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Multiresolution Moment Filters:
Theory and Applications

Michael Sühling, Student Member, IEEE, Muthuvel Arigovindan, Patrick Hunziker, and Michael Unser, Fellow, IEEE

Abstract—We introduce local weighted geometric moments that
are computed from an image within a sliding window at multiple
scales. When the window function satisfies a two-scale relation,
we prove that lower order moments can be computed efficiently
at dyadic scales by using a multiresolution wavelet-like algorithm.
We show that B-splines are well-suited window functions because,
in addition to being refinable, they are positive, symmetric, sepa-
rable, and very nearly isotropic (Gaussian shape). We present three
applications of these multiscale local moments. The first is a fea-
ture-extraction method for detecting and characterizing elongated
structures in images. The second is a noise-reduction method which
can be viewed as a multiscale extension of Savitzky–Golay filtering.
The third is a multiscale optical-flow algorithm that uses a local
affine model for the motion field, extending the Lucas–Kanade op-
tical-flow method. The results obtained in all cases are promising.

Index Terms—Local moments, multiresolution, optical flow,
Savitzky–Golay, weighted least-squares.

I. INTRODUCTION

G
LOBAL geometric moments and their invariants are
widely used in many areas of image analysis, including

pattern recognition [1], image reconstruction [2], and shape
identification [3]. In addition to geometric moments, which are
also known as regular or ordinary moments, a number of other
moments has been proposed. The notion of complex moments
was introduced in [4] for deriving moment invariants. Teague
[5] suggested the use of orthogonal moments and introduced
complex valued Zernike moments that are defined on a unit
disk. A second class of orthogonal moments is given by
Legendre moments which make use of Legendre polynomials.
The usefulness of Legendre and Zernike moments has been
demonstrated, in particular, for image reconstruction [2], [6]
and pattern classification [7]. The pseudo-Zernike formulation
proposed in [8] further improved these characteristics. A
detailed discussion of moment-based image analysis can be
found in the monograph [9].

Some authors have applied geometric moments in a local
fashion for image and texture segmentation [10], [11] and di-
rection-based interpolation [12]. The idea there was to compute
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moments locally over some square region of interest which is
moved over the image; the window functions may be overlap-
ping or not, depending on the application. An efficient method
to compute local moments inside sliding squared windows with
constant weights was recently proposed in [13].

In this paper, we are extending the notion of local geometric
moments by introducing two refinements: weighting and mul-
tiresolution. The idea of weighting is motivated by the observa-
tion that the square window that has been used so far is rather
anisotropic. Indeed, if the goal is to design a “rotation-invariant”
algorithm, it makes good sense to apply an isotropic window
with a radial weighting that decreases away from the center.
Multiresolution is a feature that is highly desirable for designing
image processing algorithms that have some degree of adapt-
ability. The down-side, of course, is that these multiscale refine-
ments can be computationally very expensive, especially when
the size of the window is large. The framework of wavelets
[14] is a computational efficient approach to multiresolution
and has proven to be successful in many applications such as
image denoising [15], [16], feature enhancement [17], and shape
analysis [18]. In this paper, we use wavelet-related concepts and
propose a fast multiresolution wavelet-like algorithm to com-
pute multiscale local geometric moments of different orders
with a dyadic scale progression. In particular, we will consider
B-spline window functions, which become wider and more and
more Gaussian-like—also meaning isotropic—as the degree of
the spline increases.

We believe that these multiscale local geometric moments
could be useful tools for devising new algorithms based on what
we call a “sliding window” formulation of a problem. The basic
assumption for such an approach is that the spatially varying
feature (or parameter) that one is estimating is approximately
constant within the window. The unknown parameter is then
estimated from the available information in the window (which
often requires the evaluation of moments). Finally, the output
value is attributed to the spatial location corresponding to the
center of the window. This is a simple, yet powerful paradigm
that can be made most effective by working at the appropriate
scale (multiresolution strategy). We will illustrate these ideas
in Section III by presenting three such local-moment-based
algorithms:

• a new method for local shape analysis and feature
extraction;

• a multiscale noise reduction method based on Sav-
itzky–Golay filters [19];

• a multiresolution extension of the Lucas–Kanade op-
tical-flow algorithm [20], which uses a more refined
local-affine model for the motion.

1057-7149/04$20.00 © 2004 IEEE
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These methods are fast thanks to the wavelet-like imple-
mentation. The experimental results obtained in all cases are
encouraging.

II. THEORY

In this section, we will define weighted local geometric mo-
ments and their associated multiresolution moment filters. We
also show how these moments can be computed efficiently in a
multiresolution framework.

A. Weighted Local Geometric Moments

Global geometric moments of order and location
of a continuously defined function are defined as [1]

(1)

For localization, we introduce a positive and symmetric window
function with compact support . We then define weighted
local geometric moments of order , scale , and location

as

(2)

Note that the window function is dilated by a factor and is
centered at . For a given window function , we call

(3)

the moment filter mask of order . Then, the local weighted
geometric moments can be rewritten in the form of a convolution
as

(4)

(5)

where the multiresolution moment filters
are time-reversed and dilated versions of the basic

moment filter mask (3). The normalization factor in (5)
is included to simplify the formulation of the multiresolution
algorithm presented next.

B. Two-Scale Equation

Computing local moments at coarser scales becomes more
and more time consuming due to the increasing size of the
window function. However, multiresolution pyramids of local
moments can be computed efficiently, provided that the window
function satisfies a two-scale equation, a concept that is closely
related to the framework of wavelets [14].

Theorem 1 (Two-Scale Equation): Let be a function that
satisfies the two-scale equation

(6)

for some given filter . Then, satisfies the multichannel two-
scale equation

(7)

with filters , , given by

(8)

In particular, we have that . The proof of this theorem
is given in Appendix I.

C. Efficient Multiscale Implementation

Theorem 1 can be used to derive fast algorithms for com-
puting local moments for scales and orders

. To initialize the procedure, the inner products on
the finest scale are computed by using (5). Due to Theorem 1,
the coefficients on the subsequent coarser scales can be deter-
mined recursively.

Corollary 1: Let , , be local moments
at scale and positions . Then, the moments at the next
coarser scale can be computed as

(9)

with filter masks given by

(10)

For a proof of this corollary, we refer to Appendix II. Equa-
tion (10) means that the two-scale filters have to be multi-
plied by at each scale prior to convolution. The filters

need not to be stored separately since they are obtained by
simply updating the basic filters at each scale. Equation (9)
is a multichannel extension of the “à trous” algorithm, which is
frequently used for computing overcomplete wavelet transforms
[21].

The method is easily modified for computing local moments
in a subsampled, wavelet-like pyramid. The recursion (9) then
simplifies to a Mallat-like algorithm (cf. [21])

(11)

where denotes the time reversed filter

mask . The corresponding block diagram for computing
moments of order 0 to 2 in a subsampled fashion is shown in
Fig. 1.

To avoid boundary artifacts, the signals that are considered
by the algorithm need to be extended properly at the boundary.
We assume that the input signal is extended by using a mirror
boundary convention. If this signal is filtered with a symmetric
filter (e.g., even moments), the output will exhibit the same sym-
metry. Conversely, if the signal is filtered with an antisymmetric
filter (e.g., odd moments), the output will be antisymmetric at
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Fig. 1. Recursive computation of moments of order 0 to 2 using multichannel
two-scale filters.

the boundary. Therefore, in order to implement the recursive
two-scale algorithms (9) and (11), one has to alternate between
the right type of boundary extension of the moments to produce
an output that is consistent with the input assumptions. This is
ensured by extending even and odd order moments by mirror
and antimirror boundary conditions, respectively. From (8), it
can be seen that the two-scale filters are symmetric or anti-
symmetric, if is even or odd, respectively. Thus, the con-
volution with the properly extended moments will result in

the correct boundary extension of the moments . A sum-
mary of all possible cases is given in Table I.

The usage of the two-scale algorithm clearly pays off when
computing lower order moments at coarser scales. The direct
computation of the moments by (5) requires multipli-
cations and additions per output point at scale . On
the other hand, the computational complexity of the recursive
two-scale algorithm is independent of the scale and behaves
like . A detailed analysis of the computational cost is given
in the Appendix III-A.

D. Multiple Dimensions

The notion of multiscale weighted moments can be extended
to multiple dimensions in a straightforward way by using tensor
products. In the two-dimensional (2-D) case, we define moment
filter masks of order as

(12)

The moments at scale are then given by the separable convo-
lution

(13)

where are the associated
2-D multiresolution moment filters. For an efficient computa-
tion of , (9) and (11) are applied successively in each di-
mension. In the subsampled discrete case, this reads

(14)
where the two-scale filters and are applied sep-
arately in - and -directions, respectively. For instance, the

block diagram for the second order moment is illustrated
in Fig. 2.

In the 2-D case, the direct moment computation (13) requires
multiplications and additions per output point

at scale , whereas the cost of the recursive two-scale algorithm
behaves as . For a detailed analysis of the computational
complexity in two dimensions, we refer to Appendix III-A.

E. B-Spline Window Function

The ideal window function should be positive, with weights
decreasing away from the center, refinable, separable, and
isotropic in multiple dimensions. The only choice would be a
Gaussian, but it does not satisfy a two-scale equation. However,
B-splines satisfy a two-scale equation and rapidly converge
to Gaussians when their degree increases [22]. In fact,
for a given number of filter tabs, B-splines are the smoothest
scaling functions in the Sobolev sense [23]; this guaranties that
they converge fastest to Gaussians in the Sobolev norm. This
ensures nearly isotropy of the window in multiple dimensions.
The cubic B-spline , , and its two first moment filters

and are plotted in Fig. 3. The corresponding two-scale
filters up to order are given in Table II.

The Fourier transform of a B-spline , which is the
-fold convolution of a rectangular pulse, is given by

(15)

By definition, the Fourier transforms of the corresponding mo-
ment filters are given by

(16)

B-splines of degree are by construction in , i.e., they are
times continuously differentiable; the same also holds

true for the moment filters. This implies that their Fourier trans-
forms decay at least like for large . Consequently,
the Fourier transforms of the moment filters decay faster when
the spline degree increases. Fig. 4 shows the normalized spectra
of the B-spline and its moment filters for de-
gree and moment orders at scale . It
is clear from this graph that the filters are essentially bandpass,
which can be used as a justification for the downsampling of
moments at coarser scales.

III. APPLICATIONS

The fast algorithm presented above is applicable to a variety
of image analysis problems, such as image segmentation, pattern
detection, and optical-flow estimation, for which local solutions
over sliding windows have been proposed. These approaches
can be extended by applying a multiresolution strategy which
provides adaptability while also reducing computational cost.
Here, we will illustrate the concept by presenting new local-
moment-based algorithms for three specific tasks: 1) local
shape analysis and feature extraction; 2) filtering for noise
reduction; and 3) the estimation of motion fields using a local
affine model.
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TABLE I
BOUNDARY EXTENSION OF MOMENTS

Fig. 2. Recursive computation ofm using multichannel two-scale filters.

Fig. 3. Cubic B-spline � and its first two moment filters � and � .

TABLE II
TWO-SCALE FILTERS h UP TO ORDER p = 2 FOR �

Fig. 4. Normalized spectra of moment filters � (x=2), � (x=2) and
� (x=2).

A. Local Shape Analysis and Feature Extraction

Effective analysis of shapes is required by many computer
vision applications; in particular, in biomedical image analysis.
One of the major issues is to determine location, orientation
and size features of filamentous or spherical bright structures
in an image. Examples are segmentation and characterization
of biological cell images, the analysis of vessel distributions in
medical images and the detection of DNA filaments in electron
micrograph images. The evaluation of low order moments
represents a systematic and efficient method of shape analysis.
Since moments are integral-based features, they are robust
against noise. Furthermore, low order moments have a direct
geometrical interpretation.

1) Geometric Interpretation of Moments: The moments
have well-defined geometric interpretations. The coordi-

nates of the local centroid are given by

(17)

The distance between the window center and the local centroid
allows to detect whether the sliding window is located on the
center of a bright structure or not. The so-called central moments
[1] can be expressed in terms of ordinary moments and the
coordinates of the centroid. For the second order, we have

(18)

(19)
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These three central moments of second order are the compo-
nents of the inertia matrix

(20)

The local orientation of the analyzed object is given by the
eigenvector corresponding to the minimal eigenvalue of . In
fact, the local object is mapped onto an ellipsoid centered at ( ,

). The ellipsoid axes are directed along the eigenvectors of
and the corresponding axes semi-lengths are the magnitudes of
the respective eigenvalues and . The orientation angle with
respect to the -axis is given by

(21)

A measure for the eccentricity of the local ellipsoid is given by

(22)

and takes values between 0 and 1. It indicates whether the local
object is elongated or not. The eccentricity measure is indepen-
dent from the local image energy and is therefore well suited for
inter-scale comparisons.

2) Multiscale Detection Strategy: Brighter elongated struc-
tures or filaments can be extracted by evaluating the various
moment features and putting thresholds on eigenvalues or ec-
centricity measures. Since the elongated structures of interest
can have different sizes, we propose to detect them at mul-
tiple scales , where and are the finest and
coarsest scale at which relevant structures are expected. A
simple strategy, which was applied in our experiments, is de-
scribed in the following. At each image pixel ( , ) we

compute the local moments for . From these,
we derive the local orientations and eccentricities . To
decide whether or not a local object is part of a filamentous
structure, we compute the figure of merit

(23)

The second factor in (23) assigns more weight to cases where the
local centroid ( , ) is close to the center of the local window.
The parameter controls the range of the centroid around the
window origin to be accepted. The multiscale approach also
helps us to detect cases where the local structure is located sym-
metrically at the periphery of the window function. To avoid
these cases, the figure of merit is set to zero, if

. This means that the local mean of the gray values at the
next finer scale has to be greater than the local mean at the cur-
rent scale.

The figure of merit (23) will be maximal at a scale that ap-
proximately matches the size of the elongated shape to detect.
Therefore, we integrate the figures of merit at different scales to
obtain a final estimate for the goodness of local fit by

(24)

3) Application: Detection of DNA Filaments: The structure
of DNA molecules can be visualized by cryo-electron-mi-
croscopy (CEM) [24]. Because of the physical process involved,

Fig. 5. Comparison of moment-based and inertia tensor-based detection of
elongated structures for different noise levels. (a) Synthetic elongated structure
with additive Gaussian noise (SNR = 28:14 dB). (b) Synthetic elongated
structure with additive Gaussian noise (SNR = 8:15 dB). (c) Figure of merit
of structure tensor-based algorithm applied to (a). (d) Figure of merit of structure
tensor-based algorithm applied to (b). (e) Figure of merit of moment-based
algorithm applied to (a). (f) Figure of merit of moment-based algorithm applied
to (b).

the resulting images have very low contrast to avoid destruction
of the specimen (cf. Fig. 6). Biologists are highly interested in
an automatic detection of the thin strands of DNA, but the task
is challenging because of the poor signal-to-noise ratio (SNR)
(near 0 dB).

The proposed moment-based algorithm was tested on
synthetic and real images. Fig. 5(a) and (b) shows a synthetic
circular DNA strand with two different levels of additive
Gaussian noise, respectively. In this experiment, we used a
B-spline window of degree 3 at scales .

The algorithm is compared with the so-called structure tensor
method [25], a standard method to estimate local orientations
of image patterns. Instead of the inertia tensor (20), this method
uses the structure tensor

(25)
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(a) (b)

Fig. 6. A CEM-image and detected DNA strands. (a) Original CEM-image.
(b) Estimated local orientation.

where denotes a window function and , denote the
partial derivatives of the image intensity . The computa-
tion of the local orientation and eccentricity measure is analog to
(21) and (22), respectively. As in [25], we interpret the estimated
eccentricity as a figure of merit and use a Gaussian window
function. For the standard deviation of the Gaussian window, we
used , which corresponds to the effective width of the
B-spline window at the finest scale of the moment-based
algorithm.

The estimated eccentricities of the structure tensor approach
are shown in Fig. 5(c) and (d) for the two different noise levels,
respectively. Fig. 5(e) and (f) show the corresponding figures of
merit of the proposed moment-based algorithm. For the lower
noise level, both methods detect the circular structure well.
However, the figure of merit of the moment-based algorithm
is much thinner around the true structure since the eccentricity
measure is weighted by the distance of the window center to the
centroid of the local image content as described in (23). This
feature is not available in the structure tensor approach. In the
case of the higher noise level, the moment based algorithm still
detects the elongated object fairly well [Fig. 5(f)]. In contrast,
the structure tensor approach degrades significantly [Fig. 5(d)].
This is probably due to the fact that this method uses derivatives
which are sensitive to noise, whereas the proposed approach is
integral-based.

The moment-based detection algorithm was also applied
to real images as shown in Fig. 6(a). Since the intensity in
CEM images may vary globally, the original images were first
normalized in a pre-processing step. We used moments of
order zero (local average) at scale for local background
subtraction. Then we computed for each pixel the figure of merit

as described above. In particular, we used a B-spline window
of degree 3 at scales . The figures of merit were then
thresholded to suppress values that correspond to nonsignificant
structures. The final figures of merit are visualized in Fig. 6(b)
in form of a needle diagram. The length of the needles is
proportional to the size of the figure of merit at each pixel. The
direction of the needles corresponds to the local orientation
of the object. We see that the two DNA strands contained in
the image together with their local orientation were clearly
detected. Failures due to the high noise content in the image
are very sparse.

B. Multiscale Weighted Savitzky–Golay Smoothing Filters

Savitzky-Golay filtering [19] can be thought of as a general-
ized moving average filter. The idea of Savitzky–Golay filtering
is to find filter coefficients that preserve higher order polyno-
mials. These filter coefficients are derived by a least-squares fit-
ting of a polynomial of given degree within a sliding window.
The smoothed points are computed by replacing each data point
with the value of the fitted polynomial at the window center.
For this reason, a Savitzky–Golay filter is also called a digital
smoothing polynomial filter or a least-squares smoothing filter.
A crucial point is the choice of the size of the window function.
A small window preserves narrow features of the underlying
signal, but filters less; larger windows smooth more, but lead to
blurring of image details.

Originally, this approach was proposed for one-dimensional
(1-D) signals and used a box-shaped window function of fixed
length [19]. Here, we propose a multidimensional extension
based on a weighted least-squares criterion. We also propose
a new multiscale filtering strategy whereby the final smoothed
image is obtained by combining results from different scales
using a hypothesis test.

1) Weighted Savitzky–Golay Filtering: Let us consider a
2-D polynomial of degree

(26)

which is specified by the polynomial
coefficients . Let denote a window function with discrete
support of cardinality which is located at ( , ). To fit
the polynomial locally to an image , we minimize the
weighted least-squares functional

(27)
By differentiating (27) with respect to each of the unknown
polynomial coefficients , we obtain the corresponding
normal equations , where

(28)

(29)

and

(30)

with and . The index-tuples
( , ) and ( , ) denote the row and column indices of the
matrix and vectors, respectively. The diagonal matrix

is composed by the weights . Since does
not depend on the image data, the matrix and its inverse can
be computed once and forever in advance. The right-hand side
vector is nothing but a discrete version of the local
moments (13) of order zero to . The smoothed image point at
the window center is equal to the polynomial coefficient ,
which is given by the inner product of the corresponding row
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Fig. 7. (a) Original image. (b) Noisy image (SNR = 20:40 dB).

of the matrix inverse and the right-hand side
.

2) Multiscale Strategy: In order to find a trade-off between
the conflicting requirements of noise reduction and conserva-
tion of image details, we propose a multiscale framework of the
introduced weighted Savitzky–Golay filtering. We assume that
the image is locally given by the model: polynomial signal +
noise, i.e.,

(31)

where corresponds to Gaussian white noise of
zero mean and common variance . Thus, the residual (27)
gives the expected squared deviation of the image data from the
given polynomial due to noise. As shown in the Appendix,
the normalized residual corresponds to a linear combination of

independent -distributed random variables, i.e.,

(32)

where the coefficients are given by the nonzero
eigenvalues of the matrix

(33)

For a proof and the computation of the probability density
function (pdf) of (32), we refer to Appendix IV. Note that, for
uniform weights, the resulting distribution (32) corresponds
to a distribution with degrees of freedom.
Asymptotically, is normally distributed with mean

(34)

and variance

(35)

When working on real images, (32) enables us to detect image
regions for which the chosen polynomial degree or window size
are not adequate. More specifically, we apply a two-sided hy-
pothesis test on with a given significance level . In
order to avoid cases where the degree of the polynomial is too
high for the given image structure and tends to fit the noise,
we reject results for which the residual is below the confidence

interval. This usually happens when using small windows in
flat image regions. On the other hand, we also reject results
for which the residual is above the confidence interval. In this
case, image details like edges cannot be fitted closely by the
polynomial. The aim is to use locally a window as large as
possible to achieve maximum noise reduction. Consequently,
we compute smoothed image versions using windows at scales

. Recall that the images of moments (29) can
be computed efficiently for different scales by using (9). The
final smoothed image is obtained by choosing, for each pixel,
the output value from the coarsest scale for which the normal-
ized residual remains inside the confidence interval.

3) Numerical Results: In order to demonstrate the perfor-
mance of weighting and multiscale filtering, we have applied
the algorithm to an image containing additive Gaussian white
noise. Fig. 7(a) shows the original image and Fig. 7(b) shows
the image after adding Gaussian white noise of standard devi-
ation , resulting in a SNR of 20.40 dB. Results were
computed for a B-spline window of degree 3 and a fitting poly-
nomial of degree 2.

Fig. 8 illustrates the effect of using B-spline weighting. The
left column displays the filtered outputs of B-spline-weighted
Savitzky–Golay filtering at scales . Window sizes
were 7, 15, and 31 pixels at each scale, respectively. The right
column corresponds to the case of using a squared window with
constant weights one. Here, the support was chosen to be the
effective duration of the B-spline windows, resulting in window
sizes of 3, 5, and 9 pixels, respectively.

Fig. 9(a) shows the final output image of the multiscale
B-spline-weighted method. Smoothed image versions at scales

were combined to the final output image using
a double-sided hypothesis test on the normalized residuals
(32) with a significance level . The SNR of the final
image is 27.30 dB, which is significantly larger than the SNRs
at the single scales (26.25, 24.55, and 21.63 dB for scales

). Also visually, the final output image seems to be
superior to the single-scale outputs. Image details like edges are
well preserved, whereas flat image regions are fairly smoothed.

The result is compared with two standard denoising algo-
rithms. The first is a wavelet soft-thresholding method. The
noisy image was decomposed in a 3-level wavelet transform
pyramid using orthogonal Battle-Lemarié wavelets [26].
We used the same order of spline for the methods
to be comparable. We also optimized the method by se-
lecting the threshold , yielding the maximum SNR

. From Fig. 9(c), it can be seen that the
wavelet-based smoothed image is clearly more blurred and
suffers from typical ringing artifacts. The second comparison
method is the adaptive Wiener filter [27]. This filter corre-
sponds to a pixel-wise adaptive Wiener method based on
statistics derived from a local neighborhood of each pixel. The
maximum SNR of 25.96 dB was obtained for a filter size of
(5 5) pixels. As can be seen from Fig. 9(d), the Wiener filter
preserves image details well, but smoothes less in flat image
regions.

In the present approach, different scales are combined in an
exclusive fashion which leads to some artifacts near edge re-
gions. Although the proposed multiscale denoising algorithm
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Fig. 8. Images (a)–(f) demonstrate the effect of B-spline weighting at scales
j = 1; . . . ; 3. (a) B-spline-weighted at scale j = 1 (SNR = 26:25 dB);
(b) nonweighted at scale j = 1 (SNR = 22:67 dB); (c) B-spline-weighted
at scale j = 2 (SNR = 24:55 dB); (d) nonweighted at scale
j = 2 (SNR = 25:49 dB); (e) B-spline-weighted at scale j = 3
(SNR = 21:63 dB); (f) nonweighted at scale j = 3 (SNR = 23:88 dB).

performs best in terms of SNR, it may be possible to improve
the visual perception of the output further by using a more pro-
gressive weighted combination.

C. Optical Flow Estimation

The estimation of motion from an image sequence is a
classical problem in computer vision. Among others, the
optical-flow technique has been proven to be a successful
approach to this problem [28].

Let denote the intensity of pixels at location
and time in an image sequence. Gradient-based op-

tical-flow estimation relies on the assumption that the intensity
of a particular point in a moving pattern does not change with
time. The constant intensity assumption can be expressed as [29]

(36)

Fig. 9. Comparison of different smoothing methods. (a) Final multiscale
B-spline-weighted Savitzky–Golay output (SNR = 27:30 dB). (b) Final
multiscale nonweighted Savitzky–Golay output (SNR = 26:42 dB).
(c) Wavelet thresholded image (SNR = 24:89 dB). (d) Wiener filtered image
(SNR = 25:96 dB).

, , and denote the spatial and temporal derivatives of the
image intensity. The velocities and are, respectively, the -
and -components of the optical flow we wish to estimate.

1) Local Affine Motion: A very popular optical-flow algo-
rithm is the Lucas–Kanade method [20], which estimates the
motion locally, assuming the motion to be constant within a
window of support . In order to account for more complex
motions, such as rotation, divergence, and shear, we extend this
approach to a local affine model for the motion. If ( , ) de-
notes the center of the local window, this model is defined as

(38)

The parameters and correspond to the motion at the
window center and , , , and are the first order
spatial derivatives of and , respectively. The local motion
components can be estimated by minimizing the weighted
least-squares criterion

(39)

The symmetric window function gives more weight to con-
straints at the center of the local region than to those at the pe-
riphery. By differentiating (39) with respect to each of the six
unknown parameters, we obtain the so-called normal equations

in terms of local moments of orders zero
to two of the spatial and temporal derivatives of as defined in
(37) at the bottom of the next page.
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2) Coarse-to-Fine Multiscale Strategy: It is obviously dif-
ficult to estimate large motions at fine scales. A way around
this problem is to apply a coarse-to-fine strategy. At each scale

, we compute the local moments on a grid which is
subsampled by in each dimension. These subsampled multi-
scale local moments can be computed efficiently by using (11).

The motion vectors are cascaded through each resolution
level as initial estimates and are then replaced if they do not
already exceed a scale-dependent size. For each local estimate,
we compute the confidence measure

(40)

The argument corresponds to the angle between the vectors
and and characterizes how close is

to the image of . A local estimate is replaced only if its
confidence measure is larger than the corresponding one at the
next coarser scale. Otherwise, the coarser scale estimator is kept.
Furthermore, a solution of a local linear system is regarded as
not admissible if the linear system is either ill-conditioned or if
the length of the estimated central motion vector exceeds some
scale-dependent limit. Finally, a motion estimate is set to zero
if the local mean of the time derivative at the given location is
below a pre-defined noise level.

The final motion estimates at the finest scale are then in-
terpolated by B-splines to obtain a continuous representation of
the motion field.

3) Numerical Results: The performance of the algorithm
was tested on synthetic and real image sequences. In particular,
we used the well-known synthetic sequence “Yosemite”. Since
the exact motion field is known, the error of the estimated
motion field was computed using the angular error measure
as defined in [28]. As real data we used the “Rubik Cube”
sequence.1 One frame of each sequence and its corresponding
estimated motion field are shown in Fig. 10 and 11. All
sequences were prefiltered with a Binomial filter of variance

and a B-spline window of degree 5 at scales
was used for moment computation.

1All sequences were downloaded from Barron ’s FTP site at
ftp://csd.uwo.ca/pub/vision.

Fig. 10. (a) One frame of the Yosemite sequence and (b) its corresponding
estimated motion field.

Fig. 11. (a) One frame of the Rubik cube sequence and (b) its corresponding
estimated motion field.

The angular error of the “Yosemite” sequence is
with a flow field density of 100%. The error of the corre-
sponding adaptation of the Lucas–Kanade approach (same
window, same multiresolution strategy, locally constant motion
model) is . Barron et al. [28] report an average
angular error of an optimized Horn and Schunk method [29]
(spatio-temporal prefiltering, 4-point central differences for
differentiation) of with a flow field density
of 100%. Their implementation of an improved version of the
original Lucas–Kanade method (spatio-temporal prefiltering,
rejecting unreliable estimates) only produced a reasonable
error for a very sparse velocity field with a density of 35.1%.
The rotational movement in the “Rubik Cube” sequence is also

(37)
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clearly recovered. The obtained results also compare favorably
with all other methods evaluated in the survey of Barron et al.

IV. CONCLUSIONS

We have introduced B-spline-weighted, local geometric
moments within windows of dyadic sizes. The weighting
ensures isotropy in multiple dimensions and the scalability
allows adaptability to local image contents. Computational
efficiency was achieved by developing a Mallat-like algorithm
to compute these moments at multiple scales.

Local moments provide a powerful set of features that can be
used in many sliding-window-type algorithms. In particular, we
demonstrated their usefulness on three different image analysis
problems: feature extraction, noise reduction, and optical-flow
estimation. We proposed basic, moment-based algorithms
with promising experimental results. Some aspects of these
generic algorithms can be further improved by tuning them to
special applications. Besides the applications mentioned, these
moments could also be useful for applications such as pattern
classification and image segmentation.

APPENDIX I
PROOF OF THEOREM 1

In order to prove the multichannel two-scale (7), we deduce
from (3) and (6) that

Using the fact that

and applying the definition

we directly obtain (7).

APPENDIX II
PROOF OF COROLLARY 1

By definition (5), we have that

Using the two-scale equation in (7), it follows that

Applying definition (5) yields

By defining , we obtain (9).

APPENDIX III
COMPUTATIONAL COMPLEXITY

In the following, we analyze the computational complexity of
the recursive two-scale algorithm in the one and 2-D case.

A. Computational Complexity in 1-D

We assume that the length of the discretized window function
is and has a corresponding two-scale filter of

length . Since the window function is symmetric, the
direct calculation of (5) requires multiplications
and additions per output point at scale ,
independently of the order . On the other hand, since the
two-scale filters are either symmetric or antisymmetric, the
two-scale algorithms (9) and (11) require
multiplications and additions for moment
order and are independent of the scale. The computational
complexities for scales , moment orders , 1,
2 and are plotted in Fig. 12. Obviously, the use of the
two-scale algorithm starts paying off at scales for
moment orders , respectively. Since, in practice,
low-order moments are usually used, the proposed computation
scheme is much more efficient at coarser scales.

B. Computational Complexity in 2-D

For the two-scale algorithm (14), the number of multiplica-
tions and additions per output point at scale are

and ,
respectively. In contrast, the direct computation (13) requires

multiplications and additions.
The computational complexities for scales , mo-
ment orders and are plotted in Fig. 13.
The two-scale algorithm clearly pays off at coarser scales.

APPENDIX IV
COMPUTATION OF THE PDF OF A WEIGHTED

LEAST-SQUARES RESIDUAL

Let be an overdetermined linear system of size
, , and maximum rank . We assume that the noisy

observation is given by , where
is jointly normally distributed and .

The weighted least-squares estimator is obtained by
minimizing
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Fig. 12. 1-D computational complexity per output point for direct moment computation and usage of two-scale algorithm. (a) Number of multiplications.
(b) Number of additions.

Fig. 13. 2-D computational complexity per output point for direct moment computation and usage of two-scale algorithm. (a) Number of multiplications.
(b) Number of additions.

where is a diagonal -matrix of weights. Using the
fact that and that , we
obtain

(41)

where . Since is sym-
metric, it can be decomposed as , where is an
orthogonal matrix and is a real diagonal matrix containing the
eigenvalues of . Therefore, (41) can be expressed as

where is also a -distributed random variable
due to the orthogonality of . Since is by construction of
rank , we have that

where denote the nonzero diagonal elements of .

Now, the are independently normally dis-
tributed so that their squares follow a -distribution. Conse-
quently, the pdf of is given by the convolution of -pdf’s
dilated and scaled by the factors . Since the characteristic
function (Fourier transform of the pdf) of a -distribution is
given by

the characteristic function of is given by

For sufficiently large, the pdf converges to a Gaussian as a
consequence of the central limit theorem.
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