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Abstract— A path planning algorithm based on multireso-
lution cell decomposition of the environment using wavelets
is proposed. The environment is assumed to be given by an
occupancy grid at fine resolution. The algorithm constructs a
cell decomposition at several levels of resolution (cell sizes) and
constructs an optimal path to the destination from the current
location of the agent. At each step the algorithm iteratively
refines a coarse approximation to the path through local
replanning. The replanning process uses previous information
to refine the original cell channel in the immediate area of
the path. This is done efficiently using the wavelet coefficients.
Numerical tests show a speed-up of an order of magnitude
over the baseline algorithm with minimal impact on the overall
optimality of the resulting path. A comparative study with the
well-known D* algorithm is also provided.

I. INTRODUCTION

The problem of planning a path for an autonomous mobile
robot in a given workspace, while avoiding obstacles, has
been studied for several years (see [1], [2], and more recently,
[3]). Solution methods fall into three broad categories: cell
decomposition methods, roadmap methods, and artificial
potential field methods. The first two approaches transform
the path planning problem into a graph search problem.
In particular, cell decomposition methods partition the free
space into convex, non-overlapping regions, called cells, and
then employ techniques, such as the Dijkstra algorithm, to
search the connectivity graph for a sequence of adjacent cells
from the initial point to the goal [1, Ch. 5 and 6].

Although several sophisticated approaches for path plan-
ning have been reported in the literature, approaches based
on cell decompositions are most common and are widely
used in applications because of their simplicity. Often, it is
advantageous to decompose the free space into as few cells
as possible, in order to make the search of the corresponding
graph faster. Working with multiresolution cell decomposi-
tions is beneficial when one is primarily interested in online
implementation. A multiresolution scheme can keep the size
of the resulting graph search tractable so that its search
can be achieved using the limited on-board computational
resources, while keeping the required accuracy.

Multiresolution schemes have been proposed recently, for
instance, by Behnke [4] and Tsiotras and Bakolas [5]. Hwang
et al [6] describe a multiresolution technique using triangles,
instead of rectangles, as cells. Other implementations of
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multiresolution techniques include Prazenica et al [7], who
present a model-predictive (receding horizon) control for-
mulation of the path planning problem using multiresolution
estimates of object locations; Kim and Lee [8] present a
multiresolution potential field approach to path planning;
Verwer [9] describes the use of a hierarchy of imaginary
spheres encapsulating the robot for collision avoidance.

Cowlagi and Tsiotras [10] proposed a multiresolution cell
decomposition algorithm based on wavelet transforms using
the Haar wavelet, where the adjacency matrix is easily com-
puted from the indices of non-zero wavelet coefficients. Tsio-
tras and Bakolas [5] describe the details of a path planning
scheme based on such a cell decomposition. A drawback of
that scheme is that it involves global replanning at each step,
and that it discards prior information about the approximate
global path obtained during previous iterations. This paper
extends the results of [5] by proposing an algorithm that
remedies this drawback by planning globally once and then
progressively refining the path locally. To implement such
a local replanning scheme, the proposed algorithm uses the
localization property of the wavelet transform: the wavelet
transform coefficients of a large image1 can each be uniquely
identified with a particular, smaller region in that image,
and more importantly, the converse is also true. That is,
given any region of the image, one may isolate indices of
coefficients that serve as the wavelet transform coefficients of
that region, and the intensity map in that region may be fully
reconstructed using only those coefficients. Path planning
algorithms based on local replanning reported in literature
include Stentz’s D* algorithm [11], the D*-Lite algorithm
[12], which compute a global path once and then perform
local changes if the observed environment is different from
its map that was used to compute the first global path. Hwang
and Ahuja [13] present a potential field based approach to
local planning.

Among the several path planning algorithms reported
in the literature, we consider it appropriate to elucidate a
comparison of our algorithm to the well-known D* algorithm
developed by Stentz [11] and [14], since they both appear
similar as “moving-window” algorithms. We highlight a sub-
tle but fundamental difference between the two algorithms,
and we also provide a comparison of performance in terms
of execution time.

The rest of the paper is organized as follows: Section

1In this paper, and in order to be consistent with the terminology used
in the literature of wavelet image processing, we use the term “image” to
denote any 2-D matrix of data representing the environment. This matrix can
be constructed using real image data or, most often, it assigns the probability
that a specific location in the environment is occupied by an obstacle.
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II briefly reviews the mathematics of wavelet transform,
and its application to multiresolution cell decompositions as
applied to path-planning problems. The reader is referred
to [15], [16], and [17] for more detailed expositions on the
mathematical theory of the wavelet transform, and to [5]
and [10] for wavelet-based cell decomposition. Section III
describes the proposed path planning algorithm. Section IV
provides sample results, along with a comparison with the
algorithm presented in [5]. Section V provides a comparison
of this algorithm with the well-known D* algorithm.

II. CELL DECOMPOSITION USING WAVELETS

A. The Wavelet Transform

The discrete wavelet transform provides a framework for
multiresolution analysis (MRA) of a function, that is, the
construction of a hierarchy of functional approximations by
projecting the function onto a sequence of nested linear
spaces. Such a sequence of nested linear spaces is generated
by translated and scaled versions of two functions φ : R →R

and ψ : R →R of unit energy, called the scaling function and
wavelet respectively, satisfying the orthogonality equations

〈φ(t),φ(t−n)〉 = δ (n), (1a)

〈ψ(t),ψ(t−n)〉 = δ (n), (1b)

〈ψ(t),φ(t−n)〉 = 0, (1c)

where 〈·, ·〉 denotes the inner product, and such that there
exist sequences h(n) and g(n) of scalars satisfying the
following relations, known as the dilation equations

φ(t) =
∞

∑
n=−∞

h(n)φ(2t −n), (2)

ψ(t) =
∞

∑
n=−∞

g(n)φ(2t −n). (3)

The scaling and wavelet functions for the two-dimensional
wavelet transform can be defined by taking the tensor product
of the one-dimensional scaling and wavelet functions2

Φ j,k,�(x,y) = φ j,k(x)φ j,�(y), (4a)

Ψ1
j,k,�(x,y) = φ j,k(x)ψ j,�(y), (4b)

Ψ2
j,k,�(x,y) = ψ j,k(x)φ j,�(y), (4c)

Ψ3
j,k,�(x,y) = ψ j,k(x)ψ j,�(y), (4d)

where {φ j,k} def= {√2
jφ(2 jt − k) : k ∈ Z} and {ψ j,k} def=

{√2
jψ(2 jt − k) : k ∈ Z}. Defining Vj as the linear space

spanned by {Φ j,k,�(x,y) : k, �∈Z} , it can be shown (see, for
instance, [15, Ch. 3]) that {Vj} j∈Z is a sequence of nested
subspaces dense in L 2(R2). The discrete wavelet transform
of a function f : R

2 → R, f ∈ L 2(R2) is given by

c j0,k,� = 〈Φ j,k,�(x,y), f (x,y)〉, di
j,k,� = 〈Ψi

j,k,�(x,y), f (x,y)〉,

2The tensor product induces a directional bias in the transform. Isotropic,
nonseparable two-dimensional transforms are also possible, but the corre-
sponding functions are more difficult to construct [18], [19].

and the reconstruction equation is

f (x,y) =
∞

∑
k,�=−∞

c j0,k,�Φ j,k,�(x,y)+

3

∑
i=1

∞

∑
j= j0

∞

∑
k,�=−∞

di
j,k,�Ψ

i
j,k,�(x,y), (5)

where the scalars c j0,k,� and di
j,k,� are the approximation

and detail coefficients respectively. The first term in (5)
is the approximation of f (x,y) at resolution j0, while the
second term is the difference between approximations at two
successive levels of resolution.

The simplest example of scaling function and wavelet is
the Haar family, defined as

φ(t) def=
{

1 0 ≤ t < 1
0 otherwise , ψ(t) def=

⎧⎨
⎩

1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1

0 otherwise.
(6)

B. Application to Cell Decompositions

An image of the environment is a compact, square region
R ⊂R

2 along with an associated intensity map F : R →R.
In the context of path planning, the image could represent
an elevation map of the terrain on which the robot is to
move, or a risk measure that represents the probability that
the corresponding location is occupied by an obstacle [5].

Let the coarse resolution level j0 be given, and let c j0,k,�
and di

j,k,� be the two-dimensional discrete wavelet transform
coefficients of the intensity map of a given image F . Let
A j0

def= {( jp,kp, �p)} be a set of triplets of integers such that
jp ≥ j0, p = 0,1,2, . . .. An approximation of F , say F̂ , is
any image obtained by the reconstruction of a j0,k,� and d̂i

j,k,�,
where

d̂i
j,k,� =

{
di

j,k,� i = 1,2,3; ( j,k, �) ∈ A j0
0 otherwise.

In the rest of this paper, we denote an approximate image
by its associated set of non-zero detail coefficients A j0 , in a
minor abuse of notation.

A cell decomposition of the environment is achieved
through an appropriate selection of A j0 , along with the use
of a compactly supported scaling function and wavelet. The
Haar wavelet and the Daubechies, symlet, and coiflet families
of wavelets [20] are all examples of compactly supported
wavelets.

Consider the 2-D Haar scaling function and wavelets in
(4a)-(4d). The approximation of the environment at resolu-
tion j0, is piecewise constant over the cell decomposition
P j0 = {C j0,k,� :

⋃
k,�∈Z C j0,k,� = R}. The intensity of the

approximation over the cell C j,k,� is equal to 2 j0c j0,k,�. It is
possible to construct a multiresolution approximation, Pμ

j≥ j0
by first constructing an approximation at resolution j0, and
then successively expressing Φ j,k j ,� j , for some pairs (k j, � j),
as a linear combination of {Φ j+1,k j+1,� j+1(x,y) : k j+1, � j+1 ∈
Z}, similar to (3) for the 1-D case. A multiresolution
approximation is a piecewise constant function over a cell
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decomposition in which cells are of different dimensions at
different locations, that is, Pμ

j≥ j0
= {C j,k,� :

⋃
j,k,� C j,k,� =

R, j ≥ j0, k ∈ K( j), � ∈ L( j)}, where K( j) and L( j) are
some resolution-dependent index subsets of Z.

Reference [10] details a procedure for computing the
adjacency matrix and intensity map of such a multiresolution
cell decomposition.

III. A LOCAL REPLANNING ALGORITHM

In Ref. [5] the authors describe a path planning algo-
rithm based on multiresolution cell decomposition arising
from the 2-D wavelet transform. At the ith iteration, a cell
decomposition Pμ,i

j≥ j0
is computed such that the cells are

of high resolution (i.e., small dimension) in the vicinity of
the current location of the agent, while of low resolution in
regions farther away. Dijsktra’s algorithm is used to find the
optimal sequence of cells leading to the goal. The agent steps
forward and the next iteration is performed using the agent’s
new location as a starting point.

This algorithm performs a new cell decomposition at each
iteration, computing a path over the entire environment.
Thus, it discards all information about the path other than the
location of the immediately next cell. This section describes a
refinement of this algorithm based on local replanning ideas.

A. Description of the Algorithm

The central idea used for the implementation of the algo-
rithm is that given a cell CJ,K,L, the reconstruction equation
for the restriction F |CJ,K,L is

F |CJ,K,L(x,y) = c j0,k̂,�̂
Φ j0,k̂,�̂

(x,y)+ (7)

3

∑
i=1

∞

∑
j= j0


2 j−J(K+1)�
∑

k=
2 j−JK�


2 j−J(L+1)�
∑

�=
2 j−JL�
di

j,k,�Ψ
i
j,k,�(x,y),

where k̂ = 
2 j0−JK� and �̂ = 
2 j0−JL�. Thus, for any cell
C j,k,� ⊂ R, the wavelet transform coefficients of F |CJ,K,L is
a subset of those of F . This is true for the Haar wavelet
since the compact supports of wavelets do not overlap at a
given level of resolution and an integral number of supports
of higher resolution wavelets are contained in the support of
a low resolution wavelet.

A multiresolution approximation of an image representing
the environment map is created as described in Section II,
such that a high resolution is maintained in the vicinity of
the vehicle, while lower resolutions are used in the regions
farther away. Dijkstra’s algorithm is used to determine a
sequence of cells leading to the goal. Note that these cells
would be of different sizes, and, owing to the manner of ap-
proximation, would be larger (i.e., of low resolution) towards
the goal. Figure 1 a) illustrates this step schematically, where
the red cell (which is of highest resolution) denotes the initial
position. Suppose the sequence of cells determined in this
iteration, highlighted by the red path, is {Cn} def= {C jn,kn,�n},
n ∈ [1,N], N � N ≥ 2.

In each of the further iterations, the cell Cn for the
smallest n satisfying jn < ∞ is decomposed into, say, Mi

(a) (b)

Fig. 1. Schematic illustration of local replanning algorithm

smaller cells by including higher level wavelet coefficients
in its reconstruction. The adjacency matrix for the set of
cells {Cn,Cnq ,Cn+1}, q ∈ [1,Mi] can be obtained using the
same algorithm that was used for determining the adjacency
matrix for the entire cell-decomposed image [10]. For local
replanning, Dijkstra’s algorithm is used again to find the
optimal sequence of, say, Ni cells from Cn−1 to Cn+1, which
we denote by {Cnp}, p ∈ [1,Ni]. The original sequence of
cells from the initial point to the goal is thus updated with
{Cnp}, p ∈ [1,Ni] replacing Cn. The cells {Cnp}, p ∈ [1,Ni]
are renumbered {Cp}, p∈ [n,n+Ni], and Cn+1 is renumbered
Cn+Ni+1. Thus, at the end of the ith iteration, the number of
cells in the sequence from initial point to goal is N+∑i

k=1 Nk.
The next iteration is performed on the updated path. Figure
1 b) illustrates this step schematically. The cells with dotted
edges denote {Cnq}, q∈ [1,Mi]. The optimal subpath through
the set of cells {Cn,Cnq ,Cn+1}, q ∈ [1,Mi] is shown in red.

The selection of the cost function was done as follows.
Let ĝ : R ×R → R denote the true transition cost between
two points and g : Pμ

j≥ j0
×Pμ

j≥ j0
→ R denote the transition

cost function that must be used in the proposed algorithm.
We require the cost function to penalize paths in high terrain
and in regions far away from the goal. Therefore, we chose
the following function:

ĝ(x1,x2) = k1(F (x1)+F (x2))+ k2‖xG − x2‖2, (8)

where xG denotes the goal, and k1 and k2 are constants. This
structure lends itself to the formulation of g as follows:

g(C1,C2) = k1(2− j1F̂ (C1)+2− j2F̂ (C2))+
2− j2k2r(CG,C2), (9)

where CG indicates the cell containing xG, and r(·, ·) denotes
the Euclidean distance between the centers of the cells. The
multipliers 2− ji are necessary in order to account for the size
of the cells.

B. Comments

The primary benefits of the proposed algorithm are its
speed and simplicity. The algorithm is faster than the tech-
nique proposed in [5] since it concentrates on local planning
at each iteration, thus drastically cutting down the number
of nodes on which a Dijkstra graph search is performed.
Section IV demonstrates simulation results that corroborate
this claim. The proposed algorithm saves computational
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time because it iteratively refines a coarsely known path, as
opposed to the algorithm in [5], which computes a new path
at each iteration.

The simplicity of the proposed algorithm arises from the
fact that it recursively uses the algorithms for multiresolution
decomposition and for computing the adjacency matrix of
the resulting cell decomposition. It exploits the localization
property of the Haar wavelet, as explained earlier, to do so.

The primary drawback of this algorithm is that the cost
of the resultant path dependents on the sequence of cells
computed initially. By confining future local searches to the
sequence of cells computed in the first iteration, it “shuts
itself out” to possibly better paths that may lie outside that
sequence. For example, small obstacles may be obscured due
to the averaging operation of the Haar wavelet, and as a
result, the initial sequence of cells may contain small but
insurmountable obstacles. Section IV, however, illustrates
an example where the algorithm successfully computed an
obstacle-free path through a cluttered environment, indicat-
ing that this may occur only when obstacles are extremely
small.

Although the described algorithm applies to a static envi-
ronment, it can be easily extended to deal with an unexpected
environment by performing the initial, global planning step
each time the agent encounters an unexpected map of the
environment. A new sequence of cells leading up to the goal
can be computed, and the local replanning would continue
using the new sequence of cells. However, in the extreme
circumstance of encountering a different environment at each
step, the above extension to the algorithm would make its
functioning identical to the algorithm in [5].

IV. SIMULATION AND RESULTS

Figures 2 and 3 show the progression of the proposed
algorithm. The initial point and goal are indicated by a
square and diamond respectively. The image shown in the
figures corresponds to terrain height, where the red shades
indicate low terrain (favorable), and blue shades indicate
high terrain (unfavorable). Figure 2 a) shows the initial cell
decomposition and the corresponding global path, while Fig.
2 b) shows the final path traversed. It can be seen that the
path remains in the darker shades of red throughout. Figure 3
shows an intermediate stage with progressive decomposition
of cells along the path. This cell decomposition should be
compared with that in Fig. 2 a). The uniformly maroon areas
indicate that they were ignored altogether, once they were
identified as lying outside the initial sequence of cells.

Table I shows sample comparison results between the
proposed algorithm and that in [5]. It is seen that the local
replanning algorithm is an order of a magnitude faster but
produces paths with slightly higher costs. Also note that
the savings in execution time increases with the size of the
image being processed. The image sizes are in pixels, and the
cost difference is the extra cost of the proposed algorithm’s
resultant path as a percentage of the cost of path resulting
from the algorithm in [5]. The suboptimality of the path with
local replanning is typically at the order of 10%. Case 2 in

(a)

(b)

Fig. 2. Initial global planning and the final path traversed

TABLE I

SAMPLE COMPARISON RESULTS

Image size (pixels) Execution time ratio Cost difference (%)

1. 64×64 8.46 7.17
2. 64×64 10.7 34.5
3. 64×64 9.04 16.8
3. 128×128 18.5 16.4
4. 128×128 15.4 7.95
5. 128×128 10.6 10.5
6. 256×256 51.5 2.87
7. 256×256 51.2 5.52
8. 256×256 34.1 18.8

Table I is an anomalous result where the true optimal path
lied mostly outside the initial sequence of cells.

Figure 4 shows an example of the proposed algorithm
applied to a cluttered environment. Despite the seemingly
“short sighted” nature of local replanning, it is evident that
the algorithm succeeds in finding reasonable collision-free
paths.

V. COMPARISON WITH D* ALGORITHM

The D* algorithm, developed by Stentz [11], is a compu-
tationally efficient alternative to replanning with the A* algo-
rithm in a dynamic environment or when the environment is
only known locally. As with the proposed multiresolution
strategy suggested in this work, D* employs a moving
window approach, where data is processed as it becomes
available. However, there is a significant difference between
D* and the wavelet-based multi-resolution strategy devel-
oped in this work. First, D* is not a path-planning strategy
per se, but rather an efficient recursive implementation of
A* to search over a given graph when new data becomes
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(a)

(b)

Fig. 3. Intermediate step in path planning

Fig. 4. Local replanning successfully applied to a cluttered environment

available. On the contrary, the proposed multi-resolution
strategy computes a suitable graph at each iteration step.
The algorithm to search over this graph to find the optimal
path is a secondary objective; any of the existing algorithms
will do (such as Dijkstra or A*). Nonetheless, both algo-
rithms provide a solution to the path-planning problem in a
(partially) unknown environment and in that sense a suitable
comparison between the two algorithms is warranted.

Because of the difference in their scope, a head-to-head
comparison between the two algorithms is not easy. To this
end, we have chosen a setting where the environment is not
changing, but the data is made available to the agent only
incrementally, within a given window around the vehicle’s
current location. The rest of the environment is assumed to be
unobstructed. A sample of such a map available to the vehicle

is shown in Fig. 5. Note that the wavelet-based algorithm is
also given the same information, that is, at each iteration
it will compute the wavelet transform of the data shown in
Fig. 5, and then use the results of the transform to compute
a multiresolution cell decomposition.

Table II shows sample results comparing the execution
times between the two algorithms. The information window
wI indicates the area in which information is made available
to both algorithms. The resolution window was kept fixed,
since it is a characteristic of the wavelet algorithm, not the
path planning problem itself.

TABLE II

SAMPLE RESULTS

wI (pixels) Execution time ratio

1. 4 0.564
2. 4 0.538
3. 10 1.22
4. 10 1.38
5. 25 2.84
6. 25 3.21

The wavelet algorithm is slower when the information
window is small. In this situation, the available information
about the environment is too little for the wavelet algorithm’s
approximation scheme to provide any advantage in terms of
reduced number of computations. The algorithm is slower
since it replans at each step by calling A*, while the D*
algorithm does not (see [11] for details). However, the
wavelet algorithm executes significantly faster than D* as
wI gets larger. The reason for this is that D* needs to
correct more backpointers in this case. On the other hand,

(a)

(b)

Fig. 5. Sample of image that the algorithms process at each step. The
wavelet approximation of the image is also shown.
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the number of nodes processed at each step in the wavelet
algorithm does not depend on the information window (it
depends on the resolution window.)

TABLE III

CASE WITH EQUAL INFORMATION AND RESOLUTION WINDOWS.

wI (pixels) Execution time ratio

1. 10 0.708
2. 10 0.964
3. 10 0.711
4. 10 1.037
5. 25 0.882
6. 25 0.693
7. 25 0.818
8. 25 0.916

To confirm these observations we also compared the
results from the two algorithms when the information and
fine resolution windows are the same for both case. In this
case, the main difference is how the new information that
becomes available by the two algorithms as it enters the
fine resolution horizon is handled. D* needs to update only
the edges that approximately correspond to the boundary of
the window. It always works with the same graph, whose
dimensionality remains the same at each iteration. The size
of the graph is set during the initialization stage once and for
all. The multiresolution approach constructs a new graph at
each time step, whose dimensionality is roughly determined
by the size of the fine resolution window. The results are
shown in Table III for different fine resolution window
lengths. It is seen that in terms of the execution time, the
two algorithms are comparable. Nonetheless, in terms of
memory requirements the D* has a major disadvantage. This
may hinder its implementation using small size embedded
microcontrollers; see also [21]. Furthermore, as indicated
by the results in the previous section, a local replanning
implementation can speed up the multiresolution of the
wavelet-based algorithm about an order of magnitude.

VI. CONCLUSIONS

In this paper we have proposed a computationally ef-
ficient path planning algorithm that uses multiresolution
cell decomposition of the environment based on the Haar
wavelet transform. The algorithm’s efficiency stems from
its recursive use of the fast wavelet transform and from
the ease in computing the adjacency matrix directly from
the wavelet coefficients. Simulations demonstrate the speed
and effectiveness of the proposed algorithm. A comparative
study with the well-known D* algorithm demonstrates that
the proposed algorithm provides efficient processing of the
data about the environment the vehicle operates in.
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