
IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 1

Multi-Resolution Spatial and Temporal Coding in
a Wireless Sensor Network for Long-Term

Monitoring Applications
You-Chiun Wang, Member, IEEE, Yao-Yu Hsieh, and Yu-Chee Tseng, Senior Member, IEEE

Abstract—In many WSN (wireless sensor network) applications, such as [1]–[3], the targets are to provide long-term monitoring of
environments. In such applications, energy is a primary concern because sensor nodes have to regularly report data to the sink and
need to continuously work for very long time so that users may periodically request a rough overview of the monitored environment.
On the other hand, users may occasionally query more in-depth data of certain areas to analyze abnormal events. These requirements
motivate us to propose a multi-resolution compression and query (MRCQ) framework to support in-network data compression and data
storage in WSNs from both space and time domains. Our MRCQ framework can organize sensor nodes hierarchically and establish
multi-resolution summaries of sensing data inside the network, through spatial and temporal compressions. In the space domain, only
lower-resolution summaries are sent to the sink; the other higher-resolution summaries are stored in the network and can be obtained
via queries. In the time domain, historical data stored in sensor nodes exhibits a finer resolution for more recent data, and a coarser
resolution for older data. Our methods consider the hardware limitations of sensor nodes. So, the result is expected to save sensors’
energy significantly and thus can support long-term monitoring WSN applications. A prototyping system is developed to verify its
feasibility. Simulation results also show the efficiency of MRCQ compared to existing works.

Index Terms—coding, data compression, sensor data aggregation, sensor data management, wireless sensor networks.

F

1 INTRODUCTION

W IRELESS sensor networks (WSNs) provide a new
opportunity for pervasive and context-aware

monitoring of physical environments. A WSN is com-
posed of numerous sensor nodes, each being a tiny wire-
less device that can continuously collect environment
information and report to a remote sink through a multi-
hop ad hoc network [4]. A WSN is usually deployed in
a region of interest to observe particular phenomena or
track objects inside the region. Practical applications of
WSNs include, for example, habitat monitoring, health
care, smart home, and surveillance [5]–[7].

Because sensor nodes are typically operated by bat-
teries and recharging is usually infeasible, it is a critical
issue to extend the network lifetime by conserving their
energy. In this paper, we consider WSNs with the fol-
lowing characteristics:
• These WSNs are deployed to support long-term

monitoring of some specified regions [1]–[3]. Since
sensor nodes need to regularly report data to the
sink, the communication overhead will dominate
their energy consumption. In addition, due to the
large amount of such regular reporting, sensor

Manuscript received Aug. 16, 2008; accepted Dec. 30, 2008. The review of
this paper was coordinated by Dr. John C.S. Lui.
Y.-C. Wang is with the Department of Computer Science, National Chiao-
Tung University, Hsin-Chu, 30010, Taiwan. E-mail: wangyc@cs.nctu.edu.tw
Y.-Y. Hsieh is with the Realtek Semiconductor Corp., Hsinchu Science-based
Industrial Park, Hsin-Chu, 30076, Taiwan. E-mail: shiehyy@cs.nctu.edu.tw
Y.-C. Tseng is with the Department of Computer Science, National Chiao-
Tung University, Hsin-Chu, 30010, Taiwan. E-mail: yctseng@cs.nctu.edu.tw

nodes closer to the sink will suffer from heavier
traffic loads and thus rapider energy drain [8].
When these nodes exhaust their energy, the network
would be broken. Thus, it is important to reduce
the amount of transmissions of regular reporting of
sensor nodes.

• Sensing data often exhibits a certain degree of cor-
relation. Specifically, the readings of nearby sensor
nodes may present high spatial correlation because of
their similar environment. Besides, the sensing data
collected by a single node may present high temporal
correlation when its surrounding remains stable or
changes slowly. Fig. 1 shows an experimental result
to support the above argument, where four sensor
nodes are used to collect the temperatures of a room
in a day. We can observe that the temperatures
reported by sensors 1, 2, and 4 are quite spatially
correlated because they are close to each other,
and the temperatures collected by each individual
node during the periods [12:35 PM, 05:35 PM] and
[08:05 PM, 01:05 AM] are quite temporally corre-
lated. Therefore, there is large space to compress
sensing reports to reduce transmissions.

• Users could query different “resolutions” of sens-
ing data, both spatially and temporally, from the
network [9], [10]. In the space domain, they may
want to receive a periodical rough report containing
an overview of the environment from the sink.
Occasionally, they may query more in-depth data
of certain areas where something abnormal may be
happening. As a result, the WSN should be designed

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 2

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

12:35

PM

03:05

PM

05:35

PM

08:05

PM

10:35

PM

01:05

AM

03:35

AM

06:05

AM

08:35

AM

11:05

AM

time

te
m

p
e

ra
tu

re
(

C
)

sensor 1
sensor 2
sensor 3
sensor 4

Fig. 1. Indoor temperatures collected by four sensor
nodes during a day.

to allow periodical lower-resolution reports to be
sent to the sink as well as to keep higher-resolution
data inside the network for further queries. In the
time domain, they may be more interested in recent
sensing data than older ones.

• Sensor nodes are usually simple devices. They have
a very limited computation power and a smaller
memory size. Therefore, the proposed compression
and storage schemes cannot be too complicated to
fit into sensor nodes.

In this paper, we propose a multi-resolution compression
and query (MRCQ) framework to support in-network data
compression and data storage in WSNs. The idea is to
organize sensor nodes hierarchically and then establish
multi-resolution summaries of sensing data, via spatial
and temporal coding techniques. To reduce communi-
cation cost, only lower-resolution summaries are sent
to the sink. The other higher-resolution summaries will
be stored at different “layers” of the network to be
retrieved via further queries. The hierarchical architec-
ture of sensor nodes is to support such layering. Data
reported from lower-layer nodes will be compressed by
an upper-layer node through a spatial coding technol-
ogy. In this way, the amount of data transmissions can
be significantly reduced. Each node also compresses its
historical data by a temporal coding technique. To keep
historical summaries inside the network, we develop a
reverse-exponential storage algorithm, where historical data
also exhibits a multi-resolution characteristic in the sense
that finer resolutions are available for more recent data,
while coarser resolutions are available for older data. To
summarize, major contributions of this paper are three-
fold:
• We propose a transmission and storage framework

for WSNs to support multi-resolution spatial and
temporal coding of sensing data. To avoid sensor
nodes wasting too much energy on regular report-
ing, they only report periodical lower-resolution
summaries to the sink. On the other hand, higher-
resolution data is kept in the network to allow
occasional queries from users. This design can sig-
nificantly extend a WSN’s lifetime, especially in

long-term monitoring applications in a somewhat
stable or slowly changed environment.

• We develop in-network spatial and temporal com-
pression algorithms to help reduce data transmis-
sions in a WSN. Not only the network lifetime can
be extended, but also the network congestion can be
alleviated. Compression ratios are tunable, so users
are allowed to trade data accuracy for energy con-
sumption according to their requirements. In addi-
tion, we also design an efficient storage mechanism
to help sensor nodes to maintain their historical
sensing data in local memories. The historical data
also has multiple resolutions depending on their
seniority.

• The proposed compression and storage algorithms
consider the limitation of computation power and
memory size of sensor nodes. We have developed a
prototyping system to evaluate the feasibility of the
MRCQ framework. Extensive simulations are also
conducted to verify the efficiency of the proposed
algorithms. The results show that MRCQ incurs a
lower amount of data transmissions and renders
more accurate reports compared to DIMENSIONS
[11].

The rest of this paper is organized as follows: Section 2
reviews some related works. Section 3 presents our
MRCQ framework. Section 4 discusses our prototyping
results. Simulation results are given in Section 5. Sec-
tion 6 concludes this paper.

2 RELATED WORKS

Data compression has been widely researched in various
fields. Some of these concepts have also been applied to
WSNs. Below, we give a classification and a review.
• Text-based compression: The Lempel-Ziv-Welch

(LZW) algorithm [12] is a popular lossless
compression scheme for text data. It is a dictionary-
based algorithm that encodes new strings based
on previously encountered strings. This concept is
adopted by S-LZW [13] to reduce data transmissions
in a WSN. S-LZW treats sensing data as strings
and divides them into fixed-size blocks, each being
compressed by LZW. Although it is appropriate for
sensor nodes, S-LZW does not utilize the spatial
and temporal correlations of sensing data.

• Wavelet-based compression: Wavelet-based com-
pression such as JPEG2000 [14] is designed for im-
age compression. It divides an image into multiple
small pixels and compresses them through wavelet
transform and quantization [15]. DIMENSIONS [11]
adopts this concept to support multi-resolution stor-
age in a WSN by organizing the network into
multiple levels. The three-dimensional discrete wavelet
transform (3D-DWT) [16] is adopted to generate
spatiotemporal summarization of sensing data in
each level. Users can obtain different resolutions

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 3

of sensing reports from different levels via drill-
down queries. Although DIMENSIONS meets our
multi-resolution requirement, it is too complicated
for sensor nodes because wavelet-based compres-
sion would incur high computation and storage
complexity. Also, such expensive wavelet compres-
sion and decompression operations are performed
at each level of the DIMENSIONS hierarchy.

• Distributed source coding: The Slepian-Wolf theorem
[17] is the foundation of such coding. Given two
correlated sources, each being encoded indepen-
dently, and then decoded jointly at a receiver, the
Slepian-Wolf theorem proves that it is possible to
achieve lossless encoding of these two sources at a
rate equal to their joint entropy, even though there
is no negotiation between the two encoders. The
theorem and its rate-distortion extension [18] pro-
vide a theoretical tool to characterize the amount of
communications required for the distributed source
coding in a network where nodes will generate
highly correlated data [19]. Reference [20] adopts
this property to provide distributed compression in
a dense sensor network. However, inherited from
the Slepian-Wolf theorem, [20] requires prior cor-
relation knowledge of the data to be compressed,
which limits its feasibility to be applied to real
WSNs.

• Compressed sensing: Compressed sensing (or compres-
sive sensing) [21] is an emerging sampling theory
that leverages compressibility without relying on
any specific prior knowledge or assumption on sig-
nals. It indicates that any sufficiently compressible
signal can be accurately recovered from a small
number of nonadaptive, randomized linear projec-
tion samples. Specifically, given a set of sparse signal
x = (xi,j)n×1, we can find a random projection
matrix A = (Ai,j)k×n with far fewer rows than
columns (i.e., k ¿ n) to obtain a small compressed
data set y = (yi,j)k×1 = Ax. This concept is adopted
by [22] to provide lossless compression in WSNs.
Each of n sensors locally draws a vector with k
elements by a random generator to form matrix
A, and then uses A to compress its sensing data.
This scheme provides a decentralized compression
in WSNs, but it cannot support multi-resolution
compression.

• Data aggregation: In-network data aggregation for
WSNs [23]–[27] focuses on reducing the message
cost by fusing similar sensing data into some repre-
sentative values. For example, TAG [23] organizes
a sensor network into a tree and proposes SQL-
like semantics to aggregate streaming data into his-
tograms. Nevertheless, such a compression provides
only one level of resolution.

Our MRCQ framework provides multi-resolution
compressions in both space and time domains. Our
spatial compression algorithm modifies the popular DCT

(discrete cosine transform) method in the image processing
field, and our temporal compression algorithm adopts
a differential coding to transmit continuous data and
a reverse-exponential concept to store historical data.
Table 1 compares the features of prior works and our
MRCQ framework. Since DIMENSIONS is the only work
that possesses the multi-resolution feature, we will com-
pare with it numerically in Section 5.

3 MULTI-RESOLUTION COMPRESSION AND
QUERY (MRCQ) FRAMEWORK

Fig. 2 illustrates the system architecture of our MRCQ
framework. We assume that sensor nodes are homoge-
neous and they are arbitrarily deployed in the sensing
field. The network is recursively divided into α (α > 1)
blocks and is organized into multiple layers, where a
block in layer i + 1 contains α blocks in layer i. In each
layer, we select a node in each block as the processing
node (PN) to collect and compress sensing reports from
lower-layer blocks. The number of layers decides the
resolutions and message sizes of sensing reports, and
can be adjusted depending on application requirements.

sink

layer 3

layer 2

layer 1

space

time

n
a
rr
o
w
e
r
v
ie
w
,

fi
n
e
r
re
s
o
lu
ti
o
n

b
ro
a
d
e
r
v
ie
w
,

c
o
a
rs
e
r
re
s
o
lu
ti
o
n

k

leaf sensor

node (LN)

pixel

layer-3

processing node (PN)

layer-2 PN

layer-1 PN

.

k

newer data,

finer resolution

older data,

coarser resolution

pixels

.

com
plete parti

al
com

pleteparti
al

parti
al

i
�
c

i
�
c

��
p i

�
c

�
j
�
p �
i+���c�i+���c��p

Fig. 2. System architecture of the MRCQ framework (with
three layers and α = 4).

In the lowest layer 1, the PN is responsible for com-
pressing sensing reports from leaf sensor nodes (LNs). The
area handled by each PN is divided into k × k grids

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 4

TABLE 1
Comparison of prior works and our MRCQ framework.

works compression lossless low multi-resolution
techniques compression complexity feature

S-LZW [13] LZW
√ √

DIMENSIONS [11] wavelet compression
√

reference [20] Slepian-Wolf theorem
√

reference [22] compressed sensing
√ √

references [23]–[27] data aggregation
√

our MRCQ DCT, differential, and reverse-exponential
√ √

(called pixels), where k is a small integer. Ideally, each
pixel should contain exact one LN and the sensing report
of this LN is the pixel’s value. Nevertheless, since LNs
are randomly deployed, it is possible that some pixels
contain no or multiple LNs. In a pixel with multiple LNs,
its value is the LNs’ average. In a pixel containing no LN,
its value can be estimated by some interpolation scheme.

In MRCQ, sensing data is transmitted to the sink layer
by layer. There are three algorithms. Data passing each
layer will be compressed by its PN through a spatial
compression algorithm (discussed in Section 3.1). LNs and
layer-1 PNs will compress their data by a temporal com-
pression algorithm (Section 3.2). Historical data will be
stored by each LN and PN via a reverse-exponential storage
algorithm (Section 3.3). Since the spatial and temporal
compression algorithms may cause loss of precision,
multiple resolutions can be supported. In particular, as
we go deeper into the tree, a finer resolution can be
obtained. When a query arrives at a PN, it can reply
if its resolution satisfies the requirement of the query.
Then, the content of the response will be decompressed
at the sink. In this way, both computation and space
complexities of PNs are greatly reduced.

3.1 Spatial Compression Algorithm

The spatial compression algorithm is performed by each
PN to compress sensing data from its lower layer. A
compression ratio γ (0 < γ ≤ 1) can be specified, which
is defined as the ratio of the size of compressed data
to the size of uncompressed data. The spatial correla-
tion of data is exploited in the compression. There are
three components: layer-1 compression, layer-i compression
(i > 1), and decompression.

3.1.1 Layer-1 Compression

A layer-1 PN collects the sensing data from its local LNs
and stores them in a k × k matrix M = (si,j)k×k, where
si,j is the value of the local pixel (i, j). Then, we apply
the two-dimensional discrete cosine transform (2D-DCT) [28]
on M to generate a new matrix M′ = (ti,j)k×k, where

ti,j =
2
k

C(i)C(j)·
k−1∑
x=0

k−1∑
y=0

(
sx,y · cos(iπ

2x + 1
2k

) · cos(jπ
2y + 1

2k
)
)

, (1)

where

C(i) =
{ 1√

2
if i = 0

1 otherwise.

The 2D-DCT is widely used in image processing. It
can transform an image from the spatial domain to the
frequency domain and extract significant values of the
image. In particular, those significant values will appear
in the upper-left part of matrix M′, while insignificant
values will appear in the opposite part. Therefore, we
can preserve most characteristics of M by truncating the
lower-right part of M′ for compression purpose.

The cosine operations in Eq. (1) might be too costly
for sensor nodes. Fortunately, the variable k is a pre-
defined system parameter. Since k is a small integer,
we can maintain a small table in each PN to record the
results of cosine operations for each (i, x) and (j, y) pair.
Thus, the calculation of Eq. (1) can be reduced to simple
addition and multiplication operations.

After calculating M′, a reduced zigzag scan (RZS) is
performed to translate M′ into an one-dimensional array
D. RZS retrieves elements of M′ from the upper-left
corner toward the lower-right corner along the diagonal
direction, as shown in Fig. 3, until dγ · k2e elements are
scanned. Then, the array D is transmitted to its layer-2
PN. Due to the property of 2D-DCT, array D keeps most
significant values of M.

start

M
,

more significant values

less significant values

finish

Fig. 3. An example of RZS with compression ratio γ =
20
25 = 0.8.

3.1.2 Layer-i Compression
A layer-i (i > 1) PN will further compress the data
from its α child blocks in layer i − 1. Intuitively, one
possible solution is: a) decompress the block from each

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 5

lower-layer node, b) combine all α blocks together to
form a larger block, and c) apply the 2D-DCT method
again on the larger block. Nevertheless, this solution has
two drawbacks. First, the 2D-DCT decompression and
compression are too expensive. The situation becomes
worse as we move to the higher layers. Second, the
effectiveness of compression may degrade because in a
larger area, the degree of spatial correlation of sensing
data will decrease.

Here, we propose a simple layer-i compression
scheme, as shown in Fig. 4. Specifically, for each layer-2
PN, it will collect reduced matrices M′ from its α layer-1
PNs, each with dγ · k2e pixels. For each reduced layer-1
matrix M′, we transmit the first dγ(γ · k2)e significant
pixels and discard the remaining bγ ·k2−γ2 ·k2c pixels1,
as shown in Fig. 4. So, only α ·dγ2 ·k2e pixels will be sent
to its layer-3 PN. Similarly, for each layer-i PN, it will
collect αi−1 layer-1 matrices, and only preserve the first
most significant dγi · k2e pixels of each layer-1 matrix to
be sent to its layer-(i + 1) PN and discard the remaining
bγi−1 ·k2−γi ·k2c pixels. The above scheme incurs quite
low computation cost. Besides, since entries of a layer-1
matrix are more spatially correlated, such a compression
is more efficient.

layer 2

layer 1

k

k

stored in layer 1

pixels2 2
k kgê ú- ×ë û

sent to layer 2

pixels
2

kgé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

Fig. 4. Layer-i compression scheme.

Next, we analyze the size of packets transmitted in
each layer. Suppose that the size of a pixel is l bits and
each packet header is h bits. Given a compression ratio
of γ, the size of each packet transmitted by a layer-
1 PN is h + dγ · k2le bits. For each layer-2 PN, after
including a packet header, h + α · dγ2 · k2le bits will
be sent to its parent. Similarly, the size of each packet
transmitted by a layer-i PN is h + αi−1 · dγi · k2le bits.
In summary, excluding packet headers, only a γi ratio

1. These discarded pixels will be stored in the PN’s local memory
for further queries.

of the amount of original sensing data is transmitted
by layer-i PNs. A smaller γ incurs less amount of data
transmission and thus preserves more energy of PNs,
but it also reduces data accuracy. We will discuss this
tradeoff by simulations in Section 5.

3.1.3 Decompression
There are two cases where decompression may be taken.
The first case is at the sink based on the αd−1 reduced
layer-1 matrices collected from its children, each with
dγd · k2e pixels, where d is the number of layers. Then,
each reduced matrix will be expanded to a k× k matrix
M′ = (ti,j)k×k by appending sufficient 0’s at the end.
We then adopt the inverse 2D-DCT to transform M′ to a
matrix M = (si,j)k×k, where

si,j =
2
k

k−1∑
x=0

k−1∑
y=0

(
C(x)C(y) · tx,y · cos(xπ

2i + 1
2k

)·

cos(yπ
2j + 1

2k
)
)

. (2)

Since Eq. (2) is the inverse of Eq. (1), we can obtain an
approximation of the original matrix of sensing data. The
sink then puts all these recovered αd−1 matrices together
to form a large matrix of approximate sensing data.

The second case happens when we query a certain
layer i. A query will be flooded from the sink to all layer-
i PNs. Then, each layer-i PN will send the discarded
part (bγi−1 · k2− γi · k2c pixels, as shown in Fig. 4) to its
layer-(i+1) PN. Such operation is repeated until the sink
receives all discarded pixels of all PNs from layers i to
d. In this way, the sink can have the “complete” matrices
seen by all layer-i PNs and then recover the sensing data
with a resolution of “layer i”. As can be seen, the above
scheme requires each PN to transmit only few pixels.

3.2 Temporal Compression Algorithm
The aforementioned discussion assumes that LNs and
PNs will periodically report data to their parents. In this
section, we propose a temporal compression algorithm,
which tries to reduce the amount of transmissions by
exploiting the similarity of data items that are generated
at close times.

The concept of temporal compression is shown in
Fig. 2. The compression is done only between LNs and
layer-1 PNs and between layer-1 PNs and layer-2 PNs.
The time axis is divided into complete reporting intervals
of the same length ∆c. Each complete reporting interval
is further divided into smaller partial reporting intervals of
length ∆p, where ∆c is a multiple of ∆p. In the beginning
of each complete reporting interval, LNs and PNs will
report and compress data as we discussed earlier. During
each complete reporting interval, differential compres-
sion will be conducted in the beginning of each partial
reporting interval. Specifically, each LN will decide to
report or not to report according to the variance of its
current sensing data and its previous sensing data. If a

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 6

LN does not report, its layer-1 PN will assume that its
sensing data is unchanged. Similarly, a layer-1 PN will
do the same thing to its layer-2 PN.

The compression between LNs and layer-1 PNs will
be controlled by a small update threshold δL. A LN will
not report if its current sensing data vcurrent differs from
its previous reported data vrep by an amount no more
than δL, i.e., |vrep − vcurrent| ≤ δL. If so, its layer-1 PN
will use vrep as its current sensing data. The compression
between layer-1 PNs and layer-2 PNs will be controlled
by a threshold δP . A layer-1 PN will not report if the
difference of its current matrix Mcurrent = (ti,j)k×k to its
previously report matrix Mrep = (si,j)k×k satisfies the
inequality

1
k2

k∑

i=1

k∑

j=1

|si,j − ti,j | ≤ δP .

If so, its layer-2 PN will use Mrep as its current sensing
matrix.

Note that all layer-i PNs, i ≥ 2, will not conduct
temporal compression because the matrices seen by such
nodes have already been compressed by the 2D-DCT
method and computing the difference of two compressed
matrices is time-consuming.

Remark 1: Since sensor nodes will regularly report
their sensing data, we can set up timers at PNs and the
sink and apply a retransmission mechanism to handle
the packet loss problem. The length of timeout can be
set to the reporting interval ∆c. When a node does not
respond after a predefined number of retransmission
requests, it is treated as failure. In the case of a LN
failure, the layer-1 PN can use interpolation to estimate
its value. In the case of a PN failure, a new PN can be
elected to replace the old one.

3.3 Reverse-Exponential Storage Algorithm
The above compression and decompression algorithms
only concern about the current sensing data. In fact,
sensing data is usually streaming data. Thus, it is a
challenging issue to store historical data in PNs and
LNs under sensors’ limited storages. In this section,
we propose a reverse-exponential storage algorithm for this
purpose. Thus, users can query different resolutions of
sensing data on the time domain.

Let nL and nP be the maximum numbers of frames
that a LN and a PN can store in its local memory,
respectively, where a frame is the unit of sensing data
for the node. Below, for simplicity, we will write both nL

and nP as n (it will be clear from the context). For a LN,
a frame is a piece of sensing data generated by itself. For
a PN, a frame is a set of discarded pixels in the compres-
sion process (refer to Fig. 4). Let fi be the frame stored
by a LN/PN at timestamp i. Suppose that the current
time is t. The objective of the reverse-exponential storage
algorithm is to store historical frames at timestamps with
intervals at an exponentially increasing order from t.
Specifically, we would like to store frames ft−2n−1+1, · · · ,

ft−3, ft−1, and ft in the node, as shown in Fig. 5. In this
way, users can query sensing data long time ago with
different resolutions. When a query of a past frame fi

(i ≤ t) arrives at a node, two cases may happen:
Case A: The node is a LN. The response includes three

possibilities:
• If fi is stored in the node’s local memory, it can

directly reply fi to the sink.
• If t − 2j + 1 < i < t − 2j−1 + 1, it replies two

frames ft−2j+1 and ft−2j−1+1 to the sink. The sink
then applies a linear interpolation to calculate fi, that
is,

fi − ft−2j+1

i− (t− 2i + 1)
=

ft−2j−1+1 − ft−2j+1

t− 2j−1 + 1− (t− 2j + 1)
⇒fi = ft−2j+1+

(ft−2j−1+1 − ft−2j+1)× (i− t + 2j − 1)
2j−1

. (3)

• If i < t− 2n−1 + 1, it replies a FAIL message to the
sink since this information is too old.

Case B: The node is a PN. The query should specify
a certain layer i. First, the sink will flood the query to all
layer-i PNs. Then, each layer-i PN will send its frame(s)
or a FAIL message according to the above three cases to
its layer-(i+1) PN. Note that since data stored in PNs are
all compressed data, each layer-(i + 1) PN also needs to
send the similar frame(s) to its parent. Such operation is
repeated until the sink receives all frames from all layer-i
to layer-d PNs. Then, the sink can combine these frames
and recover the historical data via the inverse 2D-DCT
method and a linear interpolation (as in Eq. (3)).

There are two properties in the reverse-exponential
storage scheme. First, a long history of data can be
stored with small buffers. Second, finer resolutions are
available for more recent data, while coarser resolutions
are available for older data.

local memory

time

. . .

frame

t1t -

.

3t -7t -
2

2 1
n

t
-

- +
1

2 1
n

t
-

- +

1234n -1n

2
0

2
1

2
2

2
n -2

ftft-1ft-3ft-7ft-2 +1
n-2ft-2 +1

n-1

Fig. 5. Concept of the reverse-exponential storage algo-
rithm.

The remaining problem is to maintain historical
frames in a node’s memory as time moves on. There
are two cases to be discussed.

Case A: The node is a LN. Suppose that the cur-
rent time is t. What are stored locally are frames
ft−2n−1+1, · · · , ft−3, ft−1, and ft. As the time moves to t+
1, each frame is aged by one. So, the place for ft should
be given to ft+1, and the place for ft−1 should be given
to ft. For each remaining frame ft−2β+2, β = 2, · · · , n−1,
we can apply the linear interpolation in Eq. (3) on the

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 7

frames ft−2β+1 and ft−2β−1+1 to approximate its value.
For example, ft−2 can be interpolated from ft−3 and
ft−1.

Case B: The node is a PN. Recall that frames
ft−2n−1+1, · · · , ft−3, ft−1, and ft are stored locally, where
t is the current time. As the time moves to t + 1, the
place for ft should be given to ft+1, and the place for
ft−1 should be given to ft. For each remaining frame
ft−2β+2, β = 2, · · · , n − 1, we need to select one frame
that has the closest timestamp to it to represent this
frame (Note that linear interpolation is infeasible here
because these data are compressed data.). Specifically,
for each β = n − 1, · · · , 2, the place for frame ft−2β+2

will be given to the frame whose original timestamp is
closest to t − 2β + 2 (to make this possible, we need to
store each frame’s original timestamp). One exception is
frame ft−2n−1+2. We will not consider frames older than
timestamp t−2n−1+2 (because such frames are too old).
Fig. 6 illustrates an example, where the number in each
box represents the real age of a frame at each time in-
stance. Suppose that at time t, we have historical frames
with ages 1, 2, 4, 8, and 16 in locations ft, ft−1, ft−3, ft−7,
and ft−15, respectively. As the time moves to t + 1, the
age of each stored frame is increased by one. So, frames
with ages 1, 2, 3, 5, and 9 are kept. The frame with age 17
is deleted according to our exceptional rule. Fig. 6 shows
the buffering results from t to t+10. We can observe that
the frames stored in the places ft and ft−1 are always
accurate. For each place ft−2β+1, β = 2, · · · , n − 1, the
actual frame fa stored in that place always satisfies a
timestamp |a − (t − 2β + 1)| ≤ 2β−1. This is because
the original frame stored in the place ft−2β−1+1 will
eventually move to the place ft−2β+1.

Finally, we comment on the values of LN and LP .
Suppose that each node has a buffer space of m bits
and the size of a pixel is l bits. Clearly, LN =

⌊
m
l

⌋
.

For LP , recall Fig. 4. Each layer-i PN should keep
αi−1 · ⌊

(γi−1 − γi) · k2
⌋

pixels after each compression.
Therefore, we have

LP =
⌊

m

maxd
i=1{αi−1 · b(γi−1 − γi) · k2c · l}

⌋
.

4 PROTOTYPING EXPERIENCE

We use the MICAz Motes [29] to build a 2-tier, 16 nodes
WSN, as shown in Fig. 7. Each Mote’s radio is a 2.4 GHz,
IEEE 802.15.4-compatible module allowing low-power
operations and offering a data rate of 250 Kbps. We set
α = 4 and k = 2, so there are four layer-1 PNs in
our prototype, each being responsible for collecting and
compressing 2 × 2 pieces of data. We use this network
to collect the indoor temperatures during 45 hours. The
complete reporting interval ∆c is set to ten minutes.
The compression ratio γ is set to 0.75 and the update
thresholds δL and δP are set to 0.5 ◦C. For each LN,
a sensing report is 15 bytes, which contains 11 bytes of
header and trailer and 4 bytes of payload. The size of

time

t 1 2 4 8 16

t+1 2 3 5 9 17

ft ft-1 ft-3 ft-7 ft-15

t+2 2 3 4 6 10

t+3 2 3 5 7 11

2 3 6 8 12

2 3 4 9 13

2 3 5 10 14

t+4

t+5

t+6

2 3 6 11 15

2 3 4 7 16

2 3 5 8 17

t+7

t+8

t+9

2 3 4 6 9t+10 1

1

1

1

1

1

1

1

1

1

current data discarded data

Fig. 6. An example of historical data buffering in a PN.

packets reported from a PN is 19 bytes with 8 bytes of
payload.

sink

layer-1 PN

LN

P

S

P

PP

P

S

SSSS

S

S

S S

S

SS

Fig. 7. A 16-mote prototype in our experiment.

Fig. 8(a) shows the total amount of data transmitted
by these 16 nodes. We can observe that the amount
of data transmissions is greatly reduced by our MRCQ
framework. This is because temperatures have high
data correlations and thus can be compressed in both
spatial and temporal domains. Fig. 8(b) illustrates the
average temperatures being reported by the 16 nodes.
The maximum error is 0.189 ◦C. This indicates that our
MRCQ framework can preserve most characteristics of
the sensing reports.

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 8

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

time (hours)

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

with MRCQ

without MRCQ

(a) amount of data transmissions

26.8

27.0

27.2

27.4

27.6

27.8

28.0

28.2

0 5 10 15 20 25 30 35 40 45

time (hours)

re
p
o
rt

e
d

te
m

p
e
ra

tu
re

s
(

C
)

with MRCQ

without MRCQ

(b) reported temperatures

Fig. 8. Experimental results from the prototyping system.

At the remote sink, we provide a user interface to
monitor the network’s status and to query data from
sensor nodes, as shown in Fig. 9. It contains three major
components: monitoring, statistical, and querying areas.
The monitoring area shows the network topology and
status. Inside each square, the corresponding sensor
ID, coordinates, and current temperature are shown.
The color of a circle means the corresponding sensor’s
status (black = inactive). The statistical area reports
the total amount of data transmissions when different
compression algorithms are applied. The querying area
allows users to obtain more in-depth sensing data from
the network. Users can specify the sensor nodes to be
queried and add conditions to restrict the queried data.

5 SIMULATION STUDIES

Since a large-scale deployment is difficult to realize,
in this section, we develop a simulator to verify the
efficiency of our MRCQ framework. We set up a 256×256
m2 sensing field, on which 1000 sensor nodes are ran-
domly deployed. We set k = 8 and α = 4, and designate
20 and 4 nodes as layer-1 and layer-2 PNs, respectively.
The transmission range of each sensor node is set to
30 m. The size of each packet transmitted by a PN is
18 bytes containing 16 bytes of payload, whereas the size
of each sensing data reported by a LN is 6 bytes contain-
ing 4 bytes of payload. The sensing field is divided into
32 × 32 grids. The total simulation time is 100 minutes.
During every minute, the temperature of each grid may

o o

From Sensor Networks

o o

Fig. 9. User interface at the remote sink in our prototype.

be changed and a number of events will arbitrarily occur
in the sensing field. We measure the total amount of
data being transmitted by sensor nodes and the average
errors caused by the compression algorithms. Here, we
define the average error as

1
K2

K∑

i=1

K∑

j=1

|Msink[i, j]−Mreal[i, j]|,

where Msink is a K ×K matrix of sensing data seen by
the sink, and Mreal is a matrix of the real temperatures
seen by LNs. In these simulations, K = 32.

5.1 Comparison with DIMENSIONS

We compare our MRCQ framework against DIMEN-
SIONS [11]. The compression ratio γ is set as 0.75 and 0.5
in both MRCQ and DIMENSIONS. For MRCQ, we set
the update thresholds δL and δP as 0.5 ◦C in the temporal
compression algorithm. Three different environmental
scenarios are considered in this experiment.

In the first scenario, we observe the effect of the
ranges of grid temperatures. Specifically, the average
temperature of each grid is randomly picked from [(25−
x)◦C, (25 + x)◦C], where the range x is selected from
0.1 to 2.1. In addition, there are 5 events arbitrarily
occurring in the sensing field, each increasing [1◦C, 3◦C]

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 9

in its vicinity. Clearly, when the value of x is larger, it
means that the environment changes more drastically.
Fig. 10(a) shows the total amount of data transmis-
sions of MRCQ and DIMENSIONS. As can be seen,
when the compression ratio γ becomes smaller, more
data can be compressed. Our MRCQ framework can
have less amount of data transmission compared with
DIMENSIONS when x ≤ 1.6. This means that MRCQ
can compress more data when the environment is more
stable. When the environment changes more drastically
(e.g., x ≥ 1.7), MRCQ will transmit more data to respond
to the change. This will reflect on the average error of
reporting data, as shown in Fig. 10(b). We can observe
that MRCQ always has a lower average error compared
with DIMENSIONS, even when the value of x exceeds
1.7.

0

5

10

15

20

25

30

35

40

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

range x of average temperature

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmissions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

range x of average temperature

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 10. Comparison of MRCQ and DIMENSIONS under
different ranges of grid temperatures.

In Fig. 10(a), we can observe that the amount of data
transmission in DIMENSIONS is irrelevant to the range
of grid temperatures, because it periodically compresses
data in a constant manner. This will make DIMEN-
SIONS difficult to respond to environmental changes,
and causes more data inaccuracy when the environment
is more instable. On the other hand, the temporal com-
pression algorithm can help MRCQ flexibly respond to
environmental changes. In Fig. 10(a), when the envi-

ronment is almost stable (e.g., x ≤ 1.3), the temporal
compression algorithm can help MRCQ reduce a large
amount of data transmissions. When 1.4 ≤ x ≤ 1.8, since
the difference between successive sensing data in each
grid could often exceed the threshold δL, the effect of
temporal compression decreases and thus the amount
of data transmissions in MRCQ grows. As x ≥ 1.9, the
temporal compression becomes almost no effect so the
data compression in MRCQ is dominated by the spatial
compression. Thus, the amount of data transmissions in
MRCQ becomes constant. The above behavior can help
MRCQ flexibly reduce more data when the environment
is stable and render more accurate reports when the
environment changes drastically.

In the second scenario, we observe the effect of the
increasing temperatures of events. Specifically, there are
20 events arbitrarily appearing in the sensing field, and
each event will cause an increase of y◦C in its vicin-
ity, where y is ranged from 0.2 to 4.2. The average
temperature of each grid is randomly selected from
[24.8◦C, 25.2◦C]. Clearly, a larger value of y means that
the events will cause a larger difference in tempera-
tures in their vicinity. Fig. 11 shows the amount of
data transmissions and average errors of MRCQ and
DIMENSIONS. We can observe that MRCQ outperforms
DIMENSIONS in this scenario. Since the temperature
range in each grid is limited to 0.4◦C and the number
of events is fixed, the effect of temporal compression
in MRCQ will be almost constant. So, the amount of
data transmission changes slowly in MRCQ, as shown
in Fig. 11(a). The average errors of MRCQ and DIMEN-
SIONS increase as y increases, because these events will
introduce more difference in temperatures inside their
neighboring regions.

In the third scenario, we observe the effect of the
number of events. The average temperature of each grid
is randomly set among [24◦C, 26◦C]. In addition, there
are 0 to 100 events randomly occurring in the sensing
field. When an event happens, an increase of 1◦C to
3◦C can be seen in its vicinity. Fig. 12(a) shows the total
amount of data transmissions in MRCQ and DIMEN-
SIONS. We can observe that MRCQ has less amount of
data transmissions compared with DIMENSIONS when
γ = 0.75 and when the number of events is smaller than
70 as γ = 0.5. Similar to the first scenario, the amount
of data transmissions grows in MRCQ as the number of
events increases, because of the effect of the temporal
compression algorithm. This flexibility can help MRCQ
result in a smaller average error when there are more
events, as shown in Fig. 12(b).

In summary, MRCQ can compresses more data when
the environment is stable, and preserve more accuracy
on reports by transmitting more data when the environ-
ment changes drastically. In the following experiments,
we will measure the effects of spatial and temporal com-
pression algorithms in MRCQ. The simulation settings
are the same as that in the third scenario.

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 10

0

5

10

15

20

25

30

35

40

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

increasing temperature y of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmissions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

increasing temperature y of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 11. Comparison of MRCQ and DIMENSIONS under
different increasing temperatures of events.

5.2 Effect of the Spatial Compression Algorithm

We then evaluate the effect of the spatial compression
algorithm in MRCQ. We set the update thresholds δL

and δP as zero to eliminate the effect of the tempo-
ral compression algorithm. Fig. 13(a) shows the total
amount of data transmissions of MRCQ under different
number of events and different compression ratios γ.
Clearly, when γ becomes smaller, the spatial compression
algorithm can reduce more data. The data transmission
of the spatial compression algorithm is irrelevant to the
number of events because it discards a constant number
of pixels depending on the value of γ. However, this
behavior will affect the average errors, as shown in
Fig. 13(b). We can observe that when the value of γ
becomes larger, the spatial compression algorithm can
keep lower errors because PNs can transmit more data
to reflect the changes of environment. However, when γ
becomes too small (for example, γ = 0.2), the average
error grows fast as the number of events increases.
In this case, since each PN can only transmit a small
portion of the compressed matrix, only a small number
of significant values can be kept and thus the error
increases.

Fig. 14 shows the effect of compression ratio γ on
the spatial compression algorithm when the number of

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmissions

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 12. Comparison of MRCQ and DIMENSIONS under
different numbers of events.

events are 20 and 80. From Fig. 14, we can find that the
suitable value of γ is around 0.35 to 0.4 since both the
amount of data transmissions and average error can be
kept quite small.

5.3 Effect of the Temporal Compression Algorithm

Finally, we evaluate the effect of the temporal compres-
sion algorithm in MRCQ. We set the compression ratio
γ = 0.8 to fix the effect of the spatial compression
algorithm and set δL = δP = δ. Fig. 15(a) shows the total
amount of data transmissions of MRCQ under different
number of events and different update thresholds δ.
We can observe that when δ is very small (for exam-
ple, δ = 0.1), the effect of the temporal compression
algorithm becomes insignificant and thus the amount
of data transmissions remains constant under different
number of events. However, as δ becomes larger, the
temporal compression algorithm can reduce more data
when the number of events is smaller. When the number
of events increases, the amount of data transmissions
also increases because the difference between two se-
quential sensing reports may often exceeds the update
threshold. Fig. 15(b) shows the average errors. We can
observe that the errors can be kept quite small because
in the temporal compression algorithm, LNs and layer-1

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 11

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression MRCQ (r = 0.4)

MRCQ (r = 0.8) MRCQ (r = 0.2)
MRCQ (r = 0.6)

(a) amount of data transmissions

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

MRCQ (r = 0.8)

MRCQ (r = 0.6)

MRCQ (r = 0.4)

MRCQ (r = 0.2)

(b) average errors

Fig. 13. Effect of the spatial compression algorithm.

PNs will periodically report complete data to their upper
PNs.

6 CONCLUSIONS

In this paper, we have proposed a MRCQ framework
to provide multi-resolution data compression and data
storage in a WSN by spatial and temporal coding tech-
niques. The proposed multi-resolution idea can signifi-
cantly extend a WSN’s lifetime, especially in long-term
monitoring applications with a slowly changed environ-
ment. Our in-network compression algorithms adopt the
concepts of DCT and differential coding to reduce data
redundancy. Our storage algorithm helps sensor nodes
to store historical data in their small memories by a
reverse-exponential solution. We have implemented a
prototyping system on the MICAz platform to demon-
strate the flexibility of MRCQ. Extensive simulation re-
sults have also been presented to verify the efficiency of
MRCQ. They show that our MRCQ framework can flex-
ibly adjust the amount of data transmissions according
to the environmental stability and preserve important
characteristics of sensing reports.

ACKNOWLEDGMENT

Y.-C. Tseng’s research is co-sponsored by MoE ATU
Plan, by NSC grants 95-2221-E-009-058-MY3, 96-2218-E-

0

5

10

15

20

25

30

35

40

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

compression ratio r

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

0

2

4

6

8

10

12

14

16

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

amount of data transmissions
average error

(a) event number: 20

0

5

10

15

20

25

30

35

40

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

compression ratio r

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

0

2

4

6

8

10

12

14

16

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

amount of data transmissions

average error

(b) event number: 80

Fig. 14. Effect of compression ratio γ on the spatial
compression algorithm.

009-004, 96-2219-E-007-008, 97-3114-E-009-001, 97-2221-
E-009-142-MY3, and 97-2218-E-009-026, by MOEA under
grant 94-EC-17-A-04-S1-044, by ITRI, Taiwan, and by III,
Taiwan.

REFERENCES

[1] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwar-
ing, and D. Estrin, “Habitat monitoring with sensor networks,”
Comm. of the ACM, vol. 47, no. 6, pp. 34–40, 2004.

[2] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler, “An analysis of a large scale habitat monitoring appli-
cation,” Proc. ACM Int’l Conf. Embedded Networked Sensor Systems
(SenSys ’04), pp. 214–226, 2004.

[3] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach,
and M. Parlange, “SensorScope: out-of-the-box environmental
monitoring,” Proc. IEEE Int’l Conf. Information Processing in Sensor
Networks (IPSN ’08), pp. 332–343, 2008.

[4] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Comm. Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[5] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and
E. Jansen, “The gator tech smart house: a programmable pervasive
space,” IEEE Computer, vol. 38, no. 3, pp. 50–60, 2005.

[6] C.C.Y. Poon, Y.T. Zhang, and S.D. Bao, “A novel biomet-
rics method to secure wireless body area sensor networks for
telemedicine and m-health,” IEEE Comm. Magazine, vol. 44, no. 4,
pp. 73–81, 2006.

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 12

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

without compression
MRCQ (ä= 0.1)
MRCQ (ä= 0.5)
MRCQ (ä= 1.0)
MRCQ (ä= 1.5)

(a) amount of data transmissions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

MRCQ (ä= 0.1)
MRCQ (ä= 0.5)
MRCQ (ä= 1.0)
MRCQ (ä= 1.5)

(b) average errors

Fig. 15. Effect of the temporal compression algorithm.

[7] Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse: an
integrated mobile surveillance and wireless sensor system,” IEEE
Computer, vol. 40, no. 6, pp. 60–66, 2007.

[8] C.T. Ee and R. Bajcsy, “Congestion control and fairness for many-
to-one routing in sensor networks,” Proc. ACM Int’l Conf. Embed-
ded Networked Sensor Systems (SenSys ’04), pp. 148–161, 2004.

[9] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Hei-
demann, “An evaluation of multi-resolution storage for sensor
networks,” Proc. ACM Int’l Conf. Embedded Networked Sensor Sys-
tems (SenSys ’03), pp. 89–102, 2003.

[10] D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions: why do
we need a new data handling architecture for sensor networks?”
ACM SIGCOMM Computer Comm. Review, vol. 33, no. 1, pp. 143–
148, 2003.

[11] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and R. Govin-
dan, “Multiresolution storage and search in sensor networks,”
ACM Trans. Storage, vol. 1, no. 3, pp. 277–315, 2005.

[12] T.A. Welch, “A technique for high-performance data compres-
sion,” IEEE Computer, vol. 17, no. 6, pp. 8–19, 1984.

[13] C.M. Sadler and M. Martonosi, “Data compression algorithms
for energy-constrained devices in delay tolerant networks,” Proc.
ACM Int’l Conf. Embedded Networked Sensor Systems (SenSys ’06),
pp. 265–278, 2006.

[14] D.S. Taubman and M.W. Marcellin, JPEG2000: fundamentals, stan-
dards and practice, Kluwer Academic Publishers, 2002.

[15] R.M. Rao and A.S. Bopardikar, Wavelet transforms: introduction to
theory and applications, Addison Wesley Publications, 1998.

[16] G. Davis, “Wavelet image compression construction kit,”
http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html.

[17] D. Slepian and J.K. Wolf, “Noiseless coding of correlated infor-
mation sources,” IEEE Trans. Information Theory, vol. 19, no. 4, pp.
471–480, 1973.

[18] A.H. Kaspi and T. Berger, “Rate-distortion for correlated sources
with partially separated encoders,” IEEE Trans. Information Theory,
vol. 28, no. 6, pp. 828–840, 1982.

[19] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “Networked
Slepian-Wolf: theory, algorithms, and scaling laws,” IEEE Trans.
Information Theory, vol. 51, no. 12, pp. 4057–4073, 2005.

[20] S.S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed com-
pression in a dense microsensor network,” IEEE Signal Processing
Magazine, vol. 19, no. 2, pp. 51–60, 2002.

[21] D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[22] J. Haupt, W.U. Bajwa, M. Rabbat, and R. Nowak, “Compressed
sensing for networked data,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 92–101, 2008.

[23] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG:
a tiny aggregation service for ad-hoc sensor networks,” ACM
SIGOPS Operating Systems Review, vol. 36, pp. 131–146, 2002.

[24] S. Lindsey, C. Raghavendra, and K.M. Sivalingam, “Data gather-
ing algorithms in sensor networks using energy metrics,” IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 9, pp. 924–935,
2002.

[25] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul,
and U. Ramachandran, “DFuse: a framework for distributed data
fusion,” Proc. ACM Int’l Conf. Embedded Networked Sensor Systems
(SenSys ’03), pp. 114–125, 2003.

[26] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,”
IEEE/ACM Trans. Networking, vol. 11, no. 1, pp. 2–16, 2003.

[27] K.W. Fan, S. Liu, and P. Sinha, “Structure-free data aggregation
in sensor networks,” IEEE Trans. Mobile Computing, vol. 6, no. 8,
pp. 929–942, 2007.

[28] N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete cosine trans-
fom,” IEEE Trans. Computers, vol. 1, no. C-23, pp. 90–93, 1974.

[29] Crossbow, “MOTE-KIT2400 - MICAz Developer’s Kit,”
http://www.xbow.com.

You-Chiun Wang received his BEng and MEng
degrees in Computer Science and Information
Engineering from the National Chung-Cheng
University and the National Chiao-Tung Univer-
sity, Taiwan, in 2001 and 2003, respectively. He
obtained his Ph.D. degree in Computer Science
from the National Chiao-Tung University, Taiwan,
in October of 2006. Currently, he is a post-
doctoral research associate at the Department
of Computer Science, National Chiao-Tung Uni-
versity, Taiwan. His research interests include

wireless network and mobile computing, communication protocols, and
wireless sensor networks. He is a member of the IEEE.

Yao-Yu Hsieh received his MS degree in Com-
puter Science from the National Chiao-Tung Uni-
versity, Taiwan, 2007. He is a software engi-
neer at Realtek Semiconductor Corp., Hsinchu
Science-based Industrial Park, Taiwan. His re-
search interests include wireless communication
and mobile computing, mobile ad hoc networks,
wireless sensor networks, and Ethernet proto-
cols.

IEEE TRANSACTIONS ON COMPUTERS, TC-2008-08-0420 13

Yu-Chee Tseng obtained his Ph.D. in Computer
and Information Science from the Ohio State
University in January of 1994. He is Professor
(2000–preset), Chairman (2005–present), and
Associate Dean (2007–present) at the Depart-
ment of Computer Science, National Chiao-Tung
University, Taiwan. He is also Adjunct Chair Pro-
fessor at the Chung-Yuan Christian University
(2006–present). Dr. Tseng received the Out-
standing Research Award, by National Science
Council, R.O.C., in both 2001–2002 and 2003–

2005, the Best Paper Award, by Int’l Conf. Parallel Processing, in 2003,
the Elite I. T. Award in 2004, and the Distinguished Alumnus Award,
by the Ohio State University, in 2005. His research interests include
mobile computing, wireless communication, and parallel and distributed
computing. Dr. Tseng serves on the editorial boards for Telecomm.
Systems (2005–present), IEEE Trans. Vehicular Technology (2005–
present), IEEE Trans. Mobile Computing (2006–present), and IEEE
Trans. Parallel and Distributed Systems (2008–present).

