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Interest in multiresolution techniques for signal processing and analysis is increasing steadily.

An important instance of such a technique is the so-called pyramid decomposition scheme.

This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

and synthesis. This scheme comprises the following ingredients: (i) the pyramid consists of a

(finite or infinite) number of levels such that the information content decreases towards higher

levels; (ii) each step towards a higher level is constituted by an (information-reducing) analysis

operator, whereas each step towards a lower level is modeled by an (information-preserving)

synthesis operator. One basic assumption is necessary: synthesis followed by analysis yields

the identity operator, meaning that no information is lost by these two consecutive steps.

In this report, several examples are described of linear as well as nonlinear (e.g., morpho-

logical) pyramid decomposition schemes. Some of these examples are known from the literature

(Laplacian pyramid, morphological granulometries, skeleton decomposition) and some of them

are new (morphological Haar pyramid, median pyramid). Furthermore, the report makes a

distinction between single-scale and multiscale decomposition schemes (i.e. without or with

sample reduction).
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1. Introduction

From the very early days of signal and image processing, it has been recognized that mul-

tiresolution methods are important for various reasons: (i) there is strong evidence that the

human visual system processes information in a “multiresolution” fashion; (ii) signals usually

consist of features of physically significant structure at different resolutions; (iii) sensors may

provide signals of the same source at multiple resolutions; (iv) multiresolution algorithms offer

computational advantages and, moreover, appear to be robust.

In this report, we propose a general pyramid scheme for signal analysis and synthesis. The

operators involved in this scheme can be linear or nonlinear (morphological). Such a scheme

encompasses various existing multiresolution approaches, such as linear (e.g. Laplacian) pyra-

mids [1], morphological pyramids [31, 32, 12, 13, 2, 21, 23, 24, 25], median pyramids [29],

morphological skeletons [27, 18, 15], and granulometries [4, 20, 27, 22, 7].

In the earliest multiresolution approaches to signal and image processing, the most popular

way was to obtain a coarse level signal by subsampling a fine resolution signal, after linear

smoothing, in order to remove high frequencies (e.g., see [33]). A detail pyramid can then be

derived by subtracting from each level an interpolated version of the next coarser level; the

best-known example is the Laplacian pyramid [1]. From a frequency point of view, the resulting

difference signals (known as detail signals) form a signal decomposition in term of bandpass-

filtered copies of the original signal. Moreover, there is neurophysiological evidence that the

human visual system indeed uses a similar kind of decomposition [17]. This tool has been one

of the most popular multiresolution schemes used in image processing and computer vision.

The previously mentioned scheme leaves a lot to be desired however, due to aliasing and

use of non-ideal filters. In addition, a linear filtering approach may not be theoretically justified;

in particular, the operators used for generating the various levels in a multiresolution pyramid

must crucially depend on the application. The point stressed here is that coarsening an image

by means of linear operators may not be compatible with a natural coarsening of some image

attribute of interest (shape of object, for example), and hence use of linear procedures may be

inconsistent in such applications.

In this report, we propose general multiresolution schemes which represent a signal, or

image, using a sequence of successively reduced volume signals applying fixed rules that map

one level to the next. In such schemes, a level is uniquely determined by the level below it. Our

approach contains the following ingredients:

• No assumptions are made on the underlying signal/image space(s). It may be a linear

space (Gaussian/Laplacian pyramid, wavelets), it may be a complete lattice (mathematical

morphology), or any other set.

• The schemes are constituted by operators between different spaces (the levels of the pyra-

mid). These operators are only required to satisfy some elementary properties and are

decomposed into analysis operators, representing an upward step, and synthesis operators,

representing a downward step.

Two types of multiresolution decompositions can be distinguished:

The pyramid scheme: Every analysis operator that brings a signal xj from level j to

the next coarser level j+1 reduces information. This information can be stored in a detail signal

(at level j) which is the difference between xj and the approximation x̂j obtained by applying

the synthesis operator to xj+1. In general, a representation obtained by means of a pyramid

(coarsest signal along with detail signals at all levels) is redundant.
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The wavelet scheme: Here, the detail signal lives at level j + 1 itself, and is obtained

from a second family of analysis operators. In this case, the analysis and synthesis operators

need to satisfy a condition that is very similar in nature to the biorthogonality condition known

from the theory of wavelets (note, however, that this condition is formulated in operator terms

only, and does not require any sort of linearity assumption or inner product). A representation

obtained by means of this scheme avoids redundancy.

In this report, we exclusively deal with the pyramid scheme. The wavelet scheme will

be extensively discussed in a sequel to this report. The present study shows that our pyramid

decomposition scheme encompasses several existing techniques:

• Laplacian pyramid: This is a special case, where both the signal spaces and the operators

are linear [1].

• Morphological Skeleton: The skeleton representation, which can be expressed in terms

of morphological operations (dilation, erosion, opening, closing), is a special case of a

pyramid; here the underlying signal spaces are complete lattices, and the analysis and

synthesis operators are constituted by adjunctions [7].

• Granulometries: Granulometries and size distributions form one of the most practical

concepts in mathematical morphology [27, 7]. They fit, in a most natural way, into a

pyramid framework. The same appears to be true for alternating sequential filters [28, 7].

• Morphological pyramids: Morphological pyramids have been proposed and applied in [31,

32, 12, 13, 29, 2, 21, 23, 24, 25]. We show how such pyramids fit into our general framework,

and present some new examples, as well.

This report is organized as follows. In Section 2, we recall some concepts, notations, and

results of mathematical morphology that are useful throughout the report. Section 3 introduces

our pyramid decomposition scheme in terms of analysis and synthesis operators and their compo-

sitions. Here, we introduce our key assumption, the pyramid condition, which plays a major role

in our exposition. The remainder of the report is devoted to various examples and applications

of our general scheme. Section 4 is concerned with linear schemes. Here, we restrict attention to

schemes which are also translation invariant. Particular attention is given to the Burt-Adelson

pyramid decomposition [1] and the associated Laplacian pyramid transform. Sections 5–6 are de-

voted to morphological pyramids. In Section 5, we consider the class of morphological pyramids

based on adjunctions, and show that various morphological multiresolution techniques, such as

granulometries, fit perfectly within this general framework. Moreover, an attempt to put the

Lantuéjoul skeleton decomposition algorithm [27] into our framework, automatically leads to an

improvement of this scheme. In Section 6, we discuss more general morphological pyramid de-

composition schemes, such as median pyramids and morphological pyramids with quantization.

In Section 7, we present a new class of nonlinear signal processing and analysis tools based on

multiscale morphological operators. Finally, in Section 8, we end with our conclusions.

2. Mathematical Preliminaries

In this section, we provide a brief overview of some basic concepts, notations and results from the

theory of mathematical morphology which we need in the sequel. A comprehensive discussion

can be found in [7].

A set L with a partial ordering ≤ is called a complete lattice if every subset K of L has a

supremum (least upper bound)
∨
K and an infimum (greatest lower bound)

∧
K. We say that L
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is a complete chain if it is a complete lattice such that x ≤ y or y ≤ x, for every pair x, y ∈ L. A

simple example of a complete chain is the set IR = IR∪{−∞,∞} with the usual ordering. Given

a complete lattice T and a nonempty set E, the set Fun(E,T ) = T E comprising all functions

x : E → T , is a complete lattice under the pointwise ordering

x ≤ y if x(p) ≤ y(p), ∀ p ∈ E.

In this report, Fun(E,T ) represents the signals with domain E and values in T . The least and

greatest elements of T are denoted by ⊥,⊤ respectively:
∧

T = ⊥,
∨

T = ⊤.

Here, we are mainly interested in the case when E is the d-dimensional discrete space Zd.

Given a signal x ∈ Fun(Zd,T ) and a vector k = (k1, k2, . . . , kd) ∈ Z
d, we define the translation

operator τ = τ(k1,k2,...,kd) by

(τx)(n) = (τx)(n1, n2, ..., nd) = x(n1 − k1, n2 − k2, ..., nd − kd) = x(n− k), n, k ∈ Zd.

Given a mapping ψ : Fun(Zd,T ) → Fun(Zd,T ), we say that ψ is translation invariant if

ψτ = τψ, (2.1)

for every translation operator τ .

Two basic morphological operators on Fun(Zd,T ) are the (flat) dilation δA and the (flat)

erosion εA, given by:

δA(x)(n) = (x⊕A)(n) =
∨

k∈A

x(n− k) (2.2)

εA(x)(n) = (x⊖A)(n) =
∧

k∈A

x(n+ k). (2.3)

Here, A ⊆ Zd is a given set, the so-called structuring element. There exists an important relation

for dilations and erosions:

y ⊕A ≤ x ⇐⇒ y ≤ x⊖A, x, y ∈ Fun(Zd,T ).

This relation, called the adjunction relation, forms the key ingredient for the so-called complete

lattice framework of mathematical morphology. We briefly discuss this framework below, since

it plays an important role throughout this report.

2.1. Definition. Consider two complete lattices L and M, and two operators ε : L → M and

δ : M → L. We say that (ε, δ) constitutes an adjunction between L and M if

δ(y) ≤ x ⇐⇒ y ≤ ε(x), x ∈ L, y ∈ M.

If (ε, δ) forms an adjunction between L and M, then ε has the property

ε(
∧

i∈I

xi) =
∧

i∈I

ε(xi), (2.4)

for any family of signals {xi | i ∈ I} ⊆ L. Operator δ has the dual property

δ(
∨

i∈I

yi) =
∨

i∈I

δ(yi), (2.5)

for any family of signals {yi | i ∈ I} ⊆ M. This implies in particular that ε and δ are increasing

(i.e., monotone) operators. An operator ε that satisfies (2.4) is called an erosion, whereas an

operator δ that satisfies (2.5) is called a dilation. We denote the identity operator on L by idL,

or simply id, when there is no danger of confusion. The following propositions hold.
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2.2. Proposition.

(a) With every erosion ε : L → M, there corresponds a unique dilation δ : M → L such that

(ε, δ) constitutes an adjunction.

(b) With every dilation δ : M → L, there corresponds a unique erosion ε : L → M such that

(ε, δ) constitutes an adjunction.

2.3. Proposition. Let (ε, δ) be an adjunction between two complete lattices L and M. The

following holds:
εδε = ε and δεδ = δ

εδ ≥ id and δε ≤ id.

An operator ν on a complete lattice L is a negation, if it is a bijection that reverses ordering

(i.e., x ≤ y ⇒ ν(y) ≤ ν(x)) such that ν2 = id, the identity operator. For example, for every

x ∈ Fun(E,T ), ν(x) = −x, if T = IR, whereas ν(x) = N − 1−x, if T = {0, 1, ...,N − 1}. Let L,

M be two complete lattices with negations νL, νM, respectively. With an operator ψ: L → M,

we can associate the negative operator ψ∗ = νMψνL. When no confusion about the respective

negation seems possible, we set ψ∗(x) = [ψ(x∗)]∗. If (ε, δ) forms an adjunction between two

complete lattices L and M, and if both lattices have a negation, then the pair (δ∗, ε∗) forms an

adjunction between M and L as well.

We now need the following definition.

2.4. Definition. Let ψ be an operator from a complete lattice L into itself.

(a) ψ is idempotent, if ψ2 = ψ.

(b) If ψ is increasing and idempotent, then ψ is a (morphological) filter.

(c) A filter ψ which satisfies ψ ≤ id (ψ is anti-extensive) is an opening.

(d) A filter ψ which satisfies ψ ≥ id (ψ is extensive) is a closing.

2.5. Proposition. Let (ε, δ) be an adjunction between two complete lattices L and M. Then,

εδ is a closing on M and δε is an opening on L.

We have seen that the pair (εA, δA), given by (2.2) and (2.3), constitutes an adjunction

on Fun(Zd,T ). Thus, we may conclude that the composition αA = δAεA is an opening whereas

the composition βA = εAδA is a closing, in the sense of Definition 2.4. Operators αA and βA

are called the opening and closing by A, respectively. We use the following notation:

αA(x) = x◦A (2.6)

βA(x) = x•A. (2.7)

3. Multiresolution Signal Decomposition

To obtain a mathematical representation for a multiresolution signal decomposition scheme, we

need a sequence of signal domains, assigned at each level of the scheme, and analysis/synthesis

operators that map information between different levels. The analysis operators are designed to

reduce information in order to simplify signal representation whereas the synthesis operators are

designed to undo as much as possible this loss of information. This is a widely accepted approach

to multiresolution signal decomposition [3, 33, 16]. Moreover, as discussed in the introduction,

the analysis/synthesis operators depend on the application at hand and a sound theory should

be able to treat them from a general point of view. Motivated by these reasons, we propose

in this section a general multiresolution signal decomposition scheme, to be referred to as the

pyramid transform.
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3.1. Analysis and synthesis operators

Let J ⊆ Z be an index set indicating the levels in a multiresolution signal decomposition scheme.

We either consider J to be finite or infinite. In the finite case, we take J = {0, 1, . . . ,K}, for

some K <∞, whereas J = {0, 1, . . .} in the infinite case. A domain Vj of signals is assigned at

each level j. No particular assumptions on Vj are made at this point (e.g., it is not necessarily

true that Vj is a linear space). In this framework, signal analysis consists of decomposing a

signal in the direction of increasing j. This task is accomplished by means of analysis operators

ψ↑
j : Vj → Vj+1. On the other hand, signal synthesis proceeds in the direction of decreasing

j, by means of synthesis operators ψ↓
j : Vj+1 → Vj . Here, the upward arrow indicates that

the operator ψ↑ maps a signal to a level higher in the pyramid, whereas the downward arrow

indicates that the operator ψ↓ maps a signal to a level lower in the pyramid. The analysis

operator ψ↑
j is designed to reduce information in order to simplify signal representation at level

j + 1, whereas the synthesis operator ψ↓
j is designed to map this information back to level j.

We can travel from any level i in the pyramid to a higher level j by successively composing

analysis operators. This gives an operator

ψ↑
i,j = ψ↑

j−1ψ
↑
j−2 · · ·ψ

↑
i , j > i, (3.1)

which maps an element in Vi to an element in Vj . On the other hand, the composed synthesis

operator

ψ↓
j,i = ψ↓

i ψ
↓
i+1 · · ·ψ

↓
j−1, j > i, (3.2)

takes us back from level j to level i. Finally, we define the composition

ψ̂i,j = ψ↓
j,iψ

↑
i,j , j > i, (3.3)

which takes a signal from level i to level j and back to level i again.

The analysis operators ψ↑
j are designed to reduce signal information. Hence, they are

not invertible in general, and information loss cannot be recovered by using only the synthesis

operators ψ↓
j . Therefore, ψ̂i,j can be regarded as an approximation operator that approximates

a signal at level i, by mapping (by means of ψ↓
j,i) the reduced information at level j, incurred

by ψ↑
i,j , back to level i.

We now state a number of conditions that are crucial to what follows.

3.1. Condition.

(a) ψ↑
j is surjective

(b) ψ↓
j is injective

(c) ψ↑
jψ

↓
jψ

↑
j = ψ↑

j

(d) ψ↓
jψ

↑
jψ

↓
j = ψ↓

j

(e) ψ↓
jψ

↑
j is idempotent; i.e., ψ↓

jψ
↑
jψ

↓
jψ

↑
j = ψ↓

jψ
↑
j

(f) ψ↑
jψ

↓
j = id on Vj+1.

Here, id denotes the identity operator on Vj+1. The first condition is required in order to assure

that for any signal y ∈ Vj+1 there always exists a signal x ∈ Vj such that y = ψ↑
j (x). This

condition is easily satisfied by setting Vj+1 = Ran(ψ↑
j ) (i.e., the range of the analysis operator

ψ↑
j ). That ψ↑

j is only surjective (and not necessarily injective) formalizes the fact that ψ↑
j gives

rise to a loss of signal information (i.e., there might be two signals x1, x2 ∈ Vj , x1 6= x2, such that

ψ↑
j (x1) = ψ↑

j (x2)). The second condition guarantees that application of the synthesis operator
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ψ↓
j does not result in an additional loss of signal information (i.e., if x1, x2 ∈ Vj+1 such that

x1 6= x2, then ψ↓
j (x1) 6= ψ↓

j (x2)). In principle, given signal ψ↓
j,i(x) ∈ Vi, where x ∈ Vj and j > i,

we should always be able to uniquely recover x. The fifth condition guarantees that the signal

decomposition is non-redundant, in the sense that repeated application of the analysis/synthesis

steps does not modify the decomposition.

We can establish a number of relationships between the previous conditions.

3.2. Proposition. The following relationships between the previous conditions are true:

(c) ⇒ (e) and (d) ⇒ (e)

(a),(b),(e) ⇐⇒ (a),(c) ⇐⇒ (b),(d) ⇐⇒ (f)

Proof. (c)⇒ (e): Since ψ↑
jψ

↓
jψ

↑
j = ψ↑

j , we have that ψ↓
jψ

↑
jψ

↓
jψ

↑
j = ψ↓

jψ
↑
j which shows idempo-

tence.

(d)⇒(e): Since ψ↓
jψ

↑
jψ

↓
j = ψ↓

j , we have that ψ↓
jψ

↑
jψ

↓
jψ

↑
j = ψ↓

jψ
↑
j which shows idempotence.

(a), (c)⇒ (b): Take y1, y2 ∈ Vj+1 such that y1 6= y2. Since ψ↑
j is surjective, there always

exist signals x1, x2 ∈ Vj such that y1 = ψ↑
j (x1) and y2 = ψ↑

j (x2), from which we have that

ψ↑
j (x1) 6= ψ↑

j (x2), or x1 6= x2. In this case, ψ↑
jψ

↓
j (y1) = ψ↑

jψ
↓
jψ

↑
j (x1) = ψ↑

j (x1) 6= ψ↑
j (x2) =

ψ↑
jψ

↓
jψ

↑
j (x2) = ψ↑

jψ
↓
j (y2), which implies that ψ↓

j (y1) 6= ψ↓
j (y2). Therefore, ψ↓

j is injective.

(b), (d)⇒(a): Take y ∈ Vj+1. From (d), we have that ψ↓
jψ

↑
jψ

↓
j (y) = ψ↓

j (y) which, together

with the fact that ψ↓
j is injective, implies that ψ↑

jψ
↓
j (y) = y, or y = ψ↑

j (x), where x = ψ↓
j (y).

This shows that ψ↑
j is surjective.

(f) ⇒ (b), (d): Since ψ↑
jψ

↓
j = id, we have that ψ↓

jψ
↑
jψ

↓
j = ψ↓

j , which shows (d). If

x1, x2 ∈ Vj+1 such that x1 6= x2, then ψ↑
jψ

↓
j (x1) = x1 6= x2 = ψ↑

jψ
↓
j (x2), which implies that

ψ↓
j (x1) 6= ψ↓

j (x2) and, therefore, ψ↓
j is injective.

(b), (d)⇒(a), (c): Recall that (b), (d)⇒(a). Since ψ↓
jψ

↑
jψ

↓
j = ψ↓

j , we have that ψ↓
jψ

↑
jψ

↓
jψ

↑
j =

ψ↓
jψ

↑
j , which leads to ψ↑

jψ
↓
jψ

↑
j = ψ↑

j , since ψ↓
j is injective.

(a), (c) ⇒ (a), (b), (e): This is a direct consequence of the facts that (a), (c) ⇒ (b) and

(c)⇒(e).

(a), (b), (e)⇒(f): From (e), we have that ψ↓
jψ

↑
jψ

↓
jψ

↑
j = ψ↓

jψ
↑
j which, together with the fact

that ψ↓
j is injective, implies that ψ↑

jψ
↓
jψ

↑
j (x) = ψ↑

j (x), for every x ∈ Vj . Since ψ↑
j is surjective,

ψ↑
jψ

↓
j (y) = y, for every y ∈ Vj+1.

From these results, it is clear that (a)–(e) in Condition 3.1 are satisfied if and only if

condition (f) is true. The latter condition plays an important role in the sequel.

3.3. Pyramid Condition. The analysis and synthesis operators ψ↑
j , ψ

↓
j are said to satisfy the

pyramid condition if ψ↑
jψ

↓
j = id on Vj+1.

We now have the following proposition.

3.4. Proposition. Assume that the pyramid condition is satisfied. Then,

ψ↑
i,jψ

↓
j,i = id on Vj , j > i (3.4)

ψ̂i,jψ̂i,k = ψ̂i,j = ψ̂i,kψ̂i,j , j ≥ k > i. (3.5)

In particular, ψ̂i,j is idempotent.
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Proof. From (3.1), (3.2), and the pyramid condition 3.3, we have that

ψ↑
i,jψ

↓
j,i = ψ↑

j−1ψ
↑
j−2 · · ·ψ

↑
i+1(ψ

↑
i ψ

↓
i )ψ↓

i+1 · · ·ψ
↓
j−1

= ψ↑
j−1ψ

↑
j−2 · · · (ψ

↑
i+1ψ

↓
i+1) · · ·ψ

↓
j−1

= · · · = ψ↑
j−1ψ

↓
j−1 = id,

which shows (3.4)

From (3.1)–(3.3) and the pyramid condition 3.3 we have that

ψ̂i,jψ̂i,k = ψ↓
j,iψ

↑
i,jψ

↓
k,iψ

↑
i,k

= ψ↓
i ψ

↓
i+1 · · ·ψ

↓
j−1ψ

↑
j−1ψ

↑
j−2 · · ·ψ

↑
i+1(ψ

↑
i ψ

↓
i )ψ↓

i+1 · · ·ψ
↓
k−1ψ

↑
k−1ψ

↑
k−2 · · ·ψ

↑
i

= ψ↓
i ψ

↓
i+1 · · ·ψ

↓
j−1ψ

↑
j−1ψ

↑
j−2 · · · (ψ

↑
i+1ψ

↓
i+1) · · ·ψ

↑
kψ

↑
k−1ψ

↑
k−2 · · ·ψ

↑
i

= · · · = ψ↓
i ψ

↓
i+1 · · ·ψ

↓
j−1ψ

↑
j−1ψ

↑
j−2 · · ·ψ

↑
k(ψ↑

k−1ψ
↓
k−1)ψ

↑
k−1ψ

↑
k−2 · · ·ψ

↑
i

= ψ↓
j,iψ

↑
i,j = ψ̂i,j ,

which shows the first equality in (3.5). From (3.1)–(3.3) and the pyramid condition 3.3 we also

have that

ψ̂i,kψ̂i,j = ψ↓
k,iψ

↑
i,kψ

↓
j,iψ

↑
i,j

= ψ↓
i ψ

↓
i+1 · · ·ψ

↓
k−1ψ

↑
k−1ψ

↑
k−2 · · ·ψ

↑
i+1(ψ

↑
i ψ

↓
i )ψ↓

i+1 · · ·ψ
↓
j−1ψ

↑
j−1ψ

↑
j−2 · · ·ψ

↑
i

= · · · = ψ↓
i ψ

↓
i+1 · · ·ψ

↓
k−1(ψ

↑
k−1ψ

↓
k−1)ψ

↓
kψ

↓
k+1 · · ·ψ

↓
j−1ψ

↑
j−1ψ

↑
j−2 · · ·ψ

↑
i

= ψ↓
j,iψ

↑
i,j = ψ̂i,j ,

which shows the second equality in (3.5).

The first equality in (3.5) simply states that the level k approximation ψ̂i,k(x) of a signal

x ∈ Vi is adequate for determining the level j (j > k) approximation ψ̂i,j(x) of x. This agrees

with our intuition that higher levels in the decomposition correspond to higher information

reduction. The second equality in (3.5) says that ψ̂i,j(x), x ∈ Vi, is not modified if approximated

by means of operator ψ̂i,k.

It is worthwhile noticing here that if V
(j)
i = Ran(ψ̂i,j) (i.e., the range of the approximation

operator ψ̂i,j), then V
(j)
i ⊆ Vi and the second equality in (3.5), with k = j − 1, results in

V
(j)
i ⊆ V

(j−1)
i ⊆ Vi, j > i+ 1. (3.6)

Therefore, operator ψ̂i,j decomposes the signal space Vi into nested subspaces · · · ⊆ V
(i+2)
i ⊆

V
(i+1)
i ⊆ Vi, each subspace V

(j)
i containing all “level j” (j > i) approximations of signals in Vi.

Equation (3.6) is a basic requirement for a multiresolution signal decomposition scheme [3, 33,

16] that agrees with our intuition that the space V
(j−1)
i , which contains the approximations of

signals at level i obtained by means of operator ψ̂i,j−1, contains the approximations of signals

at level i obtained by means of ψ̂i,j as well.

3.2. The pyramid transform

Although, as a direct consequence of the pyramid condition 3.3, the analysis operator ψ↑
j is the

left inverse of the synthesis operator ψ↓
j , it is not true in general that is also the right inverse:

ψ↓
jψ

↑
j (x) is only an approximation of x ∈ Vj . Therefore, the analysis step cannot be used by
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itself for signal representation. This is not a problem however. In fact, this is in agreement

with the inherent property of multiresolution signal decomposition of reducing information in

the direction of increasing j.

Analysis of a signal x ∈ Vj , followed by synthesis, yields an approximation x̂ = ψ̂j,j+1(x) =

ψ↓
jψ

↑
j (x) ∈ V̂j of x, where V̂j = V

(j+1)
j . We assume here that there exists a subtraction operator

(x, x̂) 7→ x −̇ x̂ mapping Vj × V̂j into a set Yj (strictly speaking, we should write −̇j to denote

dependence on level j). Furthermore, we assume that there exists an addition operator (x̂, y) 7→

x̂ +̇y mapping V̂j ×Yj into Vj . The detail signal y = x −̇ x̂ contains information about x which is

not present in x̂. It is crucial that x can be reconstructed from its approximation x̂ and the detail

signal y. Towards this goal, we introduce the following assumption of perfect reconstruction:

x̂ +̇ (x −̇ x̂) = x, if x ∈ Vj and x̂ = ψ̂j,j+1(x). (3.7)

This leads to the following recursive signal analysis scheme:

x→ {y0, x1} → {y0, y1, x2} → · · · → {y0, y1, . . . , yj , xj+1} → · · · (3.8)

where 





x0 = x ∈ V0

xj+1 = ψ↑
j (xj) ∈ Vj+1, j ≥ 0 .

yj = xj −̇ ψ↓
j (xj+1) ∈ Yj

(3.9)

Notice that, because of the perfect reconstruction condition, signal x ∈ V0 can be exactly recon-

structed from xj+1 and y0, y1, . . . , yj by means of the backward recursion

x = x0, xj = ψ↓
j (xj+1) +̇ yj , j ≥ 0. (3.10)

3.5. Example. The specific choice for the subtraction and addition operators depends upon the

application at hand. Below, we discuss three alternatives for which the perfect reconstruction

condition holds. In all cases, we assume that our signals lie in Fun(E,T ), for some gray-value

set T . Now, it suffices to define subtraction and addition operators on T .

(a) Assume that T ⊆ IR and let T ′ = {t − s | t, s ∈ T }. We define a subtraction operator

(t, s) 7→ t− s from T × T into T ′. Obviously, the perfect reconstruction condition is valid

if we choose the standard addition + as the addition operator.

(b) Suppose that T is a complete lattice. If we know that the approximation signal x̂ satisfies

x̂ ≤ x pointwise (see Section 5 for examples), then we can define

t −̇ s =

{
t, if t > s
⊥, if t = s ,

(3.11)

where ⊥ is the least element of T . For +̇ we simply take

t +̇ s = t ∨ s. (3.12)

It is easy to verify that s +̇ (t −̇ s) = t, for every t, s ∈ T with s ≤ t.

(c) Assume that T is finite, say T = {0, 1, . . . ,N − 1}. Define +̇ and −̇ as the addition and

subtraction in the Abelian group ZN ; i.e., t+̇s = (t+s) mod N and t−̇s = (t−s) mod N ,

where ‘mod’ denotes modulo. Observe that in the binary case, both +̇ and −̇ correspond

to the ‘exclusive OR’ operator.
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Fig. 1. Illustration of: (a) a 3-level pyramid transform, and (b) its inverse.

In the definition below, we use the following notation:

J̄ =

{
J ∪ {K + 1}, if J = {0, 1, . . . ,K}
J, if J = {0, 1, . . .}.

3.6. Definition. Consider the multiresolution signal decomposition scheme given by J , (Vj)j∈J̄ ,

(ψ↑
j )j∈J , (ψ↓

j )j∈J . The process of decomposing a signal x ∈ V0 in terms of (3.8), (3.9) is called

the pyramid transform (PT) of x, whereas the process of synthesizing x by means of (3.10) is

called the inverse pyramid transform (IPT).

Block diagrams illustrating the pyramid transform and its inverse, for the case when

J = {0, 1, 2}, are depicted in Figure 1.

3.3. An elementary sampling scheme

In most of the examples to follow, it is assumed that the domains Vj coincide and that operators

ψ↑
j and ψ↓

j are the same at each level. Here, we discuss one of the most elementary examples
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of a pyramid transform for the case when Vj = Fun(Zd,T ), with T being an arbitrary set. Let

t ∈ T be a fixed value and consider the operators

σ↑(x)(n) = x(2n)

σ↓
t (x)(2n) = x(n) and σ↓

t (x)(m) = t, if m 6∈ 2Zd,

where 2Zd denotes all vectors in Zd with even coordinates. It is easy to see that σ↑σ↓
t = id on

Fun(Zd,T ), which means that the pyramid condition 3.3 holds.

If T is a linear space and we choose t = 0, then both σ↑ and σ↓
0 are linear operators. The

case when T is a complete lattice is governed by the following result.

3.7. Proposition. Assume that T is a complete lattice, with least element ⊥ and greatest

element ⊤. Then (σ↑, σ↓
⊥) and (σ↓

⊤, σ
↑) are both adjunctions on Fun(Zd,T ).

The proof of this result is straightforward.

4. Linear Pyramids

A case of particular interest to signal processing and analysis applications is when the analy-

sis/synthesis operators are linear and translation invariant. In this section, we provide a number

of (known as well as new) examples associated with linear translation invariant pyramids. First,

we consider the case of pyramids which successively reduce the number of data points (sam-

ples) at each level. Since sample reduction results in scale reduction as well [33], we refer to

these pyramids as multiscale pyramids. We then discuss the case of linear translation invariant

pyramids with no sample reduction. We refer to these pyramids as single-scale pyramids.

4.1. Multiscale pyramids

4.1.1. The one-dimensional case

In this subsection, we restrict attention to one-dimensional discrete-time signals x, viewed as

elements in ℓ2(Z), the space of all real-valued sequences on Z which are square summable. Let

τ be the translation operator on ℓ2(Z), for which

(τx)(n) = x(n− 1) and (τ−1x)(n) = x(n+ 1),

where τ−1 is the inverse of τ . We consider pyramid transforms satisfying the following assump-

tions:

(i) All domains Vj are identical, namely ℓ2(Z).

(ii) Operators +̇ and −̇ are the usual addition and difference operators + and − in the linear

space ℓ2(Z).

(iii) At every level j, we use the same analysis and synthesis operators, i.e., ψ↑
j and ψ↓

j are

independent of j; they are denoted by ψ↑ and ψ↓, respectively.

(iv) ψ↑ and ψ↓ are linear operators.

(v) ψ↑ and ψ↓ are translation invariant in the following sense:

ψ↑τ2 = τψ↑ and ψ↓τ = τ2ψ↓. (4.1)
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A straightforward computation shows that there exist convolution kernels h̃, h ∈ ℓ2(Z) such that

ψ↑ and ψ↓ are of the following general form (see Rioul [26]):

ψ↑(x)(n) =
∞∑

k=−∞

h̃(2n− k)x(k) (4.2)

ψ↓(x)(n) =
∞∑

k=−∞

h(n− 2k)x(k). (4.3)

Note that the analysis operator ψ↑ can be regarded as a linear convolution with kernel h̃ followed

by a downsampling at rate 2. The pyramid condition ψ↑ψ↓ = id amounts to

∞∑

k=−∞

h̃(2n− k)h(k) = δ(n), (4.4)

where δ(n) is the Dirac-delta sequence; i.e., δ(0) = 1 and δ(n) = 0, if n 6= 0. This is known as

the biorthogonality condition [26].

4.1. Example (Haar pyramid). A simple solution to (4.4) is
{

h̃(−1) = h̃(0) = 1
2

and h̃(n) = 0, otherwise
h(0) = h(1) = 1 and h(n) = 0, otherwise,

which corresponds to the analysis and synthesis operators

ψ↑(x)(n) =
1

2
(x(2n) + x(2n+ 1)) (4.5)

ψ↓(x)(2n) = ψ↓(x)(2n+ 1) = x(n). (4.6)

This leads to a signal decomposition scheme which we call the Haar pyramid; the operators in

(4.5), (4.6) coincide with the lowpass filters associated with the Haar wavelet [3, 33, 30]

4.2. Example (Burt–Adelson pyramid). We may set
{

h̃(0) = a, h̃(−1) = h̃(1) = b, h̃(−2) = h̃(2) = c, h̃(n) = 0, otherwise
h(0) = p, h(−1) = h(1) = q, h(n) = 0, otherwise.

Condition (4.4) gives rise to the following equations:

2bq + ap = 1 and cp+ bq = 0.

If we impose two normalizing conditions, namely that ψ↑ maps signal (. . . , 1,−1, 1,−1, 1, . . .) to

(. . . , 0, 0, 0, 0, 0, . . .), whereas ψ↓ maps signal (. . . , 1, 1, 1, 1, 1, . . .) to itself, we get

a− 2b+ 2c = 0 and p = 2q = 1.

The unique solution to these equations is

a =
3

4
, b =

1

4
, c = −

1

8
, p = 1, q =

1

2
,

which corresponds to the analysis and synthesis operators

ψ↑(x)(n) =
1

8
(−x(2n− 2) + 2x(2n− 1) + 6x(2n) + 2x(2n+ 1) − x(2n+ 2))

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n+ 1) =
1

2
(x(n) + x(n+ 1)).

This leads to a signal decomposition scheme which is a particular case of the well-known Burt–

Adelson pyramid [1].
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It is clear from (4.2) and (4.3) that the analysis operator reduces the number of samples

by a factor of two whereas the synthesis operator doubles the number of samples. Therefore,

a signal x ∈ V0 of 2K samples is reduced to a signal ψ↑(x) ∈ V1 of 2K−1 samples, which is

then expanded to a signal ψ↓ψ↑(x) ∈ V̂0 of 2K samples. If we consider a pyramid transform

{y0, y1, . . . , yK−1, xK}, it is not difficult to see that signal xK contains 1 sample, whereas the

detail signal yj contains 2K−j samples. Therefore, the pyramid transform of a signal x ∈ V0 of

2K samples contains 1+2+22 + · · ·+2K = 2K+1−1 samples, an increase by a factor of (2K+1−

1)/2K → 2, as K → ∞. Hence, the pyramid transform is an overcomplete signal decomposition,

since it produces more information than is actually needed for signal representation.

4.1.2. The 2-dimensional case

It is straightforward to generalize the previous result to the 2-dimensional case. We make the

same assumptions (i)–(v) as before; however, the translation invariance condition in (4.1) should

hold for every translation operator τ = τ(k, l), given by (τ(k, l)x)(m,n) = x(m− k, n− l). It can

be shown that there exist convolution kernels h̃, h ∈ ℓ2(Z2) such that ψ↑, ψ↓ are given by

(ψ↑x)(m,n) =
∞∑

k, l=−∞

h̃(2m− k, 2n− l)x(k, l)

ψ↓(x)(m,n) =
∞∑

k, l=−∞

h(m− 2k, n− 2l)x(k, l).

The pyramid condition ψ↑ψ↓ = id amounts to the identity

∞∑

k, l=−∞

h̃(2m− k, 2n− l)h(k, l) = δ(m,n), (4.7)

where δ is the 2-dimensional Dirac-delta sequence, given by δ(m,n) = 1, if m = n = 0, and 0

otherwise.

The simplest solution to (4.7) is similar to the Haar decomposition given in Example 4.1:

{

h̃(−1,−1) = h̃(−1, 0) = h̃(0,−1) = h̃(0, 0) = 1
4 and h̃(m,n) = 0, otherwise

h(0, 0) = h(1, 0) = h(0, 1) = h(1, 1) = 1 and h(m,n) = 0, otherwise .

The following example discusses a less trivial solution.

4.3. Example. Let us consider the case when, in the analysis step, a 2 × 2 pixel block

{(2m, 2n), (2m+ 1, 2n), (2m+ 1, 2n+ 1), (2m, 2n+ 1)} at level j is replaced by one pixel (m,n)

at level j + 1. The value of this pixel is a weighted average over 16 pixels at level j, namely the

pixels in the 4 × 4 block surrounding the 2 × 2 block; see Figure 2. To be precise:

ψ↑(x)(m,n) = a
(
x(2m, 2n) + x(2m+ 1, 2n) + x(2m+ 1, 2n+ 1) + x(2m, 2n+ 1)

)

+b
(
x(2m− 1, 2n) + x(2m− 1, 2n+ 1) + x(2m, 2n − 1) + x(2m+ 1, 2n− 1)

+x(2m+ 2, 2n) + x(2m+ 2, 2n+ 1) + x(2m, 2n + 2) + x(2m+ 1, 2n+ 2)
)

+c
(
x(2m− 1, 2n− 1) + x(2m+ 2, 2n− 1) + x(2m+ 2, 2n+ 2) + x(2m− 1, 2n+ 2)

)
. (4.8)
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Fig. 2. Stencils for: (a) ψ↑ in (4.8), and (b) ψ↓ in (4.9)–(4.12).

The synthesis step subdivides a pixel (m,n) at level j + 1 into 4 pixels {(2m, 2n), (2m +

1, 2n), (2m + 1, 2n + 1), (2m, 2n + 1)} at level j. The values of ψ↓(x) are given by (see Fig-

ure 2)

ψ↓(x)(2m, 2n) = px(m,n) + q(x(m− 1, n) + x(m,n− 1)) + rx(m− 1, n− 1) (4.9)

ψ↓(x)(2m+ 1, 2n) = px(m,n) + q(x(m+ 1, n) + x(m,n− 1)) + rx(m+ 1, n− 1) (4.10)

ψ↓(x)(2m, 2n + 1) = px(m,n) + q(x(m,n+ 1) + x(m− 1, n)) + rx(m− 1, n+ 1) (4.11)

ψ↓(x)(2m + 1, 2n+ 1) = px(m,n) + q(x(m+ 1, n) + x(m,n+ 1)) + rx(m+ 1, n+ 1). (4.12)

The pyramid condition (4.7) leads to the following relations

4ap+ 8bq + 4cr = 1

2aq + 2bp+ 2br + 2cq = 0

ar + 2bq + cp = 0.

It is obvious that, due to the symmetry in h̃, ψ↑ maps the high-frequency signals x(m,n) =

(−1)m, (−1)n, (−1)m+n onto the zero signal. We impose the following two normalizing condi-

tions: ψ↑ and ψ↓ map a constant signal onto the same constant signal (albeit at a different level

of the pyramid). This yields the following two conditions:

4a+ 8b+ 4c = 1

p+ 2q + r = 1.

The unique solution of the previous system of 5 equations with 6 unknowns can be ex-

pressed in terms of a as:

b = a, c =
1

4
− 3a, p = q =

4a

16a − 1
, r =

4a− 1

16a− 1
.
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Fig. 3. Multiresolution image decomposition based on the linear pyramid transform of Example 4.3:

(a) An image x0 and its decomposition {x0, x1, x2, x3} obtained by means of the analysis operator ψ↑

in (4.8), where a, b, c are given by (4.13). (b) The approximation images {x̂0, x̂1, x̂2} obtained from

{x1, x2, x3} by means of the synthesis operator ψ↓ in (4.9)–(4.12), where p, q, r are given by (4.13). (c)

The detail images {y0, y1, y2}.

Clearly, we must exclude a = 1
16

in order to avoid singularities. When a = 1/4, then

a = b =
1

4
, c = −

1

2
, p = q =

1

3
, r = 0. (4.13)

An example, illustrating the resulting linear pyramid, is depicted in Figure 3. Due to the

calculations associated with (4.8)–(4.12), the resulting images will not have integer gray-values

between 0 and 255, as required for computer storage and display, even if the original image is
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already quantized to these values. To comply with this requirement, all gray-values of the images

depicted in Figure 3 have been mapped to integers between 0 and 255, with the minimum and

maximum values being mapped to 0 and 255, respectively. Finally, and for clarity of presentation,

the size of some of the images depicted in Figure 3 (and later in this report) is larger than their

actual size (e.g., although the size of x1 should be half the size of x0, this is not the case in

Figure 3).

It is worthwhile noticing here that most of the linear pyramid transforms used in the

literature are one-dimensional. These transforms, when applied on images, use separable analysis

and synthesis operators. The linear pyramid transform discussed in this example employs non-

separable analysis and synthesis operators. It is, therefore, an example of a pure (non-separable)

2-dimensional linear pyramid transform.

4.2. Single-scale pyramids

In the case of single-scale pyramids, no sample reduction takes place and the pyramid performs

multiresolution signal decomposition by successively applying linear filtering. In this subsection,

we consider pyramid transforms satisfying the following assumptions:

(i) All domains Vj are linear subspaces of ℓ2(Z).

(ii) Operators +̇ and −̇ are the usual addition and difference operators + and − in the linear

space ℓ2(Z).

(iii) ψ↑
j and ψ↓

j are linear operators.

(iv) ψ↑
j and ψ↓

j are translation invariant in the classical sense:

ψ↑
j τ = τψ↑

j and ψ↓
j τ = τψ↓

j .

Furthermore, assuming that the analysis and synthesis operators depend on the level j in the

pyramid, we get

ψ↑
j (x)(n) = (h̃j ∗ x)(n) =

∞∑

k=−∞

h̃j(n− k)x(k)

ψ↓
j (x)(n) = (hj ∗ x)(n) =

∞∑

k=−∞

hj(n− k)x(k),

where h̃j , hj ∈ ℓ2(Z) are convolution kernels. For an element x ∈ ℓ2(Z), we denote its Fourier

transform by X(ω), where ω ∈ (−π, π]. Let x0 ∈ V0 be a given input signal. The Fourier

transform of the reduced signal xj = ψ↑
0,j(x0) = ψ↑

j−1ψ
↑
j−2 · · ·ψ

↑
0(x0) at level j is given by

Xj(ω) = H̃j−1(ω)H̃j−2(ω) · · · H̃0(ω)X0(ω).

We now define Vj in the following way:

Vj = {x ∈ ℓ2(Z) | X(ω) = H̃j−1(ω)H̃j−2(ω) · · · H̃0(ω)X0(ω), for some x0 ∈ ℓ2(Z)}.

Denote by z(H̃j) the zero set of H̃j, i.e.

z(H̃j) = {ω ∈ (−π, π] | H̃j(ω) = 0}.
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It is evident that, if x ∈ Vj , then X(ω) = 0 on

Ωj := z(H̃0) ∪ z(H̃1) ∪ · · · ∪ z(H̃j−1).

In the frequency domain, the pyramid condition ψ↑
jψ

↓
j = id on Vj+1 amounts to

H̃j(ω)Hj(ω)H̃j(ω)H̃j−1(ω) · · · H̃0(ω) = H̃j(ω)H̃j−1(ω) · · · H̃0(ω),

which is equivalent to

H̃j(ω)Hj(ω) = 1, for ω 6∈ Ωj+1. (4.14)

We put x̂j = ψ↓
jψ

↑
j (xj) and yj = xj − x̂j . A straightforward calculation shows that

{
X̂j(ω) = Xj(ω) and Yj(ω) = 0, for ω 6∈ Ωj+1

X̂j(ω) = 0 and Yj(ω) = Xj(ω), for ω ∈ Ωj+1

.

Notice that the set Ωj becomes larger when j increases. For Yj we can also write

Y0(ω) =
(

1 −H0(ω)H̃0(ω)
)

X0(ω) (4.15)

Yj(ω) =
(

1 −Hj(ω)H̃j(ω)
)

H̃j−1(ω)H̃j−2(ω) · · · H̃0(ω)X0(ω), for j ≥ 1. (4.16)

Equations (4.14)–(4.16) show that, when h̃j is the impulse response of a low-pass filter, the

detail signal yj is the output of an unsharp masking operator [5], based on an ideal low-pass

filter, to input (h̃j−1 ∗ h̃j−2 ∗ · · · ∗ h̃0) ∗ x0. Therefore, single-scale linear pyramids produce a

multiresolution unsharp masking signal decomposition. Notice that, in this case, yj is obtained

from xj through an ideal high-pass filter, since Yj(ω) = (1 −Hj(ω)H̃j(ω))Xj(ω).

If, for some j ≥ 0, we have that Ωj+1 = Ωj , that is z(H̃j) ⊆ Ωj , then we find that X̂j = Xj

and Yj = 0, which means that the analysis step ψ↑
j+1 does not reduce the data in xj . Therefore,

the analysis operators of a multilevel linear single-scale pyramid should be different at each level.

Finally, the previous discussion can be extended to the 2-dimensional case in a straightforward

manner. We now have the following example.

4.4. Example. Consider a 2-dimensional linear single-scale pyramid, with h̃j being a 2-

dimensional Gaussian convolution kernel, given by

h̃j(m,n) =
e−(m2+n2)/2πσ2

j

∑

k

∑

l e
−(k2+l2)/2πσ2

j

, (4.17)

where

σj+1 = 2σj . (4.18)

Figure 4 illustrates four levels of the resulting single-scale pyramid, for the case when σ0 = 3.

Notice the strong ripple effect present in the detail images, which is a direct consequence of the

fact that the detail image yj is obtained from xj by means of an ideal high-pass filter.
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Fig. 4. Multiresolution image decomposition based on the linear pyramid transform of Example 4.4:

(a) An image x0 and its decomposition {x0, x1, x2, x3} obtained by means of a linear analysis operator,

with convolution kernel h̃j given by (4.17), where σj is given by (4.18), with σ0 = 3. (b) The approxi-

mation images {x̂0, x̂1, x̂2} obtained from {x1, x2, x3} by means of the composed filter x̂j = hj ∗ h̃j ∗xj .

(c) The detail images {y0, y1, y2}.
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5. Morphological Adjunction Pyramids

As we have previously observed, the pyramid condition 3.3 is the only condition to be imposed

on a multiresolution scheme. There is no a priori reason why the operators involved should be

translation invariant and/or linear. In this section, we consider the special, but interesting, case

when the signal domains are complete lattices and the analysis and synthesis operators between

two adjacent levels in the pyramid form an adjunction. More precisely, we make the following

assumptions:

(i) All domains Vj have the structure of a complete lattice.

(ii) The pair (ψ↑
j , ψ

↓
j ) is an adjunction between Vj and Vj+1.

In this case, ψ↑
j is an erosion and ψ↓

j is a dilation. From the standard theory of adjunctions

(see Section 2) we know that (c)–(e) in Condition 3.1 are satisfied. From Proposition 3.2, it is

clear that the pyramid condition is satisfied if and only if ψ↓
j is injective, or, alternatively, if

ψ↑
j is surjective. Notice that ψ↓

jψ
↑
j is an opening and hence ψ↓

jψ
↑
j ≤ id; i.e., the approximation

operator ψ↓
jψ

↑
j is anti-extensive.

As we did in the linear case, we distinguish between two types of pyramids: those ones that

involve sample reduction (i.e., multiscale pyramids) and those ones that do not (i.e., single-scale

pyramids).

5.1. Multiscale pyramids

5.1.1. Representation

In this subsection, we give a complete characterization of analysis and synthesis operators, be-

tween two adjacent levels j = 0 and j = 1 in a pyramid, under the following general assumptions:

1. V0 = V1 = Fun(Zd,T ), the complete lattice of functions from Zd into a given complete

lattice T of gray-values.

2. The analysis operator ψ↑: V0 → V1 and the synthesis operator ψ↓: V1 → V0 form an

adjunction between V0 and V1; i.e.,

x1 ≤ ψ↑(x0) ⇐⇒ ψ↓(x1) ≤ x0, x0 ∈ V0, x1 ∈ V1.

3. For every translation τ = τ(k1,k2,...,kd) of Zd, we have that

ψ↑τ2 = τψ↑ and ψ↓τ = τ2ψ↓. (5.1)

Our characterization is given in terms of adjunctions (e, d) on the complete lattice T and is

closely related to the representation of translation invariant adjunctions for grayscale functions

in mathematical morphology [11, 7].

5.1. Proposition. Let (ψ↑, ψ↓) be an adjunction on Fun(Zd,T ). The translation invariance

condition ψ↑τ2 = τψ↑ implies that ψ↓τ = τ2ψ↓ and vice versa. Every adjunction satisfying

these equivalent conditions is of the form

ψ↑(x)(n) =
∧

k∈Zd

ek−2n(x(k)) (5.2)

ψ↓(x)(k) =
∨

n∈Zd

dk−2n(x(n)), (5.3)

where (ek, dk) defines an adjunction on T , for every k ∈ Zd.
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Proof. We show the first part of the assertion concerning translation invariance; the other

implication is proved analogously. Assume that ψ↑τ2 = τψ↑, for every translation τ . For

x0, x1 ∈ Fun(Zd,T ), we have the following equivalences:

ψ↓τ(x1) ≤ x0 ⇐⇒ τ(x1) ≤ ψ↑(x0)

⇐⇒ x1 ≤ τ−1ψ↑(x0)

⇐⇒ x1 ≤ ψ↑τ−2(x0)

⇐⇒ ψ↓(x1) ≤ τ−2(x0)

⇐⇒ τ2ψ↓(x1) ≤ x0.

This yields that ψ↓τ = τ2ψ↓.
We next prove the identities in (5.2) and (5.3). From [7, Prop. 5.3] it follows that every

adjunction (ψ↑, ψ↓) on Fun(Zd,T ) is of the form

ψ↑(x)(n) =
∧

k∈Zd

e′k,n(x(k)) (5.4)

ψ↓(x)(k) =
∨

n∈Zd

d′n,k(x(n)), (5.5)

where (e′k,n, d
′
n,k) is an adjunction on T , for every n, k ∈ Zd. Equation (5.4), together with

condition ψ↑τ2 = τψ↑, yields
∧

k∈Zd

e′k+2m,n(x(k)) =
∧

k∈Zd

e′k,n−m(x(k)).

Since this identity holds for every x ∈ Fun(Zd,T ) and n,m ∈ Zd, we conclude that

e′k+2m,n = e′k,n−m, ∀ k, n,m ∈ Zd.

Similarly, equation (5.5), together with condition ψ↓τ = τ2ψ↓, leads to the identity

d′n+m,k = d′n,k−2m, ∀ k, n,m ∈ Zd.

Set ek = e′k,0 and dk = d′0,k and observe that (ek, dk) constitutes an adjunction on T . A

straightforward manipulation shows that

e′k,n = ek−2n and d′n,k = dk−2n,

whence we arrive at the identities in (5.2) and (5.3).

5.2. Example. Consider the case when T = IR = IR ∪ {−∞,+∞}. An important class of

adjunctions (e, d) on IR are those of the form

d(t) = at+ b, e(t) =
t

a
− b

where a ∈ IR \ {0}, b ∈ IR are constants. We can also choose b = −∞ in which case we arrive

at the trivial adjunction e(t) ≡ +∞ and d(t) ≡ −∞.
If we choose the adjunctions in (5.2) and (5.3) to be of this form, we arrive at analy-

sis/synthesis operators

ψ↑(x)(n) =
∧

k∈Zd

[ x(k)

a(k − 2n)
− b(k − 2n)

]

ψ↓(x)(n) =
∨

k∈Zd

[
a(n− 2k)x(k) + b(n− 2k)

]
.

In practice, for all but finitely many values of k, we choose b(k) = −∞; the resulting operators

are then of the ‘FIR type.’ When a(k) = 1 for every k ∈ Zd, the analysis and synthesis operators

are invariant under grayscale shifts as well.
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Now that we have found a characterization of analysis and synthesis operators which form

adjunctions, we may ask ourselves: for which of these pairs is the pyramid condition 3.3 satisfied?

The next proposition answers this question. In the following, we define the support A of the

analysis/synthesis pair (5.2), (5.3), as being the set of all vectors k ∈ Zd for which the adjunction

(ek, dk) is non-trivial; i.e., ek 6≡ ⊤ and dk 6≡ ⊥, where ⊥,⊤ are the least and greatest element of

T , respectively. We introduce the following notation: for n ∈ Zd, we define

Z
d[n] = {k ∈ Zd | k − n ∈ 2Zd}.

The sets Zd[n] yield a disjoint partition of Zd into 2d parts. For A ⊆ Zd and n ∈ Zd, we set

A[n] = A ∩ Zd[n],

which yields a partition of A comprising at most 2d nonempty and mutually disjoint subsets.

5.3. Proposition. Consider the analysis/synthesis pair of Proposition 5.1, and let A ⊆ Zd

denote its support.

(a) Suppose that there exists an a ∈ A such that:

(i) A[a] = {a}.

(ii) da is injective.

Then the pyramid condition 3.3 is satisfied.

(b) Assume that the pyramid condition 3.3 holds along with the following condition:

∧

k∈A

ek

( ∨

b∈A[k]\{k}

db(⊤)
)

6= ⊥ (5.6)

Then, there exists an a ∈ A such that A[a] = {a}.

Proof. (a): Assume that conditions (i) and (ii) hold. We show that ψ↓ is injective. From (5.3)

notice that

ψ↓(x)(k) =
∨

m∈A[k]

dm(x(
k −m

2
)),

for every k ∈ Zd. If x1 6= x2, then x1(n) 6= x2(n) for some n ∈ Zd. Let k = 2n + a, then

A[k] = A ∩ Zd[2n+ a] = A ∩ Zd[a] = A[a] = {a}; hence, for i = 1, 2:

ψ↓(xi)(k) = da(xi(n)).

Since da is assumed to be injective, we find that ψ↓(x1)(k) 6= ψ↓(x2)(k). Therefore, ψ↓ is

injective and the pyramid condition 3.3 is satisfied.

(b): Suppose that the given conditions are satisfied and that, for every k ∈ A, A[k] contains

more than one element. We will show that this leads to a contradiction. From (5.3) notice that

ψ↓(x)(k) =
∨

n∈A′[k]

dk−2n(x(n)),

whereA′[k] = {n ∈ Zd | k−2n ∈ A}. It is easy to see that a ∈ A[k] if and only if (k−a)/2 ∈ A′[k].

Therefore, for every k ∈ A, A′[k] contains more than one element. We now have that

ψ↓(x)(k) =

{
γ(x)(k), for k /∈ A
γ(x)(k) ∨ dk(x(0)), for k ∈ A,
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where

γ(x)(k) =
∨

n∈A′[k]\{0}

dk−2n(x(n)).

Notice that 0 ∈ A′[k] iff k ∈ A. Furthermore, when k ∈ A, A′[k]\{0} 6= ∅ since, for every k ∈ A,

A′[k] contains more than one element.

Consider now all signals x such that x(k) = ⊤ for k 6= 0. Then

γ(x)(k) =
∨

n∈A′[k]\{0}

dk−2n(⊤) =
∨

b∈A[k]\{k}

db(⊤).

This expression, which does not depend on x, will be denoted by γ(k). Thus

ψ↓(x)(k) = γ(k) ∨ dk(x(0)), for k ∈ A. (5.7)

Observe that condition (5.6) can be written as
∧

k∈A

ek(γ(k)) 6= ⊥.

Choose

x(0) ≤
∧

k∈A

ek(γ(k)),

that is

x(0) ≤ ek(γ(k)), for every k ∈ A.

Thus, by the adjunction relation we get

dk(x(0)) ≤ γ(k). (5.8)

From (5.7) and (5.8), and for every signal x satisfying x(k) = ⊤, for k 6= 0, we find that

ψ↓(x)(k) = γ(k) =
∨

b∈A[k]\{k}

db(⊤), for every k ∈ A.

As this expression is independent of the particular choice of x(0), we conclude that the synthesis

operator ψ↓ is not injective, which is a contradiction. Therefore, there exists an a ∈ A such that

A[a] contains exactly one element, which will necessarily be a.

Now, observe that da is injective if and only if eada = id. Assume that, for every a ∈ A,

the following two conditions are satisfied: da(⊤) = ⊤ and A[a] contains more than one element.

Then, the left hand-side expression in (5.6) equals ⊤ (note that ea(⊤) = ⊤, since ea is an

erosion). Thus (5.6) is satisfied. We arrive at the following corollary.

5.4. Corollary. Consider the analysis/synthesis pair of Proposition 5.1, and let A ⊆ Zd denote

its support.

(a) Suppose that there exists an a ∈ A such that:

(i) A[a] = {a}.
(ii) eada = id.

Then the pyramid condition 3.3 is satisfied.

(b) Assume that da(⊤) = ⊤, for every a ∈ A, and that the pyramid condition 3.3 holds. Then,

there exists an a ∈ A such that A[a] = {a}.

In the following subsection, we consider a particular subclass of analysis and synthesis

operators, given by (5.2), (5.3), with (ea, da) being either the trivial adjunction (⊤,⊥) or the

adjunction (id, id).
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5.1.2. Pyramids based on flat adjunctions

Let A ⊆ Zd be given and assume that (ek, dk) = (id, id), for k ∈ A, and (ek, dk) = (⊤,⊥)

elsewhere. In other words, A is the support of (ψ↑, ψ↓). Now, (5.2), (5.3) reduce to

ψ↑(x)(n) =
∧

k∈A

x(2n+ k) (5.9)

ψ↓(x)(k) =
∨

n∈A[k]

x(
k − n

2
). (5.10)

In mathematical morphology, these two operators are called flat operators, since they transform

flat signals (x(k) = t0, for k in the domain of x, and ⊥ outside) into flat signals; see [7,

Chapter 11]. Flatness of an operator means in particular that no other gray-values than those

present in the signal are created. The resulting pyramids make sense for every gray-value set

T ⊆ IR and, in particular, for the binary case T = {0, 1}. From Corollary 5.4, notice that, if

there exists an a ∈ A such that A[a] = {a}, then the pyramid condition 3.3 is satisfied.

Since (ψ↑, ψ↓) is an adjunction, the approximation signal ψ̂(x) = ψ↓ψ↑(x) satisfies ψ̂(x) ≤

x (pointwise inequality) and the error signal y(n) = x(n)− ψ̂(x)(n) is nonnegative. The scheme

in (5.9), (5.10) has been proposed earlier by Heijmans and Toet in their paper on morphological

sampling (with the roles of dilation and erosion interchanged) [12].

5.5. Example (one-dimensional morphological Haar pyramid). Consider the case when

d = 1 and A = {0, 1}. It is easy to show that A[0] = {0} and A[1] = {1}. In particular, this

means that the pyramid condition 3.3 is satisfied. We get that

ψ↑(x)(n) = x(2n) ∧ x(2n+ 1) (5.11)

ψ↓(x)(2n) = ψ↓(x)(2n+ 1) = x(n). (5.12)

The diagram in Figure 5 depicts the calculations associated with these operators. Observe that

(5.11) and (5.12) are the (morphological) counterparts of (4.5) and (4.6), respectively. The

resulting scheme will be called the morphological Haar pyramid.

2n 2 1n + 2 2n +2 1n −2 2n −

n
n +1n −1

2n 2 1n + 2 2n +2 1n −2 2n −

n
n +1n −1

ψA ψB

minimum

Fig. 5. A diagram illustrating the calculations associated with the analysis and synthesis operators

(5.11), (5.12) of a morphological Haar pyramid.
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5.6. Example. Another example is obtained by considering the case when d = 1 and A =

{−1, 0, 1}. In this case, A[0] = {0}, A[1] = A[−1] = {−1, 1}, and the pyramid condition 3.3 is

satisfied. We get that

ψ↑(x)(n) = x(2n− 1) ∧ x(2n) ∧ x(2n+ 1) (5.13)

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n+ 1) = x(n) ∨ x(n+ 1). (5.14)

This leads to a symmetrized version of the morphological Haar pyramid. The diagram in Figure 6

depicts the calculations associated with these operators.

2n 2 1n + 2 2n +2 1n −2 2n −

n
n +1n −1

2n 2 1n + 2 2n +2 1n −2 2n −

n
n +1n −1

ψA

ψB

minimum

maximum

Fig. 6. A diagram illustrating the calculations associated with the analysis and synthesis operators

(5.13), (5.14) in Example 5.6.

We now consider a few two-dimensional examples.

5.7. Example (2-dimensional morphological Haar pyramid). Let A = {(0, 0), (0, 1),

(1, 1), (1, 0)}. It is evident that A[m,n] = {(m,n)} for (m,n) ∈ A. Hence, the pyramid condition

3.3 is again satisfied. The operators ψ↑ and ψ↓ are now given by

ψ↑(x)(m,n) = x(2m, 2n) ∧ x(2m, 2n+ 1) ∧ x(2m+ 1, 2n+ 1) ∧ x(2m+ 1, 2n)

ψ↓(x)(2m, 2n) = ψ↓(x)(2m, 2n + 1) = ψ↓(x)(2m + 1, 2n+ 1) = ψ↓(x)(2m+ 1, 2n) = x(m,n).

This is a 2-dimensional extension of the morphological Haar pyramid of Example 5.5.

5.8. Example. A more interesting example is obtained by taking A to be the 3 × 3 square

centered at the origin; i.e., A = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1),

(1, 0),(1, 1)}. We have A[0, 0] = {(0, 0)}, A[0,±1] = {(0,−1), (0, 1)}, A[±1, 0] = {(−1, 0), (1, 0)},

and A[±1,±1] = {(−1,−1), (−1, 1), (1,−1), (1, 1)}. The operators ψ↑ and ψ↓ are therefore given

by

ψ↑(x)(m,n) =
∧

−1≤k,l≤1

x(2m+ k, 2n+ l), (5.15)

and

ψ↓(x)(2m, 2n) = x(m,n) (5.16)

ψ↓(x)(2m, 2n+ 1) = x(m,n) ∨ x(m,n+ 1) (5.17)

ψ↓(x)(2m+ 1, 2n) = x(m,n) ∨ x(m+ 1, n) (5.18)

ψ↓(x)(2m + 1, 2n+ 1) = x(m,n) ∨ x(m,n+ 1) ∨ x(m+ 1, n+ 1) ∨ x(m+ 1, n). (5.19)
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Fig. 7. Multiresolution image decomposition based on the morphological pyramid transform of Ex-

ample 5.8: (a) An image x0 and its decomposition {x0, x1, x2, x3} obtained by means of the analysis

operator ψ↑ in (5.15). (b) The approximation images {x̂0, x̂1, x̂2} obtained from {x1, x2, x3} by means

of the synthesis operator ψ↓ in (5.16)–(5.19). (c) The detail images {y0, y1, y2}.

Clearly, this is a 2-dimensional extension of the pyramid of Example 5.6. An example is depicted

in Figure 7.

Operators +̇ and −̇ are taken here to be the usual addition and difference operators +

and −. A major difference between the results depicted in Figure 3 and Figure 7 is in the values

of the detail signals. The detail signals depicted in Figure 3 assume both positive and negative

values, with y0, y1, and y2 taking values in [−65, 36], [−99, 107], and [−164, 144], respectively.

On the other hand, the detail signals depicted in Figure 7 assume only nonnegative values. In
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particular, y0, y1, and y2 take values in [0, 94], [0, 137], and [0, 145], respectively. This can be

quite advantageous in image compression and coding applications, as it has been discussed in

[13].

If we take A = {0} and e0 = d0 = id, then Corollary 5.4 is trivially satisfied. Denoting

the corresponding analysis/synthesis pair by σ↑, σ↓
⊥ (see Subsection 3.3), we have

σ↑(x)(n) = x(2n) (5.20)

σ↓
⊥(x)(2n) = x(n) and σ↓

⊥(x)(m) = ⊥, if m 6∈ 2Zd.

The pair (ψ↑, ψ↓) in (5.9), (5.10) can be written as

ψ↑ = σ↑εA and ψ↓ = δAσ
↓
⊥, (5.21)

where (εA, δA) is the adjunction given by (2.2), (2.3). This shows that the analysis and synthesis

operators of pyramids based on flat adjunctions can be implemented by means of flat erosions,

followed by dyadic subsampling by means of σ↑, and flat dilations, following dyadic upsampling

by means of σ↓
⊥.

If we replace the erosion εA in (5.21) by the opening δAεA, then the pyramid condition

is still satisfied, provided that we make an assumption which is stronger than condition (i) in

Corollary 5.4. Indeed, we have the following result.

5.9. Proposition. Let A be a structuring element such that A[0] = {0}. The analysis operator

ψ↑ = σ↑δAεA and the synthesis operator ψ↓ = δAσ
↓
⊥ satisfy the pyramid condition.

Proof. From the fact that (εA, δA) is an adjunction, we get that

ψ↑ψ↓ = σ↑δAεAδAσ
↓
⊥ = σ↑δAσ

↓
⊥.

Now
σ↑δAσ

↓
⊥(x)(n) =

∨

k∈A

σ↓
⊥(x)(2n − k)

=
∨

k∈A[0]

σ↓
⊥(x)(2n− k)

= σ↓
⊥(x)(2n) = x(n).

This yields that ψ↑ψ↓ = id and the result is proved.

Notice that the pair (ψ↑, ψ↓) in this proposition does not constitute an adjunction. We

mention one particular example here.

5.10. Example (Sun–Maragos pyramid). Consider the one-dimensional case, where Vj =

Fun(Z,T ), for every j, and the same analysis and synthesis operators are used at every level j,

such that:

ψ↑(x)(n) = (x◦A)(2n) (5.22)

ψ↓(x)(2n) = x(n) and ψ↓(x)(2n+ 1) = x(n) ∨ x(n+ 1). (5.23)

Here, A = {−1, 0, 1} and x◦A = δAεA(x), the opening of x by structuring element A.

Notice that A[0] = {0}, as required by Proposition 5.9. The resulting pyramidal decomposi-

tion has been suggested by Sun and Maragos in [31] (see also [13]) and is referred to as the

morphological Sun–Maragos pyramid.
This example can be easily generalized to higher dimensions. Figure 8 depicts the ap-

plication of the Sun–Maragos pyramid on a binary image. In this case, A is the 3 × 3 square

structuring element, and −̇ is the symmetric set difference operator (exclusive OR) of Exam-

ple 3.5(c).
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Fig. 8. Multiresolution image decomposition based on the Sun–Maragos pyramid transform: (a) A

binary image x0 and its decomposition {x0, x1, x2, x3} obtained by means of the analysis operator

ψ↑ in (5.22). (b) The approximation images {x̂0, x̂1, x̂2} obtained from {x1, x2, x3} by means of the

synthesis operator ψ↓ in (5.23). (c) The detail images {y0, y1, y2}.

5.1.3. Non–flat pyramids

The case of non-flat pyramids is similar to that of flat pyramids. Suppose that we replace (5.9)

and (5.10) with (see also Example 5.2)

ψ↑(x)(n) =
∧

k∈A

[
x(2n+ k) − b(k)

]

ψ↓(x)(k) =
∨

n∈A[k]

[
x(
k − n

2
) + b(n)

]
,
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where b is a function with domain A and range in IR. In reference to Proposition 5.3, notice

that dn(t) = t+ b(n) is injective, for every n ∈ Zd. Therefore, if there exists an a ∈ A such that

A[a] = {a}, then the pyramid condition 3.3 is satisfied.

5.2. Single–scale pyramids

5.2.1. Granulometries

An important tool of mathematical morphology is the so-called granulometry [20, 7]. It has

been used for several purposes, such as texture classification, shape description, etc. Basically,

a granulometry is a family of openings by structuring elements of increasing size. A discrete

granulometry, on a complete lattice L, is a family of openings {αj | j ≥ 0} such that

α0 = id and αj+1 ≤ αj , j ≥ 0. (5.24)

Notice that (5.24) is equivalent to

α0 = id and αj+1αj = αj+1, j ≥ 0.

We show here that a given (discrete) granulometry generates its own single-scale pyramid,

in terms of adjunctions which satisfy the pyramid condition 3.3.

Suppose we are given a discrete granulometry {αj | j ≥ 0} on the complete lattice L. Put

Vj = Ran(αj), that is the range of αj , and define ψ↑
j = αj+1 and ψ↓

j = id. It is evident that ψ↑
j

maps Vj into Vj+1 and ψ↓
j maps Vj+1 into Vj , since Vj+1 ⊆ Vj . To show that (ψ↑

j , ψ
↓
j ) defines

an adjunction between Vj and Vj+1 we must show the following relation:

y ≤ ψ↑
j (x) ⇐⇒ ψ↓

j (y) ≤ x, for x ∈ Ran(αj) and y ∈ Ran(αj+1).

Indeed, writing x = αj(x
′) and y = αj+1(y

′), we find that

y ≤ ψ↑
j (x) ⇐⇒ αj+1(y

′) ≤ αj+1αj(x
′)

⇐⇒ αj+1(y
′) ≤ αj+1(x

′)

⇐⇒ αj+1(y
′) ≤ αj(x

′)

⇐⇒ ψ↓
j (y) ≤ x.

In the last but one implication “ ⇒ ” is trivial, since αj+1(x
′) ≤ αj(x

′). To get “⇐” observe

that αj+1(y
′) ≤ αj(x

′) implies that αj+1(y
′) = αj+1αj+1(y

′) ≤ αj+1αj(x
′) = αj+1(x

′).

The pyramid condition 3.3 holds, since ψ↑
jψ

↓
j = αj+1 and αj+1 coincides with the identity

operator on Vj+1 = Ran(αj+1).

Consider now the case when L = Fun(E,T ), where T ⊆ IR is a complete lattice. Define

T ′ = {t− s | t, s ∈ T and s ≤ t}. (5.25)

Take for +̇ and −̇ the scalar addition and subtraction, respectively. It is evident that the perfect

reconstruction condition (3.7) holds. Given an input function x0 = x, we arrive at the signal

analysis scheme: 





x0 = x ∈ V0

xj+1 = αj+1(xj) ∈ Vj+1, j ≥ 0
yj = xj − xj+1.

(5.26)
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For synthesis, we find that

x =
∞∑

j=0

yj . (5.27).

Given a granulometry {αj | j ≥ 0} on a complete lattice L, consider the family of negative

closings βj = α∗
j . It is obvious that

β0 = id and βj+1 ≥ βj , j ≥ 0,

and the family {βj | j ≥ 0} is called the (discrete) anti-granulometry. We can show that a

given (discrete) anti-granulometry generates its own single-scale pyramid as well, in terms of

adjunctions which satisfy the pyramid condition 3.3. In the case when L = Fun(E,T ), this leads

to the following signal analysis and synthesis schemes (compare with (5.26), (5.27))






x′0 = x ∈ V0

x′j+1 = βj+1(x
′
j) ∈ Vj+1, j ≥ 0

y′j = x′j+1 − x′j ,

x =
∞∑

j=0

y′j .

In the literature, the decomposition of a signal x into the detail signals {..., y′1, y
′
0, y0, y1, ...} is

called the discrete size transform of x [19]. If the space E is finite or countably infinite, then

{..., |y′1|, |y
′
0|, |y0|, |y1|, ...}, where |x| =

∑

n∈E |x(n)|, is called the pattern spectrum of x [19].

5.2.2. Morphological skeleton decomposition

We recall Lantuéjoul’s formula for discrete skeletons, well-known from mathematical morphol-

ogy [27]. Let T ⊆ IR, define T ′ as in (5.25), and consider the set of signals Fun(E,T ). Assume

that (ε, δ) is an adjunction on the complete lattice Fun(E,T ). Let x ∈ Fun(E,T ) and let K ≥ 0

be such that εK+1(x) = εK(x), where ε0 = id and εj = εε · · · ε (j times). Since δε is an opening,

we have that εj(x) ≥ (δε)εj (x). Define yj ∈ Fun(E,T ′) by

{

yj = εj(x) − (δε)εj(x), j = 0, 1, . . . ,K − 1,
yK = εK(x).

(5.28)

It is possible to reconstruct x from y0, y1, . . . , yK by means of the (backward) recursion formula

{xK = yK

xj = δ(xj+1) + yj , j = K − 1,K − 2, . . . , 0.

It is easy to verify that xj = εj(x), hence x0 = x. Figure 9(b) depicts the union of all yj ’s in

Lantuéjoul’s skeleton decomposition of the binary image x depicted in (a), for the case when

ε(x) = x⊖A and δ(x) = x⊕A, with A being the 3 × 3 square structuring element centered at

the origin.

Our attempt to fit Lantuéjoul’s skeleton decomposition into a pyramid framework is not

only successful, but even more, it leads to a decomposition which is better than Lantuéjoul’s, in

the sense that it contains less data in general.

Assume that L is a complete lattice and that (ε, δ) is an adjunction on L. Define Vj =

Ran(εj) and let ψ↑
j : Vj → Vj+1 and ψ↓

j : Vj+1 → Vj be given by

ψ↑
j = ε and ψ↓

j = εjδj+1

We can prove the following result.
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(a) (b) (c)

Fig. 9. (a) A binary image, (b) the decomposition obtained by means of Lantuéjoul’s skeleton, and

(c) the decomposition obtained by means of Goutsias–Schonfeld’s skeleton.

5.11. Lemma. The pair (ψ↑
j , ψ

↓
j ) defines an adjunction between Vj and Vj+1.

Proof. We must show that ψ↓
j (y) ≤ x ⇐⇒ y ≤ ψ↑

j (x), for x ∈ Vj and y ∈ Vj+1. We write

x = εj(x′) and y = εj+1(y′). In the following, we use the fact that, if (ε, δ) is an adjunction,

then (εj , δj) is an adjunction as well, for every j ≥ 0.

‘⇒’: Assume that ψ↓
j (y) ≤ x; i.e., εjδj+1εj+1(y′) ≤ εj(x′). Applying εj+1δj on both sides

yields εj+1δjεjδj+1εj+1(y′) ≤ εj+1δjεj(x′). The left hand-side of this inequality can be written

as ε(εjδjεj)δj+1εj+1(y′) = εεjδj+1εj+1(y′) = εj+1δj+1εj+1(y′) = εj+1(y′) = y. The right-hand

side can be written as εj+1δjεj(x′) = ε(εjδjεj)(x′) = εεj(x′) = ψ↑
j (x). Thus, we get y ≤ ψ↑

j (x).

‘⇐’: Assume that y ≤ ψ↑
j (x); i.e., y ≤ εεj(x′) = εj+1(x′). From the fact that (εj+1, δj+1)

is an adjunction, we derive that δj+1(y) ≤ x′. Applying εj on both sides, we get that εjδj+1(y) ≤

εj(x′), that is ψ↓
j (y) ≤ x.

It is obvious that ψ↑
j is surjective. We therefore conclude (see Section 5) that the pyramid

condition 3.3 holds.

Let us now assume that the underlying lattice L is of the form Fun(E,T ), where T ⊆ IR.

We can set Yj = Fun(E,T ′), where T ′ is given by (5.25), and consider +̇, −̇ to be standard

addition and subtraction. Given an input x0 = x ∈ V0 = Fun(E,T ), we arrive at the following

signal analysis scheme:






x0 = x ∈ V0

xj+1 = ε(xj) ∈ Vj+1, j ≥ 0
yj = xj − εjδj+1(xj+1).

(5.29)

For synthesis, we find

x = x0, xj = εjδj+1(xj+1) + yj , j ≥ 0. (5.30)

Notice that the detail signal yj can be written as

yj = εj(x) − (εjδj)(δε)εj (x). (5.31)
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Comparing (5.31) to the original Lantuéjoul formula (5.28), we see that in our new decomposition

we have an extra closing εjδj . As a result, the detail signal yj in (5.31) is never larger than

the detail signal in the Lantuéjoul formula (5.28). It therefore gives rise to a more efficient

compression. This skeleton decomposition has been found earlier by Goutsias and Schonfeld [6].

Figure 9(c) depicts the result of applying this decomposition to the binary image in (a). The

resulting image is different than the one depicted in Figure 9(b) in 66 pixels. Since the image

depicted in Figure 9(b) is non-zero at 1, 453 pixels, this amounts to 4.5% data reduction.

An alternative approach to signal decomposition, suggested by Kresch [14], is to set Yj =

Fun(E,T ) and define −̇ by means of (3.11). In this case, +̇ is given by (3.12). Given an input

x0 = x ∈ V0 = Fun(E,T ), we arrive at the following signal analysis scheme:







x0 = x ∈ V0

xj+1 = ε(xj) ∈ Vj+1, j ≥ 0

yj(n) =

{

xj(n), if xj(n) 6= εjδj+1(xj+1)(n)
⊥, otherwise

.

The synthesis scheme looks as follows:

x = x0, xj = εjδj+1(xj+1) ∨ yj , j ≥ 0. (5.32)

Notice that the detail signal yj can be written as

yj(n) =

{

εj(x)(n), if εj(x)(n) 6= (εjδj)(δε)εj (x)(n)
⊥, otherwise

.

Assume again that there exists a K ≥ 0 such that εK+1(x) = εK(x) and set yK = εK(x). Apply

δj on both sides of (5.32), and use the fact that δj distributes over suprema; we find

δj(xj) = δj+1(xj+1) ∨ δ
j(yj).

This implies the following formula:

δK−k(xK−k) =
k∨

j=0

δK−j(yK−j), k = 0, 1, . . . ,K.

Substitution of k = K yields

x0 =
K∨

k=0

δk(yk).

Thus, the original signal can be recovered as a supremum of dilations of the detail signal.

The Goutsias–Schonfeld and Kresch skeleton decomposition schemes are quite different,

even though they satisfy the same algebraic description. Figure 10 depicts the results of applying

these decompositions to a grayscale image x. The 3× 3 structuring element A that contains the

origin has been used in both cases. In the Goutsias–Schonfeld case, y0 is the top-hat transform

of x, since y0 = x− x◦A. However, the detail signal y0 in the Kresch case takes value zero (it

is black) at all pixels at which x = x◦A and equals x at all other pixels.

5.12. Remark. We have assumed that the underlying space is a complete lattice, but it is

not difficult to show that, as long as we restrict ourselves to finite decompositions, it suffices

to assume that L is a lattice, not necessarily complete. This means that the set T ⊆ IR of

gray-values can be arbitrary.
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Fig. 10. A grayscale image and the decompositions obtained by means of the Goutsias–Schonfeld and

Kresch skeleton transforms.

5.3. A generalization

The construction that led to (5.29), (5.30) can be easily generalized to include adjunction pyra-

mids as well. Indeed, assume that Lj , j ≥ 0, are complete lattices and that (ψ↑
j , ψ

↓
j ) is an

adjunction between Lj and Lj+1. Define ψ↑
0,j and ψ↓

j,0 by means of (3.1), (3.2), and let βj be

the closing on Lj given by

βj = ψ↑
0,jψ

↓
j,0,

where β0 = id. Let the complete lattices Vj be defined as

Vj = Ran(βj).

Observe that V0 = L0. The following analogue of Lemma 5.11 holds:

5.13. Lemma. The pair (ψ↑
j , βjψ

↓
j ) defines an adjunction between Vj and Vj+1.
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Furthermore, it is not difficult to see that ψ↑
j is surjective. Namely, let y = βj+1(x) ∈ Vj+1,

then y = ψ↑
jψ

↑
0,jψ

↓
j,0ψ

↓
j (x) = ψ↑

jβjψ
↓
j (x) = ψ↑

j (x′), where x′ = βjψ
↓
j (x) ∈ Vj . Therefore, the

pyramid condition 3.3 is satisfied in this case.

This generalization can be very useful in cases when pyramids are used for data compres-

sion. It simply says that, from any adjunction pyramid, with analysis and synthesis operators

ψ↑
j , ψ↓

j , we can construct a new adjunction pyramid, with analysis and synthesis operators ψ↑
j ,

βjψ
↓
j , where βj = ψ↑

j−1ψ
↑
j−2 · · ·ψ

↑
0ψ

↓
0ψ

↓
1 · · ·ψ

↓
j−1, such that, if y′j = xj −βjψ

↓
jψ

↑
j (xj) is the detail

signal of the second pyramid, then y′j ≤ yj , for every j > 0, where yj = xj − ψ↓
jψ

↑
j (xj) is the

detail signal of the first pyramid (however, notice that y′0 = y0). It is therefore expected that

the new pyramid will contain less data in general.

6. Other Nonlinear Pyramids

In this section, we first present a number of nonlinear pyramids that are not based on adjunctions.

We then discuss the possibility of combining gray-value quantization and sample reduction into

one scheme in such a way that the pyramid condition is satisfied.

6.1. Morphological pyramids

To avoid aliasing, sampling is usually preceded by filtering. Here, we discuss a morphological

pyramid scheme in which sampling is followed by filtering.

Let L = Fun(Zd,T ), where T is a complete chain, and consider the elementary sampling

scheme given by σ↑ and σ↓
t in Subsection 3.3. Here, t ∈ T is a fixed element; in practice one

chooses t = ⊥ or ⊤. Given operators φj : L → L, we define Vj = Ran(φj) and

ψ↑
j = φj+1σ

↑ and ψ↓
j = φjσ

↓
t .

The pyramid condition 3.3 can be written as

φj+1σ
↑φjσ

↓
t φj+1 = φj+1.

When all φj ’s are identical, say φ, the previous condition can be stated as follows:

φσ↑φσ↓
t φ = φ on L. (6.1)

6.1. Example. Consider the one-dimensional case. Let α be the opening by a structuring

element consisting of three points: α = αA, where A = {−1, 0, 1}. It is easy to verify that

σ↑ασ↓
⊤ = id on Fun(Zd,T ), and this yields that (6.1) holds, for φ = α and t = ⊤. It is not

difficult to extend this example to the higher-dimensional case.

6.2. Example (Toet pyramid). In this (one-dimensional) example, we use the alternating

filter φ = βα, where α and β are the opening and closing by the structuring element A = {0, 1},

and choose t = ⊤. To show the validity of (6.1), for φ = βα, consider the diagram of Figure 11.

The input signal x ∈ Vj+1 has three consecutive values x(n−1) = r, x(n) = s, x(n+1) = t.

It is easy to verify that the output value s′ = (σ↑βασ↓
⊤)(x)(n) is given by s′ = (s ∨ t) ∧ (r ∨ s).

Since the input signal x is an element of Ran(βα), it is impossible that t > s and r > s. This

yields that s′ = s; hence, the pyramid condition follows.

The resulting pyramidal signal decomposition scheme has been suggested by Toet in [32].

It can be easily extended to the d–dimensional case; there, one chooses A = {0, 1}d.
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Vj +1
Vj Vj Vj Vj +1

r r r

s

t t t

s s ′s

r ∨ s

s t∨T

T

σ
T

B α β σA

′ =s s

Fig. 11. A diagram illustrating the validity of condition (6.1) for the case when φ = βα.

6.2. Median pyramids

It has been suggested in [29] that median filtering can be used to obtain a useful nonlinear

pyramid that preserves details and produces a decomposition that can be compressed more

efficiently than other (linear) hierarchical signal decomposition schemes. In this example, we

show how to build pyramids based on median filtering that satisfy the pyramid condition 3.3.

Assume that T is a complete chain, and consider a pyramid for which Vj = Fun(Z,T ), for

every j, and the same analysis and synthesis operators are used at every level j, given by

ψ↑(x)(n) = median{x(2n− 1), x(2n), x(2n + 1)} (6.2)

ψ↓(x)(2n) = ψ↓(x)(2n+ 1) = x(n). (6.3)

Obviously, ψ↑ψ↓(x)(n) = median{ψ↓(x)(2n − 1), ψ↓(x)(2n), ψ↓(x)(2n + 1)} = median{x(n −

1), x(n), x(n)} = x(n), which shows that the pyramid condition holds, for every x ∈ Fun(Z,T ).

Figure 12 depicts the calculations associated with the analysis and synthesis operators (6.2),

(6.3). It is worthwhile noticing that, in this case, the structure of the analysis operator (6.2) is

similar to the one in the pyramid scheme of Example 5.6 (see Figure 6), whereas the structure

of the synthesis operator (6.3) is similar to the one in the morphological Haar pyramid scheme

(see Figure 5).

An alternative median pyramid can be constructed by considering the following analysis

and synthesis operators:

ψ↑(x)(n) =

{
x(2n), if x(2n− 1) ∧ x(2n) ∧ x(2n+ 1) = x(2n)
median{x(2n− 1), x(2n), x(2n + 1)}, otherwise

(6.4)

ψ↓(x)(2n) = x(n), ψ↓(x)(2n + 1) = x(n) ∨ x(n+ 1). (6.5)

In this case, the synthesis operator is a dilation from Vj+1 into Vj . The structure of both

operators in (6.4) and (6.5) is similar to the ones associated with the pyramid of Example 5.6.



35

2n 2 1n + 2 2n +2 1n −2 2n −

n
n +1n −1

2n 2 1n + 2 2n +2 1n −2 2n −

n
n + 1n −1

ψA ψB

median

Fig. 12. A diagram illustrating the calculations associated with the analysis and synthesis operators

(6.2) and (6.3).

Notice that, if x(2n− 1)∧ x(2n)∧ x(2n+ 1) = x(2n), then ψ↑ψ↓(x)(n) = x(n). It can be easily

shown that, in all other cases, ψ↑ψ↓(x)(n) = median{ψ↓(x)(2n − 1), ψ↓(x)(2n), ψ↓(x)(2n + 1)}

= median{x(n−1)∨x(n), x(n), x(n)∨x(n+1)} = x(n). This shows that the pyramid condition

holds, for every x ∈ Fun(Z,T ). The median pyramid based on operators (6.4), (6.5) may provide

a better approximation ψ↓ψ↑(x) of x than the pyramid based on operators (6.2), (6.3), since the

former pyramid utilizes more information from the coarse signal x in order to obtain the sample

values ψ↓(x)(2n+ 1) (compare (6.3) with (6.5)).

The previous pyramids are one-dimensional. We can obtain a 2-dimensional median pyra-

mid, that is the analogue of the morphological pyramid of Example 5.8, by assuming that

Vj = Fun(Z2,T ), for every j, by using the same analysis and synthesis operators at every level

j, and by setting

ψ↑(x)(m,n) = median{x(2m+ k, 2n+ l) | (k, l) ∈ A}, (6.6)

where A is the 3 × 3 square centered at the origin. Take,

ψ↓(x)(2m, 2n) = x(m,n) (6.7)

ψ↓(x)(2m, 2n+ 1) = x(m,n) ∧ x(m,n+ 1) (6.8)

ψ↓(x)(2m+ 1, 2n) = x(m,n) ∧ x(m+ 1, n) (6.9)

ψ↓(x)(2m + 1, 2n+ 1) = x(m,n) ∨ x(m,n+ 1) ∨ x(m+ 1, n+ 1) ∨ x(m+ 1, n). (6.10)

It is easy to verify that ψ↑ψ↓ = id, which means that the pyramid condition holds. An example,

illustrating the resulting 2-dimensional median pyramid is depicted in Figure 13.

6.3. Pyramids with quantization

An issue that we have not touched upon so far is the topic of quantization. Suppose that the

gray-values of the signals at the bottom level of a pyramid are represented by at most N bits.

In other words, the gray-value set equals TN = {0, 1, . . . , 2N − 1}. The operators involved in a

pyramid decomposition scheme may map a signal onto one with values outside this range. In

particular, this holds for the linear pyramids discussed in Section 4. In such cases, a quantization

step, which reduces the transformed gray-value set, may be indispensable. Also, in cases where

the gray-value set does not change by the analysis and synthesis operators (e.g., in the case of
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Fig. 13. Multiresolution image decomposition based on a median pyramid: (a) An image x0 and

its decomposition {x0, x1, x2, x3} obtained by means of the analysis operator ψ↑ in (6.6). (b) The

approximation images {x̂0, x̂1, x̂2} obtained from {x1, x2, x3} by means of the synthesis operator ψ↓ in

(6.7)–(6.10). (c) The detail images {y0, y1, y2}.

flat morphological operators), quantization may be useful in data compression (see Example 6.3

below). In this subsection, we briefly discuss the problem of quantization in the context of

morphological operators.

Consider the quantization mapping q : TN → TN−1, given by

q(t) = ⌊t/2⌋,

where ⌊·⌋ denotes the floor function. For simplicity, we use the same symbol to denote quan-

tization on function spaces; i.e., q can also be considered as the operator from Fun(E,TN ) to
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Fun(E,TN−1), given by

q(x)(n) = q(x(n)).

There are two different ways of “expanding” a quantized value t ∈ TN−1 to the original gray-

value set TN , namely by means of mappings

d(t) = 2t or e(t) = 2t+ 1.

Again, we use the same notation for their extensions to the corresponding function spaces. The

following properties hold:

qd(t) = qe(t) = t, t ∈ TN−1 (6.11)

dq(t) ≤ t ≤ eq(t), t ∈ TN .

Furthermore, q, d, and e are increasing mappings. It immediately follows that (e, q) is an ad-

junction from TN−1 to TN and that (q, d) is an adjunction from TN to TN−1. In what follows,

we only use the second adjunction. Similar results can be obtained by using the first one as well.

If we want to emphasize the dependence of q and d on N , we write qN and dN . It is obvious

how the corresponding operators can be used to construct a single-scale pyramid: remove one

bit of information at every analysis step. We can formalize this in the following way: put

Vj = Fun(E,TN−j) and define

ψ↑
j = qN−j and ψ↓

j = dN−j .

Notice that (6.11) guarantees that the pyramid condition 3.3 is satisfied. The following example

shows that is possible to combine quantization and (morphological) sample reduction into one

scheme in such a way that the pyramid condition 3.3 remains satisfied.

6.3. Example (Morphological pyramid with quantization). Consider the flat adjunction

pyramid, given by (5.9), (5.10), where Vj = Fun(Zd,TN), in which case

ψ↑(x)(n) =
∧

k∈A

x(2n+ k)

ψ↓(x)(k) =
∨

n∈A[k]

x(
k − n

2
).

Assume that, for some a ∈ A, A[a] = {a}; this yields that the pyramid condition 3.3 is satisfied.

Put V j = Fun(Zd,TN−j) and define quantized analysis and synthesis operators between V j and

V j+1 as follows:

ψ
↑

j (x)(n) =
⌊( ∧

k∈A

x(2n+ k)
)
/2

⌋

ψ
↓

j (x)(k) = 2
( ∨

n∈A[k]

x(
k − n

2
)
)

.

We can write

ψ
↑

j = qN−jψ
↑
j and ψ

↓

j = ψ↓
j dN−j .

The pair (ψ
↑

j , ψ
↓

j ) defines an adjunction between V j and V j+1. Furthermore, the pyramid

condition 3.3 is satisfied, since

ψ
↑

jψ
↓

j = qN−jψ
↑
jψ

↓
j dN−j = qN−jdN−j = id on Fun(Zd,TN−j−1).
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(a) (b)

Fig. 14. (a) A 512 × 512 grayscale image, and (b) its partial reconstruction obtained from the detail

signals {y1, y2, ..., y8} calculated by means of the morphological pyramid transform with quantization

discussed in Example 6.3.

By taking ψ↑ and ψ↓ as in (5.15)–(5.19), we can construct a morphological pyramid, like the

one in Example 5.8, with the addition of a quantization step at each level.

When the pyramid transform is used for signal compression, the detail signal y0 is usually

removed from the decomposition (this is due to the overcompleteness of the pyramid transform;

e.g., see [13]). In this case, satisfactory compression performance can be achieved at the expense

of partially reconstructing the original signal x0. In fact, given the pyramid decomposition

{y1, y2, ..., yK} of x0, the inverse pyramid transform reconstructs only an approximation x̂0 of

x0. Figure 14(b) depicts the partial reconstruction of the 512× 512 grayscale image depicted in

Figure 14(a), obtained by means of inverting the decomposition {y1, y2, ..., y8} based on the

previously discussed morphological pyramid transform with quantization. Figure 15(b) depicts

the number of pixels in {y1, y2, ..., y8} as a function of the minimum number of bits required for

coding their gray-values (for example, one bit is used to code gray-values 0 and 1, two bits are

used to code gray-values 2 and 3, etc.). Figure 15(a) depicts the same graph but for the case of

no quantization. In the first case, the graph is skewed towards smaller bit values. This indicates

that appropriate coding may produce better compression results when quantization is employed

than in the case of no quantization.

7. Multiscale Morphological Operators

The discussion in Subsection 5.1 leads to a new class of nonlinear image processing and analysis

tools. These tools are implemented by means of multiscale morphological operators, similar

to traditional ones (e.g., erosions, openings, alternating filters, etc.), with one main difference:

multiscale operators are implemented by signal subsampling and/or upsampling. In this section,

we provide a representative list of basic multiscale morphological operators.
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Fig. 15. Number of pixels in {y1, y2, ..., y8} of the image depicted in Figure 14(a) as a function of the

minimum number of bits required for coding their gray-values, for the case of: (a) the morphological

pyramid decomposition discussed in Example 5.8 (without quantization), and (b) the morphological

pyramid decomposition with quantization discussed in Example 6.3.

7.1. Erosions and dilations

These are the analysis and synthesis operators of a morphological pyramid based on adjunctions.

Of particular interest are flat erosions and dilations, which are simply the operators

ǫ↑A = σ↑ǫA and δ↓A = δAσ
↓
⊥

in (5.21), where (ǫA, δA) is the adjunction given by (2.2), (2.3), and σ↑, σ↓
⊥ are the (dyadic)

subsampling and upsampling operators in Subsection 3.3. As we said before, (ǫ↑A, δ
↓
A) is an

adjunction and ǫ↑Aδ
↓
A = id, provided that there exists an a ∈ A such that A[a] = {a}. If we

take A to be the 3 × 3 square structuring element containing the origin, then this condition is

satisfied.

We may consider a two-level morphological pyramid and assume that the pair (ψ↓, ψ↑) is

an adjunction (instead of (ψ↑, ψ↓), as we did in § 5.1.1 ) between V0 and V1. In this case, ψ↑ is

a dilation and ψ↓ is an erosion. This leads to a flat multiscale erosion and dilation of the form

ǫ↓A = ǫAσ
↓
⊤ and δ↑A = σ↑δA,

respectively. The pair (ǫ↓A, δ
↑
A) is an adjunction and δ↑Aǫ

↓
A = id. Notice that ǫ↑A and δ↑

Ǎ
(where

Ǎ = −A) are dual operators, in the sense that, if x ∈ Fun(Zd, IR), then (δ↑
Ǎ
(x))∗ = ǫ↑A(x∗),

where x∗(n) = −x(n), for every n ∈ Zd. This is a direct consequence of the duality between

ǫA and δǍ. The same is true for the pair (ǫ↓A, δ
↓

Ǎ
). Notice finally that all these operators are

translation invariant, in the sense of (5.1). A binary and grayscale example, illustrating flat

multiscale erosions and dilations, is depicted in Figure 16; here A is the 3× 3 square structuring

element.

7.2. Openings and closings

Multiscale openings and closings can be obtained by concatenating the analysis and synthesis

operators of a morphological pyramid based on adjunctions. For example, if (ψ↑, ψ↓) form an
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Fig. 16. A binary and grayscale example illustrating the flat multiscale erosions ǫ↑A, ǫ↓A and dilations

δ
↑
A, δ↓A, where A is the 3 × 3 square structuring element.
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adjunction, then ψ↓ψ↑ is an opening and ψ↑ψ↓ is a closing (although a trivial one, if the pyramid

condition is satisfied). On the other hand, if (ψ↓, ψ↑) is an adjunction, then ψ↓ψ↑ is a closing

and ψ↑ψ↓ an opening (the trivial one, if the pyramid condition is satisfied).

A flat multiscale opening α
(1)
A can be obtained by applying erosion ǫ↑A followed by dilation

δ↓A; i.e,

α
(1)
A = δ↓Aǫ

↑
A = δAσ

↓
⊥σ

↑ǫA. (7.1)

Notice that ǫ↑Aδ
↓
A is a trivial closing, since ǫ↑Aδ

↓
A = id. However, we can build a closing operator

β
(1)
A by means of the adjunction (ǫ↓A, δ

↑
A), in which case

β
(1)
A = ǫ↓Aδ

↑
A = ǫAσ

↓
⊥σ

↑δA. (7.2)

α
(1)
A and β

(1)
A are negative operators, since (α

(1)
A (x))∗ = β

(1)
A (x∗), and translation invariant, in

the sense of (2.1).

Operators (7.1), (7.2) can be extended, by considering a k-level pyramid. Indeed, if we set

α
(k)
A = δ↓Aδ

↓
A · · · δ↓A

︸ ︷︷ ︸

k−times

k−times
︷ ︸︸ ︷

ǫ↑Aǫ
↑
A · · · ǫ↑A and β

(k)
A = ǫ↓Aǫ

↓
A · · · ǫ↓A

︸ ︷︷ ︸

k−times

k−times
︷ ︸︸ ︷

δ↑Aδ
↑
A · · · δ↑A, (7.3)

then it is not difficult to show that α
(k)
A is an opening and β

(k)
A is a closing. We point out that

for these observations to hold, the pyramid conditions are not required.

In the binary case, the opening α
(k)
A is a multiscale filter (i.e., an operator that is increasing

and idempotent) that eliminates all pixels in an image x which do not lie inside a replica of the

structuring element (2k − 1)A (where kA = A ⊕ A ⊕ · · · ⊕ A, k-times) translated at a point

(2km, 2kn) of Z2. An analogous argument can be made for the grayscale case as well. A binary

and grayscale example, illustrating flat multiscale openings and closings, is depicted in Figure 17.

7.3. Top–hat

Since every opening α
(k)
A (x) lies below the signal x itself, the difference x−α

(k)
A (x) is nonnegative.

This difference contains the residue of approximating x by means of α
(k)
A (x). In mathematical

morphology, the operator x− αA(x) is known as the (opening) top-hat operator [7]. Therefore,

x−α
(k)
A (x) is a multiscale (opening) top-hat operator. Notice that, in our terminology, x−α

(1)
A (x)

is the detail signal obtained at the lowest level of a multiscale adjunction pyramid. Similarly,

β
(k)
A (x) − x is the multiscale closing top-hat operator. A grayscale example, illustrating the

single-scale and multiscale top-hat operator, is depicted in Figure 18.

7.4. Morphological filters

In mathematical morphology, any operator that is increasing and idempotent is called a mor-

phological filter. The openings and closings in (2.6), (2.7) are simple examples of morphological

filters. By combining them in an appropriate fashion, we form more complicated filters. For

example

ηA = βAαA and ξA = αAβA,

are morphological filters known as alternating filters, whereas

ηkAη(k−1)A · · · ηA and ξkAξ(k−1)A · · · ξA,
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Fig. 17. A binary and grayscale example illustrating the flat multiscale openings α
(k)
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β
(k)
A , for k = 1, 2, 3, where A is the 3 × 3 square structuring element.
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Fig. 18. A grayscale example illustrating the single-scale and multiscale opening top-hat operators.

where kA = A ⊕ A ⊕ · · · ⊕ A (k-times), are known as alternating sequential filters. Multiscale

versions of such operators can be obtained by means of multiscale openings and closings:

η
(k)
A = β

(k)
A α

(k)
A and ξ

(k)
A = α

(k)
A β

(k)
A

are multiscale alternating filters and

η
(k)
A η

(k−1)
A · · · η

(1)
A and ξ

(k)
A ξ

(k−1)
A · · · ξ

(1)
A

are multiscale alternating sequential filters.

Simpler multiscale morphological filters can be obtained by appropriately combining single-

scale openings and closings with multiscale erosions and dilations. For example, it can be shown

that, for every structuring element B, the operators

δ↓AβBǫ
↑
A and ǫ↓

Ǎ
αB̌δ

↑

Ǎ

are dual morphological filters. This is a direct consequence of the two pyramid conditions

ǫ↑Aδ
↓
A = id and δ↑Aǫ

↓
A = id. Notice that δ↓AβBǫ

↑
A ≥ α

(1)
A and ǫ↓AαBδ

↑
A ≤ β

(1)
A ; refer to [8] for a

general account.

Morphological filters are used for noise removal. Figure 19 illustrates the application of

a number of single-scale and multiscale morphological filters for recovering a grayscale image x

from a noisy version x′, corrupted by salt–and–pepper noise. In the single-scale case, the alter-

nating sequential filter η2AηA produces the best result. A similar result is however produced by

the multiscale filter δ↓Aβ2Aǫ
↑
A. An important difference between these two filters is implementa-

tion speed: implementation of the single-scale alternating sequential filter η2AηA requires about

four times more operations than for the multiscale filter δ↓Aβ2Aǫ
↑
A.

These very simple experiments indicate that exploitation of multiscale morphological op-

erators for image filtering is a promising area of research. However, since this topic falls outside

the scope of this report, we do not pursue this matter any further here.

7.5. Granulometries

We now show that granulometries (discussed in § 5.2.1 ), and the associated anti-granulometries,

can be easily extended to a multiscale framework by means of pyramid schemes based on ad-

junctions.
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Consider the framework sketched at the beginning of Section 5, and define

αj := ψ̂0,j = ψ↓
j,0ψ

↑
0,j , for j > 0,

where ψ↑
i,j , ψ

↓
j,i are given by (3.1) and (3.2), respectively, with (ψ↑

j , ψ
↓
j ) being an adjunction

between the complete lattices Vj and Vj+1. Equation (3.5) says that

αjαi = αiαj = αj , if j ≥ i. (7.4)

From the fact that (ψ↑
0,j , ψ

↓
j,0) defines an adjunction between V0 and Vj , we conclude that αj is an

opening on V0, which, together with (7.4), results in αj+1 ≤ αj , for j ≥ 0, where we set α0 = id.

Thus, we may conclude that {αj | j ≥ 0} defines a (discrete) granulometry. For obvious reasons,

we call this family a multiscale granulometry, provided that (ψ↑
j , ψ

↓
j ) is a multiscale adjunction.

In a similar fashion, we may define βj := ψ̂0,j = ψ↓
j,0ψ

↑
0,j , for j > 1, with ψ↑

i,j , ψ
↓
j,i given

by (3.1) and (3.2), respectively, with (ψ↓
j , ψ

↑
j ) being an adjunction between the complete lattices

Vj and Vj+1. Then, the family {βj | j ≥ 1} defines a multiscale anti-granulometry.

The decomposition of a signal x into the set {..., β2(x)−β1(x), β1(x)−x, x−α1(x), α1(x)−

α2(x), ...} will be called the multiscale discrete size transform of x, whereas {..., |β2(x)− β1(x)|,

|β1(x) − x|, |x− α1(x)|, |α1(x) − α2(x)|, ...}, with |x| =
∑

n |x(n)|, will be called the multiscale

pattern spectrum of x.

x x− α1( )

x

α α1 2( ) ( )x x− α α2 3( ) ( )x x− α α3 4( ) ( )x x−

β β4 3( ) ( )x x−β β3 2( ) ( )x x−β β2 1( ) ( )x x−β1( )x x−

Fig. 20. The first 4 components of the multiscale discrete size transform of a binary image.
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The most useful granulometry is obtained by means of the multiscale adjunction (ǫ↑A, δ
↓
A),

in which case, αj = α
(j)
A and βj = β

(j)
A , where α

(j)
A and β

(j)
A are given by (7.3). Figure 20 depicts

the first 4 components of the multiscale discrete size transform of a binary image, whereas

Figure 21 depicts the corresponding pattern spectrum.

−10 −8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 21. The multiscale pattern spectrum associated with the binary image of Figure 20.

8. Conclusions

In this first part of our study on general linear and nonlinear multiresolution signal decomposition

schemes, we have presented an axiomatic treatise of pyramid decomposition schemes. The basic

ingredient of such schemes is the so-called pyramid condition which states that synthesis of

a signal followed by analysis returns the original signal. This simple and intuitive condition,

which means that synthesis never gives rise to (additional) loss of information, lies at the heart of

various linear and nonlinear decomposition schemes. For example, the well-known Burt-Adelson

pyramid fits well inside our framework, presumed that the parameters are chosen appropriately.

In our exposition, we distinguish not only between linear and nonlinear (e.g., morphological)

schemes, but also between single-scale and multiscale decomposition schemes; i.e., without and

with sample reduction, respectively.

A great deal of attention has been devoted to morphological pyramids, in particular to

pyramids where the analysis and synthesis operators constitute adjunctions between consecu-

tive levels of the pyramid. This also leads, in a natural way, to a new family of morphological

operators, the so-called multiscale morphological operators. Of special interest here are mul-

tiscale granulometries; we have found that every morphological adjunction pyramid defines a

multiscale granulometry. Furthermore, a simple and straightforward application of the single-

scale adjunction pyramid leads to a (minor but elegant) improvement of Lantuéjoul’s skeleton

decomposition.

In a second forthcoming part of our study, we shall consider wavelet decomposition

schemes, comprising two (or more) analysis and synthesis operators at each level. In that

study, we shall give particular attention to a new family of wavelets, the so-called morphological

wavelets. The interested reader may refer to our conference papers [10, 9] for some preliminary

results.
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