Figure 15(b) simply copy the value of x(8) from the root node to its two children that include
node 8, and that value is then copied again to the bottom-right node. This notion of consistency in a MR
model is very closely related to the idea of an internal MR model that we have introduced previously and
which we explore in more depth in Section 6.2.2

Note that the construction of a cutset model implicitly provides a triangulation of the graph (by grouping
entire cutsets of variables into single nodes which can be thought of as cliques in an augmented graph).
Typically there are many different ways in which to triangulate a graph, and finding a triangulation that
leads to a junction tree with small maximal cliques can be a challenging graph-theoretic problem [315, 314,
207, 204, 169].44 Moreover, for some graphs, all triangulations have maximal cliques that are quite large.
For example, the triangulation of the regular 2-D graph in Figure 14 is nontrivial, requiring much more
than simply adding diagonal connections across each of the 2x2 blocks of nodes (e.g., there are cycles that
require triangulation much as the one that required the inclusion of the dashed edge in Figure 15 (a)). On
the other hand, for some graphs the construction of low-dimensional MR cutset or junction tree models is
straightforward. One such example is the MR model considered in [213] based on a quadtree structure as in
Figure 1(b) but with edges connecting each of the 4 children of each of the parents. In this case, each set of
4 children of a single parent form an elementary cutset, resulting in a MR model in which each such set of
4 variables is aggregated into a single node, resulting in a MR quadtree model.

6.2 Methods for constructing linear MR models

In this section we describe several general approaches to linear MR model construction that make contact
with the examples and discussions in previous sections and that also introduce several other important
concepts. The perspective pursued in this section is motivated by image and signal processing applications
in which the ultimate objectives, namely performing estimation or hypothesis testing, are quite different
than the objective of exact matching of a statistical model. Indeed in many such applications the implied
or imposed prior model on the quantity to be estimated or analyzed is either only known approximately or
represents statistical regularization rather than “truth” about the phenomenon of interest. Such contexts
suggest the idea of approximating or replacing such a prior model with a MR model of (hopefully) modest
dimension that serves the desired purposes just as well in terms of capturing the expected behavior of the
phenomenon and much better in terms of admitting efficient and scalable algorithms. This line of inquiry
has been the subject of considerable attention, and in this section we describe four lines of thought that have
been pursued for linear models.

44Note that cutset models do not generally lead to the smallest maximal clique sizes. For example, the MR model for samples
of Brownian motion depicted in Figure 6(b) corresponds to creating cliques consisting of subinterval endpoints and midpoints.
In this case the original graph, in which each time point is connected only to the points immediately before and after it, is
already a junction tree. Thus there is a modest increase in dimensionality using the MR cutset model. In other cases, such as
cutting the grid in Figure 14 with vertical and horizontal lines, the resulting clique sizes are of the same order as in optimal
triangulations.
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6.2.1 Multiresolution Variants of “Smoothness Priors”

Some of the earliest work on exploiting MR models resulted from a simple observation concerning a class
of image processing algorithms based on variational formulations with what are often termed “smoothness
priors.” One example of such smoothness priors is that introduced in Section 2.4 (and revisited in Example 8
to follow) in the context of the problem of surface reconstruction. Another, simpler example is the problem
of image denoising. In particular, suppose that we observe y(r), a noise-corrupted version of an underlying
2-D image f(r), both defined over the 2-D image domain r ∈ I. One approach to denoising involves choosing
as our estimate the function f(r) that minimizes the following functional:

α

∫

I

[y(r) − f(r)]
2
dr + β

∫

I

| ∇f(r) |2 dr (52)

The first term in (52) is a data fidelity term, while the second is a penalty on the size of the gradient of f(r)
penalizing the roughness of the reconstruction.

The first of these terms has a simple statistical interpretation, namely that y(r) consists of measurements
of f(r) over I corrupted by 2-D white Gaussian noise of intensity 1/α. The precise statistical interpretation
of the second term requires some care45, but, if we take the perspective that all we are attempting to do
is to capture the intent of this regularization penalty, we can use a simple observation to replace it with
a very simple MR quadtree model. In particular, as pointed out in [312, 223], the second term in (52)
can be thought of as a (Gaussian) “fractal prior.” For example, in 1-D each of the functions in Figure 16
yields identical values for the 1-D version of the second term in (52) and thus are “equally likely” under this
implied prior. Alternatively, as argued in [223, 111] this penalty term corresponds to a Gaussian process
with a fractal, 1/f2 spectrum.

As is well–known in the literature (see, e.g.,[313, 116, 117, 349]) and as we have discussed in Examples 1
and 2 and already exploited in Example 4, the self-similar scaling behavior exhibited by such fractal processes
can also be captured through simple MR models, such as the scalar model (7), with the variance of w(s) taken
to decrease geometrically as we move to finer scales. While definitely not identical to the prior model implied
by the smoothness penalty in (52), this model has similar qualitatitve characteristics, and its use instead
of the smoothness prior in (52) allows us to use the efficient two-sweep estimation algorithm of Section 4
to compute both estimates and associated error variances. This should be contrasted with the computation
of the optimal estimate corresponding to minimizing (52) which requires the solution of an elliptic partial
differential equation for the computation of the optimal estimates and essentially the inversion of the elliptic
differential operator to calculate the corresponding error variances.

This same concept has been applied to somewhat more complicated image processing and computer vision
problems (optical flow [223] and surface reconstruction [111]), and in Example 8 to follow we provide one
such illustration, including showing how the error statistics computed by the two-sweep estimation algorithm
can be used to localize significant anomalies–i.e., spatial locations at which the smoothness penalty should
be relaxed (e.g., where there is an edge or abrupt change in the image or field being imaged).

The use of this simple MR model does, however, raise an issue that we have encountered previously (e.g.,
in Example 4) and revisit in more detail here, namely the possibility of artifacts in the estimates produced
using MR tree models. In particular, consider the tree in Figure 1(b), where the finest scale of this tree
represents the actual image field to be reconstructed and on which we wish to impose a smoothness or
fractal penalty. The simple MR model (7) certainly accomplishes the latter but does a spatially-variable
job of the former. In particular, consider the two finest-scale shaded nodes near the center of the image in
Figure 1(b) but on opposite main branches of the MR tree. In this case the tree distance between these
nodes is far greater than the spatial distance and, as a result, reconstructions based on this MR model can
lead to noticeable discontinuities across such major tree boundaries. As argued in [223], whether this is of
any significance or not depends on the application. However, if it is of significance, this simple MR model is
inadequate for the desired purpose.

45See, for example, [284]
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In this case there are four alternatives that one can consider. The first is relaxing the requirement
of using a tree by allowing an edge between nodes across such tree boundaries. This, of course, leads to
the requirement to solve estimation problems on loopy graphs, which, as we have discussed can be complex.
However, we return to this possibility in Section 7. A second possibility is to increase state dimension in order
to capture the correlation across this major boundary more accurately. In particular, note that conditioned
on the root node of the tree in Figure 1(b), the two shaded nodes are independent. Since smoothness dictates
that these two pixel values are strongly dependent, this suggests that the state at the root node must capture
all or at least a significant portion of this dependence.46 This is the basic idea behind approaches described
in the next section. A third possibility is the one used in Example 4 and also in many of the investigations
of other authors (see, e.g., [281, 261, 322, 188, 263]), namely to construct several MR models, using trees
that are spatially offset with respect to each other (so that their major boundaries do not coincide), and to
then combine the results of estimation based on each of these trees.

Using multiple shifted trees is one approach to overcoming the problem of placing some nodes on one
side or another of a major tree boundary when we actually would like these nodes to be on all sides of such
boundaries. Another approach aimed at this same objective but employing only a single MR tree involves the
use of so-called “overlapping trees” [159]. In standard MR tree models, such as that shown in Figure 1(b),
the nodes at each level of the tree correspond to non-overlapping portions of the 2-D field being represented.
For example, the standard quadtree in this figure has nodes corresponding to square regions of the field,
each of which is subdivided into 4 non-overlapping subregions at the next finer scale. In the overlapping
tree framework each region is subdivided into overlapping subregions at the next scale, so that each of these
subregions has linear dimensions somewhat larger than 1/2 of the dimensions of its parent.

There are several consequences of this construction. The first is that an overlapping tree will always
have more resolutions than a standard one, since the linear dimensions decrease more slowly from level to
level. As a consequence, the total number of nodes in an overlapped tree model is larger than that for a
non-overlapped tree model, and, in fact, increases geometrically with the number of additional scales that
are added, implying that the number of scales that can be added (and hence the degree of overlap achieved)
needs to be carefully controlled in order to maintain computational feasibility. Second, each finest scale pixel
in the image domain actually corresponds to several finest scale nodes in the overlapped tree. Indeed this
is precisely the intention of the construct, as the set of fine scale nodes to a single real pixel are guaranteed
to include elements that reside on different sides of major tree boundaries. Of course, this then creates the
question of how to use such a tree when the real data and desired estimates both reside in real image space.
As described in [159], there is a straightforward way in which to “lift”the image domain estimation problem
to the redundant overlapped domain. This construct involves two linear operators, one of which takes an
image domain pixel value and replicates it at each of the redundant nodes corresponding to that pixel.
The second operator (which is a left inverse of the first) collapses the values at each set of redundant tree
nodes into a single weighted average, which is then mapped to the corresponding image pixel. An estimator
using an overlapped tree, then, consists of the application of the first operator to lift the image domain
measurements to the tree domain, followed by the application of the tree estimation procedure described in
Section 4.2, and then by the application of the second operator to project the tree estimates back to the
image domain.47

Example 8. One example of a successful application of this overlapping technique is to the surface re-
construction problem introduced in Section 2.4. The full development in [111] combines several important
features. The first is the construction of MR models that accommodate both of the smoothness terms (thin
membrane and thin plate penalties) in (2) simultaneously. The second is overcoming the need to deal ex-
plicitly with the integrability condition mentioned in Section 2.4 and captured in the consistency relation
(3). The method used to deal with these in [111] is to construct a MR model with a 3-dimensional state

46For 1-D signals it is always possible to maintain continuity of the signal modeled by a MR model by using an approach as
in Example 2 in which endpoints of intervals are included in the states at each node in the tree. In 2-D the problem is much
more complicated, motivating the development in Section 6.2.2.

47Note that it appears that this approach ”overcounts” each real measurement by replicating it at several tree nodes. As
shown in [159], this is avoided by modeling each of the resulting tree measurements as having measurement noise with covariance
that is a multiple of the covariance of the real measurement, where the multiple used is the cardinality of the set of tree nodes
that correspond to the real image pixel being measured.
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that approximates both of the smoothness penalties as well as the consistency condition (3). The three state
variables at each node correspond to surface height z and surface gradient (p, q) at each scale and spatial
location. In addition, we replace the hard constraint (3) with a softer one, consisting of an additional “mea-
surement” at each node, corresponding to requiring that the difference between the gradient48 of z and the
value of the (p, q) at each node is a zero-mean white noise process on the tree, with small variance. Finally,
the third component of the model construction is the use of overlapping, which has the effect of modifying
the geometric decay in the covariance of the process noise w(s) as one moves to finer resolutions.

Figure 17 shows an illustration of this method to such a surface reconstruction problem. Figure 17(a)
illustrates the effectiveness of this method for the reconstruction of a relatively smooth surface (namely
ocean surface height as discussed in Example 4 but here using a more sophisticated MR model based on
(2)), while Figure 17(b) and (c) show the well-known problem that this as well as other smoothness-based
reconstruction methods have when there are discontinuities in the actual field being reconstructed: The
smoothness penalty leads to blurring or smoothing of the surface across the discontinuity. However, because
of the ready availability of error variances when using MR methods, we can employ these statistics to
identify regions in which the difference between the raw surface measurements and the reconstructed surface
are statistically anomalous. Figure 17(d) illustrates the result in this case, in which we have also indicated
the sign of these anomalies, which provide clear indication of the nature of the discontinuous jumps in surface
height in this example.

The fact that MR error statistics allow us to localize discontinuities such as in Figure 17(d) suggests that
it should be possible to develop an adaptive algorithm that performs optimal estimation without blurring
across high-contrast edges or discontinuities. One such method is developed in [292] by considering a more
complex MR model, namely one which leads to estimates not only of surface height but also of an auxiliary
field (roughly corresponding to α3(s) and α4(s) in (2)) that controls the spatially varying smoothness of
the field.49 An alternate approach, developed in [324], addresses this and other, related problems using an
expectation-maximization formalism.

6.2.2 Internal Models and Approximate Stochastic Realization

In this section we describe a more general and formal construction of linear MR models [161, 85, 122, 82].
The approach makes use of concepts adapted from state space theory [8, 9, 214, 16]; however, the adaptation
to trees uncovers some important differences with the temporal case. First, in contrast to the usual temporal
state space framework–and, for that matter, to the framework implicitly used in most graph-theoretic studies–
we consider problems in which the random process or field whose statistical behavior we wish to realize
corresponds to variables on only a fraction of the nodes of the MR tree. In particular, we focus initially (and
primarily) on problems in which the process to be realized, whose covariance or power spectrum is assumed
to be given (and which, for simplicity we assume is zero-mean), resides only at the finest scale of the tree,
i.e., at the leaf nodes. In standard time series analysis, in which the index set is a completely ordered interval
of integers, the set of “leaf” nodes is a singleton consisting of the single point at one end of the interval.
However, for dyadic trees or quadtrees, as in Figure 1, the finest scale can accommodate entire 1-D or 2-D
processes.

Another issue that arises in constructing MR models is specifying how to map the 1-D or 2-D process
of interest to the finest scale of the MR tree, a specification that then also determines which finest scale
values have common parents, common grandparents, etc. The problem of estimating or identifying this
graph structure does not arise in standard time series analysis but is an important problem in its own right
both for trees and for more general graphs. We return to this problem in Section 6.3.3, but for this section,
we assume that this structure is fixed and given. A typical example50, to which we refer on occasion, is
that shown in Figure 18. Here we begin with a zero-mean Gaussian process, z[n], N0 ≤ n ≤ N1, whose

48Actually a discrete, multiscale approximation to the gradient (see [111])
49The formulation in [292] represents a relaxed version of the widely-studied Mumford-Shah functional for image denoising

and segmentation [252, 11].
50For simplicity we will illustrate these concepts using dyadic trees and 1-D examples; however, the same ideas work for

quadtrees and 2-D fields.
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second-order statistics are given and which we wish to realize, either exactly or approximately, at the finest
scale of the MR tree shown in the figure, in which we have indicated that the finest scale nodes are mapped
to consecutive integers over the interval in question. Note that with this ordering, each node at coarser scales
corresponds to an interval of the process (e.g., the node labeled s in the figure corresponds to the interval
[N0, N0 + 3]), which is exactly the type of correspondence we have seen before–e.g., for Brownian motion in
Example 2.

With the graph structure fixed the problem of MR modeling bears a number of similarities–and some
significant differences–with state space modeling for time series. For example, we refer the reader to [29] for
the development of a state space theory for deterministic MR dynamics on trees and to [24, 25, 65, 66] in which
MR counterparts to autoregressive modeling and efficient algorithms analogous to Levinson’s algorithm for
time series are developed for the class of isotropic processes on trees (i.e., processes in which the covariance
between variables at different nodes depends only on the distance between the nodes). In this section we
focus on problems of approximate stochastic realization, where, as in standard state space realization theory
we must deal with the same basic issues: (i) We need to define the “state” of the process at each of the
unspecified, coarser-scale nodes of the tree; and (ii) We must then define the coarse-to-fine dynamics among
these state variables, resulting in a model that is Markov with respect to the MR tree. Because of the special
property of trees, the first problem bears a resemblance to the standard temporal problem for Gaussian
processes [8, 9, 214] in which the role of the state at any point in time is to decorrelate two sets of variables,
namely the values of the process in the past and the values in the future. Referring to the tree in Figure 18
(and the blue dashed lines therein), the role, then, of the state x(s) in this example is to decorrelate three
sets of variables, namely those in the subtree rooted at node sα1, in the subtree rooted at sα2, and the large
set of variables over the entire tree except for those in the subtree rooted at node s.

Note that the definition of the state in this case is given in a manner that couples the definitions at
distinct nodes–e.g., x(s) in Figure 18 must decorrelate x(t) from x(sα1)–a fact that makes the general
analysis of realization more complex than its temporal counterpart, and a complete treatment still remains
to be developed. However, a considerable amount can be said if we borrow another concept from temporal
realization theory, and one whose MR counterpart we have encountered informally on several occasions
already, namely that of an internal model. For temporal systems, an internal model is one in which the state
at each point in time is a deterministic function of the process being realized. In particular, the state of an
internal model is typically taken to be a function of the past of the process to be modeled, capturing the
memory in the process required to decorrelate past and future.51. Thus an internal state does not introduce
any additional randomness not present in the process to be realized. A very important result in standard
state space realization theory [8, 9, 214] is that it is always possible to find internal state space realizations
that are minimal, i.e., that have the smallest state dimension possible, so that considering non-internal
realizations doesn’t buy us anything in terms of model dimensionality.

By analogy, for our problem we define the concept of an internal model as one in which the state of the
model x(σ), at any node σ, is a deterministic, linear function of the values of the process at the finest scale
in the subtree descending from σ. For example, the state of an internal model at node s in Figure 18 must
be a linear function of the values of z[n] for n = N0, N0 +1, N0 +2, N0 +3. As shown in [161, 122], there are
several very significant implications of restricting attention to internal models. First, of course, these models
do not introduce additional randomness at coarser scales (and thus coarse-scale nodes, while technically not
observed are not really “hidden”). Second, there is a potential price to be paid by excluding non-internal
models, as it is sometimes possible to find non-internal models of smaller state dimension. However, third,
and very importantly, internality considerably reduces the complexity of constructing state variables. In
particular, as shown in [122], in this case, the states can be defined resolution by resolution, as it is sufficient
to design the state at each node simply by looking at the nodes one scale finer. For example, the state x(s)
in Figure 18 must be a linear function of the states at its children, x(sα1) and x(sα2), and it is sufficient
to choose that linear function so that x(s) decorrelates its two descendent values from each other and from
the remaining nodes at that next finer scale (the red dotted region in the figure). Note that since each
state is a linear functional of its children, we maintain a consistency along paths from coarser to finer scales.

51It is equally possible, however, to define the state of an internal model as a function of both the past and future. See, for
example, [214]
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In particular, the fact that x(s) consists of linear functionals of its two children implies that the coarse-
to-fine dynamics (6) must deterministically “copy” the information from each parent to its children. This
consistency, while different in detail is identical in purpose to the consistency requirements for a junction
tree as described in Section 6.1.2.

Note also that once we have performed this fine-to-coarse process of defining the state at every node, we
can immediately determine the coarse-to-fine dynamics, i.e., the matrices A(s) in (6) and Q(s), the covariance
of w(s) in (6). In particular, A(s)x(sγ̄) is the best estimate of x(s) given x(sγ̄), and w(s) is simply the error
in this estimate. Thus computing A(s) and Q(s) requires only the joint statistics of x(sγ̄) and x(s). Since
both of these states are linear functions of the finest scale process (which, in our 1-D example in Figure 18
is the process z[n] whose second-order statistics have been specified), the joint statistics of x(s) and x(sγ̄)
can be computed in terms of the statistics of the finest scale.

Let us return to the issue of constructing the states at individual nodes. There are two points that make
this problem challenging even in this form. The first is that the required state dimensionality to achieve
complete decorrelation may be prohibitively high. For example, note that the state at the root of any of our
trees must, in principle, completely decorrelate the disjoint regions associated with each of the root node’s
children, a task that may require very high state dimension (e.g., as we saw in Section 6.1.1 for the realization
of 2-D MRF’s on regular nearest-neighbor lattices). Large state dimensionality, of course, is also a problem
in standard state space realization, and once again we adopt ideas from that context. In particular, we may
wish to construct reduced-order models that yield realizations at the finest scale that only approximate the
desired statistics of the process we are attempting to model. Suppose, in fact that we follow such a procedure
(yet to be defined) to define reduced-order states in a fine-to-coarse manner, so that each state is still a linear
function of its children. In this case, we can still define the coarse-to-fine MR dynamic matrices A(s) and
Q(s) using the same procedure as previously described, and we can also be assured that the “noise” w(s)
is uncorrelated with x(sγ̄), since w(s) is simply the error in an estimate based on x(sγ̄). However, since we
have used reduced-order states, so that in particular x(sγ̄) may not completely decorrelate its two children,
it will generally not be true that the values of w(s) are white over the entire tree.52 This is also the case for
standard state space models, where the idea, then, is to neglect these residual correlations; that is, we use
the model dynamics A(s) and Q(s) we have constructed and simply assume that w(s) is white. The resulting
model, then yields a process that has statistics at the finest scale that do not completely match those of the
target process z[n]. Specifically, the variance of individual samples of z[n] will be captured exactly by this
model, but the cross-covariances at different points in time may not be realized exactly.

It remains to specify precisely how state-order reduction is to be carried out. For standard state space
models this is a well-developed field, particularly for time-invariant systems [8, 9, 214], in which state
definitions are identical across all points in time, so that the impact of the decision on how to define the
state on global measures of fidelity can be computed. In contrast, except in very special situations (e.g.,
in Example 2 or in the more general MR modeling of self-similar Gaussian processes in [83]), the states
at different resolutions in MR models represent very different quantities and may, in fact, have varying
dimension. Moreover, one of the major domains of application of these methods involves highly nonstationary
phenomena. As a result, the use of standard global measures of model accuracy (e.g., such as the Kullback-
Leibler divergence) have not yet led to computationally tractable algorithms for model construction, and
thus the methods that have been developed (and borrowed from standard time series contexts) focus on
local criteria for defining states at individual nodes.53 In particular, the fundamental objective in defining
the state x(s) in Figure 18 is to have it decorrelate x(sα1), x(sα2), and the set of variables inside the dashed
region in the figure. Consequently, it is natural to consider choosing approximations in terms of how well
they perform this decorrelation.

In the context of standard state space systems, this idea has led to the use of the statistical notion of

52The noises w(.) are guaranteed to be white on coarse-to-fine paths but not necessarily uncorrelated between nodes (such as
sα1 and sα2) that are not on the same path from the finest scale to the root node. As a result, when we construct our reduced
order model by neglecting this residual correlation, we are guaranteed that some of the desired statistics are preserved in this
approximate model–e.g., the statistics along any coarse-to-fine path and, in particular, the covariances of the individual finest
scale nodes–but not the complete statistical description of the finest scale process.

53The development of computationally feasible methods to use such global measures either to evaluate the accuracy of an
approximate model or to design models directly to optimize such measures remains an open research topic.
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canonical correlations [9]. Roughly speaking, canonical correlation analysis takes two random vectors, z1

and z2, and identifies ranked-ordered pairs of linear functionals of each: (c1
T z1, d1

T z2), (cT
2 z1, d

T
2 z2), etc.,

where each of these individual variables has unit variance, the functionals of z1 are all uncorrelated from
each other, as are the functionals of z2, and the pairs of functionals (cT

i z1, d
T
i z2) have correlation λi ≥ 0,

with λ1 ≥ λ2 ≥... (so that (cT
1 z1, d

T
1 z2) represents the most highly correlated functionals of the two vectors

z1 and z2, (cT
2 z1, d

T
2 z2), the next most correlated, etc.) In the context of time series, z1 represents the past

of the process and z2 the future, and the functionals cT
i z1 form a rank-ordered set of natural state variables,

providing a quantitative basis for choosing the state variables to keep in a reduced-order model54

As discussed in [16, 122], one of the potential drawbacks of the metric corresponding to canonical correla-
tions is that the rank-ordering is based on correlation coefficients (since the linear functionals are normalized
to have unit variance). As a result, components of the past and future that contribute very little to the total
variance of either of these may rank higher than components that contain much more of the process vari-
ance. This observation suggests an alternate criterion referred to as predictive efficiency, which, as opposed
to canonical correlations, treats the variables involved asymmetrically: For the two random vectors z1 and
z2, the objective is to produce a set of scalar linear functionals cT

i z1 which are uncorrelated with respect
to each other and are rank-ordered in terms of the amount of variance reduction each of these functionals
provides toward the estimation of z2. If z1 represents the past of a time series and z2 the future, this provides
an alternative criterion for ranking possible state variables in a time series model.

The computation of functionals either for the canonical correlations or predictive efficiency criteria in-
volves the singular value decomposition (SVD) of a matrix derived from the covariance matrix of the two sets
of variables (e.g., past and future). For time series, both of these are typically of the same dimension, so that
there isn’t a computational advantage to either approach. However, for MR tree models, this is generally
not the case, and, in addition there are other important differences with the time series case. For example,
consider the node s in Figure 18. Note that in this case we wish to design x(s) to decorrelate not two, but
three random vectors, namely x(sα1), x(sα2), and the very large vector, call it χ, of values of x(.) at the
remaining nodes at the same scale as sα1 and sα2. The first complication is that we have three rather than
two variables, making the problem of defining what we mean by the “best” variables to include in x(s) more
complex. Second, the dimensions of the three vectors are quite different, and this asymmetry greatly favors
using the concept of predictive efficiency, with χ always playing the role of all or part of z2. As described in
[122], this then leads to a procedure in which we sequentially add variables to form x(s), first including some
linear functionals of x(sα1) of most value in estimating x(sα2) and χ, then adding functionals of x(sα2)
that are of most additional value (i.e., taking into account the functionals already constructed), and then
possibly alternately adding functionals of x(sα1) and x(sα2) to enhance the fidelity of the state design.55

The resulting approach to constructing a MR model has O(N2) complexity. This complexity may not be
prohibitive for some applications, since it need only be performed once to build the model. On the other
hand, in many cases, the complexity is still too large and, more to the point, is often wasteful. For example,
in many time series problems, the primary correlation between the past and future relative to some time t is
captured in a comparatively small interval around that time. This suggests, for example, rather than using
all of the O(N)-dimensional vector χ in Figure 18 in order to define x(s), we might safely replace χ with
an O(1)-dimensional vector of the values closest to the nodes s, sα1, and sα2. Using this so-called boundary
approximation yields an algorithm of complexity O(N).

A number of examples illustrating the use of this method are given in [122]. For example, if applied
to a Markov process, such as Brownian motion, the algorithm does indeed identify that the correct linear
functionals to keep at each node consist of the boundary points of the time interval corresponding to that
node, as in Example 2. Similarly, for 2-D nearest-neighbor MRF’s, in which each of the tree nodes corresponds
to a square region of the 2-D image domain, the full state required to decorrelate one such region from the
rest of the image consists of the values around the boundary of the region–exactly the type of construction
we saw in the cutset models in Section 6.1.1. However, the framework we have described here allows us to

54Typically this is done in one of two ways: (a) we fix the state dimension, say at a value d, and thus choose the functionals
corresponding to the d largest of the λi; or (b) we set a threshold for residual correlation and keep as many functionals as
needed so that the sum of the remaining λi falls at or below the threshold.

55Note that for a quadtree there are 5 sets of variables that need to be decorrelated by the state at any node, namely the
variables at each of the four children and the vector of all other tree variables at the same scale as those children.
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consider reducing the dimensionality of the full cutset-state by keeping only those functionals of the process
around the boundary that rank highest in predictive efficiency in estimating the rest of the domain.56

Figure 19 illustrates another example, in this case to the approximate modeling of fBm, a process that
is not Markov but that does possess fractal, self-similar scaling properties that generalize those of Brownian
motion.57 As shown in [83], the optimal choices of linear functionals to keep in the state at each node
also have approximate self-similarity in scale. In this figure we show both the approximation errors in the
realized process covariance and also what is really the most important result, namely that the differences
in estimation accuracy using the exact fBm statistics or the approximate ones captured in the MR model
are statistically insignicant (especially given that fBm itself represents a mathematical idealization of real
processes).

Finally, it is worth noting that the scale-recursive procedure for state construction that we have described
has an important extension [82] to problems in which we have specific functionals of the finest-scale process
that we would like to include as state variables at coarser scales in the tree. As a simple example, consider
a fine-scale process z[n], N0 ≤ n ≤ N1, and suppose that we require that a particular linear functional of
the finest scale–e.g., a linear combination of z(N0), z(N0 + 1), z(N0 + 2), and z(N0 + 3)– be available as a
component of the state at some node. In this case, the first common ancestor of the points N0, · · · , N0 + 3
is the node s in Figure 18. However, as discussed in [161, 82, 122], placing the desired linear functional
directly at this node is not generally advisable, as conditioning on this linear functional can actually increase
the correlation between the variables at the children of node s. In particular, the correlation beween two
random vectors is always reduced if we condition on a linear functional of one or the other alone, but may,
in fact, increase when conditioned on a linear combination involving both vectors (e.g., two uncorrelated
random variables are no longer uncorrelated when conditioned on their sum). As a result, we actually place
two nonlocal functionals at node s, namely the separate functionals of z(N0), z(N0 + 1) and of z(N0 + 2),
z(N0 + 3) whose sum is the required linear functional. To maintain internality, then, we need to ensure
that these individual linear functionals can, in fact, be expressed as linear functionals of x(sα1) and x(sα2),
respectively, and this, in general, will also specify several components of each of these states as well.

In general this purely algebraic process involves successive examination of each of the descendents of nodes
at which nonlocal functionals have been placed. At each such node, internality first requires that specific
functionals be available, while the requirement of reducing rather than increasing correlation among the
children of that node typically leads to each of these functionals be broken into several separate functionals.
Once we have completed this process, we can then begin the fine-to-coarse construction of the full state
at each node, except now, when we come to design the state at each node, we may already have several
components of that state pre-specified. In this case, the only change to the procedure that we have outlined
is that the choice of additional linear functionals is based on the measure of predictive efficiency taking into
account the information already provided by the prespecified functionals. As the next example illustrates,
the ability to incorporate particular functionals of the field in question as states of our MR model allows us to
fuse MR measurements and estimate specific coarse-scale functionals using the O(N) estimation algorithm
described in Section 4.2.

Example 9. An example of the construction and exploitation of MR models in which specific nonlocal
variables are included in the states at coarser-scale nodes is the groundwater hydrology problem examined
in [84] and introduced in Section 2.6. In particular, in this problem the random field modeled by the
MR tree represents the log-hydraulic conductivity field of a region of interest. The measurements of log-
conductivity represent point, i.e., finest scale, measurements of this process at a scattered set of fine-scale
nodes corresponding to the locations of the well measurements. However, as we discussed in Section 2.6,
hydraulic head, which is also measured at each well location, is a strongly nonlocal and also nonlinear
function of log-conductivity. The approach taken in [84] is to linearize this nonlinear relationship about
a known background log-conductivity value over the region of interest, resulting in a linearized model for

56An alternate approach to reducing complexty of approximate cutset models involves not reducing the dimension of the
state corresponding to a boundary in a 2-D MRF but rather to reducing the complexity of the model for that state. We briefly
discuss this idea in Section 7.

57Fractional Brownian motion processes are characterized by the so-called Hurst parameter, H, which controls the rate of
spectral fall-off. In particular, while fBm is nonstationary, its power spectral density is well-defined over any band of frequencies
[346] and falls off as l/f2H+1.
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hydraulic head at each well location, namely as a weighted integral of log-conductivity. Using the method
developed in [82] and just described, a MR model was constructed in which each of these nonlocal functionals
was included in the state at individual nodes of the tree.

As discussed in Section 2.6, the real objective of the application considered in [84] is the estimation
of the travel time for solute particles to migrate from one spatial point to another. This quantity is also
a complex, nonlinear, and nonlocal functional of log-conductivity, and in [84] two alternate methods are
described for its estimation. The first is analogous to the method used to incorporate head measurements:
We linearize the relationship between travel time and log-conductivity, producing a model for travel time
(or, more precisely, the perturbation in travel time from its nominal value as computed using the assumed
background conductivity field) as a weighted linear functional of log-conductivity. This linear functional can
then be augmented to the MR model in the same manner as the linearized head measurements, so that the
resulting MR estimation algorithm automatically estimates this travel time perturbation as well.

As discussed in [84] and as illustrated in Figure 20, this approach works as long as the perturbations from
the background conductivity are not too large. If this is not the case, an alternate method can be used that
emphasizes another feature of the MR formalism. In particular, suppose we do not augment the MR model
with a linearized model of travel time but simply use the available log-conductivity and head measurements
to estimate the log-conductivity field. As we discussed in Section 4.2, the result of this estimation process is
not just a best estimate of that log-conductivity field but also a MR model for the errors in that estimate.
This model can then be used to perform conditional simulations, which, as pointed out in Section 2.6, is
a well-known concept in geophysics [171, 173, 172].58 In particular we can generate samples from this MR
error model, add them to the best estimate and use the resulting log-conductivity field to solve the hydrology
equation (4), which in turn yields the velocity field (5) which can then be used to compute the travel time for
this particular log-conductivity field. By repeating this conditional simulation process many times, we can
estimate the probability distribution for travel times. The key here is that, thanks to the tree structure of
our MR models, we can construct such conditional realizations of the log-conductivity field very efficiently.

6.2.3 Linear MR Models and Wavelet Representations

In this section we return to the topic of MR models and wavelets. As mentioned in Section 5.1, while wavelet
synthesis can readily be viewed as a dynamic recursion in scale (44), more is needed to build MR models
on trees based on wavelets. Consider first the simple case of the Haar transform, and suppose that we wish
to represent a stochastic process z[n], N0 ≥ n ≥ N1, at the finest scale of a dyadic tree as in Figure 18. In
this case, the use of the Haar transform might first suggest that the states at each coarser scale node should
be the corresponding (normalized or unnormalized) Haar scaling coefficient–e.g., referring to Figure 18, we
might consider taking

x(sα1) =
1

2
(z[N0] + z[N0 + 1]) (53)

x(sα2) =
1

2
(z[N0 + 2] + z[N0 + 3])

x(s) =
1

4
(z[N0] + z[N0 + 1] + z[N0 + 2] + z[N0 + 3])

However, note in this case that the dynamics of the Haar wavelet synthesis imply that

x(sα1) = x(s) + w(sα1) (54)

x(sα2) = x(s) + w(sα2)

where

w(sα1) = −w(sα2) =
1

4
(z[N0] + z[N0 + 1] − z[N0 + 2] − z[N0 + 3]) (55)

58We refer the reader to [198] for another example of the use of MR models for conditional simulation in geophysics.
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Thus not only are w(sα1) and w(sα2) not independent, they are in fact deterministically related.

One solution to this would simply be to assume that w(sa1) and w(sa2) are independent, corresponding
to the noninternal model in (7) and (47), in which case the variables in the MR model no longer correspond
to the scaling coefficients of the finest scale process (e.g., x(s) will not be the deterministic average of its
children). Alternatively, if we do wish to maintain internality and the interpretation of states as components
of the wavelet representation of the finest-scale process, detail coefficients, such as in (55), must also be
included as components of the state at each node (except for the finest scale at which we only need the
individual signal value). For example, the two-dimensional state at node s in Figure 18 consists of the
scaling coefficient x(s) in (54) and the wavelet coefficient in (55). Note that with this definition of the state,
the coarse-to-fine dynamics of our MR model is partially deterministic. For example, as (54), (55) show, the
first components (i.e., the scaling coefficients) of the states at the two children of node s are deterministic
functions (a simple sum and a simple difference) of the two components of the state at node s. The other
components of the states at these two nodes are then the new wavelet coefficients that will then be used in
the next step of the coarse-to-fine synthesis. If the Haar transform did, indeed exactly whiten the process
z[n], the coarse-to-fine dynamics would simply insert a white noise value for this detail coefficient. However,
the structure of our MR model allows us to do better than this if the Haar transform does not perfectly
whiten the process. In particular, using the same procedure for constructing the A(s) and Q(s) matrices
as in Section 6.2.2, we can define dynamics that take advantage of the residual correlation in the wavelet
coefficients to do the best job of predicting the finer scale wavelet coefficient from its parent scaling and
wavelet coefficients. This idea has been used, for example, in [83] to obtain better approximations to fBm
than methods that completely neglect this residual correlation.59

The Haar case is a particularly simple and obvious one in its connection to MR tree models, thanks to
the non-overlapping support of the shifted and scaled Haar scaling functions and wavelets that comprise a
dyadically-scaled orthogonal basis. For example, the scaling coefficients in (54) involve only values of the
fine-scale process z[n] at points in the subtree below the corresponding nodes. However, if we consider more
complex orthogonal or biorthogonal wavelets–e.g., ones with additional vanishing moments [86, 329, 228] and
thus with higher degrees of smoothness–the situation appears to be much more complicated. In particular
in this case the synthesis of each signal value, e.g., z[N0 + 1] in Figure 18, requires contributions from all of
the wavelet and scaling functions whose support includes the point N0 + 1. Thus, achieving a form for the
coarse-to-fine wavelet synthesis “dynamics” that has the structure of (6) requires that all of these required
scaling and wavelet coefficients be part of the state sα1.

As discussed in [85], this state augmentation can, indeed be done, but it is only half the story, since if
only this condition were used to define the state at each node, the resulting model would not be internal. The
implications of this lack of internality in this case are severe. In particular, because of the need to augment
the state at each node, individual scaling and detail coefficients appear at multiple nodes. Suppose, for
example that a particular coefficient appears in the state at two nodes s and t. The junction tree constraint
(or, more precisely its counterpart for linear models) would then require that this coefficient also appear in
(or, more precisely, be a deterministic linear function of) the state at each of the nodes on the path between
s and t. However, the augmentation done simply to make sure that everything needed for wavelet synthesis
at a particular node is included in the state at that node does not satisfy this condition. As a result of this
violation of the junction tree constraint, the multiple replicas of what is supposed to be a single coefficient
need not (and typically with probability 1 will not) be equal.

The key to see how to overcome this problem and recover internality is the examination of the fine-to-
coarse wavelet analysis dynamics, in which wavelet and scaling coefficients at successively coarser resolutions
are constructed as linear combinations of scaling coefficients at the previous, finer resolution. Again because
of the overlapping supports of the wavelets and scaling coefficients at each scale, each of these coarser scaling
coefficients, say one located at node s in Figure 18, is a linear combination of a number of the finer-scale

59Note also that exploiting this residual correlation in order to do the best job possible of predicting finer-scale wavelet detail
coefficients is similar in spirit to discussion in Section 5.1 and in particular to the model (46). The key difference is that the
model in (46) allows the use of the entire vector of scaling coefficients at the preceding scale to be used to estimate each detail
coefficient at the next scale. In the tree-based approach described here for the Haar transform each detail coefficient is predicted
based only on the state (single wavelet and detail coefficient) at its parent node.
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scaling coefficients. If the model we construct is to be internal, we must then have that all of these required
coefficients must be resident at the two children of node s. Accomplishing this requires some additional
state augmentation, which at first blush, might lead one to believe that it would then be necessary to revisit
the synthesis side of the problem in order to guarantee that we have everything we need at each node for
consistent coarse-to-fine dynamics as in (6), and then to revisit the analysis side, etc. However, as shown
in [85], this is not necessary, as the combination of a preliminary state definition for the synthesis dynamics
followed by a second augmentation to ensure internality leads to a well-defined internal, linear, MR model
in which the state at each node consists, with probability 1, of a vector of scaling and detail coefficients of
the finest-scale process.

Not surprisingly, the dimension of the state of the resulting model grows linearly with the support of
the wavelet (or wavelets in the biorthogonal case), as typically does the degree to which such a wavelet
transform whitens a given process such as fBm. In pure wavelet analysis this often suggests the use of fairly
high-order wavelets so that the residual correlation can be safely neglected. However, using our coarse-to-fine
dynamics, we do not need to neglect the residual correlation and can in fact exploit it to enhance the fidelity
of the resulting model. The result of this is that high-fidelity approximations of processes such as fBm can
be created using MR representations based on wavelets of much smaller support than are typically used
otherwise.

While the benefit described in the preceding paragraph is interesting and while the rapprochement with
wavelets is intellectually satisfying, neither of these by themselves make a compelling case for why one would
want to use such a representation. However one good reason given in [85] is that once we have this model, we
can consider estimation of a process based on sparse, irregular, and even multiresolution measurements–i.e.,
to problems in which the data themselves are so erratically distributed that direct application of wavelet
analysis is not possible. Figure 21 illustrates the use of an internal MR tree model based on the Daubechies
6-tap orthogonal wavelet [86] to estimate an fBm process given “gappy” measurements of differing quality
over the two ends of the interval over which the process is to be estimated. Note that the resulting estimate
is nearly identical to the one based on the exact fBm statistics, with deviations only a tiny fraction of one
standard deviation of the errors in the optimal estimates.

6.2.4 Covariance Extensions, Maximum Entropy, and MR Models

In this section we turn to another important topic in statistical signal processing with strong ties to graph-
theory and to MR models. The problem is that of covariance extension. Specifically, in many applications
it is unreasonable to expect to be provided with the complete covariance of a random process or field–
or to have data available from which such a complete specification could be estimated. For example, in
dealing with large-scale remote sensing problems, the random fields of interest can have dimensionality in
the millions, making not only the availability but even the storage of a full covariance matrix prohibitive. In
such problems, what is more likely to be the case is that only a comparatively small part of the covariance
matrix is specified, and what we then seek is a model that is consistent with that partial specification.

This idea of modeling from partial specifications is well known in the signal processing field. In particular,
consider the construction of a stochastic model for a stationary time series that matches a partially specified
correlation function. Specifically, we are only given (and only need match) the first few values of that
correlation function. If this partial specification is valid (i.e., if it does indeed correspond to the first few
values of a completely specified correlation function), then it is indeed possible to find models that match that
partial specification, one of which, namely the maximum entropy extension, corresponds to an autoregressive
(AR) signal model whose coefficients can be efficiently calculated from the specified portion of the correlation
function, using, for example, the celebrated Levinson recursions (see, for example, [307]). Further, although
not typically emphasized, the resulting AR model can then be used for the efficient, recursive computation
of the covariance values not specified originally.

Interestingly, that maximum entropy extension also has important implications for MR modeling. In
particular, the resulting AR model is a kth-order Markov process, where k is the number of covariance values
that were originally specified. As a result, using a construction analogous to that for Brownian motion in
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Example 2, we can, in principle, construct a MR model for this process analogous to that shown in Figure 6,
except that the number of boundary points kept at each end of each subinterval would be k rather than 1.
That construction, however, requires knowledge of what appears to be a considerable number of covariance
values other than those that were originally specified. For example, referring to Figure 6, for a first-order
Markov process, specifying the coarse-to-fine dynamics requires knowledge of the covariance between points
(namely end- and mid-points) that are not near each other. In principle these can be computed from the AR
model as mentioned in the preceding paragraph, but that recursive method also calculates many elements of
the covariance sequence that are not needed to construct the MR model. This raises the question, then, of
whether the needed elements can be computed much more directly and efficiently, and that, in turn, leads
to some important ties to graph theory.

In particular, suppose that P is a partially specified covariance matrix, i.e., only certain elements of P ,
always including its diagonal, are specified. Furthermore, we must also have that P is valid, namely that any
completely filled principal submatrix (i.e., any submatrix consisting of the same choices of rows and columns
of P and for which all of the elements are specified) is positive definite. An extension of P , then, corresponds
to filling in some of the unspecified values in P while still maintaining validity, while a completion is an
extension in which every element is specified, yielding a full, positive-definite covariance matrix.

Two important questions are: (1) Does a given partially specified covariance matrix have extensions and
completions; and (2) If so, what is the maximum entropy extension? Answers to both of these questions have
important graph-theoretic interpretations. In particular, if P is an N × N matrix, consider the undirected
graph with nodes labeled 1, 2, ..., N, where we include the edge (i, j) between distinct nodes i and j if the
ijth element of P has been specified. Then, the following results hold [21, 75, 142]:

a) Given a particular graph of this type, extensions and completions exists for any valid partially specified
covariance with this graph structure if and only if the graph is chordal.60

b) If a completion exists for a given partially specified covariance, then the maximum entropy extension
is Markov with respect to the graph determined by P .

One typical example in which (a) holds is if a consecutive set of diagonal bands of P are specified–this is
simply the generalization of the usual AR modeling framework to allow for the time series to be nonstationary
(so that each of the diagonals within the band need not have constant values). In this case, the resulting
maximum entropy model is, as we have said, kth-order Markov, which is identical to the process being
Markov with respect to the graph determined by P .

Suppose, that the graph, G, of P is chordal. The question of then calculating particular elements of
P , or more precisely, the possible recursive orders in which these elements can be calculated also has a
graph-theoretic interpretation, as shown in [121]. Specifically let Pe be an extension of P (so that Pe agrees
with P wherever P is defined), and let Ge be the graph corresponding to Pe (so that G ⊂ Ge). Then if Ge is
also chordal, we can calculate the additional elements of Pe without having to calculate any other elements
beyond those in Pe. Moreover, this can be accomplished recursively, by constructing a chordal sequence:

G ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Ge (56)

where each step in this sequence corresponds to adding a single edge to the preceding graph. This sequence
then provides a recursive ordering for the computation of the required elements of Pe.

In [121] it is also shown that each step of this recursion defines a range of values for the new element of
the extension, providing, in essence, a complete characterization of all possible extensions much as reflection
coefficients do for standard time series models [307]. In particular, it is shown in [121] that the required
computations for each of the steps in the sequence involves a submatrix corresponding to the new maximal
clique formed by the addition of the new edge. This submatrix has a single new element to be computed.
Choosing any value that makes the submatrix positive definite is valid, and choosing the particular value
that maximizes the determinant of this submatrix corresponds to the maximum entropy extension. In some
cases the maximal clique size can grow as the recursion progresses, apparently implying that the required

60If the graph is not chordal, existence of extensions and completions depend on the specific numerical values of the specified
elements of P .
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computations also grow. However, we refer the reader to [121] for an additional set of graph-theoretic
conditions on the chordal sequence in (56) that guarantee, in essence that most of the computations required
at each stage of the recursion have already been performed at previous stages. This result provides a
nontrivial extension of Levinson-like recursions.

Finally, let us examine the specific extension required to form the MR tree model when we begin with
a partial covariance consisting of k diagonal bands on either side of the main diagonal. In this case, as
described previously, the additional elements of the maximum entropy extension that must be computed are
unusually distributed (and, in fact have a fractal pattern–see [121]). Moreover, they are an extremely sparse
subset of the elements of P (having O(N) elements). Surprisingly, however, the graph corresponding to this
extension is chordal. Moreover, when the corresponding chordal sequence is constructed to compute these
needed elements, we find that the resulting sequence of new maximal cliques remains bounded in size, so
that the total computational load to construct the resulting MR model is also O(N). We refer the reader to
[121] for details.

6.3 Estimation of Model Parameters and Learning of MR Models

In this section we take a brief look at the problem of estimating or learning MR models from data. There
are three separate classes of problems we describe, as detailed in the following sections.

6.3.1 Estimation of MR Model Parameters

The first class of problems involves the estimation of parameters of MR models of fixed and known structure61

As discussed in Section 4.3, the computation of likelihood functions can be performed efficiently for MR
models, implying, for example, that one can use these computations as the basis for maximum likelihood
parameter estimation. Examples of this for linear models can be found in [114, 113] for both the estimation
of the Hurst parameter of fBm and for the estimation of noise correlation structure and parameters for
models used in oceanographic remote sensing.

For discrete or hybrid MR models–e.g., as in the MR segmentation model in [42] or the Hidden Markov
Tree models illustrated in Example 6 and developed in detail in [80, 261, 59, 281, 282]–a very effective
approach to parameter estimation involves the use of the EM algorithm [97]. The employment of EM
requires the specification of the so-called complete data, which includes not only the actual measured data
but also some additional hidden variables, which, if available make the computation of parameter estimates
much easier. For example, as described in [80], for Hidden Markov Tree models, the clear choice for the
complete data consists not only of the actually observed wavelet coefficients but also the hidden discrete
states at each node, where for the following discussion we let w and s denote the vectors of all of the wavelet
coefficients and discrete state variables, respectively. We also denote by θ the vector of parameters to be
estimated, consisting of the probabilities defining the discrete-state hidden Markov model and the means and
variances for each wavelet coefficient conditioned on each of the possible values of the corresponding discrete
state. The E or expectation step then consists of computing the conditional expectation of the log-likelihood
function log[p(w, s|θ)] conditioned on both w and on the previous iteration’s estimate of θ. This corresponds
to averaging over the possible values of s given the conditioning information. The maximization or M step
then involves maximizing the function computed during the E step in order to compute the next iteration’s
estimate of θ. Note that the vector s, consisting of choices for all of the discrete states at every node in
the tree, has a number of possible values that is exponential in the number of nodes in the tree. Thus, as
discussed in [222] and also in Section 6.1, the computation of such expectations for general graphical models
can be prohibitively complex, while for trees such computations can be performed extremely efficiently. As
a result, the implementation of EM-based algorithms for parameter estimation for MR models on trees are
computationally attractive. We refer the reader to [42, 80] for further discussion and examples.

61In many cases the quantities to be estimated are often referred to as hyperparameters, typically a small number of unknowns,
where the actual parameters of the model–e.g., the elements of the matrices A(s) and Q(s) in linear MR models–are (typically
nonlinear) functions of these unknowns.
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6.3.2 Learning MR Models

An alternative to the parametric estimation methods discussed in the preceding section is the use of a
nonparametric or machine learning philosophy in building such models. We briefly describe two lines of
investigation, in each of which wavelet transforms are used to populate the variables in such a MR model
and then MR models are learned from training data.

The first of these, described in [125, 124] involves the construction of nonlinear coarse-to-fine statistical
models for wavelet transforms, i.e., models much as in (45) and (46) except that the estimate of each wavelet
coefficient is allowed to be a nonlinear function of a window of nearby scaling coefficients. Specifically the
wavelet coefficients at each scale are modeled as being independent when each is conditioned on its own
local window of scaling coefficients, and the conditional distribution for each coefficient is assumed to be
Gaussian. However, the mean (variance) of that conditional distribution is modeled as piecewise affine
(constant) function of the window of scaling coefficients. For any such “piece” we have a linear parametric
model as in (45). However, determining how many such linear pieces there should be and specifying the region
over which each linear function should be applied require nonparametric estimation techniques. We refer
the reader to [125, 124] for details and also for the application of these models to problems of tomographic
reconstruction. Finally we note that since each wavelet coefficient depends on several scaling coefficients, the
question arises as to whether the resulting MR model forms a tree–or, more precisely, if state augmentation
methods such as described in Section 6.2.3 can be applied to transform this model into a tree model. In
some cases, this will certainly be the case. However, in others the result will be a more complex graph that
does not yield a junction tree or cutset tree model with acceptably small state dimension.

Another very interesting approach to MR modeling for image processing is that developed in [91, 90, 92].
The basic idea behind this approach is quite simple: Given a sample image, we form a MR pyramid by
performing a MR decomposition of the image–the specific decomposition used in [91] is an overcomplete
steerable pyramid [298]. Thus, at each node s, on a quadtree, we have a vector of coefficients, denoted by
z(s), sensitive to variations in different directions at the location and scale corresponding to node s. From
this one image sample–or perhaps from a small set of images [20]–we wish to learn non-Gaussian, nonlinear
coarse-to-fine statistical dynamics. In particular, what is done in [91, 90, 92, 20] is to use nonparametric
density estimation methods to estimate both the distribution of the vector of values at the root node and
the conditional distributions for every other node given all of its direct ancestors. That is for each node s
other than the root node 0, we estimate the density:

p(z(s) | z(sγ̄), z(sγ̄2), · · · , z(0)) (57)

The way in which this is done is to assume an interesting variation of stationarity, namely that each node s
at a given scale has the same conditional distribution (57) as all other nodes at that scale. What this implies
is that even with a single image from which to learn the distribution, we will have a significant number of
samples from which to estimate these densities at finer scales (at which there are many nodes), although
the resulting learned densities at coarser scales will be less certain. Note also that the distributions in (57)
do not correspond to a Markov model on the tree for z(s), since if that were the case, conditioning z(s)
on z(sγ̄) would make further conditioning on more distant ancestors of no informational value. However,
just as in time series analysis, it is simple to turn such a higher-order Markov description into a first-order
representation by state augmentation, i.e., by defining the state at each node to consist of a vector of the
values of z(.) at the ancestors of that node. As with hybrid and nonlinear wavelet-based methods , such as
in [80, 261, 59, 281, 282, 333], the motivation for this modeling methodology is to capture both the non-
Gaussian nature of wavelet statistics and the cascade behavior characteristic of wavelet decompositions of
natural images. Figure 22 illustrates one example suggesting the promise of this approach for the modeling
of natural imagery.

6.3.3 Learning MR Tree Structure

Throughout the discussions in this entire section we have focused on aspects of the MR modeling problem
other than identifying or learning the structure of the MR tree; that is, we have focused on identifying
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the variables to place at particular nodes on a prespecified tree and/or the problem of determining the
parameters of a model once those variables have been specified. A strong argument can be made that this
is reasonable for signal and image processing applications, since the nodes and variables at these MR nodes
have, at least, rough intuition associated with them related to the representation of phenomena at different
scales and spatial locations. Nevertheless, it is worth noting that the topic of identifying the structure of the
tree has received some attention [64, 238, 239, 230, 177, 303], mostly in fields other than signal and image
processing.

Perhaps the best known work in this area is that of Chow and Liu [64]. The idea in this work is that we
are given an index set, V, a set of random variables, {z(s)|s ∈ V}, and a number of independent realizations
of this set of variables. We assume that the joint distribution of these variables is given by a tree distribution–
i.e., that the z(s) form a graphical model with respect to a tree with node set V. However, we neither know
which of the many trees with this index set is the correct one nor the distribution for these variables. The
objective, then, is to use the available measurements to determine the maximum likelihood estimate of both
the tree and the distribution with respect to that tree. Since for any a specific choice of tree structure, the
ML estimates of the distribution over that tree is simply the empirical factored distribution based on the
observed data, the central problem reduces to identifying the best choice of tree structure. As shown in [64],
this problem can be solved very efficiently.

The special nature of trees is reinforced by the observation that the solution to this problem in which
we allow graphs other than trees is much more difficult and, in fact, is NP–Hard [303]. An important recent
advance in this area is the work reported in [177, 303] which focuses on chordal graphs with bounded tree-
width (so that maximal clique sizes are bounded). Even for this limited set of graphs optimal identification
is prohibitively complex, but the results in [177, 303] show that it is possible to develop computationally
feasible algorithms that have ranks (with respect to maximizing the likelihood) that are provably bounded
relative to the optimal. The significance of these results for MR modeling have yet to be developed, but
some additional motivation for considering graphs that are, in some sense “close” to trees is given in the
next section.

7 Moving Beyond Trees

As the preceding sections make clear, MR models on trees have many attractive properties that lead to
powerful and efficient signal and image processing algorithms that have extensive domains of application.
The fact that these models are Markov on trees, i.e., graphs without loops, leads both to the power of
these algorithms and also to the apparent limitations on their applicability. In particular, as we discussed
in Section 6 , while it is always the case that any process (e.g., any MRF or graphical process on a loopy
graph) can be modeled (exactly or approximately) using a MR model on a tree, in many cases the resulting
dimensionality or cardinality of the state of that tree model is large. Since the complexity of the algorithms
we have described grows polynomially with state dimension or cardinality, we have three alternatives: (1)
Reduce the dimension or cardinality of the state; (2) Develop alternative algorithms and approximations that
reduce complexity but allow us to keep higher-dimensional or higher-cardinality states; and (3) Consider MR
models on graphs with loops.

In the preceding sections we described a variety of approaches to the first of these alternatives. In
some cases (e.g., with the smoothness-based models described in Section 6.2.1) reduction of state size can
be accomplished by replacing one model with another that serves essentially the same purpose. In others
(e.g., with the approximate stochastic realization methods in Section 6.2.2) the method used is to reduce
state dimensionality by keeping a limited-dimensional projection of the full state at each node, chosen to
minimize the residual correlation between variables that the full state completely decorrelated. Alternatively,
as discussed at the end of Section 6.2.1 one could use the method based on overlapping trees to overcome
the severe burden, especially at coarser scales, that is placed on the state of a tree model, namely providing
complete conditional mutual independence to the sets of variables in the separate subtrees descendent from
that node. However, as we also indicated, one of the prices for using an overlapping tree is that the total
number of tree nodes, N , increases by a factor of 2 for a dyadic tree and by a factor of 4 for a quadtree
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with every additional scale. Thus, the amount of overlap that can be accommodated while maintaining
computational efficiency of the resulting inference algorithms also has limits.

As a result, there is considerable motivation to consider the other two alternatives mentioned previ-
ously. In the next section we take a brief look at an approach that keeps state size large but reduces the
computational burden of the resulting inference algorithms, and in this context we also make contact with
the very important field of space-time processes and algorithms and its counterparts, e.g., Dynamic Bayes
Nets (DBNs), in the graphical model literature. In Section 7.2 we then take a brief look at several recently
introduced methods that have been developed to deal with estimation on graphs with loops. While these
methods were originally motivated by inference problems for MR pyramidal structures, they can be applied
to arbitrary graphical models and thus are of independent interest to the graphical model community.

7.1 Reduced-Complexity Cutset Models and Time-Recursive Approximate Mod-

eling

In this section we return to the cutset models discussed in Section 6.1.1, and while the ideas we describe can
(and have) been applied to more general graphs and to nonlinear models, for illustrative purposes we frame
our discussion in terms of a linear-Gaussian, nearest-neighbor MRF on a regular 2-D lattice as in Figure 14.
As we discussed in Section 6.1.1, an exact MR model can be formed by taking as the state at the root node
either the full set of variables along either the red row or blue column of the grid in Figure 14 (leading to
a dyadic tree structure in which, for example, we alternatively bisect regions horizontally and vertically) or
where we take the root node state to be the set of variables along both the red row and blue column in the
figure (leading to a quadtree model). In either case the dimension of the state at the root node is O(N

1
2 ),

where N is the number of nodes in the 2-D grid. Note that the dimensions of nodes at successively finer
scales are only half the dimension of their parents, so that the overall complexity of inference algorithms
is not as bad as if every state had dimension O(N

1
2 ), but it is still the case that large state dimension at

even a small number of nodes leads to problems for procedures such as the estimation algorithm described
in Section 4.2.

In particular, the dynamic model (6) and the estimation algorithm given by (20) - (37) are written in
a form that requires the explicit representation, computation, and storage of various estimates and error
covariances of the state at each node in the tree (e.g., see (20), (24); (25), (26), (35), (36)), and in general
each of these covariance matrices will be full. The key to the method described in this section is an alternative
form for estimation equations known as the information filter, in which the quantities that are stored and
computed directly are information matrices, P−1, i.e., inverses of covariances, and information states, i.e.,
P−1x̂, where the covariances and estimates here could be any of the pairs appearing in the algorithm in (20)
- (37) . As is well known for time series [174], the information filter algorithm has a form analogous to (20)
- (37), in which it is these information quantities that are recursively computed.

At first glance, this approach seems to have bought us nothing, since, in general, there is no guarantee
that the computations involved in this alternate form will be any less demanding than (20) - (37), and in
addition we now have additional computations to perform, namely to recover x̂ from P−1x̂. However, as
pointed out in Section 3.3, the inverse of a covariance matrix has an interpretation as specifying a model for
a random vector or process, and this is the key to an alternate form of approximation for cutset models to
that considered in Section 6.2.2. In particular, consider the set of variables corresponding to the values of
a first-order Gaussian MRF along the center, red row of Figure 14. What we would like to do is to think
of this set of values as a 1-D signal. However, while the inverse of the entire covariance of the full 2-D
process is sparse (thanks to the graphical structure of the model), the inverse of the covariance matrix of this
center row alone is generally full, implying that the graphical model associated with this 1-D signal is fully
connected. On the other hand, as discussed and illustrated in [316, 82, 166], in many cases–e.g., in particular
for many first-order MRF’s–these information matrices are nearly banded, i.e., the dominant nonzero values
are in a relatively narrow diagonal band around the main diagonal of the matrix. Consequently, if we were
to approximate such matrices by setting to zero the values that are deemed to be small,62 we obtain an

62In particular, as discussed in [204, 143], it is relatively easy, with local computations to compute what is known as the partial
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approximation for the inverse covariance of this 1-D signal that is banded. This corresponds to pruning
edges from the fully connected graphical model to produce an approximate 1-D Markov model of order equal
to the width of the nonzero diagonal band.

This suggests the structure of a MR modeling algorithm–and of the corresponding estimation algorithm
as well–in which we recursively compute banded approximations to information matrices and information
states for each of the cutset states in a tree model on the lattice of Figure 14. Since the approximate
information matrices have small numbers of nonzero elements, the computations involved in each step are
much simpler (e.g., only linear or at worst quadratic in state dimension). As a result, this approximate
algorithm has total complexity that is at worst O(N) [166]. Moreover the recovery at each node of x̂ from
P−1x̂ is also straightforward–and, in fact, corresponds precisely to a 1-D Kalman Filter/Rauch-Tung-Striebel
smoother–thanks to the banded structure of our approximation to P−1. We refer the reader to [316, 82, 166]
for examples and details, including examples in [166] applied to other, less regular graphs than the one in
Figure 14. In addition, these same principles can be applied to discrete-state and nonlinear graphical models,
although the criterion for pruning edges must obviously take a form other than examination of elements of
the inverse of a covariance matrix (see, e.g., the references in the following discussion of DBNs).

The method just described has close relationships both to well-known methods for the numerical solution
of partial differential equations [106, 138] and to algorithms and ideas for space-time processes and DBNs. In
particular, as described in [81] (see also [181]), suppose that instead of beginning with the middle red row in
Figure 14 we begin either with the top row or the leftmost column and then “march” either downward row by
row or from left to right column by column, where in either case we propagate an approximate version of the
inverse covariance, i.e., an approximate 1-D Markov model for the values of the field along each successive
row or column. Note that such an approach effectively treats one of the two spatial dimensions as a time-like
variable for the row-to-row or column-to-column recursion, and this in turn provides a direct connection
to space-time processes, e.g., processes on grids such as in Figure 14 in which one of the two independent
variables is time.

The idea of propagating approximate graphical models in time is a topic of significant current interest
[134, 43, 254], and we refer the readers to these references for details. We note in particular that in [43] the
authors confront a problem of considerable concern not only for DBNs but for the approximate MR modeling
methods described in this and previous sections, namely the issue of how approximation errors propagate
and accumulate over time. In particular, these authors obtain results that show that, as long as the temporal
dynamics of the process of interest have sufficient “mixing”, the Kullback-Leibler divergence between exact
and approximate models decreases with temporal propagation, which implies that if comparable approxi-
mation errors are made at each time step, the accumulation of these errors over time (as measured by K-L
divergence) remains bounded. Developing comparable results (and possibly stronger ones in the linear case)
for MR tree models remains an open topic whose resolution would provide a way in which to relate local
approximations at each node in a tree with the impact on global model accuracy.

We also refer the reader to [54, 55, 56] for related research in space-time estimation in which the spatial
phenomenon can be 2-D or 3-D, and for which the objective, then is to propagate an MRF model (e.g., a
first- or higher-order MRF on a grid such as Figure 14), and to [342, 147] for approaches to direct temporal
propagation of a MR tree model for a space-time process. An important issue that [147] begins to address
is that of the temporal “mixing” of spatial scales–i.e., features at one scale at one point in time can interact
through the temporal dynamics to produce features at different scales as time evolves. This characteristic
implies that the statistical relationships–e.g., between a parent and child node–at one point in time depend
on the relationships at the previous time among nodes that may be at several different scales. The resulting
structure consists of a temporal sequence of MR models on trees with directed edges between nodes in the
tree at one time to nodes in the tree at the next time in order to capture temporal dynamics and mixing.

correlation coefficient corresponding to a particular edge, namely the conditional correlation between the nodes connected by
that edge conditioned on all the rest of the variables in the entire graph. Removing edges corresponding to small partial
correlations is the approach taken in [166].
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7.2 MR and Tree-Based Algorithms for Graphs with Loops

In this section we describe approaches that relax the requirement that the MR model live on a loop-free
graph, thereby reducing the decorrelation burden on (and hence the dimension of) coarse-scale nodes by
allowing additional paths between finer-scale nodes. For example, rather than using MR models on trees
such as in Figure 1(a), one might consider MR models on pyramidal structures such as in Figure 23 in which
there are edges between pairs of nodes at various scales, in essence providing a short circuit between nodes
that would otherwise be far apart as measured by distance along the MR tree.

Other examples of MR graphs with loops–e.g., ones in which each node is connected to several parent
nodes (e.g., see [42, 110, 156])–have been mentioned previously. With the use of any such graph, however, one
must confront the problem of inference, which, as we discussed in Section 4.4, is a challenging problem that is
the subject of considerable current interest. Indeed, the graphical model and turbocoding literature contain
important results on the behavior of belief propagation algorithms (e.g.,[278, 337, 123, 332]), including results
for linear-Gaussian models [285, 338, 332], as well as the introduction of new classes of iterative algorithms
(e.g., [357, 334, 332]). It is not our intention to describe or review this vast and active area of research.
Rather, we refer the interested reader to the references just given and the others on graphical models cited
previously and limit ourselves here to brief descriptions of several investigations that have been directly
motivated by MR models and tree algorithms, beginning with the following example.

Example 10. In this example, we return to the problem of image segmentation introduced in Section 2.5
and, in particular, to an approach, introduced in [42] and subsequently employed in a variety of other
contexts (see, for example, [323, 183, 289, 290, 53]). For simplicity we describe the idea in the context
developed in [42], which employs a MR discrete-state Potts model, as introduced in Example 3 and (8),
to describe the coarse-to-fine dynamics of a Hidden Markov Tree representing segmentation labels at a
sequence of resolutions. The actual observed data in [42] consists of data only at the finest scale, where the
measurements are assumed to be conditionally independent when the measurement at each finest scale node
is conditioned on the value of the hidden discrete label at that same node (where the form of the conditional
distribution is taken to be Gaussian or a Gaussian mixture in the examples in [42] or a generalized Gaussian
in other references (e.g. [289, 290]).

While the model described in the previous paragraph is essentially identical in structure to others we have
described (e.g., see Example 6), there are two significant additional components of the complete approach
developed in [42] that distinguish it and lead to inference algorithms with very different structure. First,
rather than using either an MAP or MPM criterion for optimal estimation of the discrete label set, the
authors suggest an alternative measure aimed in part at overcoming the problematic use of MAP estimation
for segmentation [234] and also at exploiting the structure of MR models. In particular, using the argument
that errors at coarser scales are geometrically more expensive (since they correspond to misclassifications
over geometrically larger regions), the authors derive a criterion that puts exponentially larger weights on
errors that occur at coarser scales (see [42] for the precise formulation). The result is a criterion whose precise
optimization is rather complicated. However, the authors demonstrate that a very good approximation to
the criterion to be optimized at each scale results in a very simple and intuitively appealing structure: A
first fine-to-coarse sweep, much as in the two-sweep algorithms we have described previously, is performed to
compute, at each node the conditional log-likelihood for the data in the subtree below that node conditioned
on the discrete state value at that node. That is, if we let x(s) denote the discrete-state at node s and Ys

denote the data at the finest scale nodes descendent from s, the coarse-to-fine sweep computes

ℓs(k) = log p(Ys|x(s) = k) (58)

at each node s and for each value k that x(s) can take on. At the root node, we can then compute the
optimal estimate as

x̂(0) = arg max
k

ℓ0(k) (59)
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The approximate estimation algorithm then proceeds in a coarse-to-fine manner, where, at each stage we
essentially assume that the estimate at the parent node is correct. That is, the approximate coarse-to-fine
recursion is given by

x̂(s) = arg max
k

{

ℓs(k) + log p(x(s) = k | x̂(sγ̂))
}

(60)

However, as we have pointed out, and as is also pointed out in [42], use of such a tree model can lead
to artifacts, and this leads to the introduction in [42] of an alternative to the tree-based Potts model of
Example 3, namely a directed graph model, from coarse-to-fine scales in which the discrete state x(s) at any
node s depends on the values at three nodes at the preceding, scale, namely the parent node sγ̄ and two of its
neighbors at the same scale, where for simplicity here, we denote this set of three nodes as P(s). The model
used is a straightforward variation of (8) in which the state x(s) is influenced by all three of its parents (see
[42] for details). As a result of adopting this non-tree model, the computation of the likelihood in (58) and
in fact the entire structure of the computation of optimal estimates becomes much more complex thanks to
the loopy structure of the graph corresponding to this 3-parent model. In principle, maximization cannot be
performed node-by-node at each scale; rather all nodes at each scale need to be considered simultaneously,
a combinatorially explosive requirement at finer scales.

Thus, as with any inference problem on a complex graph with loops, an approximation or iterative scheme
is needed. The approach taken in [42] is to define a non-iterative, two-pass algorithm that is motivated by the
perspective of MR processing but that is decidedly different from approaches found in the general graphical
model literature. In particular, [42] assumes that both a tree-based Potts model as in Example 3 and a
3-parent non-tree model are available for the discrete state process. The tree-based model is used on the
fine-to-coarse sweep, computing the likelihoods in (58). The optimal root node estimate is then computed
as in (59), and the estimates at other nodes are computed node-by-node in a coarse-to-fine sweep using the
following recursion in place of (60):

x̂(s) = arg max
k

{ℓs(k) + log p(x(s) = k | x̂(t), t ∈ P(s))} (61)

Comparing (60) and (61) we see that the only difference is the conditioning on the set of 3 parents rather
than simply x(sγ̄) in the transition distribution. As discussed in [42], at each scale what this algorithm
resembles (but does not equal) is the optimal estimate based on using a 3-parent Potts model for coarser
scales but a tree-based Potts model for finer scales.

Figure 24(a) shows the result from [42] of applying this algorithm to the multispectral image in Fig-
ure 5(a), in which the data at each pixel consists of a vector of multispectral measurements, and the image
is segmented into 5 regions, the pixels in each of which are modeled as a multivariate Gaussian mixtures.
Figure 24(b) shows corresponding results for the segmentation of the document page in Figure 5(b) into
3 regions (text, picture, and background). The algorithm used for this second example and developed in
[53] uses the same structure (tree for fine-to-coarse likelihood computation and non-tree for coarse-to-fine
estimation) but much more sophisticated and involved data and model structures. We refer the reader to
[53] for details.63

Finally, we briefly describe research motivated both by MR loopy graphs as in Figure 23 and also by
the efficient algorithms described in Section 4 for inference on trees. Specifically, consider estimation for
a graphical model on a (connected, loopy) graph G = (V, E), based on noisy measurements of variables at
some (or all) of the nodes on the graph. The basic idea behind the algorithms in [332] is to carry out this

63The algorithm in [53] involves the use of Haar wavelets to transform the raw measurements into detail coefficients, an affine
class-dependent MR model for the scale-to-scale dynamics for these coefficients, and a directed graph model for the multiscale
class labels with transition probabilities that are in general much more complex than those used in [42]. All of these aspects of
the model are learned by training on a small set of sample images.
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estimation process using inference on tree models as a basic engine. In particular, suppose that we identify
a set of spanning trees, S1, · · · ,ST for the graph G. That is, each of these trees connects all of the nodes
in V and has a set of edges that is a subset of the edge set, E , of G. For example, Figure 23 (b) and (c)
depict two spanning trees for the graph in Figure 23(a). The general structure of the algorithms in this class
involve iterative application of tree-based inference using the statistical structure implied by using each of
these trees individually.

Specifically, let x be a zero-mean, Gaussian, graphical process on G with covariance matrix Px, and
suppose that we have linear measurements, y, as in (38) with C and the covariance, R, of the measurement
noise v block-diagonal. As discussed in Section 4.4, the optimal estimate x̂s is the solution of (39), and
the corresponding error covariance Pe is given by (40). Further, as we also discussed previously, P−1

x has
a nonzero element in the off-diagonal (s, t) block only if (s, t) ∈ E . If G were a tree, this would allow us to
apply the fast estimation algorithm of Section 4.2 to calculate both x̂s and the diagonal blocks of Pe. Since
G is not a tree, we can’t do this; however, for each of the spanning trees, S1, · · · ,ST we can write

P−1
x = P−1

i − Ki, i = 1, · · · , T (62)

where the only nonzero off-diagonal blocks of P−1
i correspond to edges in the spanning tree Si, and Ki has

nonzero elements only in blocks corresponding to edges eliminated from G in order to form Si (and possibly
in the diagonal blocks corresponding to nodes involved with the edges eliminated).64 As a result Ki has rank
proportional to the number of edges removed from G.

Using (62), we can rewrite (39) as

(

P−1
i + CT R−1C

)

x̂s = Kix̂s + CT R−1y (63)

which suggests an iterative algorithm of the following form. Let i(n) denote a sequence that designates which
of the T spanning trees is used at the nth iteration (e.g., chosen to cycle periodically through these trees or
chosen randomly), and let x̂n denote the approximation to the optimal estimate at the nth iteration, which
is the solution to the following equation:

(

P−1
i(n) + CT R−1C

)

x̂n = Ki(n)x̂n−1 + CT R−1y (64)

Since the matrix on the left-hand side of (64) has tree structure corresponding to the i(n)th tree, this equation
can be solved efficiently using the MR estimation algorithm in Section 4.2.

In [334] examples are given demonstrating that such Embedded Tree (ET) algorithms can lead to very
efficient methods for computing the optimal estimates. As with Belief Propagation [285, 338], if an ET
algorithm converges, it does so to the optimal estimate. Moreover, while BP does not yield the correct error
covariances, it is shown in [334] that the computations performed in an ET algorithm can be used to compute
a sequence of approximations that do converge to the correct error covariances. Furthermore, experimental
evidence reported in [334, 310] indicates that ET algorithms converge for a broader class of processes than
the general, local message-passing version of BP. Roughly speaking this is due to the fact that the algorithm
takes advantage of much more global structure of the process, as captured by each of the spanning trees.
We refer the reader to [334, 310] for examples and theoretical analysis including conditions guaranteeing
convergence of this tree-based algorithm.

We also refer the reader to [332] for the introduction and investigation of a set of algorithms for discrete–
state processes that also use embedded trees but are much closer to Belief Propagation. Roughly speaking
the idea behind this work is to take advantage of an interpretation discussed at the end of Section 4.2, that
exact computations of conditional probabilities on a tree corresponds to a refactorization of the probability
distribution for a graphical model, essentially in terms of a distribution at a root node and parent-child
transition distributions. The Tree Reparameterization algorithm developed in [332] then corresponds to
iterative refactorization of the entire distribution on a loopy graph, where at each step the factorization
involves only those edges corresponding to one of the spanning trees used in the algorithm. We refer the

64That is, if the edge (s, t) has been eliminated, the (s, t), (s, s) and (t, t) blocks of Ki may be nonzero.

62



reader to [332] for the theoretical analysis of this algorithm and for examples that show its promise for
inference on loopy graphs.65 While the methods in these references have only recently been introduced, the
results obtained so far and their explicit use of global rather than local graph structure suggests that there
may be much more that will result from further investigation over the next few years.

8 Conclusions

In this paper we have described a framework for MR modeling and processing of signals and images. As we
have seen, this framework, based on Markov models on pyramidally-structured, multiresolution trees, admits
efficient processing algorithms and also is rich enough to capture broad classes of statistical phenomena. As a
result, these methods have found application in a variety of very different contexts. Moreover, the formalism
on which this methodology is based is of deep interest intellectually, as it makes contact with a variety of
topics, including wavelets, graphical models, Hidden Markov models, multigrid and coarse-to-fine algorithms,
inverse problems, data fusion, state space system theory, stochastic realization theory, and maximum entropy
modeling and covariance extensions.

We believe that the theory and methodology that we have described can be of value to researchers and
practitioners in many different fields. In addition, we also believe that this area remains fertile ground for
further basic research. For example, while the MR methods that have been developed have been successfully
applied to many problems and much is known anecdotally about the problems to which they can be applied,
there is still more that can be done to deepen our understanding of the problems for which these methods
are appropriate and the limits to their applicability. In particular, in many signal and image processing
problems (such as the texture discrimination and groundwater hydrology examples discussed in the paper),
while the underlying phenomenon may be extremely complex, the available data and the inference objectives
are much simpler and lower dimensional. This suggests (and these examples support) the idea that for such
inference problems, it may be acceptable to use relatively simple and therefore crude MR approximations
which nevertheless yield near-optimal performance for specific inference problems of interest. Formalizing
this idea and developing more general methods for constructing models suited for particular processing tasks
remain to be accomplished.

There are many other theoretical topics that also remain to be explored. One of these is the development
of data-driven algorithms for model construction analogous to the ones we have described based on explicit
knowledge of the covariance structure of the process to be modeled. Here we are motivated by the fact
that standard temporal modeling methods (e.g., for AR or ARMA models) have versions that work directly
from covariance specifications and other versions that work recursively from data. We expect that data–
driven algorithms with considerable computational advantages can be developed, and we refer the reader to
[167, 325] for some initial efforts in this direction

In addition, for a variety of reasons it is of considerable interest to develop methods for MR modeling on
graphs with cycles. One of these reasons is the recently-developed set of algorithms for loopy graphs described
in Section 7, which show that one can make use of the power of tree-based algorithms for many graphical
models on loopy graphs such as in Figure 23(a). How do we build such models? Are there variations on the
stochastic realization or covariance extension methods described in Section 6.2 for such loopy graphs? For
example the covariance extension results in [121] that are described in Section 6.2.4 assume that the known
covariance elements form a chordal graph among the variables to be modeled. However, in many applications,
especially in remote sensing, that will almost never be the case. In particular, in such applications, we are
likely to have knowledge of correlations among fine-scale variables (e.g., temperature variations in the ocean)
that are in close proximity spatially as well as correlations among coarser spatial averages of these variables
across longer distances, forming a non-chordal graph of known covariance values. Such a problem, in which we
have both local fine-scale and more distant coarse-scale statistical characterizations that are of importance,

65Note that the Tree Reparameterization Algorithm developed in [332] is fundamentally different than the Embedded Tree
Algorithm in [334, 310], as the specialization of the former to linear-Gaussian models does not yield the Embedded Tree
Algorithm. Further, as shown in [332], Belief Propagation itself can be viewed as a very special variant of Tree Reparametrization
in which very simple embedded (but not spanning) 2-node trees in the graph are used at each step of the iteration.
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is reminiscent of the structure that is exploited in multipole algorithms [280, 256] for the solution of partial
differential equations. We refer the reader to [115] for a first attempt to adapt multipole ideas to MR
estimation and also to [22, 167, 325] for some results on MR modeling and covariance extension on graphs
with cycles.

Other directions for further research can be found in virtually every corner of this paper. One is the
investigation of what we have called non-internal MR realizations, a topic that offers the possibility of
additional flexibility not present if we constrain ourselves to internal models (see [325] for some initial results
along these lines). Another is the further investigation of methods for space-time problems, either in which
time is treated in a multiresolution fashion as well (e.g., as is found in so-called multirate Kalman filtering
and estimation theory [150, 151, 51, 96, 79]) or, as in the methods discussed in Section 7.1, in which time
is treated as a sequential variable but space is treated in a MR graphical manner. The results we have
presented (and others in the literature such as [274]) represent a start to this very important area which
extends well beyond MR modeling to the investigation of Dynamic Bayesian Networks.

As this discussion and the results summarized in the preceding sections illustrate, multiresolution statis-
tical modeling and inference remains a fertile, active, and important area of investigation. It is the author’s
hope that this paper will help to stimulate further use of the methods that already exist and inquiry into
extensions that can enhance our understanding of these methods as well as the range of problems to which
they can be successfully applied.
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[32] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Academic Press, New York, 1972.

[33] M. Bertero. Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics,
75(1):1–120, 1989.

[34] M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Proc. of the IEEE, 76(8):868–
889, 1988.

[35] J Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society B, 36(2):192–236, 1974.

[36] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B,
48(3):259–302, 1986.

[37] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Comm.
Pure and Appl. Math, 44:141–183, March 1991.

[38] M. Bhatia, W. C. Karl, and A. S. Willsky. A wavelet-based method for multiscale tomographic
reconstruction. IEEE Trans. on Medical Imaging, 15(1):92–101, 1996.

[39] M. Bhatia, W. C. Karl, and A. S. Willsky. Tomographic reconstruction and estimation based on
multiscale natural pixel bases. IEEE Trans. on Image Processing, 6(3):463–478, March 1997.

[40] C. A. Bouman and B. Liu. Multiple resolution segmentation of textured images. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13(2):99–113, February 1991.

[41] C. A. Bouman and K. Sauer. A generalized Gaussian image model for edge-preserving MAP estimation.
IEEE Trans. on Image Processing, 2(3):296–310, July 1993.

[42] C. A. Bouman and M. Shapiro. A multiscale random field model for Bayesian image segmentation.
IEEE Trans. on Image Processing, 3(2):162–177, March 1994.

[43] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. 14th Ann.
Conf. on Uncertainty in AI, pages 33–42, Madison, WI, July 1998.

[44] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comp, 13:333–390, 1977.

[45] W. Briggs. A Multigrid Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, 1987.

[46] R.W. Buccigrossi and E.P. Simoncelli. Image compression via joint statistical characterization in the
wavelet domain. IEEE Trans. on Image Processing, 8(12):1688–1701, December 1999.

[47] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans. on
Communications, COM-31(4):532–540, April 1983.

[48] P. J. Burt, T. Hong, and A. Rosenfeld. Segmentation and estimation of image region properties
through cooperative hierarchical computation. IEEE Trans. on Systems Man and Cybernetics, SMC-
11(12):802–809, December 1981.

[49] S.G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context modeling
for image denoising. Proc. ICIP, pages 535–539, 1998.

[50] R. Chellappa and S. Chatterjee. Classification of textures using Gaussian Markov random fields. IEEE
Trans. on Acoustic Speech and Signal Processing, ASSP-33(4):959–963, August 1985.

67



[51] B.-S. Chen, C.-W. Lin, and Y.-Li. Chen. Optimal signal reconstruction in noisy filter bank systems:
Multirate Kalman synthesis filtering approach. IEEE Trans. on Signal Processing, 43(11):2496–2504,
November 1995.

[52] S. Chen and D. Donoho. Atomic decomposition by basis pursuit. SPIE International Conference on
Wavelets, San Diego, July 1995.

[53] H. Cheng and C.A. Bouman. Multiscale Bayesian segmentation using a trainable context model. IEEE
Trans. on Image Processing, 10(4):511–525, April 2001.

[54] T.M. Chin, W.C. Karl, and A.S. Willsky. Sequential filtering for multi-frame visual reconstruction.
Signal Processing, 28:311–333, Aug 1992.

[55] T.M. Chin, W.C. Karl, and A.S. Willsky. Probabilistic and sequential computation of optical flow
using temporal coherence. IEEE Trans. on Image Processing, 3(6):773–788, November 1994.

[56] T.M. Chin and A.J. Mariano. Space-time interpolation of oceanic fronts. IEEE Trans. on Geoscience
and Remote Sensing, 33:734–746, 1997.

[57] H. Chipman, E. Kolaczyk, and R. McCulloch. Adaptive Bayesian wavelet shrinkage. Journal of the
American Statistical Association, 92, 1997.

[58] H. Choi and R.G. Baraniuk. Multiscale image segmentation using wavelet-domain hidden Markov
models. IEEE Trans. on Image Processing, 10(9):1322–1331, Sept 2001.

[59] H. Choi, J.K. Romberg, R.G. Baraniuk, and N.G. Kingsbury. Multiscale classification using complex
wavelets and hidden Markov tree models. IEEE Int’l. Conf. on Image Processing, October 2000.
Vancouver, Canada.

[60] K. Chou, A.S. Willsky, and A.B. Benveniste. Multiscale recursive estimation, data fusion, and regu-
larization. IEEE Trans. Automatic Control, 39(3):464–478, March 1994.

[61] K. Chou, A.S. Willsky, and R. Nikoukhah. Multiscale systems, Kalman filters, and Riccati equations.
IEEE Trans. Automatic Control, 39(3):479–492, March 1994.

[62] K.C. Chou, S.A. Golden, and A.S. Willsky. Multiresolution stochastic models, data, fusion, and wavelet
transforms. Signal Processing, 34(3):257–282, December 1993.

[63] K.C. Chou and A.S. Willsky. A multiresolution probabilistic approach to 2D inverse conductivity
problems. Signal Processing, 18(3):291–311, 1989.

[64] C.K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Trans. on Image Processing, 14:462–467, May 1968.

[65] B. Claus. Multiscale statistical signal processing identification of a multiscale AR process from a sample
of an ordinary signal. IEEE Trans. on Signal Processing, 41(12):3266–3274, December 1993.

[66] B. Claus and G. Chartier. Multiscale signal processing: Isotropic random fields on homogeneous trees.
IEEE Trans. on Circuits and Systems:Analog and Digital Signal Proc., 41(8):506–517, August 1994.

[67] S.C. Clippingdale and R.G. Wilson. Least squares image estimation on a multiresolution pyramid. In
Proc. ICASSP89, 1989.

[68] M. Clyde, G.Parmigiani, and B. Vidakovic. Multiple shrinkage and subset selection in wavelets.
Biometrika, 85:391–402, 1998.

[69] A. Cohen, J. Froment, and J. Istas. Analyse multirésolution des signaux aléatoires. C.R.
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[217] L. Ljung and T. Söderström. Theory and Practice of Recursive Identification. MIT Press, Cambridge,
MA, 1983.

[218] S. M. LoPresto, K. Ramchandran, and M. T. Orchard. Image coding based on mixture modeling of
wavelet coefficients and a fast estimation-quantization framework. In Data Compression Conference
Proceedings, pages 221–230, Snowbird, Utah, 1997.

[219] S. Lovejoy and D. Schartzer. Generalized scale invariance in the atmosphere and fractal models of
rain. Water Resources Res, 21:1233–1250, August 1985.

[220] S. Lovejoy and D. Schertzer. Multifractals and rain. In New Uncertainty Concepts in Hydrology and
Hydrological Modeling. Cambridge Univ. Press, Cambridge, U.K., 1995.

[221] S.B. Lowen and M.C. Teich. Fractal renewal processese generate 1/f noise. Phys.Rev. E, 47:992–1001,
1993.

[222] H. Lucke. Which stochastic models allow Baum-Welch training? IEEE Trans. on Signal Processing,
44(11):2746–2756, November 1996.

[223] M. R. Luettgen, W. C. Karl, and A. S. Willsky. Efficient multiscale regularization with applications
to the computation of optical flow. IEEE Trans. on Image Processing, 3(1):41–64, January 1994.

[224] M. R. Luettgen, W. C. Karl, A. S. Willsky, and R. R. Tenney. Multiscale representations of Markov
random fields. IEEE Trans. on Signal Processing, 41(12):3377–3396, December 1993.

[225] M. R. Luettgen and A. S. Willsky. Likelihood calculation for a class of multiscale stochastic models,
with application to texture discrimination. IEEE Trans. on Image Processing, 4(2):194–207, February
1995.

[226] M.R. Luettgen and A.S. Willsky. Multiscale smoothing error models. IEEE Trans. Automatic Control,
40(1):173–175, January 1995.

[227] P. Malanotte-Rizzoli. Oceanographic data assimilation in the 1990s: Overview, motivation, and pur-
poses. Naval Research Reviews, 51(2), 1999.

[228] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1998.

[229] S. Mallat and Z. Zhang. Matching pursuits with time-frequency libraries. IEEE Trans. on Signal
Processing, 41(12):3397–3415, December 1993.

[230] F.M. Malvestuto. Approximating discrete probability distributions with decomposable models. IEEE
Trans. on Systems Man and Cybernetics, 21:1287–1294, 1991.

[231] B.B. Mandelbrot. Self-similar error clusters in communication systems and the concept of conditional
stationarity. IEEE Trans. Commun, 13:71–90, 1965.

76



[232] B. Mandlebrot and J.W. Van Ness. Fractional Brownian motions, fractional noises, and applications.
SIAM Review, 10:422–437, 1968.

[233] B. S. Manjunath and R. Chellappa. Unsupervised texture segmentation using Markov random field
models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(5):478–482, May 1991.

[234] J. Marroquin, S.K. Mitter, and T. Poggio. Probabilistic solution of ill-posed problems in computational
vision. Journal of the American Statistical Association, 82:76–89, March 1987.

[235] E. Masry. The wavelet transform of stochastic processes with stationary increments and its application
to fractional Brownian motion. IEEE Trans. on Information Theory, 39:260–264, January 1993.

[236] R.J. McEliece, D.J.C. MacKay, and J-F. Cheng. Turbo decoding as an instance of Pearl’s ‘belief
propagation’ algorithm. IEEE J. on Sel. Areas in Comm, 16:140–152, 1998.

[237] M. Meila. Learning with mixtures of trees. Ph.D. thesis, MIT, 1998.

[238] M. Meila. An accelerated Chow and Liu algorithm: Fitting tree distributions to high-dimensional
sparse data. ICM, 1999.

[239] M. Meila and T. Jaakkola. Tractable Bayesian learning of tree belief networks. UAI, 2000.

[240] M. Meila and M.I. Jordan. Estimating dependency structure as a hidden variable. NIPS’97, 1997.

[241] D. Menemenlis and M. Chechelnitsky. Error estimates for an ocean general circulation model from
altimeter and acoustic tomography data. Mon. Weather Rev., 128(3):763–778, Mar. 2000.

[242] D. Menemenlis, P.W. Fieguth, C. Wunsch, and A.S. Willsky. Adaptation of a fast optimal interpolation
algorithm to the mapping of oceanographic data. J. of Geophysical Research, 102:10,573–10,584, May
1997.
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[350] G.W. Wornell. A Karhunen-Loève-like expansion for 1/f processes via wavelets. IEEE Trans. on
Information Theory, 36:859–861, July 1990.

[351] C.H. Wu and P.C. Doerschuk. Tree approximations to Markov random fields. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 17(4):391–402, April 1995.

[352] C. Wunsch. Low frequency variability of the sea. In B.A. Warren and C. Wunsch, editors, Evolution
of Physical Oceanography: Scientific Studies in Honor of Henry Stommel. The MIT Press, 1981.

[353] C. Wunsch and E.M. Gaposchkin. On using satellite altimetry to determine the general circulation of
the oceans with application to geoid improvement. Revs. Geophys. and Space Phys, 18:725–745, 1980.

[354] C. Wunsch and D. Stammer. The global frequency-wavenumber spectrum of oceanic variability es-
timated from TOPEX/POSEIDON altimetric measurements. J. Geophys. Res., 100:24,895–24,910,
1995.

82



[355] H-C. Yang and R. Wilson. Adaptive image restoration using a multiresolution Hopfield neural net-
work. In Fifth International conference on Image Processing and its applications, (IEE Conference
Publication No.410), pages 198–202, Edinburgh, UK, July 4-6 1995.

[356] J.C. Ye, C.A. Bouman, K.J. Webb, and R.P. Millane. Nonlinear multigrid algorithms for Bayesian
optical diffusion tomography. IEEE Trans. on Image Processing, 10(6):909–922, June 2001.

[357] J. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. In NIPS 13, pages 689–695.
MIT Press, 2001.

[358] B.A. Zeldin and P.D. Spanos. Random field representation and synthesis using wavelet bases. J. App.
Mech. Trans. ASME, 63(4):946–952, December 1996.

[359] J. Zhang. The mean field theory in EM procedures for Markov random fields. IEEE Trans. on Signal
Processing, 40(10):2570–2583, 1992.

[360] J. Zhang and G. Walter. A KL-like expansion for wide-sense stationary processes via a wavelet-like
basis. IEEE Trans. on Signal Processing, 42(7):1737–1745, July 1992.

[361] S.Y. Zhao. Wavelet filtering for filtered backprojection in computed tomography. Appl. and Comp.
Harm. Anal., 6:346–373, 1999.

[362] W. Zhu, Y. Wang, Y. Deng, Y. Yao, and R. Barbour. A wavelet-based multiresolution regulariza-
tion least squares reconstruction approach for optical tomography. IEEE Trans. on Medical Imaging,
16(2):210–217, April 1997.

83



Symbol Usage/Meaning

G a graph
V node or vertex set of a tree or graph
Vs set of nodes in the subtree rooted at node s

(i.e. node s and all its dessendents)
E edge set of a graph
A,U ,W subsets of nodes in a graph
C a clique in a graph
C set of all cliques of a graph
s, t, u nodes on trees and graphs
sα1, sα2, sαi children of node s on a tree
sγ̄ parent of node s on a tree
s ∧ t closest common ancestor to nodes s and t on a tree
m index for scale in a MR representation
m(s) scale of node s in a tree
A(s), C(s), Q(s), R(s) matrices used to define MR models on trees
x(s), y(s), w(s), v(s) random variables or vectors at node s in a tree or graph
xA collection or vector of the variables {x(s)|s ∈ A}
x, y, w, v collection or vectors of variables over an entire tree or graph
Px(s) prior covariance of x(s) in a MR model
x̂s(s) smoothed estimate of x(s) in a MR model
Pe(s) covariance of the error in the estimate x̂s(s)
x̂(s|s) estimate of x(s) based on data in Vs

P (s|s) covariance of the error in the estimate x̂(s|s)
x̂(s|s−) estimate of x(s) based on all of the data in

Vs except the measurements at node s
P (s|s−) covariance of the error in the estimate x̂(s|s−)
x̂(s|sαi) estimate of x(s) based on data in Vsαi

P (s|sαi) covariance of the error in the estimate x̂(s|sαi)
Px prior covariance of the vector x
x̂ optimal estimate of x
Pe covariance of the error in the estimate x̂
r spatial variable in two or three dimensions
I 2-D planar region
z(r) height of a surface over the 2-D region I

(p(r), q(r)) gradient of the surface z(r)

Table of Notation
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surements; (b), (c), (d) three different reconstructions from ECT measurements using three dif-
ferent MR models corresponding to different parameter values and corresponding “strengths”
of the prior models, ranging from weakest in (b) to strongest in (d) (See [263] for details). . 99

13 Illustrating the construction of cutset tree models. (a) A graph over which a graphical model
x(.) is defined. (b) Illustrating a particular choice of root cutset, A, along with the disjoint
subsets U and W separated by A. (c) The cutset tree model resulting from this choice of root
cutset; here the dashed lines indicate redundant values that can be added to the finest scale
so that the entire process resides at the finest scale. (d) a lower-dimensional model in which
unnecessarily repeated variables are removed from various nodes. . . . . . . . . . . . . . . . . 100

14 A regular 2-D nearest-neighbor lattice, with a horizontal cutset (in red) containing a number
of nodes equal to the linear dimension of the lattice. Taking this cutset together with the
vertical one (in blue) leads to a quadtree MR model structure. . . . . . . . . . . . . . . . . . 101

15 (a) A triangulation of the graph in Figure 13. (b) The junction tree for this triangulation. . . 102

16 A set of 1-D signals each of which yield’s the same value for the 1-D version of the smoothness
penalty in (52). Taken from [223]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

17 (a) Ocean surface reconstruction from TOPEX/POSEIDON data such as in Figure 2; (b)
Discontinuous surface to be reconstructed; (c) Reconstruction of the surface given noisy mea-
surements and using the MR estimation algorithm described in the paper employing thin
plate and membrane priors which lead to smooth reconstructions across surface discontinu-
ities; (d) distribution of locations and signs of statistically significant measurement residuals,
providing clear statistical evidence for the detection, localization, and estimation of the surface
discontinuity. Taken from [120]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

18 Illustrating the role of the state in linear-Gaussian MR models. (a) In general, conditioned
on the value of the state x(s) the three sets of variables indicated in dashed lines must be
uncorrelated with each other. (b) For internal MR models, the state x(s) need only decorrelate
x(sα1), x(sα2), and the set of values in the single set of nodes encircled by the dotted red
line–the remaining decorrelation required as in (a) is automatically satisfied thanks to internality.105

19 Illustrating the result of applying the scale-recursive method for constructing internal ap-
proximate MR stochastic realizations, in this case of fractional Brownian motion (with Hurst
parameter H = 0.7). (a) Plot of the exact covariance matrix for a window of fBm; (b) plot of
the covariance achieved using a MR model with state dimension 4; (c) the difference between
the covariances in (a) and (b), plotted as an image; (d) a set of noisy measurements of this
fBm process over the two ends of the interval of interest; (e) the estimates using the MR
algorithm and the 4-dimensional state model (solid line), the optimal estimates using the ex-
act fBm statistics (dashed line almost completely obscured by the solid line), and plus/minus
one standard deviation error bars (dotted line); (f) error standard deviations given by the
MR estimator (solid line) and based on the exact fBm statistics (dashed line, again almost
completely obscured by the solid line). Taken from [122]. . . . . . . . . . . . . . . . . . . . . 106

20 Illustration of the effectiveness of the MR algorithm in estimating travel time perturbations.
In each figure the dashed line represents the distribution predicted by the direct estimation
of travel time perturbation modeled as a linearized functional of log-conductivity, which was
directly incorporated into the MR model as a state at a coarse-scale node–i.e., these dashed
Gaussians have means and variances corresponding to the resulting estimate and error variance
computed by the MR estimation algorithm. The histogram in each figure depicts the result of
conditional simulation, in which we use the estimates of fine-scale conductivity and the MR
model of the errors in these estimates to draw sample conductivity fields which are then used
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86



21 Illustrating the use of an internal MR tree model for fBm (with Hurst parameter H = 0.3)
using the Daubechies 6-tap orthogonal wavelet. Here we consider the problem of estimating a
sample path of fBm given noisy measurements (shown in (a))of the process over subintervals at
the two extreme ends of the overall interval of interest. The plot in (b) depicts the estimation
results using both this MR model (solid line) and also using the exact fBm statistics (dash-dot
line), as well plus minus one standard deviation bars (dashed line). Taken from [85]. . . . . . 108

22 An example of the method developed in [91] for nonparametric estimation of MR models of
steerable wavelet pyramids of a sample image. The small region included within the black
border in the image on the right is a real image, from which a MR model was learned. The
entire image shown is entirely synthetic, using this learned model, except for this one small
region in which the real image is located. Based on [91, 90]. . . . . . . . . . . . . . . . . . . . 109

23 (a) An example of a MR (loopy) graphical structure, including several direct connections
across what are major boundaries of the underlying MR tree. Two spanning trees of this
graph are shown in (b) and (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

24 Segmentation results on the images in Figure 5: (a) From [42] using the technique described in
Example 10 (each multispectral pixel is classified into one of five region types); (b) From [53]
using a more sophisticated MR algorithm building on the framework described in Exmaple 10
(here each pixel is classified into one of three classes, text, picture, and background). . . . . . 111
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Figure 1: Examples of MR trees, organized into resolutions. (a) A dyadic tree, typically used for the MR
representation of 1-D signals, including notation for nodes on the tree that are used in this and subsequent
sections of the paper; (b) A quadtree, frequently used for MR representations of 2-D imagery and random
fields. Here we have used a pictorial representation that emphasizes that each node on the tree represents
a “pixel” or spatial region of spatial resolution and at a spatial location corresponding to that node. The
shading of the two fine-scale pixels in this figure is associated with a discussion in Section 6.2.1
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Figure 2: A set of TOPEX/POSEIDON measurement tracks in the North Pacific Ocean. Taken from [112].
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(a) (b)

(c) (d)

Figure 3: (a) A noise-free image; (b) noisy version of the image; (c) restored version of this image using
optimal Wiener filtering over 3× 3 image blocks; (d) restored version using Wiener filtering over 7× 7 image
blocks. Taken from [282].
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(a) (b)

Figure 4: Illustration of two textures based on Markov random field models. (a) pigskin; (b) sand. Taken
from [225].
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(a) (b)

Figure 5: (a) Remotely sensed multispectral SPOT image (from [42]); (b) Document page (from [58]).
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Figure 6: (a) Illustrating the midpoint deflection construction of samples of Brownian Motion; (b) The MR
tree model structure corresponding to the midpoint deflection construction.
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Figure 7: (a) A typical example of a tree; (b) The tree of part (a) redrawn as it appears when the node
labeled “0” is taken as the root node.
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Figure 8: Illustrating the recursive structure of statistical processing algorithms on MR trees. (a) The
fine-to-coarse “upward” sweep of the optimal estimation algorithm (see equations (31) - (26)). (b) The
coarse-to-fine ”downward” sweep producing optimal smoothed estimates (see equations (33) - (37)). (c)
The hybrid recursive structure for the whitening of MR data; the upward, fine-to-coarse portions of these
computations comprise the Kalman filtering upward sweep shown in (a) to produce partially whitened
measurement residuals; the downward portion of these computations complete the whitening based on a
particular total ordering of nodes on the tree that is compatible with the partial order implied by the tree
itself. Adapted from [225].
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Figure 9: (a) Estimates of ocean height (relative to the geoid) based on a set of TOPEX/POSEIDON
measurements along the tracks in Figure 2; (b) Estimation error variances associated with the estimates
in (a). Both of these maps were computed using a MR estimation algorithm. (c) An overlay of ocean
bathymetry contours with the locations of statistically anomalous measurement residuals. Taken from [112].
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Figure 10: (a) Comparison of the probabilities of correct classification (as a function of a parameter ω).
Here the dashed line represents the optimal performance using the exact Gaussian Markov Random Field
(GMRF) likelihood ratio test (LRT); the solid line corresponds to the performance using a MR model (MM)-
based LRT (using what is referred to in [225] as a 0th-order model (corresponding to keeping only a scalar
state at each node in the quadtree model)), and the dash-dot line is the performance using the suboptimal
minimum–distance (MD) classifier from [50]. The results in (a) are for a 32× 32 image chip at an SNR of
0dB. (b) Illustrating how performance approaches the optimal achievable as we increase the order of the
approximate MR model (these results are for a 16x16 image chip at an SNR of 0dB). Taken from [225].

97



Figure 11: Denoised version of the noisy image shown in Figure 3(b) using a hidden Markov MR tree model
and complex wavelet decomposition. Taken from [282]

.
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Figure 12: (a) Noise-free image to be reconstructed from emission computed tomographic (ECT) measure-
ments; (b), (c), (d) three different reconstructions from ECT measurements using three different MR models
corresponding to different parameter values and corresponding “strengths” of the prior models, ranging from
weakest in (b) to strongest in (d) (See [263] for details).
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Figure 13: Illustrating the construction of cutset tree models. (a) A graph over which a graphical model
x(.) is defined. (b) Illustrating a particular choice of root cutset, A, along with the disjoint subsets U and
W separated by A. (c) The cutset tree model resulting from this choice of root cutset; here the dashed lines
indicate redundant values that can be added to the finest scale so that the entire process resides at the finest
scale. (d) a lower-dimensional model in which unnecessarily repeated variables are removed from various
nodes.
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Figure 14: A regular 2-D nearest-neighbor lattice, with a horizontal cutset (in red) containing a number of
nodes equal to the linear dimension of the lattice. Taking this cutset together with the vertical one (in blue)
leads to a quadtree MR model structure.
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Figure 15: (a) A triangulation of the graph in Figure 13. (b) The junction tree for this triangulation.
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Figure 16: A set of 1-D signals each of which yield’s the same value for the 1-D version of the smoothness
penalty in (52). Taken from [223].

103



180
190

200
210

220

20

30

40

50

60

−100

−50

0

50

100

150

Longitude (East)Latitude (North)

0
10

20
30

40
50

60

0

20

40

60

−10

0

10

20

30

40

0
10

20
30

40
50

60
70

0

20

40

60

80

−10

0

10

20

30

40

Estimate < Observation

Estimate > Observation

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(a) (b) (c) (d)

Figure 17: (a) Ocean surface reconstruction from TOPEX/POSEIDON data such as in Figure 2; (b) Discon-
tinuous surface to be reconstructed; (c) Reconstruction of the surface given noisy measurements and using
the MR estimation algorithm described in the paper employing thin plate and membrane priors which lead to
smooth reconstructions across surface discontinuities; (d) distribution of locations and signs of statistically
significant measurement residuals, providing clear statistical evidence for the detection, localization, and
estimation of the surface discontinuity. Taken from [120].
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Figure 18: Illustrating the role of the state in linear-Gaussian MR models. (a) In general, conditioned on
the value of the state x(s) the three sets of variables indicated in dashed lines must be uncorrelated with
each other. (b) For internal MR models, the state x(s) need only decorrelate x(sα1), x(sα2), and the set of
values in the single set of nodes encircled by the dotted red line–the remaining decorrelation required as in
(a) is automatically satisfied thanks to internality.
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Figure 19: Illustrating the result of applying the scale-recursive method for constructing internal approximate
MR stochastic realizations, in this case of fractional Brownian motion (with Hurst parameter H = 0.7). (a)
Plot of the exact covariance matrix for a window of fBm; (b) plot of the covariance achieved using a MR
model with state dimension 4; (c) the difference between the covariances in (a) and (b), plotted as an image;
(d) a set of noisy measurements of this fBm process over the two ends of the interval of interest; (e) the
estimates using the MR algorithm and the 4-dimensional state model (solid line), the optimal estimates
using the exact fBm statistics (dashed line almost completely obscured by the solid line), and plus/minus
one standard deviation error bars (dotted line); (f) error standard deviations given by the MR estimator
(solid line) and based on the exact fBm statistics (dashed line, again almost completely obscured by the
solid line). Taken from [122].
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Figure 20: Illustration of the effectiveness of the MR algorithm in estimating travel time perturbations.
In each figure the dashed line represents the distribution predicted by the direct estimation of travel time
perturbation modeled as a linearized functional of log-conductivity, which was directly incorporated into
the MR model as a state at a coarse-scale node–i.e., these dashed Gaussians have means and variances
corresponding to the resulting estimate and error variance computed by the MR estimation algorithm. The
histogram in each figure depicts the result of conditional simulation, in which we use the estimates of fine-
scale conductivity and the MR model of the errors in these estimates to draw sample conductivity fields
which are then used to drive the hydrologic equations, yielding sample values for travel time. The figure
in (a) corresponds to the case in which the log-conductivity perturbation from the background value is
comparatively small, while it is an order of magnitude larger in (b). Taken from [84].
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Figure 21: Illustrating the use of an internal MR tree model for fBm (with Hurst parameter H = 0.3) using
the Daubechies 6-tap orthogonal wavelet. Here we consider the problem of estimating a sample path of fBm
given noisy measurements (shown in (a))of the process over subintervals at the two extreme ends of the
overall interval of interest. The plot in (b) depicts the estimation results using both this MR model (solid
line) and also using the exact fBm statistics (dash-dot line), as well plus minus one standard deviation bars
(dashed line). Taken from [85].
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Figure 22: An example of the method developed in [91] for nonparametric estimation of MR models of
steerable wavelet pyramids of a sample image. The small region included within the black border in the
image on the right is a real image, from which a MR model was learned. The entire image shown is entirely
synthetic, using this learned model, except for this one small region in which the real image is located. Based
on [91, 90].
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(a) (b) (c)

Figure 23: (a) An example of a MR (loopy) graphical structure, including several direct connections across
what are major boundaries of the underlying MR tree. Two spanning trees of this graph are shown in (b)
and (c)
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(a) (b)

Figure 24: Segmentation results on the images in Figure 5: (a) From [42] using the technique described in
Example 10 (each multispectral pixel is classified into one of five region types); (b) From [53] using a more
sophisticated MR algorithm building on the framework described in Exmaple 10 (here each pixel is classified
into one of three classes, text, picture, and background).
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