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Figure 1: Morph sequence between two topologically equivalent triangle meshes.

Abstract

We present a new method for user controlled morphing of two
homeomorphic triangle meshes of arbitrary topology. In particular
we focus on the problem of establishing a correspondence map be-
tween source and target meshes. Our method employs the MAPS
algorithm to parameterize both meshes over simple base domains
and an additional harmonic map bringing the latter into correspon-
dence. To control the mapping the user specifies any number of
feature pairs, which control the parameterizations produced by the
MAPS algorithm. Additional controls are provided through a di-
rect manipulation interface allowing the user to tune the mapping
between the base domains. We give several examples of æsthet-
ically pleasing morphs which can be created in this manner with
little user input. Additionally we demonstrate examples of tempo-
ral and spatial control over the morph.
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1 Introduction

Advances in 3D scanning and acquisition technology have made
dense triangle meshes popular as representations of complex ob-
jects. These scanning devices typically create triangulations which
form a surface of arbitrary topology. The large size of the meshes
makes it difficult to manipulate them efficiently, an issue which can
be addressed through the use of multiresolution representations.

Metamorphosis (or morphing) is the process of gradually chang-
ing a source object through intermediate objects into a target object.
It has numerous applications from modeling to the generation of an-
imation sequences for the movie and advertising industries. Much
of the work done in this area has been on 2D metamorphosis, i.e.,
morphing of filmed or rendered sequences. 3D morphs on the other
hand change the geometry of an object independent of subsequent
rendering. Such morphs are significantly harder to compute and
control.

Most techniques for morphing, both 2D and 3D, are based on
a sparse set of user selected feature pairs. These are then used to
establish a dense set of correspondences which in turn are used in
subsequent interpolation between source and destination. The key
to a successful method is its ability to achieve æsthetically pleasing
morphs with few such feature pairs while providing means for very
detailed control if so desired.

For example, patch based models, if they share the same control
mesh, can be gracefully morphed into each other by associating
corresponding control points. The underlying smooth surface rep-
resentation provides the means to extend this sparse set of feature
pairs in a predictable fashion to the entire surface. The situation is
quite different when the source and destination surfaces are given as
dense, irregular connectivity meshes with no obvious coarse level
controls.

One possible approach is to transform the meshes into a sam-
pled volumetric representation and apply 3D extensions of image
morphing techniques. Instead we work with the meshes directly
to avoid issues such as discretization artifacts, high computational
cost, and difficulty of control, which volumetric methods generally
exhibit.

Specifically we make the following contributions in this pa-
per:



• Dense correspondences for arbitrary meshes: we address
the problem of establishing dense correspondences between any
two irregular connectivity meshes with the only requirement that
they be topologically equivalent. This involves the construction
of mappings from the fine meshes to their coarse base domains
and of a mapping between the base domains. These mappings
are realized through the metamesh, a topologically and geomet-
rically merged version of source and destination meshes. The
necessary computations are efficient enough to allow us to com-
pute high quality morphs on meshes with thousands of triangles
on a low end PC within several minutes.

• Fine and coarse user control: we provide easy and effective
controls for the mapping from source to destination. In the
case of fine features, such as vertices or connected sets of edges
(“lines”), simply marking them on each mesh and pairing them
up, is sufficient. Coarse control can be exercised by interactively
modifying the mapping between the coarse source and destina-
tion domains. Providing a small set of feature pairs is generally
sufficient to achieve æsthetically pleasing results.

Our algorithm proceeds by first creating parameterizations of the
source and destination mesh using the MAPS (Multiresolution
Adaptive Parameterization of Surfaces) algorithm of Lee et al. [24].
MAPS controls the parameterization using as few or as many fea-
tures on the original meshes as the user desires. These two param-
eterizations are then put into correspondence through the construc-
tion of a map between the source and destination domains. This
stage provides additional controls to the user to influence the morph
in a broad fashion. The composition of these stages is used for sub-
sequent shape interpolation.

2 Previous Work

Lazarus and Verroust [23] give an excellent survey of previous work
on the 3D morphing problem. As they note, there are an unlimited
number of ways to interpolate from one object to another. Such
interpolations may be performed for geometry as well as attributes
such as color. Algorithms for morphing are evaluated mainly by cri-
teria related to the ease with which the results can be controlled and
the æsthetic quality of the results themselves. Ease encompasses
both the amount of work an artist has to invest, as well as the pre-
dictability of the result. Since æsthetic quality is subjective precise
user control is important.

Most methods for morphing 3D objects use either discrete or
combinatoric representations for the objects themselves. Discrete
representations typically voxelize objects or their distance functions
and aim to extend 2D morphing [2, 25, 36] algorithms to 3D.

Lerios et al. [26] extended the work of Beier and Neely [2]
and used fields of influence of 3D primitives to warp volumes.
Hughes [16] proposed a method working in the Fourier domain.
This provided novel controls over the morph by treating indi-
vidual frequency bands with different functions of time. He et
al. [15] extended these ideas to a wavelet setting. Whitaker and
Breen [35] performed morphing through the application of evolu-
tion equations. Payne [28] described a distance-field volumetric
cross-dissolving technique.

The main advantage of volumetric methods is the ease with
which they support changing genus. This comes at the price of
having to reduce a model to a sampled representation on a finite
grid. Since the grid is three dimensional, memory and computation
costs can be prohibitive, limiting the visual fidelity of the results.

The alternative is to work directly on boundary representations
such as polygonal meshes or patch complexes. Methods for this ap-
proach [20, 27, 29, 22, 30, 33, 8, 9, 6, 17, 14] have to first solve the
vertex correspondence problem, i.e., computing the association of
vertices or triangles between the source mesh and the target mesh.

Lazarus and Verroust identify this as the key problem and it forms
the focus of our paper.

Many approaches to the correspondence problem have been de-
scribed, but there appears to be no general solution. Kent et al. [20]
merged the mesh connectivities under a projection. This works
well for star-shaped, swept, or revolutionary objects. Kaul and
Rossignac [19] computed the Minkowski sum of scaled versions
of the models which works well when the polyhedra are convex.
For details of other warping and morphing techniques the reader is
referred to [13, 36].

The work closest in spirit to ours is that of Gregory et al. [14]
and Kanai et al. [18]. Gregory et al. give a method that allows
the user to specify pairs and then decompose the polyhedron into
patches. Patches of the source and target meshes are paired and
morphed. This approach allows them to morph a broad class of
objects. However it requires the user to outline the entire network
of top level patch boundaries. Especially for large meshes this can
be slow and tedious.

Kanai et al. have also extended their previous work [17], which
used harmonic maps for morphing, to arbitrary topology triangle
meshes. The basic idea is to define reference shapes by using
vertex-to-vertex correspondences between the two meshes. The ref-
erence shape defines a partition of the mesh and each of the parti-
tioned meshes is embedded into a polygonal region in the plane
through a harmonic map. By overlapping those two embedded
meshes, they establish correspondence between them. The num-
ber of partitions has to be identical so that they can be paired up
and mapped to the same plane.

Their harmonic map computations are performed at the finest
level while we only invoke such a solver for the coarse base do-
mains. Additionally, we only require a small set of feature pairs
and the coarse domain of the two meshes can be quite different to
better adapt to the geometries, providing more flexibility. The effi-
ciency of our method allows us to do this for relatively large meshes
ensuring that the final surface renderings are of high visual quality.

3 Computing the Correspondence Map

As discussed above the key problem in morphing from one mesh to
another is the establishment of the correspondence map with suit-
able user controls. In this section we describe the different stages
we employ to compute the correspondence map. To do so we first
fix some notation.

Notation When describing meshes mathematically, it is useful
to separate the topological and geometric information. To this end
we introduce some notation inspired by [32]. We denote a trian-
gle mesh as a pair (P,K), where P is a set of N point positions
pi = (xi, yi, zi) ∈ R

3 with 1 ≤ i ≤ N , and K is an abstract sim-
plicial complex which contains all the topological, i.e., adjacency
information. The complex K is a set of subsets of {1, . . . , N}.
These subsets are called simplices and come in 3 types: vertices
v = {i} ∈ K, edges e = {i, j} ∈ K, and faces f = {i, j, k} ∈ K,
so that any non-empty subset of a simplex of K is again a simplex
of K, e.g., if a face is present so are its edges and vertices.

The geometric realization ϕ(a) for a ∈ K is the strictly convex
hull of all points pi with i ∈ a. Thus ϕ({i}) = pi, ϕ({i, j}) is the
open line segment between pi and pj , and ϕ({i, j, k}) is the open
triangle between pi, pj , and pk. The geometric realization ϕ(K) is
given by ∪a∈Kϕ(a) and forms a polyhedron embedded inR3.

Two vertices {i} and {j} are neighbors if {i, j} ∈ K. A set
of vertices is independent if no two vertices are neighbors. A set
of vertices is maximally independent if no larger independent set
contains it. The 1-ring neighborhood of a vertex {i} is the set
V(i) = {j | {i, j} ∈ K}. The degree of a vertex is its number
of neighbors.



3.1 Overview of the Algorithm

In our setting we have two meshes: the source mesh (S,Ks) with
Ns vertices and the target mesh (T ,Kt) with Nt vertices. Our
goal is the construction of a correspondence mapM between ϕ(S)
and ϕ(T ). The correspondence map has to be a bijection to avoid
cracks and folds in the morph. Note that in general the mapping
M(si) of a vertex of the source is not a vertex of the target, but
instead lies somewhere in a target triangle.

In the first stage we apply the MAPS algorithm [24] to
both source and target mesh, constructing coarse base domains

(S(0),K
(0)
s ) and (T (0),K

(0)
t ) through a simplification hierarchy,

as well as two bijective mappings Πs : ϕ(S) → ϕ(S(0)) and

Πt : ϕ(T )→ ϕ(T
(0)).

Next we compute a correspondence map M(0) between the

source base domain ϕ(S(0)) and target base domain ϕ(T (0)). Be-
cause the base domains are coarse this map can be computed
quickly. The final correspondence map between the original meshes
is then given as:

M : ϕ(S)→ ϕ(T ) with M = Π−1t M
(0)Πs. (1)

The user can control the computation of the correspondence map to
the extent desired by specifying features in the original meshes. The
MAPS algorithm ensures that these features are mapped to edges in

the base domain. The part of the mapping M(0) that is not deter-
mined by the user defined feature pairs is computed automatically
but can still be adjusted by the user. Feature pairs can be given by
vertices, such as the tip of the nose, and lines which are a sequence
of connected edges such as the mouth (see Figure 2). The beginning
and end points of a feature lines are also feature vertices.

The overall structure of the algorithm is illustrated by the com-
mutative diagram in Figure 2. On the top row are the source and
target meshes. The bottom row shows the corresponding source
and target base domains. The user specified feature points and lines
are highlighted in red (resp. yellow). All maps respect the corre-
sponding feature pairs.

A Brief Review of MAPS The MAPS algorithm uses a mesh
hierarchy built through successive removal of a maximally indepen-
dent set of vertices [10], followed by retriangulation of the resulting
holes. By never removing any of the feature points, we can assure
that they are contained in the base domain. Say the user specified
U feature points and assume the corresponding vertex indices are
numbered from 1 to U . The parameterization is built so that

Πs(si) = si and Πt(ti) = ti for 1 ≤ i ≤ U. (2)

In case of a feature line, the parameterization will map all the points
of the original feature line to a sequence of edges (possibly one) in
the base domain.

Note that using linear interpolation the maps Π are defined for
every point on the mesh, not only the vertices. The map Π−1 can
also be computed for every point on the base domain using a point
location algorithm [24].

3.2 The Base Domain Correspondence Map

Construction of the base domain correspondence map consists of
the following steps:

• globally align the source and destination base domains and
project the source base domain to the target base domain;

• apply an iterative relaxation procedure to improve the mapping;

• user adjustment of the coarse correspondence to produce the fi-
nal mapping.

M

−→

M
(0)

−→

Πs ↓ ↑ Π−1t

Figure 2: Overview of the correspondence map computation. The
user specifies pairs of feature points (red) and lines (yellow) in the
original meshes (top). We then use MAPS to compute mappings
Πs and Πt between the original meshes and the respective base

domains (bottom). Next we compute the correspondence mapM(0)

for the base domains. The final correspondence map M follows

from composing these maps as Π−1t M
(0)Πs. As all the individual

maps respect the feature pairs, so does the final mapM.

Global alignment of base domains Given that feature points
are guaranteed to be in the base domain, we can define their corre-

spondence map as M(0)(si) = ti for 1 ≤ i ≤ U. We still have
to establish correspondences for the vertices of the source base do-
main which are not feature points. Assume that these points have

indices U + 1 . . . N
(0)
s . We now need to find suitable positions for

M
(0)(si) for U + 1 ≤ i ≤ N

(0)
s on the target base domain. This

procedure begins by globally aligning the two base domains and

then computing a starting guess forM(0)(si) as the projection of

si onto the closest triangle of ϕ(K
(0)
t ).

The global alignment can be done either manually or semi-
automatically (see, e.g., [3, 7, 12]), and we have used Chen and
Medioni’s method with good success. Sometimes user interven-
tion is required for the initial alignment if the source and the tar-
get objects are significantly different from each other. The initial
projection is improved through an iterative relaxation procedure.
Relaxation in planar settings is fairly straightforward and well un-
derstood. Computing relaxation on a mesh is non-trivial. Indeed,



a linear combination of neighboring points typically no longer lies
on the mesh. To address this issue we base our relaxation algorithm
on shortest path computations. Our relaxation method is similar
to Turk’s retiling technique [34]. He retiles a polygonal model by
relaxing the new sample points so that they are evenly distributed
over the model.

Relaxation on a Mesh Assume the guess forM(0)(si) lies in

a triangle ϕ(t) (t ∈ T (0)) of the target base domain. The neighbors
of si as defined by the source base domain connectivity, i.e., the

M
(0)(sj) with j ∈ V

(0)
s (i), need not lie in ϕ(t). This is illustrated

in Figure 3. The center vertex is v = M(0)(si) and its neighbors

M
(0)(sj) are denoted by vj . Compute the shortest paths between v

and each of the vj . Denote their lengths as measured on the mesh by
lj . The intersection between the boundary of ϕ(t) and each shortest
path is given by v′j which define normalized directions:

~dj =
v′j − v

‖v′j − v‖
,

indicated by the bold arrows. The new, relaxed position is given by

v := (1− ξ)v + ξ
∑

j

~dj
lj
,

where the underrelaxation parameter ξ < 1 is chosen to assure
that v moves no further than the boundary of ϕ(t). This allows
us to gracefully move into a neighboring triangle in the next it-
eration. Iterating this relaxation procedure will evenly distribute
the source domain vertices on the target base domain. For feature

v4

v5

v1

v3

v2

v1’

v0

v
v2’

v3’
v4’

v5’

v0’

Figure 3: Relaxation of source base domain vertices on the target
base domain. The vertex is moved in a direction computed as a
weighted average of the directions given by the shortest path (bold
arrows).

lines, i.e., a sequence of connected edges on the finest level, MAPS
ensures their parameterization over a sequence of feature edges in
the base domain (possibly one). Any vertex along such a source
domain chain is mapped to the corresponding destination domain
chain through linear scaling between the already fixed first and last
vertices. These points are then also held fixed during relaxation.

Shortest Path Computation In general computing the exact
shortest path between two points on a mesh is a difficult problem.
Instead we use the method proposed by Lanthier et al. [21] to ap-
proximate the shortest path. Prior to the computation we introduce
intermediate edge points (called Steiner Points) which subdivide
each edge and construct a complete graph within each triangle. We
do this for each triangle. Approximate shortest paths are calculated
based on this graph using Dijkstra’s algorithm [1].

Boundaries Notice that the mesh may contain boundaries. A
boundary of a mesh ∂M is a closed loop which consists of a set of
edges. Such boundaries must also be identified in the same manner
as an open chain (feature line). In particular this implies that source
and domain should have the same number of holes.

Caution We note that this relaxation algorithm depends on the
user fixing some feature points in order to reduce the degrees of
freedom, e.g., in the mannequin head to Spock head morphing, the
user fixes one vertex at the top and four along the neck boundary.
This works well in cases where the source and target base domains
are similar. If the base domains are highly dissimilar, shortest paths
may cross and flipped triangles may appear. The interface can flag
them by computing their signed area. The problem can be ad-
dressed by fixing more points and repeating the relaxation.

4 Additional Controls

We can treat the result of the above relaxation procedure as an initial
solution to the base domain correspondence. In general the base do-
main of the source mesh and the target mesh are quite different and
this initial solution may not be what the user desires. The user can
exercise further control in the base domain correspondence map-
ping as we now describe.

We allow the user to map a vertex on the source base domain
onto any point on the target base domain to adjust the mapping.
This is done by user interface controls that allow the user to map a
vertex on one domain to a vertex, point on an edge, or a point in a
triangle on the other base domain.

Since the number of base domain vertices is small, adjustment
can be done quickly. Our experience is that for similar objects such
as two heads, little (if any) further adjustment is needed. In the case
of dissimilar objects the adjustment is more involved as illustrated
in the horse to rabbit morph in Section 5.

4.1 ExtendingM(0)

At this point we have computed M(0) only for the vertices of

S(0). We next describe how to compute the map for any point
of the source base domain (see Figure 4). Consider a triangle

{i, j, k} ∈ K
(0)
s of the source base domain. Put its vertices on

the target base domain using M(0) and call them I = M(0)(si),

J = M(0)(sj), and K = M(0)(sk). The points I , J , and K in
general do not lie within a single triangle of the target base domain.

We use the already computed shortest paths IJ, JK , andKI on the
target base domain (thick line). This outlines a “triangular shaped”
region IJK on the target base domain (shaded). The triangles of
the target base domain cut this region IJK into polygons each of
which we retriangulate. We next use the piecewise linear harmonic
map technique of Eck et al. [11]. By taking the I , J ,K as boundary
points and mapping them to si, sj, and sk we compute a mapping
between IJK and the corresponding source triangle. In this ex-
ample only one interior vertex needs to be relaxed. In general the
computation is fast since only a handful of vertices are involved.

By doing this for every triangle of the source base domain we

effectively build the map M(0) for every point of the source base
domain.

j
i s

s

sk

J

K

I

Figure 4: The source base domain triangle maps to a triangular
shaped region (shaded) on the target base domain. We compute the
harmonic mapping of this region to a triangle so as to place the
target base domain vertices on the source base domain.



4.2 The Final Correspondence Map

Once we have the base domain correspondence map we can place
any source mesh point onto the target using the composition

Π−1t M
(0)Πs. The inverse map on the target mesh is computed

using a point location algorithm [5] on the target base domain. This
allows us to map any point of ϕ(S) onto ϕ(T ).

In the morph we can now interpolate between si and M(si) ∈
ϕ(T ). However, the source connectivity Ks and target connectiv-
ity Kt are quite different. Starting the morph from (S,Ks) would
get us (M(S),Ks), which are the source vertices placed on the tar-
get mesh with the source connectivity. This is a fairly arbitrarily
remeshed version of the target. Even though it roughly captures the
geometry of the target, it will still have numerous artifacts. Our goal
is to reach exactly (T ,Kt), not some remeshed version. Therefore
we introduce the notion of a metamesh.

4.3 The Metamesh

The purpose of the metamesh (P,Kp) is to combine the source
connectivity Ks and target connectivity Kt. We want to do this in
such a way that for certain metamesh point positions P = Ps, the
geometric realization ϕ(Ps) coincides with ϕ(S), while for other
point positions P = Pt, the geometric realization coincides with
ϕ(T ).

To define the abstract complex Kp we need to find vertices,
edges, and faces. We start out by defining the vertices of Kp as
Vp = Vs∪Vt ∪Vi where Vs (resp. Vt) are the vertices ofKs (resp.
Kt) and Vi are new vertices introduced by intersection of source
and target mesh edges.

Tracing Edge Segments To find the connectivity of the
metamesh we start out by drawing edges on the target mesh be-
tween the points M(S). Take two source vertices si and sj with
{i, j} ∈ Ks, i.e., an edge of the finest level source mesh, and con-
sider their placement M(si) andM(sj) on the target. If they be-
long to the same target triangle, we can directly connect them with
a line. Otherwise we connect them with a segmented line given by
M(ϕ({i, j})). This segmented line can be computed as follows.
Start with the segment ϕ({i, j}) and trace it through all the dif-
ferent piecewise linear conformal maps that make up the map Πs.
Each of these conformal maps are used in the MAPS algorithm for
flattening a local neighborhood. Thus it is easy to check when the
segment ϕ({i, j}) breaks into two segments. Put these segments in
a list. Start tracing the two new segments and whenever they break
add the subsegments to the list. If at any time during this proce-
dure two consecutive segments lie within the same triangle again,
we can merge them. Continue this procedure until one arrives at
a list of segments connecting Π(si) and Π(sj) on the source base
domain. Because of the merging and the fact that the base domain
is so much coarser than the original, almost all lists will contain a
single segment.

Given this sequence of segments trace them throughM(0), i.e.,

from the source base domain to the target base domain.M(0) is also
made up of local “flattenings,” this time coming from the base do-
main correspondence map. Once again it is easy to check when seg-
ments break into further subsegments. After this step we have a list

of segments connectingM(0)(Π(si)) andM(0)(Π(sj)) on the tar-
get base domain. Finally the same procedure is applied through the
mapping Π−1t . If at any time two consecutive segments lie within
the same triangle we merge them. Finally we arrive at a list of seg-
ments connecting M(si) andM(sj) on the target mesh. All seg-
ments except the first and last connect points that lie on the edges
of the target mesh, otherwise they would have been merged. Take
those intersection points and add them as vertices to the metamesh.
Their position in Pt is given by the intersection point while their
position in Ps is given byM−1 applied to the intersection point.

In practice it is easiest to find the intersection points in the target

base domain and then map them through Π
(0)
t . This is illustrated

in Figure 5. The points M(0)(Πs(si)) and M(0)(Πs(sj)) lie in
different triangles of the triangle base domain and are connected
with a segmented line. Consider neighboring points of the target
mesh Πt(tk). The intersection points (black dots) can easily be

found and mapped through Π−1t to form Pt.

Target finest triangle

Source finest edge

Target base domain triangle

Figure 5: Building the metamesh. The intersections between the
source edge drawn on the target base domain and the target edges
on the target base domain define the new vertices of the metamesh.

Finally these segments have cut the target triangles into poly-
gons. Retriangulate those polygons using a constrained Delau-
nay triangulation and add the new edges and triangles to Kp. The
metamesh is now done.

Numerical Stability In order to maintain numerical stability,
we employ adaptive precision floating point exact arithematic for
robust and fast evaluation of geometric predicates [31]. Also we
take coincidence issues into account as mentioned in [20, 17]. The
idea is fairly simple, instead of representing intersection points in
R
3, we represent them as barycentric coordinates in the target tri-

angles. Hence, vertex to vertex correspondence is simply a permu-
tation of {1, 0, 0} and vertex to edge correspondence is permuta-
tion of {α, β, 0}. This turns out to be very helpful in performing
the constrained Delaunay triangulation since the “on-line” predicate
does not suffer from numerical round off error.

Finding intersection points is easier if the source mesh contains
triangles which are smaller than the target mesh triangles. Then
many source edges will lie inside a single triangle of the target mesh
and no path needs to be computed. Hence one may need to switch
if there is a big difference in size. Once the map is computed one
can switch back.

Properties of the Metamesh The metamesh has a number of
interesting properties. For example, we can make the geometric
realization of the metamesh look exactly like the geometric realiza-
tion of both source and target mesh by letting its positions be either
Ps or Pt:

ϕ(S,Ks) = ϕ(Ps,Kp) and ϕ(T ,Kt) = ϕ(Pt,Kp).

In other words by taking the positions Ps the triangles of the
metamesh line up to form the triangles of the source while by taking
the positions Pt the triangles of the metamesh line up differently to
form the triangles of the target.

In the worst case the size of the metamesh can grow as the prod-
uct of the sizes of the source and target meshes as every edge of
each mesh could intersect every edge of the other. In practice this
is not the case. As the complexity of the mesh grows, the edge
lengths decrease for a fixed geometric size. Since the meshes are
about the same density, most of the intersections happen locally and
thus are proportional to the degree of vertices which on average is
a constant. As shown in Table 1, the metamesh size is no more
than 10 times the size of the larger mesh in the examples we have
considered.

The positions of intermediate meshes needed in the morph are
given by P = θPs+(1− θ)Pt, (0 ≤ θ ≤ 1) and the connectiv-
ity is always Kp. Letting θ smoothly vary between 0 and 1, these



meshes transform from source into target. It is well known that lin-
ear interpolation methods can cause self intersections or excessive
shape distortion. Some previous 2D work [29] is geared towards
avoiding kinks or shrinkage during polygon morphing. Unfortu-
nately these methods work well only for models with similar shape.
While we have had success with the our simple interpolation, more
sophisticated methods would be desirable.

To time schedule the morph the user can now specify how θ will
vary with time (t). The simplest solution is to let θ(t) vary linearly
with time: θ = t. To have a gentle fade-in and fade-out one can let
θ(t) = 1/2− 1/2 cos(πt). The user also has spatial control by let-
ting θ depend on location: θ(t, i) with {i} ∈ Kp. This can be used
to morph certain regions before others as shown in the mannequin
to Spock head example.

source triangles
in the original

target triangles in the 
original target mesh

      source mesh

A

B
Q

P

R

C

Figure 6: Intersection between triangles at the source mesh and the
target mesh, new edges (broken lines) are introduced for the con-
strained triangulation which preserves the source and target edges.
The attribute vectors (bold arrows) for the target triangle PQR are
shown.

Attribute Interpolation and Rendering of the Metamesh
We can also interpolate other attributes such as normal, texture
and color information between the source and the target. Consider
the most general case where the attributes are associated with each
vertex per triangle. This allows us to morph between smooth and
sharp objects. Consider the case when the metamesh is at the tar-
get (P = Pt). Remember that the metamesh has many more ver-
tices than the original source/target mesh: In Figure 6 triangles (in
the metamesh) that are created inside ∆PQR will have attributes
derived from the attribute vector at P,Q and R using barycentric
interpolation.

This hints at another application. Assume we have a scanned
mesh like a human head with a scanned texture but no texture map.
Say we want to put this texture on a model like the mannequin head.
Once we have a correspondence map between the two heads, one
can simply transfer the texture.

5 Results

We have implemented our system on a Pentium Pro 200MHz PC
and used it to produce a number of different morphs, described be-
low.

Mannequin to Venus Figure 1 shows a number of frames from
this sequence. The user only needed 5 minutes to associate the
features (Figure 2) and adjust the mapping. Note how ears morph
to ears, lips to lips, nose to nose, and eyes to eyes. The source mesh
(Mannequin head) is created by using the Loop subdivision scheme
to enhance the smoothness. However, its special structure was not
used.

Cup to Donut This morph illustrates that our system can handle
higher genus manifolds as well as morph fairly dissimilar objects.
See the color plate (Figure 8 top). The user needed 30 minutes to
associate features and adjust the mapping. Note how the cup turns
itself inside out to deform to the torus. In morphing two non-zero
genus objects, not only do they have to satisfy the homeomorphism

condition, they must also be “tamely homeomorphic” [4]. S is
tamely homeomorphic to T if there is a homeomorphism of R3

onto itself that carries S onto T .

Mannequin to Spock Here we show an example of spatial con-
trol. See the color plate (Figure 8, middle). We first put the hair of
Spock onto the mannequin head (middle frame) and then morph the
rest of the face.

Figure 7: Modification of the rabbit base domain to more closely
match the horse base domain.

Horse to Rabbit This is another example of morphing dissim-
ilar objects. See the color plate (Figure 8 bottom). The user
spends almost an hour to establish the base domain correspon-
dences. There are three reasons: there are more feature pairs (60)
which the user has to match due to the fact that the rabbit has long
ears while the horse has small ones and the horse has a very long
neck that the rabbit does not have. Effectively the user has to stretch
the horse base domain using the additional control tools to match
the rabbit’s. Also, the legs of the horse are very noticeable, promi-
nent features. The rabbit has no such features that can be identified.
In order to create the morph, we allow the user further control by al-
tering the shape of the rabbit’s base domain (see Figure 7). By cre-
ating four “legs” on the rabbit base domain the base domain map-
ping can be quite smooth. These changes induced changes to the
finest level correspondence through the MAPS parameterization.

6 Conclusions and Future Work

We have demonstrated an effective and easy to use system for
user controlled morphing of dense, arbitrary connectivity triangle
meshes of arbitrary topology. Future research can be pursued in
several directions:

• The main restriction of our method is the requirement that
source and target share the same genus. Thus fundamental work
on extending MAPS to deal with genus changes is needed.

• Once a dense correspondence map is established the character-
istics of the morph can be greatly influenced by the interpolation
functions used. We have only explored spatially varying linear
interpolation and more sophisticated controls would be desir-
able in production work.

• We can compute a wavelet transform on the metamesh and give
the user the option to schedule different morphing speeds for
different scales/frequencies as in [15].

• The user can have even more control over the actual morph by
editing the metamesh in certain key frames. The morph will
then smoothly adjust itself to those key frames.

• In case the source and target are quite dissimilar, the user needs
to spend more time to guide the correspondence map. More
tools which naturally combine user control with automated com-
putation are needed.



Source-Target Source size Target size Metamesh size Feature Corresp. Metamesh User
(triangles) (triangles) (triangles) pairs map time time time

mann-venus 5422 90709 225502 24 3’ 19’ 5’
cup-donut 8452 2048 43188 30 1’20” 4’ 30’
mann-spock 5422 14100 75427 24 1’ 7’ 5’
horse-rabbit 21130 21582 220201 60 22’ 27’ 60’

Table 1: Selected statistics for the examples discussed in the text. All times were measured on a 200 MHz PentiumPro.
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Figure 8: Morphing gallery.

Figure 9: User interface shows the finest and coarsest resolution of the source (Venus) and the target (Mannequin). It demonstrates the
feature vertices and feature edges association (see Section 3.3). The right picture shows the result of mapping the source base domain edges
(blue lines) onto the target base domain.


