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Abstract—Image registration is the process by which we deter-
mine a transformation that provides the most accurate match be-
tween two images. The search for the matching transformation can
be automated with the use of a suitable metric, but it can be very
time-consuming and tedious. In this paper, we introduce a registra-
tion algorithm that combines a simple yet powerful search strategy
based on a stochastic gradient with two similarity measures, cor-
relation and mutual information, together with a wavelet-based
multiresolution pyramid. We limit our study to pairs of images,
which are misaligned by rotation and/or translation, and present
two main results. First, we demonstrate that in our application mu-
tual information may be better suited for sub-pixel registration
as it produces consistently sharper optimum peaks than correla-
tion. Then, we show that the stochastic gradient search combined
with either measure produces accurate results when applied to syn-
thetic, as well as multitemporal or multisensor collections of satel-
lite data. Mutual information is generally found to optimize with
one-third the number of iterations required by correlation. Results
also show that a multiresolution implementation of the algorithm
yields significant improvements in terms of both speed and robust-
ness over a single-resolution implementation.

Index Terms—Image registration, mutual information, remote
sensing imagery, stochastic optimization, wavelets.

I. INTRODUCTION

D
IGITAL image registration is a process by which the most

accurate match is determined between two images, which

may have been taken at the same or different times, by the

same or different sensors, from the same or different viewpoints.

The registration process determines the optimal transformation,

which will align the two images. This has applications in many

fields as diverse as medical image analysis, pattern matching

and computer vision for robotics, as well as remotely sensed

data processing. In all of these domains, image registration can

be used to find changes in images taken at different times, or to
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build 3-D models from 2-D images taken from different view-

points, or for object recognition.

In the remote sensing framework in particular, with the in-

creasing number of multiple platform remote sensing missions,

different sensors may simultaneously observe the same features.

These sensors may produce data at different resolutions or in dif-

ferent spectral ranges, over multiple times, thus providing very

large amounts of redundant or complementary data. The combi-

nation of all these data will allow for better analysis of various

phenomena, as well as allow the validation of global low-reso-

lution analysis by the use of local high-resolution data analysis.

For all these applications, accurate geo-referencing is the first

step in integrating such data from multiple sources, and it is thus

becoming a very important issue in remote sensing. By using

a model-based systematic correction, newly acquired remote

sensing data is usually geo-referenced to within a few pixels.

Starting with this information, we focus on precision correction

or automatic image registration, which refines the accuracy to

within one pixel or a sub-pixel. For applications such as data

fusion, it is very important to reach sub-pixel accuracy, and au-

tomatic image registration offers a practical means of achieving

this.

In this context, we define image registration as follows:

Given a pair of two-dimensional gray-level images,

and that we denote by the reference and input (or

sensed) images respectively with coordinates ,

where is a region of interest; To register the images is to find

a geometric transformation of a certain class such that

for all ( ), best matches , where is

a set of transform parameters. In this paper, we limit to

a class of transforms that include shift ( ) and rotation ( )

and can be written as

(1)

Thus we can write , where we de-

fine to be the transformation matrix given above, for

. Later we can incorporate isometric scaling into our

study.

In order to find the optimum transformation, the image reg-

istration process may include the following steps: 1) the extrac-

tion of features to be used in the matching process, 2) the fea-

ture matching strategy and metrics, and 3) the resampling of
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Fig. 1. Summary of our wavelet-based mutual information registration method.

the data based on the correspondence computed from matched

features. Many automatic image registration methods have been

proposed and a survey can be found in Brown [1]. Our work con-

siders the search strategy and similarity metric to be used in step

2) of the registration process. Many objective functions exist in

the literature, which can be used in automated image registra-

tion schemes. These objective functions may be feature-based

or intensity-based. Feature-based methods establish geometric

correspondences by matching salient features, which have been

extracted by pre-processing the images. A drawback of these al-

gorithms lies in the difficulty of recognizing matched features

in the images, and they require the use of reliable and robust

algorithms for image segmentation and edge detection. By con-

trast intensity-based methods require no prior pre-processing of

the images. Commonly used intensity-based objective functions

include intensity correlation, the mean square difference of the

image intensity values, and mutual information (MI). Cross-cor-

relation is one of the most common similarity metrics used in

registration. It measures similarity by computing global statis-

tics such as mean and variance, and it performs well if the two

images are similar in nature, with an underlying linear rela-

tionship between the image intensities. On the other hand, mu-

tual information measures redundancy between two images by

looking at their intensity distributions, and it represents a mea-

sure of the relative entropy between two sets. Mutual informa-

tion (MI) has been extensively studied for the registration of

medical imagery [3]–[5], and it has been found to be especially

robust for multimodal image registration.

In this paper, we show how mutual information can be suc-

cessfully merged with an optimization scheme and applied to

the registration of remotely sensed imagery. Our first tests are

designed to compare the sharpness of the MI and correlation

curves, and they show that MI produces consistently sharper

peaks at the correct registration values than correlation. More-

over, when used with a multiresolution search strategy, this com-

parative result is also verified for the lower resolution sub-band

images of the Simoncelli pyramid described in Section II. The

use of a multiresolution search provides for large reductions in

computing time, and this result is very important for producing

consistently accurate results within such a scheme.

In our earlier work [2], [6], [14] a simple search strategy,

based on exhaustive search, was used to provide a thorough

comparison of the two different metrics. But exhaustive search

is computationally expensive, and the computational cost in-

creases exponentially with the number of transformation pa-

rameters and the size of the dataset. Therefore, in this work

we describe a more sophisticated search technique, which uses

a gradient approximation, that is applied within a multiresolu-

tion framework based on a wavelet-like pyramid decomposi-

tion. Section II describes our registration framework, while Sec-

tions III and IV present cross-correlation and MI, together with

a comparative study of the performance of these two metrics

when applied to image registration. Section V then describes

our optimization search technique and associated results are pre-

sented in Section VI. Section VII discusses other related work,

in particular comparing the algorithm presented here to that of

Thevenaz et al. [5], and it gives conclusions and directions of

future work. The main innovation of this paper is in the use of

the simultaneous perturbation stochastic approximation (SPSA)

gradient strategy for the optimization of the mutual informa-

tion similarity criterion. It provides a simple, more practical ap-

proach to MI-based registration problems than what is currently

found in the literature.

II. MULTIRESOLUTION IMAGE REGISTRATION

Most of our previous work in image registration has focused

on the use of wavelets or wavelet-like features in step 1) of the

registration process. Fig. 1 summarizes our registration scheme

[2], [6], [14]whenwaveletorwavelet-like information isutilized.

Both the reference and input images are first decomposed

following a multiresolution wavelet or frame decomposition. In

order to achieve computational efficiency, our search strategy

follows the multiresolution decomposition, working iteratively

from the deepest level of decomposition (where the image

size is the smallest) to the top level of decomposition, i.e.,

going from coarse to fine spatial resolution. For all levels of

decomposition, MI or correlation between sub-band images of

the reference image and input image is successively computed

and maximized. The accuracy of this search increases when

going from coarse resolution to fine resolution. At each level the

search focuses in on an interval around the “best” transformation

found at the previous level and is refined at the next level up.

As a preliminary study, our search space is restricted to 2-D

rotations and translations, and this will be extended later to

affine transformations. To obtain the transformed images, data

interpolation is done using cubic B-splines [18]. Maximization

of the metric can be performed by exhaustive search, but it is

more efficient and more accurate if an automated optimization

technique is used.

Different wavelet or wavelet-like filters could be chosen, but

our previous work [7] showed that Steerable Simoncelli filters

[8] are more robust to translation, rotation and noise than the

standard Daubechies wavelet filters. The method described by

Simoncelli [8] enables one to build translation- and rotation-in-

variant filters by relaxing the critical sampling condition of the

wavelet transforms. By invariance, it is meant that the informa-

tion contained in a given sub-band will be invariant to transla-

tion or rotation. The resulting representation is equivalent to an

overcomplete wavelet transform; it is not an orthogonal repre-
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Fig. 2. Four-level decomposition by a steerable pyramid. Sub-bands Bi are
utilized to extract features.

sentation but is an approximation of a “tight-frame,” i.e., invert-

ible. The Simoncelli Steerable Pyramid is summarized in Fig. 2,

where only the analysis decomposition is shown. In Fig. 2, H0

is the result of high-pass filtering, are results

of low-pass filtering, and represent the results

after filtering by a set of oriented band-pass filters which ensure

that the representation is rotation-invariant. In order to ensure

some translation-invariance, the outputs of the high-pass filter

and of the band-pass filters are not sub-sampled. In addition,

that portion of the signal , which is iteratively decomposed

by the band-pass and the low-pass filters, does not contain the

larger high frequency components and has been preprocessed

by a low-pass filter, thus removing most aliased components.

This representation is overcomplete by a factor of , where

is the number of oriented band-pass filters [8]. In the study

described in LeMoigne et al. [6], the steerable filters studied in

a correlation framework, showed very accurate and reliable re-

sponses for registration purposes. Therefore, in the experiments

shown here, we will use Simoncelli steerable filters, and in order

to optimize the computational speed, we chose .

When using the multiresolution approach for registration, a

wide variety of search methods can be utilized to obtain an

approximation to the solution at each pyramid level. Different

search strategies may even be used at different levels. The sim-

plest approach is to apply an exhaustive search method at all

pyramid levels, where one varies one or more of the transforma-

tion parameters over a certain discrete range of values, which

is assumed to include the “true” transformation (or “Ground

Truth,” GT). For each combination of parameters, the similarity

metric is computed and the combination that yields the largest

metric value is chosen as the final approximation at the cur-

rent level. How this discrete mesh is determined depends on

the pyramid level. At the coarsest resolution, the initial range

is usually specified by the user. When moving up the pyramid,

the new range is chosen as a given interval centered around the

solution computed at the previous step. Details of this approach

can be found in [2].

Although this method is quite robust, it is not very practical

for two reasons. First, it is computationally expensive even for

a small number of search parameters. Second, it yields results

of limited accuracy since the accuracy depends on how fine the

discrete mesh is.

III. CORRELATION AND MUTUAL INFORMATION AS

SIMILARITY METRICS

A. Correlation

Correlation is one of the most widely used similarity metrics

in image processing [16]. One of its principal applications is in

the area of template, or prototype matching, where the problem

is to find the closest match between an unknown image and

a set of known images. One approach is to compute the cor-

relation between the unknown and each of the known images.

The closest match can then be found by selecting the image that

yields the correlation with the largest value. Matching of images

A and B can be performed by using the correlation coefficient,

which is defined as

(2)

where the double sums indicated are taken over the rows and

columns of the two images, and , are the pixel values of

images A and B at row and column , respectively. This statis-

tical measure has the property that it measures correlation on an

absolute scale ranging from [ 1, 1]. Under the assumption that

the transformation is small enough, it can be shown that maxi-

mizing this correlation measure is equivalent to minimizing the

least-mean-square of the difference in the intensity values of A

and B, see [17]. For many registration methods, correlation is

the primary tool, where A may be an input image to be regis-

tered against a reference image, B. It is equal to one for identical

images, and thus provides the degree of similarity between the

two images.

The cost of a single computation of the spatial correlation

of two images is , where is the number of pixels in

each image. When used for image registration, the total cost is

then a function of the number of steps where the correlation is

computed.

B. Mutual Information (MI)

The concept of mutual information represents a measure of

relative entropy between two sets, which can also be described

as a measure of information redundancy [3]–[5]. From this def-

inition, it can easily be shown that the MI of two images is max-

imal when these two images are perfectly aligned. Therefore, in

the context of image registration, MI can be utilized as a sim-

ilarity measure which, through its maximum, will indicate the

best match between a reference image and an input image. Ex-

periments show that, in this context, MI enables one to extract

an optimal match with a much better precision than cross-cor-

relation.

If A and B are two images to register, and are

defined as the marginal probability distributions, and

is defined as the joint probability distribution of A and B. Then

MI is defined as

(3)
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This quantity can be computed using the histograms of the two

images A and B, and respectively, as well as their

joint histogram . The MI is then defined by

(4)

where is the sum of all the entries in the histogram, see [3].

The histograms are computed using original gray levels or gray

levels of pre-processed images, such as edge gradient magni-

tudes or wavelet coefficients.

In this work a histogram with 64 bins is used, since it pro-

duces a significantly smoother MI surface than the 256-bin his-

togram. The smoother surface works better with the optimiza-

tion algorithm, and the reduced number of bins dramatically im-

proves the runtime for MI registration. The joint histogram is

obtained by the following computation. The transformed refer-

ence image is obtained using cubic B-spline interpolation [18].

The gray values of the input image and the transformed refer-

ence image are linearly rescaled into the range [0,255]. The gray

values ( ) of those pairs of pixels, which lie in the same po-

sition are then used to build the histogram, using the following

update law:

(5)

where for , .

Note that represents the integer part of , and a 64-bin his-

togram is produced.

The cost of computing the MI of two images depends both

on the number of data points or pixels in each image, , and

also on the number of bins used to form the histogram. If both

images have the same number of pixels, , the computational

cost of computing the histogram is . The computational

cost relative to the number of histogram bins, used in the

computation, is ).

IV. EVALUATION OF MUTUAL INFORMATION VERSUS

CORRELATION FOR THE REGISTRATION OF REMOTE SENSING

IMAGERY

In this section, we present results of a number of different

tests, which provide a comparison between MI and correlation

as two potential similarity measures for remote sensing image

registration. In order to obtain high registration precision, it is

important to use a similarity measure that produces a sharp peak

at the correct transformation point with significantly smaller

values elsewhere, especially in the vicinity of the correct trans-

formation. Other important considerations for the choice of a

similarity measure include the resolution and/or accuracy of the

final solution, speed of computation, and the presence or ab-

sence of local extrema. These will be discussed in later Sections.

In this Section, the following set of tests has been designed to

compare sharpness of MI and correlation curves. The first set of

tests illustrates that MI provides a sharper peak than correlation

at the correct registration value of either a rotation, or a trans-

lation in one of the - or - directions, when searching exhaus-

Fig. 3. Landsat – U.S. Pacific Northwest reference image for sharpness of MI
and correlation curves.

tively over a range of values. This sharper peak enables one to

obtain a higher precision of the registration. These experiments

are performed on a 512 512 image (Fig. 3) with no wavelet

decomposition, and also on multiple resolutions of a Simon-

celli decomposition. The second set of experiments investigates

the sensitivity of the MI and correlation metrics to compositions

of translations and rotations of the reference image when used

in conjunction with the Simoncelli steerable filter decomposi-

tion. This sensitivity is then investigated for input images with

varying levels of noise.

The experiments described in this section include many of the

issues that will be present in “real-life” imagery, although the

list is not exhaustive. In particular, this set of experiments deals

only with uncorrelated noise and single-modality inputs, but the

results are still informative, and show the main characteristics of

the two similarity metrics.

A. Sharpness of MI and Correlation Curves

After the curves for both metrics have been normalized to lie

in the range [0,1] we restrict the neighborhood V0, for which the

area under the curve is computed, to one centered around the

maximal point and bounded by the points where the two curves

intersect, when this does occur. Then for the correlation and

mutual information curves which are produced, the following

assumptions are noted to be true:

• the two functions are defined and continuous in V0;

• the two functions are both positive in V0;

• the two functions do not intersect in V0 except at the max-

imum.

Under these assumptions, we say that a function is sharper

than a function in a neighborhood V0 if there exists a neigh-

borhood V1, that is a subset of V0 centered on the maximal point,

such that the magnitude of the slope of is larger than that of

for all points in V1. Since the two curves do not intersect in

this neighborhood, and they are both normalized to the same

maximal value of 1, it is then easy to show that this definition

is equivalent to stating that the area under the curve in V0 is
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smaller than the area under the curve of in V0. An alternative

definition for the neighborhood, V0 could be that of the region

around the peak bounded by the closest inflexion points of the

two curves. Inflexion points indicate the presence of other local

maxima to which the optimization may possibly be attracted,

and this neighborhood V0, would then define the region of at-

traction for each of these measures, indicating the maximum

distance from which convergence to the optimum can be guar-

anteed. This issue is discussed further in Section VI-C-I. For the

curves of this section we note that these two definitions yield

neighborhoods, V0, which differ only slightly, and we use the

first, more easily computable definition here.

1) Original Grey Level Imagery: First a 1024 1024 image

is extracted from Band 4 of a Landsat-TM (“Thematic

Mapper”) scene of the Pacific Northwest, and a 512 512

reference image is produced from the center of this scene

(Fig. 3). From the same scene, forty-two 512 512 input im-

ages are produced, with either a single translation or a single

rotation of the reference image. The ground truth translations

range from to pixels in the -direction, and the

rotations, , range from to . We then register each

of the 42 reference-input pairs by executing a one-dimensional

exhaustive search where the reference is transformed either

by a rotation ranging between 60 and 60 , or by a shift

ranging between and 50 pixels. Both correlation and MI

are measured between the input and the transformed reference,

and we compare the sharpness of the peak in the neighbor-

hood, V0 between each of the 42 correlation curves and the

corresponding MI curves.

Examples of these curves are shown in Fig. 4. The scaled

MI and correlation curves are shown in Fig. 4(a) for an input

image which has a transformation of the reference given by

. Rotation, is varied over the range [ 60,

60]. Fig. 4(b) shows the same curve for an input image with a

transformation as is varied in the

range [ 50, 50]. The solid curve represents MI and the dashed

curve represents correlation. We showed [14] that MI produces a

much sharper peak than correlation in both cases. More specif-

ically, we find that for rotations, the average value of the area

under the MI curve is 2.46 as compared to an average correla-

tion value of 15.26, while for the translations the average MI

value is 5.76, as compared to the correlation average of 32.02.

These results quantitatively indicate how much sharper the MI

curve is, compared to the correlation curve.

2) Simoncelli Band-Pass Imagery: In the second part of this

experiment we use a single reference-input pair with both im-

ages produced from the same source as above. The reference is

the 512 512 center of the source and the input is the 512 512

center of the source shifted by 32 pixels in the -direction (hor-

izontally). Thus the correct transformation between the refer-

ence and the input is . The tested pair

is then decomposed using single-orientation Simoncelli filters.

Four levels of decomposition are produced, which correspond

to scaling of the images by 1, 2, 4 and 8. At wavelet level ,

we fix the parameters, and vary in the interval

[ ], where is the correct transformation

scaled to the level resolution. Thus, for instance, at the 4th

level, and is varied between and 14 with

(a)

(b)

Fig. 4. Scaled MI & correlation curves for registration of 512 images, with
single-resolution. (a) Image transformation: � = 4, Tx = Ty = 0. (b) Image
Transformation: Tx = �9, � = Ty = 0.

a step of 1, which corresponds to varying between and

112 with a step of 8 at the original (finest) level. For MI and

correlation, we generate a set of 4 curves of the measure value

corresponding to the 4 levels of the Simoncelli decomposition.

These curves are shown in Fig. 5.

The solid curve represents MI and the dashed curve repre-

sents correlation. As expected, at all decomposition levels both

correlation and MI produce their largest values at the points that

correspond to the correct transformation. However, MI produces

consistently sharper peaks than correlation. As in previous ex-

periments, the area under the scaled correlation and MI curves

indicated in Fig. 5, is used as a measure of sharpness of the

curves, and again at all levels MI produces smaller areas. It is

important to note that the correlation curves tend to be concave

around the maximum, while the MI curves are often convex.

This property, which explains the sharpness of the curves, could

pose problems for the application of second order optimization

methods.



1500 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 12, DECEMBER 2003

Fig. 5. Correlation and mutual information curves with values scaled to range [0,1] for the different levels of the Simoncelli decomposition.

B. Sensitivity to Noise

The following set of tests is designed to compare the sensitivity

of the registration results to the amount of noise present in the

data, when utilizing either correlation or MI. A collection of

input images is generated using only one transformation, namely

, and then adding different amounts of

Gaussian white noise. The added noise is measured by the

signal-to-noise ratio, expressed in decibels (dB), defined as

(6)

In this experiment, the SNR is varied between 20 dB (al-

most noise-less) and (extremely noisy). Two levels of

single-orientation Simoncelli wavelet decomposition are com-

puted for all images. Results are presented in Figs. 6 and 7,

which show rotation and shift errors, respectively. We observe

that both measures produce perfect results even with levels of

noise as large as . However, correlation-based results

deteriorate faster than the MI-based results.

As a summary, we have shown that for these experiments,

MI produces consistently sharper peaks at the correct registra-

tion values than correlation, which is important for obtaining

sub-pixel registration accuracy. Moreover, sharper peaks are

also produced at the lowest resolution of the sub-band images

produced by a wavelet-like decomposition. This indicates

that MI can produce more accurate results than correlation in

a multiresolution registration scheme based on wavelet-like

filters. Registration is achieved in a more efficient manner in

this framework, since one can start with a smaller image for the

initial search, and successfully narrow down the search range

for the larger images. Our results show that even when noise

is present in the input image, both correlation and MI produce

perfect registration for Gaussian noise levels up to for

our tests with Simoncelli filters, and MI is more robust to noise

than correlation.

V. STOCHASTIC GRADIENT OPTIMIZATION FOR IMAGE

REGISTRATION

In the previous sections, the search for the optimum trans-

formation was done by an exhaustive search over an allow-

able range of parameters. But as previously stated, this com-

putational cost increases exponentially with both the dimension

of the parameter space and the dimension of the dataset. Ex-

haustive search becomes even more expensive when the goal is

sub-pixel accuracy, thus an alternate iterative search method is

considered in this Section.

A. Brief Survey of Optimization Techniques

The choice of optimization search technique depends on

the type of problem under consideration. Traditional nonlinear

programming methods, such as the constrained conjugate

gradient, or the standard backpropagation in neural network

applications, are well suited to deterministic optimization

problems with exact knowledge of the gradient of the objective
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Fig. 6. Rotation error as a function of noise.

Fig. 7. Translation error as a function of noise.

function. Optimization algorithms have been developed for a

stochastic setting where randomness is introduced either in the

noisy measurements of the objective function and its gradient,

or in the computation of the gradient approximation. These

optimization algorithms can be divided into two categories:

Gradient-based algorithms, such as the Robbins-Monro sto-

chastic approximation algorithm can be considered to be a

generalization of the deterministic steepest descent. It requires

that direct measurements of the gradient are available, but

these measurements are generally a gradient estimate because

the underlying data is usually noisy. Gradient-free algorithms

include some general-purpose optimizers such as the simple

random search, or the genetic algorithm, which works with

a population of candidate solutions and randomly alters the

solution over a sequence of generations. Both these methods

can be useful for a broad search over the domain of the param-

eters being optimized, and can provide initialization for a more

powerful local search algorithm. Other nongradient optimiza-

tion methods include Simulated annealing, the Nelder-Mead

Simplex method which attempts to minimize a scalar-valued

nonlinear function using only function evaluations, and the

Kiefer-Wolfowitz algorithm which is a finite-difference method

for optimization of noisy data. Approaches based on the use

of gradient estimations tend to be fast, but are sensitive to

the presence of local optima. Additional discussion of these

methods can be found in [23].

The stochastic gradient technique, which is used in this work

is a gradient-free approach. It does not require an explicit deriva-

tion of the required gradient vector, but it uses instead an ap-

proximation to the gradient. In the next Sections we show how

it can be applied to image registration, and integrated within the

multiresolution framework of the Simoncelli steerable pyramid

described in Section II.

B. Spall’s Optimization Technique

The optimization technique, which is implemented in this

work is the Simultaneous Perturbation Stochastic Approxima-

tion (SPSA) algorithm. It was first introduced by Spall in [12],

where a detailed description can be found. It has recently at-

tracted attention for solving challenging optimization problems

where it is difficult or impossible to obtain an analytic expres-

sion for the gradient of the objective function. This is espe-

cially true of the MI function, since the probabilities required in

the computation of (3) are estimated using the joint image his-

togram. The dependence of the MI function on this discrete his-

togram makes the computation of its derivative complex. SPSA

is based on an easily implemented and highly efficient gradient

approximation that relies only on measurements of the objective

function to be optimized. It does not rely on explicit knowledge

of the gradient of the objective function, or on measurements of

this gradient.

Let us call , the objective function to be optimized. In our ex-

periments, represents either MI or the correlation similarity

measure. We consider a parameter search space of two-dimen-

sional rigid transformations, consisting of rotation and transla-

tion in the and -directions. There are thus three parameters to

be optimized, represented in a vector form as .

At each iteration, the gradient approximation is based on only

two function measurements (regardless of the dimension of the

parameter space). An additional function measurement is made

at each newly computed point, in order to decide (subject to a

preset threshold) whether to block or to update the parameters.

At iteration , the update law for the parameters is steepest as-

cent

(7)

where the gradient vector for the

-dimensional parameter space is determined by

(8)
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In this study, three parameters are to be updated at each itera-

tion, i.e., . Each element of the vector, takes on

a value of or , as generated by a Bernoulli distribution,

and and are positive sequences of the form

(9)

(10)

such that

(11)

The SPSA algorithm is a very powerful technique, which can

get through some local maxima of the objective function to find

the global maximum because of the stochastic nature of the gra-

dient approximation. All the elements of are randomly per-

turbed to obtain two measurements of . Each component

of the gradient vector is then formed by the ratio defined in (8).

The algorithm works by iterating from an initial guess of the op-

timal parameters, by using this calculated gradient. Spall [12]

presents sufficient conditions for convergence of the SPSA iter-

ative process in the stochastic almost sure. Convergence is es-

tablished by requiring to be sufficiently smooth (i.e., three

times continuously differentiable) near the optimum, and im-

posing the following conditions on the gain sequences and

, such that they go to zero at rates that are neither too fast nor

too slow, i.e.,

(12)

The elements of the perturbation vector are required to be

independent and symmetrically distributed about 0 with finite

inverse moments for all , . The conditions on

make the gradient approximation, an almost unbiased

estimator of the true gradient , i.e.,

. For small, these misdirections act like random errors,

which average and cancel out over a number of iterations.

When the transformed image is obtained using cubic B-spline

interpolation, it produces a smooth MI surface as shown in

Fig. 8(a). An important consideration in the application of the

optimization scheme, is that the further away the initial guess

is from the global maximum, the more local maxima the algo-

rithm may need to overcome to reach the global maximum, and

thus the more likely it is to fail. Note that the coarser the images

(i.e., the deeper the level of the Simoncelli decomposition) the

less smooth is the MI surface, and failure at this coarser level

can be catastrophic to the optimization algorithm. For these

smaller, lower resolution images, a further reduction in the

number of bins in the histogram may be necessary, in order

to get a smooth surface. As an illustration, Fig. 8(b) shows

(a)

(b)

Fig. 8. Mutual information surfaces. (a) Spline-interpolated sub-pixel MI
surface for one data pair at level 1 (� = 0). (b) MI surface at level 4, showing
the global maximum and some local maxima.

the MI surface for level 4 for one pair of images from our test

dataset, where ripples on the MI surface can be seen as one

moves away from the global maximum. These are indicative

of local maxima, which may trap the algorithm causing it to

fail. Significant smoothing of the MI surface at the coarsest

decomposition level results from using a histogram with 64

bins, as opposed to 256 bins.

VI. EXPERIMENTS AND RESULTS

In this Section, multiresolution registration combining

Simoncelli band-pass features, MI and the Spall optimization

scheme is thoroughly tested and compared using synthetic

test data as well as multitemporal data and remotely sensed

imagery from different sensors. Results are also provided to

compare MI with correlation. These experiments are conducted

on an SGI Octane 195 MHz computer, and timing results are

provided for that machine.
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A. Description of the Parameters

Using Simoncelli filter size 9 and the Steerable Pyramid de-

composition of Fig. 2, four levels of decomposition are com-

puted and the feature space is composed of the gray levels of im-

ages , , and . These images correspond

to a decimation of 8, 4, 2, and 1 of the original image, respec-

tively. The constants , , , and for the SPSA algorithm

are chosen and optimized within the range of values suggested

by Spall [12], which would ensure convergence. The chosen pa-

rameter values are , , , ,

using a threshold of 0.1 for blocking; i.e., the param-

eter values are not updated if the MI value for the new point falls

more than 0.1 below the current MI value. These values were

found to work well for both MI and correlation for the datasets

tested, so they were fixed for all the experiments to follow, pro-

viding a single frame of reference for the comparative study. In

general, it may be more judicious to set the threshold at some

percentage of the starting MI value.

B. Description of the Test Datasets

In this study, four datasets were used. For datasets 1– 3

below, only one band of each sensor was utilized. This is

band 4 for Landsat-TM (“Thematic Mapper”) data and band

2 for AVHRR-LAC (Local Area Coverage) data. These bands

correspond to the Near-Infrared bands and usually show the

best contrast of land features. In the future, an investigation

could be done of whether a combination of several bands might

improve the registration accuracy. The datasets are as follows:

1) From the same Landsat-TM (“Thematic Mapper”) scene

of the Pacific Northwest used to produce the image of

Fig. 3, the 192 192 center of this image is extracted

and utilized as the “Reference Image.” “Input images” are

artificially created by translating and rotating the original

image and then extracting the 192 192 centers of the

transformed images

• translation parameters are varied in the horizontal

direction by amounts of 0 to 5 pixels;

• rotation parameters are varied with angles ranging

from 0 to 6 .

2) The second set of images comes from a series of mul-

titemporal NOAA Advanced Very High Resolution Ra-

diometer (AVHRR) scenes which differ from the refer-

ence by very small translations and no rotations; these are

shown in Fig. 9. These images are all of size 512 1024.

Note the varying locations of clouds in the images.

3) The third dataset consists of seven pairs of images of

size 256 256, each of which extracted from Band 4 of

two scenes taken by Landsat-5 (in 1997) and Landsat-7

(in 1999) over the Chesapeake Bay area (Eastern United

States). These pairs of images, shown in Fig. 10, are re-

ferred to as wind and chip respectively, and the Landsat-5

windows are registered to the corresponding Landsat-7

chips.

4) The fourth dataset used for this study represents multi-

sensor data acquired by four different sensors over one of

the MODIS Validation Core Sites. The site is the Konza

Prairie in the state of Kansas, in the Middle West region

Fig. 9. Second dataset: Series of multitemporal AVHRR images over South
Africa.

of the United States. Overall, we consider eight different

images corresponding to different bands of different sen-

sors. The four sensors and their respective bands and spa-

tial resolutions involved in this study are

• IKONOS Bands 3 (Red) and 4 (Near-Infrared), spa-

tial resolution of 4 meters per pixel, resampled to

3.91 m;

• Landsat-7/ETM+ Bands 3 (Red) and 4 (Near-In-

frared), spatial resolution of 30 meters per pixel, re-

sampled to 31.25 m;

• MODIS Bands 1 (Red) and 2 (Near Infrared), spa-

tial resolution of 500 meters per pixel;

• SeaWIFS Bands 6 (Red) and 8 (Near Infrared), spa-

tial resolution of 1000 meters per pixel.

Fig. 11 shows one band of each of these scenes.

C. Algorithm Implementation

First, we conduct a series of experiments using the synthetic

images generated from the reference of dataset 1, to test the sensi-

tivityofouralgorithmtoseveralparameters.Thenbasedonourre-

sults, an automated optimization scheme is designed and applied

to the remaining datasets (2–4) in a multiresolution manner. The

optimization algorithm is tested on these multisensor and multi-

temporal datasets using both correlation and MI.

The optimization scheme starts with an “initial guess” of the

correct registration value, based on prior information from a

coarser registration scheme. The initial guess is then scaled to

the corresponding starting value at the lowest decomposition

level to be registered, and the optimization scheme is applied

for a fixed number of iterations. The final registration transla-

tion-values at this level, are then doubled and passed with the
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(a)

(b)

Fig. 10. Third dataset: (a) Seven chips (256� 256) extracted from band 4 of a
1999 Landsat-7 Scene. (b) Seven corresponding windows (256� 256) extracted
from band 4 of a 1997 Landsat-5 scene.

rotation-value, up to the next level as a new starting point. This

process is iterated up to level 1, which provides the final regis-

tration result. Note with this multiresolution approach, it is crit-

ical for a correct result to be obtained at the coarsest level of the

decomposition so as not to propagate and multiply errors.

1) Sensitivity to Initial Guess and Number of Decomposi-

tion Levels: In this subsection, we test the sensitivity of our

algorithm to the following parameters: the choice of the Simon-

celli subband (low-pass versus band-pass), the number of levels

of decomposition, and the distance between the initial guess

and the correct result. Finally we compare MI to correlation in

terms of their respective regions of attraction. These tests are

performed using dataset 1. The plots of Fig. 12 correspond to

Fig. 11. Fourth dataset: IKONOS, Landsat/ETM, MODIS and SeaWIFS
images of the Konza Prairie in Kansas, U.S.

MI optimization for the band-pass outputs of the Simoncelli de-

composition for the images of dataset 1. They show the average

of the final RMS errors measured in pixels, for the images of

dataset 1 versus the number of iterations, for starting points (or

initial guesses) at various horizontal distances from the correct

result (or ground truth). Each starting point has a rotational error

of 5 , in addition to the translational error indicated.

The average errors are computed as follows. For each of the

42 reference-input pairs, individual errors are computed by

taking the root mean square (RMS) error over all the pixels in

each image as follows:

(13)

for with ; where

represents the correct (“Ground Truth”) transformation and

is the computed transformation, is the Euclidean distance

and is the total number of pixels in the image. This error is

averaged over all the image pairs.

For all the cases shown in Fig. 12, the algorithm consistently

converges using four levels of decomposition, when the starting

distance is 12 pixels or less in a single direction from the

“ground truth” value. The algorithm fails at 16 pixels, with the

error increasing with the number of iterations. This may be

due to the algorithm getting trapped at a local maximum at a

coarser level, with this incorrect registration being propagated

through subsequent levels. For one level of decomposition,
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(a) (b)

(c) (d)

Fig. 12. RMS pixel error curves for MI with different initial distances over varying numbers of decomposition levels (band-pass). (a) Initial guess = 4 pixels
from correct result. (b) Initial guess = 8 pixels from correct result. (c) Initial guess = 12 pixels from correct result. (d) Initial guess = 16 pixels from
correct result. (Algorithm failure for all decomposition levels.).

registration is done using the band-pass output B0 only, and for

all cases the algorithm does not converge. Convergence can be

achieved for this size image by using the original image, with

no Simoncelli decomposition.

Similar plots were generated using the low-pass outputs of

the Simoncelli decomposition. For the varying numbers of de-

composition levels, the final value of the average error after 220

iterations was about the same as for the band-pass outputs (be-

tween and ) with the low-pass being less sensitive

than the band-pass to the distance of the initial guess from the

correct result. However, when more complex test data is used,

such as noisy and/or multisensor imagery, band-pass appears to

achieve better precision than low-pass, while being just as ro-

bust. This is consistent with results reported in [20]. Based on

these observations, the remaining tests are done using four levels

of the Simoncelli band-pass output from a starting point, which

is less than 12 pixels from the expected solution. We expect that

such a starting point can be determined from a coarser registra-

tion scheme such as an exhaustive search [2].

The results for the identical experiment optimizing correla-

tion for the band-pass outputs, are shown in Fig. 13. We note that

in this case, algorithm failure occurs at a distance of 24 pixels

from the “ground truth” values [see Fig. 13(d)].

Comparing the results of the experiments shown in Figs. 12

and 13, we note that correlation converges if the starting dis-

tance is less than 24 pixels from the optimum point, and we say

that its optimum has a region of attraction of about 24 pixels.

With a similar definition, the MI optimum has an attraction re-

gion of about 16 pixels. Inspecting the plots of Fig. 5, at level

4 we observe that the neighborhood V0, defined by inflexion

points, is 3 pixels for correlation, which is consistent with 24

pixels in full resolution units, and it is 2 pixels for MI, which is

consistent with 16 pixels in full resolution units. We also note

that MI achieves better accuracy than correlation, since after 220
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(a) (b)

(c) (d)

Fig. 13. RMS pixel error curves for correlation with different initial distances over varying numbers of decomposition levels (band-pass). (a) Initial guess =
4 pixels from correct result. (b) Initial guess = 12 pixels from correct result. (c) Initial guess = 16 pixels from correct result. (d) Initial guess = 24 pixels

from correct result. (Algorithm failure for all decomposition levels.).

iterations the sub-pixel precision of the final result is for

correlation, compared to about for MI optimization.

D. Results on Multitemporal and Multisensor Imagery

Tables I and II show details of the optimization algorithm ap-

plied to dataset 3, referred to as the wind and chip image pairs,

for a total of 10 iterations only. Convergence occurred to a “rea-

sonable” set of final parameters for all the pairs in this dataset,

and intermediate results are provided at all four levels of the Si-

moncelli decomposition. The initial guess for starting the opti-

mization, is about 8 pixels away from the final registration value

in the -direction, and less than 4 pixels in the -direction. Re-

sults of using MI are provided in Table I, while those for corre-

lation are given in Table II. Note the similar timings for the two

metrics when using the same number of iterations.

Since no good ground truth is available for this dataset, we

evaluate these results visually by obtaining the mosaics using

the SPSA registration values of [23,32,0] for [wind2, chip2],

and [23,35,0] for [wind5, chip5], as shown in Fig. 14.

Table III provides the results for the AVHRR images (i.e.,

dataset 2) with four levels of decomposition. For this dataset

the average RMS error between the manual registration values

and those from the MI optimization is 0.6385 pixels, while the

average error from the correlation optimization is 0.5156 pixels.

Results for the multisensor images of dataset 4 are provided

in Table IV. For the multisensor images, the average error be-

tween the manual registration values and those from the MI op-

timization is 0.3446, while the average error with the correlation

optimization is 1.2522, and sub-pixel accuracy is not achieved

on average. The correlation error is skewed by the much larger

error produced by the NIR pair of modis and etm. Excluding this

data pair, the average error is 0.3538 for MI versus 0.4756 for

correlation. It is important to also note that manual registration

values were not provided at the sub-pixel level.
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TABLE I
WIND AND CHIP, MUTUAL INFORMATION USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (16,32,0), Max: No: Iterations = 10

TABLE II
WIND AND CHIP, CORRELATION USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (16,32,0), Max: No: Iterations = 10

E. Parameter Convergence

By further expanding the results of Tables I and II for the

[wind2, chip2] data pair of dataset 3, we can observe the

convergence rates using MI optimization versus correlation

optimization. In Fig. 15, the plots show the convergence rate of

the relevant parameters with the optimization of MI compared

with that of correlation. We compare convergence for the original

[wind2, chip2] images with an “arbitrary” starting point of

, and also for Simoncelli decomposition

level 1 using the starting point obtained from the previous

three-level optimization. For the original image with no pyramid

decomposition, one observes that using MI optimization, each of

parameters converge in about one third the number of iterations

required by correlation optimization. Note that the wavelet

starting points at level 1 are very close to the optimum in all cases.

The timing for the 4-level registration of [wind2, chip2] from

the starting point over 400 iterations

is 999.7 s for MI, while that for correlation is 985.9 s. Nev-

ertheless, it is important to note that for the original [wind2,

chip2] image pair over 400 iterations, the maximum MI value

is achieved in 72 iterations, while the maximum correlation is

achieved at 395 iterations.

VII. DISCUSSION AND CONCLUSIONS

Prior work on optimization techniques for image registration

can be found in references [3]–[5] and [9]–[11]. The techniques

described in [9]–[11] are all based on minimizing a sum of square
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(a) (b)

Fig. 14. Checkerboard Mosaiced images using SPSA optimization values. (a) SPSA registration for [wind2,chip2]. (b) SPSA registration for [wind5,chip5].

TABLE III
AVHRR, MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (0,0,0), Max: No: Iterations = 250

TABLE IV
MULTI-SENSOR, MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (0,0,0), Max: No: Iterations = 250

differences. Maes et al. [3] use Powell’s method to optimize

MI. Following this gradient-based methods were investigated in

[22], which uses an explicit calculation of the required derivative

based on a partial volume interpolation of the criterion, and

the search is implemented in a multiresolution framework.

Irani and Peleg [10] choose to minimize the square error of a

“disparity vector” between the two images. It proceeds by a

Newton-Raphson technique, and also requires computation of

the necessary gradients. The scheme described in [10] does not

involve multiple resolutions of the images. Finally, Eastman et

al. [11] integrate the gradient-descent techniques described in

[9] and [10] in a multiresolution framework, while focusing on

the radiometric component of the registration transform which is

associatedwith thedifferentviewingconditionsofmultitemporal

or multisensor data. Thevenaz et al. in [9], develop a scheme to

optimize an integrated sum of square differences in the intensity

values of the images, which works in a multiresolution manner.

They use a Marquardt-Levenberg algorithm, and computations

of the derivatives and of the Hessian matrix are based on a

spline pyramid. Their work is applied to medical imagery, and is

extended in [5] to the maximization of the MI similarity criterion.

The registration algorithm proposed by Thevenaz and Unser

in [5], solves a problem similar to the one described here. Their

algorithm is based on a combination of MI together with a mul-

tiresolution gradient search. By using the spline data model both

for image interpolation and for the probability density estima-

tion with Parzen windows, smoothing is achieved and the gra-

dient components of MI are computed exactly in a determin-

istic fashion. An optimizer similar to the Levenberg-Marquardt

is then designed specifically for this criterion.

The algorithm presented here is generally simpler and thus

less computationally intensive, while the optimizer in [5] is

more involved and may therefore be more robust. Our gradient

components are computed approximately and stochastically,

and we also use trivial windowing in the form of a reduced

number of histogram bins, to achieve smoothing. In addition,

our search strategy is essentially gradient ascent, which is

robust when far from the solution but it converges more slowly
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(a) (b)

(c) (d)

Fig. 15. Parameter optimization curves for mutual information versus correlation for [wind2,chip2] data pair. (a) Optimization curves for MI and correlation.
(b) Optimization curves for Tx. (c) Optimization curves for Ty. (d) Optimization curves for rotation, �.

than the Levenberg-Marquardt type optimizer of [5], when

close to the solution. Also because of the stochastic nature of

the gradient approximation, our algorithm exhibits a somewhat

oscillatory convergence behavior compared to the smooth

convergence in [5]. It is unclear which algorithm performs

better under various conditions, and more testing is necessary

to evaluate this, but this is beyond the scope of this paper.

However, we note that due to the simplicity of its components,

our algorithm may yield itself more easily to a distributed or

parallel implementation, which may be essential for real-time

processing of satellite scenes.
The study presented in this paper has applied the SPSA opti-

mization technique for the registration of remote sensing images
in a multiresolution framework, using Simoncelli wavelet-like
filters. In the multiresolution approach provided by this steer-
able decomposition, when convergence occurs at a coarser level,
it provides a near optimal starting point for the next level. This
can produce immediate convergence at that level, providing a
considerable speed up in the overall registration process. The

multiresolution approach also increases the robustness of the al-
gorithm since it is less likely to get trapped in a local maximum
at the higher resolutions. From Figs. 12 and 13, we note that the
algorithm consistently converges when using 4 decomposition
levels for registration, provided that the initial starting point is
not too far from the global optimum.

On average for these experiments, registration of a 256 256
image over the same number of iterations, took about equal time
for MI with 64 bins as for correlation on an SGI Octane 195
Mhz computer. The advantage of using MI optimization over
correlation can be found in its faster convergence rate in terms
of number of iterations. MI was generally observed to converge
in about one third the number of iterations required by correla-
tion. In this work, the algorithm was run for a fixed number of
iterations, in the future we will investigate the definition of an
automatic stopping criterion for the optimization.

Using the area under the curve as a measure of sharpness of
the MI and correlation peaks, it was shown in Section IV-A that
the MI curve for the original gray levels is about 6 times as sharp
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as the correlation curve, but it is 2.5 times as sharp when using
the Simoncelli sub-bands in a neighborhood about the optimum.
Thus it is possible that faster convergence and better precision
can be achieved at the finest level of the decomposition by using
MI together with the original gray level images, in place of the
level 1 outputs of the Simoncelli wavelets. We also observe that
while the MI curve is convex around the optimum for the reg-
istration of the synthetically generated images in Figs. 4 and 5,
this curve becomes concave for the real-life images of Fig. 10,
as shown in Fig. 8(a). This may indicate less precise registration
for those images, but it also allows for the possibility of applying
second order optimization methods.

Current work involves the inclusion of isometric scaling as
an additional parameter to be optimized by the algorithm. The
experiment using the multisensor images of dataset 4 indicates
that the scheme presented here may, in fact, work well for mul-
tisensor registration also. We will continue to test this algorithm
on other types of datasets in future work, and its performance
will be compared to other registration schemes [13].
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