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Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement
field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown
mechanical property field for the iterative solution of the “inverse problem”. The resolution require-
ments for these two discretizations are different: the forward problem requires sufficient resolution of
the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolu-
tion in the inverse problem stabilizes the mechanical property estimates in the presence of measure-
ment noise. Previous NLI implementations use the same FE mesh to support the displacement and
property fields, requiring a trade-off between the competing resolution requirements.
Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography,
allowing independent discretizations of the displacements and each mechanical property parameter
to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and
the resolution of the property meshes can be independently manipulated to control the stability of the
inversion.
Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for ac-
curate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo
brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Vis-
coelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss mod-
ulus while holding the storage modulus resolution constant does not substantially alter the storage
modulus images. Controlling the ratio of the number of measurements to unknown mechanical prop-
erties by subsampling the mechanical property distributions (relative to the data resolution) improves
the repeatability of the property estimates, at a cost of modestly decreased spatial resolution.
Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical
property estimation compared to previous single mesh implementations. © 2012 American Associa-
tion of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4754649]
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I. INTRODUCTION

Magnetic resonance elastography (MRE) is an emerging med-
ical imaging technique that produces quantitative maps of the
mechanical properties of tissue. Tissue shear modulus is rele-
vant to diagnosing diseases including cancer,1 liver fibrosis,2

and multiple sclerosis.3 Other mechanical properties such as

the viscoelastic loss modulus3–5 have also shown promise as
diagnostic criteria.

Two common methodologies are available for produc-
ing mechanical property estimates from the time-harmonic
displacement data measured in MRE. Direct inversion
techniques (DI) (Refs. 6–10) pre-filter and differentiate the
data to produce a linear system of equations in terms of
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the unknown shear modulus. This solution is calculated us-
ing numerical estimates of the displacement derivatives in
a locally homogeneous version of the governing mechan-
ical equations of motion, and is similar to spatial wave-
length estimation.11 Nonlinear inversion techniques (NLI)
(Refs. 12–14) invoke a computational model of the mechani-
cal motion of heterogeneous tissue (the forward problem), and
iteratively estimate a set of mechanical property parameters
that best reproduces the measured displacements (the inverse
problem).

The most commonly applied mechanical model in MRE
inversion algorithms is viscoelasticity, where the stiffness
is defined by a complex-valued shear modulus, μ. Images
of the storage modulus, Re{μ}, have been found to be the
most successful indicators of disease to date, with promising
in vivo results having been reported for breast,9, 15 liver,2, 16

and brain.17, 18 Estimation of alternative mechanical param-
eters is also possible. For example, estimates of the loss
modulus, Im{μ}, improved the specificity of breast cancer
diagnosis,4, 19 and contrast has been observed in normal pres-
sure hydrocephalus;5 however, the loss modulus has been
less successful in other applications.15, 18, 20 Other alterna-
tive mechanical property parameters which have been sug-
gested as imaging candidates include the ratio of transverse
anisotropy,9, 21 Rayleigh damping composition,22 and poroe-
lastic hydraulic conductivity.23 Producing accurate images
of these alternative properties have stronger requirements on
data quality, for instance the breast studies9, 15 produced use-
ful loss modulus estimates when increased data SNR was
achieved with an improved actuator design. Previous attempts
to image alternative mechanical properties have deployed the
same spatial resolution as the storage modulus, even though
these images are more challenging to produce and may need
to be generated at lower spatial resolution to stabilize the in-
version estimates and reduce the data SNR required to pro-
duce quantitatively accurate values.

This work implements NLI MRE based on independent
spatial discretizations for each material property estimate,
so that each estimated property is supported with a separate
finite element (FE) basis function expansion and concomitant
FE mesh. As a result, the degrees of freedom (and hence
resolution) associated with each material property parameter
is independent of both the data resolution and the computa-
tional discretization for the displacement field calculation.
The resolution of each estimated mechanical property can
be chosen based on other factors such as the expected scale
of heterogeneity, parameter sensitivity, and data SNR. An
additional benefit of this multiresolution approach is that the
mesh resolution of the forward problem does not affect the
number of estimated properties. FE methods for the elasto-
dynamic forward problem have requirements on the number
of nodes per wavelength for accuracy and convergence. Low
stiffness materials at higher actuation frequencies have short
shear wavelengths, and forward problem mesh convergence
(i.e., to reduce continuum discretization error introduced by
the FE approximations) can be assured in these cases by
using a fine displacement mesh without compromising the
inverse problem.

II. METHODS

II.A. Nonlinear inversion overview

NLI poses the elastographic inverse problem as an iterative
minimization of the objective function

�(θ ) =
Nm∑
i=1

{(um(i) − uc(i)(θ ))(um(i) − uc(i)(θ ))∗}, (1)

where um(i) represents the complex-valued amplitude of the ith
displacement measurement, uc(i)(θ ) is the analogous displace-
ment calculated with the forward computational model based
on the current estimate of the properties, θ , Nm is the num-
ber of measurements and * represents the complex conjugate.
The minimization is performed by updating θ using the con-
jugate gradient method. Calculation of uc(θ ) is referred to as
the “forward problem”, and the process of iteratively estimat-
ing the material properties that minimize (1) is the “inverse
problem”. Regularization is usually necessary to stabilize the
inversion; spatial filtering24 and total variation minimization25

are commonly applied.
The forward problem for NLI techniques requires solution

of a partial differential equation (PDE) describing the me-
chanical motion, which requires boundary conditions (BCs)
to be applied around the exterior of the problem domain.
In the case of MRE, measured displacements are available
throughout the tissue; therefore, Dirichlet fixed displacement
BCs can be enforced on any conceivable boundary within the
data acquisition volume, which enables a subzone method.12

Subzone methods reduce the computational load of NLI by
solving the inverse problem on a number of smaller subre-
gions of data in parallel. The global distribution of the me-
chanical property estimates is then assembled from the union
of subregion solutions.

Because of discretization error, a PDE has well-
characterized resolution requirements for achieving an ac-
curate solution on finite elements. Figure 1 shows the
displacement mesh convergence for solution of the inhomo-
geneous Navier’s equation on 27 node quadratic hexahedral
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FIG. 1. Hexahedral displacement mesh convergence. The slope of the con-
vergence curve flattens out around 15–20 nodes per wavelength. These curves
were generated using a 0.1 m cubic geometry with type 1 shear displacement
BCs applied to the bottom face. The characteristic displacement was the ab-
solute value of one of the top corners, the value at the highest resolution was
normalized to 1.
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finite elements. Presumably, the effect of discretization error
is relatively small if it is less than the measurement error in the
MRE displacements. MRE noise is approximately 5%, and as
Fig. 1 suggests, 12 nodes per wavelength (NPW) produces er-
rors around 2.5%. An estimate of the shear wavelength, Ls, is
given by

Ls = 1

f

√
μ

ρ
, (2)

where f is the actuation frequency. In vivo MRE typically
operates in the range of 50–100 Hz, and tissue shear modu-
lus is often between 1.5 and 4 kPa. Displacement measure-
ments are commonly acquired with a resolution near 2 mm,
which yields measurements per wavelength ranging from 6 to
20. Thus, if a computational mesh resolution is used which
is comparable to the measurement resolution, discretization
errors may be substantial, especially in softer tissues at higher
actuation frequencies.

NLI methods presented in the literature12, 13, 22 have sup-
ported the unknown mechanical properties on the same finite
element mesh as the displacements calculated in the forward
problem, which is typically at the same resolution as the dis-
placement data. This approach has produced promising re-
sults, however, it trades-off mesh resolution in the forward
problem with maintenance of a manageable number of esti-
mated mechanical property estimates.

II.B. Finite element multiresolution implementation

The heterogeneous form of the time-harmonic Navier’s
equation which describes the evolution of the displacement
fields in a viscoelastic material is given by

∇ · (μ(∇�u + ∇�uT )) + ∇(λ∇ · �u) = −ρω2 �u, (3)

where μ is the complex-valued viscoelastic shear modulus, λ

is the second Lamẽ parameter, ρ is the density, ω is the excita-
tion frequency, T represents tensor transposition, and �u is the
complex-valued displacement vector which is computed dur-
ing solution of the forward problem. In this formulation, the
estimated material properties are the storage modulus, Re{μ},
and the loss modulus, Im{μ}. A large value of λ is used to-
gether with a stabilized incompressible finite element solution
of Eq. (3) to model a nearly incompressible material.26 The
imaginary component of λ is set to zero because attenuation
of the long wavelength compressional wave is assumed to be
negligible at the scale of MRE problems. ρ is held constant at
the density of water.

A subzone based multiresolution NLI algorithm was coded
in FORTRAN to run on a distributed computing cluster. Dif-
ferent basis function expansions (and concomitant finite el-
ements and meshes) were used to support the displacements
and heterogeneous mechanical properties:

Displacement mesh: Twenty-seven node quadratic hex-
ahedral elements support the displacements because
higher order elements achieve mesh convergence at
lower nodal densities compared to their linear element

FIG. 2. Two-dimensional illustration of the placement of the material prop-
erty mesh. The boundary of the global geometry is shown in red, and the
material elements are shown as blue lines with green nodes. The material
property mesh is placed so that the top/bottom and left/right overlap with the
displacement mesh (represented by a and b, respectively) are equal.

counterparts, which can substantially reduce the com-
putational overhead of the forward problem.

Property meshes: Material properties do not need to be
supported on high order elements (especially in tis-
sues where the spatial variation is considered to be
slow varying except for jump changes at interfaces be-
tween tissue types), therefore, eight-node linear hexahe-
dra represent the heterogenous material properties. Sep-
arate bases and meshes of independent resolutions were
created for the real and imaginary components of each
complex-valued mechanical property.

The nodes in these meshes were arranged in a rectangu-
lar grid mirroring the structure of MRI data. The displace-
ment mesh was created directly from masked MRE displace-
ment measurements. The displacements were interpolated to
the desired computational mesh resolution through a masked
cubic spline technique where the nodes of hexahedral dis-
placement elements were created at the interpolated voxel lo-
cations. Element with all nodes falling within the mask were
included in the global displacement mesh. The forward prob-
lem requires property distributions over the whole domain;
therefore, the property meshes were sized to overlap the com-
plete displacement mesh as illustrated in Fig. 2.

The forward problem uses Gaussian integration to assem-
ble the finite element stiffness matrix;26 therefore, the prop-
erty mesh influences the forward problem by providing values
at the displacement element Gauss points (GPs). Solving the
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inverse problem on a subzone updates the property values at
every property mesh node which affects at least one subzone
GP. Therefore, a multiresolution subzone consists of a cluster
of displacement elements and all of the property mesh ele-
ments that contain subzone displacement element GPs. The
global property solution is then constructed by weighting the
overlapping subzone property estimates by the number of af-
fected GPs, so that the global property value at node i in the
property mesh is given by

θg(i) = 1

NGtot (i)

Nsz∑
sz=1

θsz(i)NGsz(i), (4)

where θg(i) and θ sz(i) are the global and subzone property val-
ues, respectively, Nsz is the number of subzones, NGsz(i) is the
number of displacement GPs affected by node i in subzone
sz, and NGtot (i) = ∑Nsz

sz=1 NGsz(i). This update weighting re-
duces the influence of a subzone update for material element
that contains very few subzone displacement GPs, which is
desirable because property inversion on the subzone will have
low sensitivity to changes in the nodal property values of that
property mesh element. Other overlapping subzone solutions
containing the element will be more sensitive to the nodal
property estimates, and be assigned a higher relative weight in
the global property description. Property nodes with zero sen-
sitivity (NGtot(i) = 0 because all elements containing property
node i are outside the displacement mesh) are not updated.
After estimation, property values are interpolated back to the
MR measurement voxel location for display and analysis.

II.C. Data collection

A phantom was constructed from porcine skin gelatin
(type A, 300 bloom, Sigma-Aldrich; St Louis, MO), with
background and inclusion concentrations of 5% and 10% by
weight, respectively. Mechanical testing with a TA Instru-
ments Q800 dynamic mechanical analyzer (TA Instruments,
New Castle, DE) and time-temperature superposition27 pro-
duced estimates of 3.3 ± 0.8 and 8.8 ± 0.9 kPa for the storage
modulus of the background and inclusion materials, respec-
tively (shear wavelengths of the background and inclusion
materials at 100 Hz are approximately 18 mm and 30 mm,
respectively). Phantom dimensions were approximately
120 × 65 × 40 mm with a conical inclusion of 23 mm base
and 100 mm height. The phantom was actuated from below at
100 Hz using a pneumatic system driven by two 16-inch sub-
woofers powered by an amplified signal generator. Displace-
ment data was collected using a Philips 3T Achieva scan-
ner (Philips Medical Systems Best, The Netherlands) with
a single-shot, spin-echo echo-planar imaging sequence mod-
ified for MRE with motion sensitizing gradients.14 Imag-
ing parameters included 1400/40 ms repetition/echo times;
140 mm field-of-view; 80 × 80 acquired data matrix; 1.8 mm
slice thickness (with 0.2 mm gap); 20 slices. Imaging was re-
peated with motion sensitization along three separate gradient
axes, and eight dynamics were acquired over a single period
of vibration.

Brain data was also collected on a healthy 24-year-old
male volunteer using a Siemens 3T Allegra scanner (Siemens
Medical Solutions; Erlangen, Germany). The actuator em-
ployed was similar to the head rocker system described by
Sack et al.,18 and motion was applied at 50 Hz. Imaging
was performed using a multishot, variable-density, spin-echo
spiral MRE sequence28, 29 with the following parameters:
6 k-space interleaves; 2000/55 ms repetition/echo times;
256 mm field-of-view; 128 × 128 acquired data matrix; 2 mm
slice thickness; 20 axial slices. As with the phantom, imag-
ing was repeated for all three coordinate directions to acquire
full vector field displacements in time. Data was collected
using this volunteer on six separate occasions to investigate
the reproducibility of the mechanical property estimates. One
dataset was discarded because the shear strain SNR was below
the threshold of 3.0 required for accurate property recovery.30

II.D. Experiment 1: Effect of displacement
mesh resolution

The significance of errors caused by insufficient resolution
in the displacement mesh has not been carefully quantified in
NLI elastography because mesh refinement has not been pos-
sible without an accompanying increase in the number of es-
timated mechanical property parameters. Using the multires-
olution approach with gelatin phantom data, the displacement
mesh resolution was varied between 5 and 18 NPW in the
background material (based on independent DMA stiffness
estimates), while holding the viscoelastic parameter mesh res-
olution fixed at the MRE data resolution. Visual assessment
of the inclusion boundary definition and the smoothness of
the homogenous property regions provided a qualitative eval-
uation of the accuracy of the estimated properties over the
range of displacement mesh resolutions considered. Manual
segmentation of the inclusion based on the MR magnitude
image was used to determine the average estimated stiffness
for the background and inclusion.

II.E. Experiment 2: Trade-offs between runtime and
accuracy by controlling the displacement mesh
resolution

The displacement mesh resolution directly impacts the
computational time for 3D finite element problems. In vivo
MRE is typically performed at frequencies around 50 Hz to
minimize shear wave attenuation, yielding reasonably long
shear wavelengths in many tissue types. Longer shear wave-
lengths are less susceptible to discretization error; hence,
computational speedup may be possible without compromis-
ing the quality of the estimated mechanical property images.
Runtime reduction through coarse displacement mesh utiliza-
tion was investigated by estimating in vivo brain mechan-
ical properties using displacement mesh resolutions rang-
ing from 1.5 mm to 3 mm, and identifying the point where
the estimated property distribution begins to be affected. For
these experiments, the resolution of the property meshes was
fixed at the data resolution. A property distribution, θ , calcu-
lated with displacement mesh resolution, R, is denoted by θR.

Medical Physics, Vol. 39, No. 10, October 2012
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FIG. 3. Effect of displacement mesh resolution on NLI gelatin phantom mechanical property estimates. A typical cross section of the storage modulus image
(in kPa) is shown on the left for a range of NPW in the displacement mesh. The background and inclusion were manually segmented based on the MR magnitude
image to produce the average values of storage and loss modulus (right). Independent DMA storage modulus estimates of the phantom materials at 100 Hz are
shown (dashed lines), and have numerical values of 3.3 ± 0.8 kPa for the background and 8.8 ± 0.9 kPa for the inclusion.

Taking the finest resolution estimation, θ1.5mm, as a reference,
the property difference, �θR, was defined as

�θR = θ1.5mm − θR

θ1.5mm

× 100, (5)

where the overbar denotes the mean of all estimated me-
chanical property parameter values shared between the two
datasets. The value of �θR was tabulated along with the rel-
ative runtime change compared to setting the displacement
resolution equal to the data resolution. Representative images
generated at each displacement resolution provided a qualita-
tive comparison.

II.F. Experiment 3: Effect of mechanical property
parameter subsampling

In this experiment, the resolutions of the estimated storage
and loss moduli were varied between 2 mm and 4 mm, which
covered a range from the full data resolution to its reduction
by a factor of 2. The effect of these changes on the repeata-
bility of the in vivo brain property estimates was investigated.
Pixel-by-pixel variation was calculated by rigidly registering
the five brain datasets based on T2-weighted images and find-
ing the standard deviation in each common voxel across the
datasets. The mean of the standard deviation of the mechan-
ical property estimates for the voxels present in all datasets
was used to quantify the variation in each property estimate
of the same tissue for each set of property mesh resolutions.
Regularization parameters were lowered as much as possible
to isolate effects due to changes in the property resolution;
smoothing techniques such as spatial filtering are sensitive
to the property mesh resolution and can obscure the effect
of a change in property mesh resolution. The displacement
mesh resolution was held at the MRE data acquisition resolu-
tion, resulting in a well-resolved mesh with approximately 16
NPW based on the average brain tissue storage modulus.

III. RESULTS

III.A. Experiment 1: Effect of displacement mesh
resolution

Figure 3 shows the averaged shear modulus estimate in the
inclusion and background when the displacement mesh reso-
lution is increased while holding the mesh resolution of the
estimated mechanical property parameters constant. A quali-
tative comparison is also provided in terms of typical image
cross sections of the storage modulus for a range of NPW for
the displacement mesh.

III.B. Experiment 2: Trade-offs between runtime and
accuracy by controlling the displacement mesh
resolution

Table I and Fig. 4 present in vivo image data that result
when the displacement mesh resolution is decreased for me-
chanical property estimation in the brain. Table I compares the

TABLE I. Percentage difference in storage and loss moduli in the brain
in vivo when the displacement mesh resolution is decreasing. Property reso-
lution is held constant at the data resolution. The property difference is based
on using the property estimates generated with a 1.5 mm displacement mesh
resolution as a reference [see Eq. (5)] and the runtime is relative to when the
displacement mesh resolution is equal to the data resolution.

Displacement Approximate Storage Modulus Loss Modulus Relative
resolution (mm) NPW difference (%) difference (%) runtime

1.52 21 10.7 12.0 2.46
1.6 20 9.65 10.9 2.32
1.7 19 11.5 13.2 1.65
1.8 18 13.4 15.0 1.14
2.0 16 13.2 14.1 1.00
2.2 15 17.2 20.4 0.61
2.5 13 17.4 18.0 0.49
3.0 11 23.3 28.5 0.20
4.0 8 32.8 38.9 0.12
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FIG. 4. Typical image cross section of in vivo brain mechanical property estimates demonstrating the effect of modifying the displacement mesh resolution.
The property mesh resolution was held constant at the resolution of the measured displacements. The storage and loss modulus are shown in separate rows, in
units of kPa. The resolution of the displacement mesh used to estimate of each set of mechanical properties is indicated above the images.

percentage differences in storage and loss modulus as well as
runtime, whereas Fig. 4 shows a representative image cross
section recovered at each displacement mesh resolution.

III.C. Experiment 3: Effect of mechanical property
parameter subsampling

Figure 5 contains viscoelastic brain mechanical property
estimates over a range of property mesh resolutions. The first
3 columns show the effect of varying the loss modulus resolu-
tion while holding the storage modulus resolution fixed, and

the fourth and fifth columns indicate the effect of subsampling
both parameters at the same time.

Table II reports the pixel-by-pixel variations in mechanical
property estimates from five brain imaging sessions involving
the same healthy volunteer after rigid registration based on
the T2-weighted anatomical images from each scan.

IV. DISCUSSION

Finite element methods require adequate displacement
mesh resolution for accurate solution of the discretized

FIG. 5. Typical image cross section from in vivo brain data demonstrating the effect of subsampling the storage and loss modulus. Each column shows a single
estimate computed using the resolution indicated for the storage modulus (S) and loss modulus (L). Units are kPa.
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TABLE II. Mean of pixel-by-pixel variation from five scans of the same
healthy volunteer, after rigid registration using the T2-weighted images from
each exam, for a range of storage modulus (S) and loss modulus (L) property
mesh resolutions. These values are higher than the typical variability of NLI
property estimates because regularization was decreased as much as possible
to isolate the effect of the property resolution.

Property mesh Storage modulus Loss modulus
resolution (mm) variation (%) variation (%)

S=2, L=2 23.8 26.9
S=2, L=3 23.8 22.0
S=2, L=4 23.9 19.7
S=3, L=3 19.5 21.7
S=4, L=4 17.9 19.4

partial differential equation (PDE) describing the assumed
mechanical motion in tissue. In the case of dynamic elas-
ticity, the number of s is a common measure of mesh re-
finement. As NPW increases, the finite element discretization
error decreases quadratically (assuming linear finite element
basis functions), and the FE solution approaches the true so-
lution as the mesh length scales are decreased. On the other
hand, the stability of the inverse problem is influenced by the
ratio of the number of independent high-SNR measurements
to the number of unknown mechanical property parameters
to be estimated (larger values of this ratio, M/U, are gen-
erally more stable). The number of measurements is essen-
tially fixed based on imaging time and SNR constraints. In-
deed, most clinical MRE studies measure displacement data
at a resolution of 2–3 mm. The M/U ratio can be controlled
by altering the resolution of the estimated parameters through
their associated mesh discretizations. Supporting the displace-
ments and mechanical properties on the same basis functions
(i.e., mesh) forces a compromise between the competing re-
quirements of displacement mesh convergence (displacement
discretization error approaching zero) and inverse problem
stability (increasing M/U). Developing a multiresolution ap-
proach provides a more flexible framework for NLI MRE, and
simultaneously allows displacement mesh convergence and
inverse problem stability to be optimized independently.

Figure 1 indicates that the short shear wavelength of soft
materials when excited at higher frequencies can require a
displacement mesh resolution much finer than the data res-
olution to achieve low discretization error. The finite element
displacement and mechanical property discretizations appear-
ing in previous single mesh NLI implementations were not
sufficient to allow displacement mesh refinement with no con-
sequence to inverse problem stability, whereas the new mul-
tiresolution approach provides independent control of dis-
placement NPW. The results in Fig. 3 indicate that the in-
version accuracy is not affected until the mesh resolution is
lower than 8 NPW, where Fig. 1 predicts discretization errors
on the order of 5%. At lower resolution, the discretization er-
rors become substantial and begin to degrade the inversion.
However, even at very poor resolution approaching 5 NPW,
the inversion retains reasonable quantitative accuracy, and a
qualitative assessment of the property images suggests that

the errors are generally confined to local artifacts and loss of
inclusion boundary definition. These results are promising for
NLI MRE because they imply that the larger computational
burden of using a very fine displacement mesh is not critical
to recover accurate mechanical property estimates.

Experiment 2 indicates the displacement mesh resolution
is more important for in vivo data where fine scale mechanical
property variation is present. Table I shows that the property
difference stabilizes around 10%–12%, once the displacement
mesh resolution reaches 1.7 mm (or 19 NPW based on the
mean brain storage modulus). This property difference is an
expression of the uncertainty in the NLI property estimates
at the SNR of our current MRE brain data. No continuum
mechanical model is a perfect representation of tissue be-
havior – model-data mismatch and discretization of contin-
uum displacement and material property fields contribute to
in vivo modelling errors. Refining the displacement mesh res-
olution reduces the computational discretization error; how-
ever, small changes in the location of the subzone boundaries
and material property nodes alter the model-data mismatch
and its effect on the inversion, which contributes to this base
level of pixel-by-pixel mechanical property uncertainty.

Using a 1.7 mm displacement mesh comes at a cost of
a 65% increase in computational time compared to setting
the displacement mesh resolution equal to the data resolution
of 2 mm. However, using a displacement mesh resolution of
3.0 mm reduces runtime by 80% and still maintains much of
the spatial mechanical property information captured by esti-
mates generated using a high resolution displacement mesh.
Thus, the extra runtime for high displacement mesh resolution
could be compensated by using a coarse displacement resolu-
tion for earlier NLI iterations to provide an improved initial
property estimate for inversion using a high resolution dis-
placement mesh, so that fewer high resolution iterations are
ultimately required.

Multiresolution MRE allows independent control of the
resolutions of the real and imaginary components of each
mechanical property parameter, which has not been possible
previously. Figure 5 shows that subsampling the loss mod-
ulus while holding the storage modulus resolution fixed has
little effect on the storage modulus image, but stabilizes the
loss modulus estimates at a modest cost of lower resolution.
This suggests that parameters which are traditionally more
difficult to estimate (such as the loss modulus) can be sub-
sampled to stabilize the inversion without influencing param-
eters which can be successfully estimated (imaged) at high
resolution (such as the storage modulus). Subsampling both
parameters simultaneously smooths and stabilizes both prop-
erty estimates. Table II indicates that the variation of a pa-
rameter decreases with subsampling due to the regularization
effect of decreasing the number of unknowns in the inver-
sion. The loss modulus has typically proven to be the more
difficult viscoelastic parameter to estimate accurately. Using
a coarser property mesh resolution may allow more robust
loss modulus estimates while retaining high resolution stor-
age modulus images. A moderate reduction in estimated me-
chanical property resolution will reduce the visibility of small
scale mechanical property variations; however, many of the
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clinical MRE results reported to date have used a spatial aver-
age of mechanical properties taken over large regions.2, 5, 17, 31

A moderate reduction in the property resolution will not have
a large effect on these types of measurements.

The sensitivity of the displacements, u, to changes in a
parameter, θ , is described by ∂u

∂θ
. Lower sensitivity param-

eters are typically more difficult to estimate from the data;
however, the difference in quality of the storage and loss
moduli estimates is not solely a function of sensitivity, be-
cause ∂u

∂Im{μ} = i ∂u
∂Re{μ} . A more likely explanation is model-

data mismatch. The storage modulus may better describe the
elastic effects in tissue compared to the loss modulus model
of attenuation, which suggests the loss modulus values do
not reflect physical characteristics of tissue as well as the
storage modulus. More complicated material models such
as poroelasticity and anisotropic elasticity may be more ap-
propriate for tissue, which should decrease model-data mis-
match; however, in these cases additional unknown param-
eters are introduced that must be estimated from the same
data. The sensitivity difference between parameters in these
complicated models may be large, for example, tissue dis-
placements are more sensitive to changes in poroelastic shear
modulus compared to changes in hydraulic conductivity. The
multiresolution framework is expected to be valuable in these
cases, where low sensitivity parameters can be supported on a
coarse mesh to allow more accurate estimation (albeit at lower
resolution).

Additionally, MRE applications with low SNR (such as the
lung32) may benefit from reducing the number of unknown
parameters in the inversion by deploying a coarser material
property resolution for all mechanical parameters.

V. CONCLUSIONS

The multiresolution approach presented provides a flexi-
ble framework for NLI MR elastography. The competing re-
quirements of reducing displacement field discretization error
and increasing inverse problem stability can be independently
controlled, and each estimated mechanical property param-
eter can have its own (different) resolution. Phantom exper-
iments suggest that adequate displacement mesh resolution
occurs above eight nodes per wavelength, although initial in
vivo results indicate that this value is likely closer to 20 NPW.
Results from a viscoelastic implementation also indicate that
changing the loss modulus resolution has little effect on the
storage modulus images, and the pixel-by-pixel repeatability
of in vivo brain mechanical property estimates increases with
the regularizing effect of subsampling. Subsampling param-
eters which are more difficult to estimate may produce more
robust quantitative estimates without degrading the resolution
of mechanical property estimates that are already robust (such
as the storage modulus). The parameter resolution can also
be selected based on the SNR of the motion data, and prop-
erty estimation from noisy displacement measurements may
be stabilized by sacrificing resolution for a decrease in the
number of unknown mechanical property parameters in the
inversion.
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