
 Open access Journal Article DOI:10.1145/1084779.1084780

Multiresolution storage and search in sensor networks — Source link

Deepak Ganesan, Ben Greenstein, Deborah Estrin, John Heidemann ...+1 more authors

Institutions: University of Massachusetts Amherst, University of California, Los Angeles, University of Southern California

Published on: 01 Aug 2005 - ACM Transactions on Storage (ACM)

Topics: Storage model, Information repository, Key distribution in wireless sensor networks, Converged storage and
Wireless sensor network

Related papers:

 TAG: a Tiny AGgregation service for Ad-Hoc sensor networks

 Multi-dimensional range queries in sensor networks

 TinyDB: an acquisitional query processing system for sensor networks

 Dimensions: why do we need a new data handling architecture for sensor networks?

 DIFS: a distributed index for features in sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-
3258pvc89y

https://typeset.io/
https://www.doi.org/10.1145/1084779.1084780
https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y
https://typeset.io/authors/deepak-ganesan-rveilawgs2
https://typeset.io/authors/ben-greenstein-439wdnsvp3
https://typeset.io/authors/deborah-estrin-owkds30hg1
https://typeset.io/authors/john-heidemann-4lsjbfuo8b
https://typeset.io/institutions/university-of-massachusetts-amherst-2oo68hmp
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/journals/acm-transactions-on-storage-24n216bt
https://typeset.io/topics/storage-model-1ckrgv0a
https://typeset.io/topics/information-repository-26rif2hh
https://typeset.io/topics/key-distribution-in-wireless-sensor-networks-2q0bta82
https://typeset.io/topics/converged-storage-3kojkw4e
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/papers/tag-a-tiny-aggregation-service-for-ad-hoc-sensor-networks-4ufv3hyh2r
https://typeset.io/papers/multi-dimensional-range-queries-in-sensor-networks-4pzc9wbrc7
https://typeset.io/papers/tinydb-an-acquisitional-query-processing-system-for-sensor-2akih312yn
https://typeset.io/papers/dimensions-why-do-we-need-a-new-data-handling-architecture-30j1wwo6d4
https://typeset.io/papers/difs-a-distributed-index-for-features-in-sensor-networks-1v2qfeuu91
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y
https://twitter.com/intent/tweet?text=Multiresolution%20storage%20and%20search%20in%20sensor%20networks&url=https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y
https://typeset.io/papers/multiresolution-storage-and-search-in-sensor-networks-3258pvc89y

Multi-resolution Storage and Search in Sensor

Networks

Deepak Ganesan

Department of Computer Science,

University of Massachusetts, Amherst, MA 01003

Ben Greenstein, Deborah Estrin

Department of Computer Science,

University of California, Los Angeles, CA 90095,

John Heidemann

University of Southern California/Information Sciences Institute,

Marina Del Rey, CA 90292

and

Ramesh Govindan

Department of Computer Science,

University of Southern California, Los Angeles, CA 90089

Wireless sensor networks enable dense sensing of the environment, offering unprecedented op-
portunities for observing the physical world. This paper addresses two key challenges in wireless
sensor networks: in-network storage and distributed search. The need for these techniques arises
from the inability to provide persistent, centralized storage and querying in many sensor networks.

Centralized storage requires multi-hop transmission of sensor data to internet gateways which can
quickly drain battery-operated nodes.

Constructing a storage and search system that satisfies the requirements of data-rich, scientific
applications is a daunting task for many reasons: (a) the data requirements are large compared to
available storage and communication capacity of resource-constrained nodes, (b) user requirements
are diverse and range from identification and collection of interesting event signatures to obtaining
a deeper understanding of long-term trends and anomalies in the sensor events, and (c) many
applications are in new domains where a priori information may not be available to reduce these
requirements.

This paper describes a lossy, gracefully degrading storage model. We believe that such a model
is necessary and sufficient for many scientific applications since it supports both progressive data
collection for interesting events as well as long-term in-network storage for in-network querying
and processing. Our system demonstrates the use of in-network wavelet-based summarization and
progressive aging of summaries in support of long-term querying in storage and communication-
constrained networks. We evaluate the performance of our linux implementation and show that it
achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient
drill-down search over such summaries, and (c) efficient use of network storage capacity through
load-balancing and progressive aging of summaries.

Categories and Subject Descriptors: C.2.7 [COMPUTER-COMMUNICATION NETWORKS]: Sensor Net-

works; H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Systems and Software—Distributed Sys-
tems

Additional Key Words and Phrases: Wireless Sensor networks, Data storage, Wavelet processing,
Multi-resolution storage, Data aging, Drill-down query

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005, Pages 1–0??.

2 ·

1. INTRODUCTION

One of the key challenges in wireless sensor networks is the storage and querying of use-

ful sensor data, broadly referred to as data management. The term useful sensor data
is application-specific and has different meaning in different application scenarios. For

instance, in a target tracking application, users are interested in detecting vehicles and

tracking their movement. Here, useful sensor data comprises target detections (timestamp

and location) as well as their tracks. In a structural monitoring application such as Wisden
([Xu et al. 2004]), scientists are interested in spatio-temporal analysis of sensor data, such

as, vibrations measured at different points of a building in response to an excitation over a

period of time. This requires access to vibration event data corresponding to periods when

the building is excited. Data management captures the broad spectrum of how useful data

is handled in a sensor network, and addresses three key questions:

—Where is data stored in a network? Is it stored locally at each sensor node (local storage),

in a distributed manner within the network (distributed storage) or at the edge of the

network at the base-station (centralized storage)?

—How are queries routed to stored data? Can we use attributes of the search to make it

efficient?

—How can the network deal with storage limitations of individual sensor nodes?

Many schemes have been proposed for data management in sensor networks. The main

ideas are summarized along the axes of communication required for data storage and com-

munication required for query processing in Figure 1. The figure depicts a fundamental

tradeoff between centralized storage and local storage. At one extreme is a conventional

approach of centralized data management where all useful sensor data is transmitted from

sensors to a central repository that has ample power and storage resources. This task is

communication intensive (and hence energy intensive) but facilitates querying. Queries

over this data are handled at the central location and incur no energy cost to the sensor

network. Centralized storage is appropriate for low-data rate, small-scale sensor networks

where there are infrequent events. As the useful data rate increases, and the network scale

grows, centralized storage is not feasible in sensor networks due the power constraints on

sensor nodes. Aggregate costs of transmitting the data to a base-station can quickly drain

power on all nodes in the network. Nodes that are closer to the base-station are especially

impacted due the need to relay data from many other nodes in the network. Thus, deal-

ing with power constraints requires alternate approaches that involves storing sensor data

within the sensor network and performing query processing on this distributed data store.

Many parameters are at work in determining which data management scheme best suits

an application. Is the deployment short-term or long-term? What are the energy, storage

and processing resources on sensor nodes? What kind of queries are posed on the data

and with what frequency? How much useful sensor data is generated by the network?

What in-network data processing is appropriate for the sensor data? Dealing with the wide

range of requirements and constraints in sensor networks requires a family of solutions.

These solutions are different from distributed storage systems in wide-area networks in

two respects. First, energy and storage limitations introduce more stringent communication

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 3

Fig. 1. Taxonomy of data storage solutions

constraints. Second, data in sensor networks exhibits spatio-temporal correlations, which

can be exploited in the storage, processing and querying of data.

Our goal is to provide storage and search for raw sensor data in data-intensive scientific

applications. We believe that long-term data storage or archival will complement event-

driven sensor network development. Sensor network deployments involve two interacting

phases. One phase involves enabling the scientific community to determine how events can

be reliably detected from distributed data. The second phase involves using these events to

trigger the sensor network such that the communication requirements can be significantly

reduced.

Constructing a storage and search system that satisfies the requirements of data-rich,

scientific applications is a daunting task as the storage requirements are large compared to

available storage and communication capacity of resource-constrained nodes. Clearly, it

is impossible for a sensor network to provide lossless, persistent storage and querying that

a centralized wired system can provide. Our more modest goal, therefore, is to provide a

lossy, progressively degrading storage model. We believe that such a model might be nec-

essary and sufficient for many scientific applications for two reasons. First, a gracefully

degrading storage model enables a query and collect approach for fresh data where users

can precisely query recent data and selectively decide on important data snippets that can

then be collected losslessly for persistent offline storage. Second, older data can be ex-

pected to be useful for identifying long-term patterns, and anomalous occurrences. Thus,

older data can be stored more lossily, but with sufficient fidelity to satisfy such long-term

queries.

How do we provide distributed, progressively degrading storage in a sensor network?

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

4 ·
The key idea behind our system is spatio-temporal summarization: we construct multi-

resolution summaries of sensor data and store them in the network in a spatially and

hierarchically decomposed distributed storage structure optimized for efficient querying.

Summaries are generated in a multi-resolution manner, corresponding to different spatial

and temporal scales. Queries on such data are posed in a drill-down manner, i.e they are

first processed on coarse, highly compressed summaries corresponding to larger spatio-

temporal volumes, and the approximate result obtained is used to focus on regions in the

network are most likely to contain result set data. Multi-resolution summaries are aged to

provide a gracefully degrading storage model.

1.1 Contributions

Our main contributions are three-fold.

Novel Wavelet-based Distributed Data Summarization Systems: Data aggregation

is a critical building block of sensor network systems. We developed a distributed wavelet-

based summarization [Ganesan et al. 2003; Ganesan et al. 2002]) procedure that is very

useful for sensor network data. Our summarization procedure is novel in two respects.

From a distributed storage systems perspective, the use of data aggregation that exploits

spatio-temporal correlation is novel. While there are many distributed storage systems

designed for the internet, these deal with uncorrelated files or movies, and do not exploit

correlations between them. Furthermore, the use of wavelets to deal with sensor data

in a spatially distributed setting is an interesting application of wavelet transforms. We

implement this codec on two different platforms, large sensor nodes (Ipaqs) and small

sensor nodes (Motes).

Drill-down Query Processing: We empirically evaluate the use of drill-down query

processing over multi-resolution data storage and show that high query accuracy (within

85%) at very low overhead (5% of the network) can be achieved. These results demonstrate

the use of our system for query processing.

Optimization-based Graceful Data Aging: The key contribution of this work is build-

ing a data-aging framework that can deal with storage limitations in manner that provides a

gracefully degrading query interface to users. We formalize the notion of storage in a dis-

tributed multi-resolution hierarchy, including data summarization and query processing.

We construct an optimization procedure that determines the storage allocation at nodes in

the network between different levels of resolution. This optimization procedure can be

used to construct a training-data based strategy for graceful storage degradation. In the

absence of training data, we propose a greedy scheme that can be used to determine the

storage allocation.

The remainder of this paper is organized as follows. In Section 2, we survey research that

relates to our work. Section 4 provides a overview of the architecture of DIMENSIONS,

and describe the many usage models that it can support for sensor network applications.

In Section 3, we outline the design goals of our system and we provide an architectural

overview in Section 4. Section 5 provides a formal description of the aging problem.

System implementation and performance results over a precipitation dataset are provided

in Section 6. Section 7 describes one of the usage models of the system, multi-resolution

data collection as part of a sensor network system for structural health monitoring. A mote

implementation and performance over a structural vibration dataset is discussed as part of

this work. Section 8 discusses some future extensions to our work. Finally, we conclude

in section 9 with a discussion of how our system satisfies these goals.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 5

2. RELATED WORK

Figure 1 shows four solutions for distributed storage and search. We discuss related work

that address these different problems.

2.1 Centralized Storage and Search

The conventional approach to storing time series data is to have all sensing nodes feed all

of their data to a central repository external to the sensing environment. In a network of

n nodes, this cost is on the order of the diameter of the network for each piece of data

sent, or O(
√

n). Queries over this data incur no additional cost to the network, because the

data is already resident on storage external to the network. (Note, however, that queries

initiated from within the network, perhaps by in-network actuation mechanisms, will incur

O(
√

n).) Centralized storage may be appropriate for low-data rate, small-scale sensor net-

works. For instance, consider a target-tracking system that is detecting infrequent targets

(once an hour), and generating event tuples, with the event type, timestamp and location

of detection. The data is very small, and the event rate is low, hence centralized storage

might be reasonable for a network of a hundred nodes transmitting data over 2-3 hops to

a base-station. As the event or useful data rate increases, and the network scale increases,

centralized storage is not always feasible in sensor networks due to the aggregate and bot-

tleneck costs of transmitting all data towards a network gateway, potentially over multiple

hops.

2.2 Local Storage and Geographical Search

At the lower right of the spectrum shown in Figure 1 is a fully local storage scheme where

all useful sensor data is stored locally on each node and queries are routed to locations

where the data is stored. Since data is stored locally at the sensing nodes that produced

them, there is no communication cost involved in constructing the distributed store. How-

ever, in-network search and query processing can potentially incur high energy cost. Be-

cause data can reside anywhere in the network, a query that does not explicitly constrain

the physical search space must be flooded to all storage nodes in the network, which costs

O(n), where n is the number of nodes in the network. Responses are sent back to the

source of the query at a cost of O(
√

n) (since the network diameter is approximately
√

n).

If only a few queries are issued during the lifetime of a network, answering these queries

might involve little communication cost. A large number of flooded queries that each in-

volves significant communication, however, can drain a network’s energy reserves.

Many of the initial ideas pursued within the context of Directed Diffusion [Intanagonwi-

wat et al. 2000] followed such a paradigm. Sources publish the events that they detect, and

sinks with interest in specific events can subscribe to these events. The Directed Diffu-

sion substrate routes queries to specific locations if the query has geographic information

embedded in it (eg: find temperature in the south-west quadrant), and if not, the query is

flooded throughout the network.

There are three drawbacks of such a scheme. First, for queries that are not geograph-

ically scoped, search cost (O(n)) might be prohibitive for large networks with frequent

queries. Second, queries that process spatio-temporal data (eg: edges) need to perform

significant distributed data processing each time a query is posed which can be expensive.

Third, these techniques need to be enhanced to deal with storage limitations on sensor

nodes.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

6 ·
Application Sensors Expected Data Rates Data Require-

ments Per
Year

Building Health

Monitoring [Kohler]

Accelerometer 30 minutes vibration

data per day

8Gb

Micro-climate Moni-

toring

Temperature, Light,

Precipitation, Pres-

sure, Humidity

1 sam-

ple/minute/sensor

40Mb

Habitat Monitoring Acoustic, Video 10 minutes of audio

and 5 mins of video

per day

1 Gb

Table I. Data Requirement estimates for Scientific Applications

2.3 Local storage with Distributed Indexing

Distributed indexing addresses search issues in the local storage mechanism described

above. Recent research has seen a a growing body of work on data indexing schemes

for sensor networks [Ratnasamy et al. 2002][Greenstein et al. 2003][Li et al. 2003]. These

techniques differ in the aggregation mechanisms used, but are loosely based on the idea of

geographic hashing and structured replication. One such indexing scheme is DCS[Ratnasamy

et al. 2002], that provides a hash function for mapping from event name to location. DCS

constructs a distributed storage structure that groups events together spatially by their

named type. Names are considered to be arbitrary keys to the hash function and are the

basic unit of categorization.

A node that detects an event stores the event at the mirror closest to its location. A search

using structured replication would begin with the root, descend to its four children, descend

to each of the children’s four children, and so forth. DCS uses structured replication to

register the existence of events at replicated rendezvous nodes. The communication cost to

store a datum is O(
√

n); and the costs to send a query and retrieve data are each O(
√

n).
In traditional databases, a table is indexed in order to speed up common queries. Like-

wise, DCS indexes its data, but does so in a manner that is optimized for communication

instead of latency. When a network administrator knows along which dimensions a query

will be cast a priori, an indexing scheme can be employed that spatially organizes data so

that a query need not visit more than a single site to be satisfied.

Distributed index of features in Sensornets (DIFS [Greenstein et al. 2003]) and Multi-

dimensional Range Queries in Sensor Networks (DIM [Li et al. 2003]) extend the data-

centric storage approach to provide spatially distributed hierarchies of indexes to data. In

these two techniques, the storage atom is a high-level event that is described with attributes

that each have associated numerical values.

3. DESIGN GOALS OF DATA STORAGE IN SENSOR NETWORKS

The storage requirements for sensing applications differ widely in their data-rates and stor-

age needs. Table I shows a cross-section of applications and their data requirements. In

this section, we describe the main design goals of a distributed storage and search for these

applications.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 7

Energy Efficient: Energy efficiency is critical to any system component designed

for sensor networks, and a storage system is no exception. Energy efficiency generally

depends on the amount of data communicated and other parameters such as efficiency of

the duty-cycling scheme and the traffic patterns in the network. In our storage system, we

will focus on limiting the amount of data communicated.

Long-term Storage: One of the major benefits of centralized storage over a distributed

wireless sensor network storage is the ability to provide a reliable and persistent long-term

storage capability. Scientists, in particular, are reluctant to let data be discarded for energy

or other reasons, since this data could be valuable for their studies. To provide an effective

service for such applications and users, we have to provide a service that can compete

with centralized storage by providing a long-term persistent storage and data processing

capability. The key criteria for persistent storage technology in sensor networks is power

consumption and cost. The most attractive technology that fits both these criteria is Flash

memory. In addition to low cost, the power requirements of flash memory are at least an

order of magnitude less than communication.

Multi-Resolution Data Storage: A fundamental design goal is the ability to extract

sensor data in a multi-resolution manner from a sensor network. Such a facility is very

useful in storage designed for sensor data for multiple reasons: (a) it allows users to look at

low-resolution data from a larger region cheaply, before deciding to obtain more detailed

and potentially more expensive datasets, and (b) compressed low-resolution sensor data

from large number of nodes can often be sufficient for spatio-temporal querying to obtain

statistical estimates of a large body of data [Vitter et al. 1998].

Balanced, Distributed Data Storage: Design goals of distributed storage systems

such as [Kubiatowicz et al. 2000][Rowston and Druschel 2001] of designing scalable,

load-balanced, and robust systems, are especially important for resource constrained dis-

tributed sensor networks. We have as a goal that the system balances communication and

computation load of querying and multi-resolution data extraction from the network. In

addition, it should leverage distributed storage resources to provide a long-term data stor-

age capability. Robustness is critical given individual vulnerability of sensor nodes. Our

system shares design goals of sensor network protocols that compensate for vulnerability

by exploiting redundancy in communication and sensing.

Robustness to Failure: An outdoor deployment of cheap sensor nodes is clearly sus-

ceptible to node and hardware failures due to the vagaries of the weather. The unpre-

dictabilities of the environment are likely to reflect in a higher probability of nodes being

permanently or temporarily disconnected and completely or partially losing their stored

data. Thus, reliability schemes become an important design concern, and such schemes

should be designed such that data is not lost even in the presence of a high failure proba-

bility.

Graceful Data Aging: To enable long-term storage given limited storage capacity,

the system should to provide a mechanism to age data. This aging procedure should be

utility-based i.e., it should age data that is not useful to the user while retaining data that is

potentially useful for querying. The aging procedure should be graceful and data quality

should degrade slowly rather than abruptly over time to provide users with a more useful

sensor network.

Exploiting Correlations in Sensor Data: Correlations in sensor data can be expected

along multiple axes: temporal, spatial and between multiple sensor modalities. These

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

8 ·
correlations can be exploited to reduce communication and storage requirements. The

storage structure should be able to adapt to the correlation characteristics of sensor data.

4. ARCHITECTURE DESCRIPTION

We describe the architecture of our system in four parts: (a) the hierarchical processing

that constructs lossy multi-resolution summaries, (b) the routing protocol that construct a

distributed hierarchy to enable summarization at different layers, (c) the expected usage of

these summaries through drill-down queries, and (d) the data aging scheme that determines

how summaries should be discarded, given node storage requirements.

Summarization and data aging are periodic processes, that repeat every epoch. The

choice of an epoch is application-specific, for instance, if users of a micro-climate mon-

itoring network ([Hamilton]) would like to query data at the end of every week, then a

reasonable epoch would be a week. In practice, an epoch should at least be long enough to

provide enough time for local raw data to accumulate for efficient summarization.

4.1 Multi-Resolution Summarization

Our goal is to construct a system that can support a wide range of queries for patterns in

data. Therefore, we use a summarization technique that is generally applicable, rather than

optimizing for a specific query. Wavelets have well-understood properties for data com-

pression and feature extraction and offer good data reduction while preserving dominant

features in data for typical spatio-temporal datasets ([Rao and Bopardikar 1998][Vetterli

and Kovacevic 1995]). As sensor networks mature and their applications become better

defined, more specialized summaries can be added to the family of multi-resolution sum-

maries maintained in such a framework.

Hierarchical construction (shown in Figure 2) using wavelets involves two components:

temporal and spatial summarization of data.

Temporal Summarization: The first phase, temporal summarization, has low energy

overhead since it involves only computation overhead at a single sensor node, and incurs

no communication overhead. The first step towards constructing a multi-resolution hierar-

chy, therefore, consists of each node reducing the time-series data as much as possible by

exploiting temporal redundancy in the signal and apriori knowledge about signal character-

istics. By reducing the temporal data-stream to include only potentially interesting events,

the communication overhead of spatial decomposition is reduced. In general, significant

benefit can be expected from merely temporal processing at very little cost.

Consider the example of a multi-resolution hierarchy for building health monitoring (Ta-

ble I). Such a hierarchy is constructed to enable querying and data extraction of time-series

signals corresponding to interesting vibration events. The local signal processing involves

two steps: (a) Each node performs simple real-time filtering to extract time-series that may

represent interesting events. The filtering could be a simple amplitude thresholding i.e.

events that cross a pre-determined signal-to-noise ratio (SNR) threshold. The thresholding

yields short time-series sequences of building vibrations. (b) These time-series snippets

are compressed using wavelet subband coding to yield a sequence that capture as much

energy of the signal as possible, given communication, computation or error constraints.

Spatial Summarization: The spatial summarization phase constructs a hierarchical

grid-based overlay over the node topology, and uses spatio-temporal wavelet compression

to re-summarize data at each level. Figure 2 illustrates its construction: at each higher level

of the hierarchy, summaries encompass larger spatial scales, but are compressed more, and

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 9

Summarization
Spatial

Temporal
Summarization

communicated from level 0 to 1

Compressed data from Level 1 is

decompressed, and re−compressed

jointly with higher compression factor.

This jointly compressed data is

forwarded up the hiearchy

Time−series summaries are

Coarsest Resolution

(Level 2)

Finer Resolution

(Level 1)

Finest Resolution (Raw Data)

(Level 0)

Fig. 2. Hierarchy Construction

are therefore more lossy. At the highest level (level 2), one or a few nodes have a very

lossy summary for all data in the network.

Spatial summarization can be very useful in either highly over-deployed networks where

there is a significant amount of spatial redundancy, or in large networks. In other instances,

the reduction in total data size as a result of spatial summarization is less than that of

temporal summarization. However, it still plays an important part in reducing sensor data

sizes. In the instance of building health monitoring, spatial summarization may involve

jointly processing correlated vibration data detected at proximate sensor nodes.

4.2 Distributed Quad Trees

While summaries at different spatial and temporal scales can be generated using wavelet

processing, such hierarchical summarization will need to be enabled by appropriate rout-

ing and clustering techniques that aggregate data and stores it in a hierarchical manner.

The routing framework that we use to enable the summarization of data at various spatio-

temporal scales is called a Distributed Quad Tree (DQT), named after the quad-tree data

structure that is frequently used in information retrieval [Wang et al. 1997].

Distributed Quad Tree (DQT) is loosely based on the notion of structured replication

introduced in Data-Centric Storage (DCS [Ratnasamy et al. 2001]). Structured replication

performs geographic hashes to specific locations and routes data to these locations instead

of explicitly selecting clusterheads. Data is routed to the node closest to the hashed location

using a variant of the GPSR protocol [Karp and Kung 2000]. This procedure is cheap

from an energy perspective since it precludes the need for communication that is usually

involved in a clusterhead election procedure.

DQT adds load-balancing to such a hashing and clustering scheme. Such a load bal-

ancing scheme is essential when individual storage capacity on nodes is not substantial.

Clearly, a simple hierarchical arrangement as shown in Figure 2 distributes load quite un-

evenly. For instance, if no load-balancing were done, the highest level clusterhead (level 2)

is responsible for all the coarsest resolution data. In a homogeneous network, a node that

is elected to be the root has no more storage than any other node in the network, hence,

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

10 ·

that is most likely to satisfy the query

Query is processed on available view of
data and is forwarded to the quadrant

Query is first addressed
to root of hierarchy.

Coarsest View

Finer View

Finest View (Raw Data)

(Level 2)

(Level 1)

(Level 0)

Fig. 3. Drill-down Querying

such a procedure leads to uneven storage distribution.

Our approach to deal with this problem is a simple probabilistic load-balancing mecha-

nism, whereby each node assumes the role of a clusterhead at any level for a limited time

frame. After each such time frame, a different node is probabilistically chosen to perform

the role. As a result of such a load-balancing procedure, the responsibility of being a clus-

terhead is shared among different nodes. The performance of such a scheme depends on

the node distribution, with uniform distribution of load in a regular setting. Our scheme

is similar to load-balancing schemes proposed in the GAF [Xu et al. 2001] and ASCENT

[Cerpa and Estrin 2002] protocols.

4.3 Drill-Down Querying

Drill-down queries on distributed wavelet summaries can dramatically reduce the cost of

search. By restricting search to a small portion of a large data store, such queries can

reduce processing overhead significantly. The term drill-down query is borrowed from

the data mining literature, where drill-down queries have been used to process massive

amounts of data. These queries operate by using a coarse summary as a hint to decide

which finer summaries to process further.

Our use of drill-downs is in a distributed context. Queries are injected into the network

at the highest level of the hierarchy, and processed on a coarse, highly compressed sum-

mary corresponding to a large spatio-temporal volume. The result of this processing is an

approximate result that indicates which regions in the network are most likely to provide

a more accurate response to the query. The query is forwarded to nodes that store sum-

maries for these regions of the network, and processed on more detailed views of these

sub-regions. This procedure continues until the query is routed to a few nodes at the low-

est level of the hierarchy or until an accurate enough result is found at some interior node.

This procedure is shown in Figure 3, where a drill-down query is forwarded over a logical

hierarchy to the quadrants that are most likely to satisfy it.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 11

Finer

Aging Period (time for which summary is stored)

reso
lu

tio
n

 su
m

m
aries are q

u
eried

In
creasin

g
 q

u
ery

 q
u

ality
 as fin

er

Coarsest resolution is aged slowest.

Coarsest

Raw

(Level 2)

(Level 1)

(Level 0)

Raw data (lossless) is aged fastest

It is stored for least time in the network

Fig. 4. Long term storage

4.4 Networked Data Aging

Hierarchical summarization and drill-down querying address challenges in searching for

features in distributed sensor data. Providing a long-term storage and query processing

capability requires storing summaries for long deployment periods. In storage-constrained

networks (Table I), however, resources have to be allocated for storing new summaries

by discarding older ones. The goal of networked data aging in our system is to discard

summaries such that network storage resources are efficiently utilized, and graceful quality

degradation over time is achieved. In other words, our work addresses the problem of

apportioning the limited storage capacity in the network between different summaries.

We define the length of time for which a summary is stored in the network as the age of

a summary. Each summary represents a view of a spatial area for an epoch, and its aging

renders such a view unavailable for query processing. For instance, storing only the highest

level (level 2) summary in Figure 4, provides a condensed data representation of the entire

network and consequently low storage overhead compared to finer summaries, but may not

offer sufficiently accurate query responses. Storing a level 1 summary (finer) in addition

to the level 2 one, enables an additional level of drill-down, and offers better accuracy, but

incurs more storage overhead. Figure 4 shows a typical instance of gracefully degrading

storage, the coarsest summary being stored for the longest period of time, and subsequent

lower level summaries being stored for progressively shorter time periods.

The networked data aging algorithms provide a storage partitioning between different

summaries for each individual node such that the resultant global allocation matches user

requirements. This algorithm weighs three factors: (a) the distributed storage resources in

the network, (b) the storage requirements of different summaries, and (c) the incremental

query benefit obtained by storing the summary.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

12 ·
4.5 Usage Models

A distributed multi-resolution storage infrastructure with system components as described

above benefits search and retrieval of datasets that exhibit spatial correlation, and applica-

tions that use such data. In this section, we briefly describe some of the different applica-

tions that this system can be used for.

Long-term Storage: DIMENSIONS provides long-term storage to applications that

are willing to sacrifice data fidelity for the ability to provide long-term storage. Long term

storage is provided by exploiting the fact that thresholded wavelet coefficients lend them-

selves to good compression benefit [Rao and Bopardikar 1998][Vetterli and Kovacevic

1995]. The rationale in balancing the need to retain detailed datasets for multi-resolution

data collection and to provide long-term storage is that if scientists were interested in de-

tailed datasets, they would extract it within a reasonable interval (weeks). Long-term stor-

age is primarily to enable querying for long-term spatio-temporal patterns, for which it is

sufficient to store summaries that retain key features of data. Thus, the wavelet compres-

sion threshold is aged progressively, lending older data to progressively better compres-

sion, but retaining key features of data.

Querying for Spatio-Temporal features: The hierarchical organization of data can

be used to search for spatio-temporal patterns efficiently by reducing the search space.

Spatial features such as edges or discontinuities are important for many applications as

well as systems components. Detecting edges is important for applications like geographic

routing, localization and beacon placement. By progressively querying for the specific

features, communication overhead of searching for features can be restricted to only a

few nodes in the network. Temporal patterns can be efficiently queried by drilling down

the wavelet hierarchy by eliminating branches whose wavelet coefficients do not partially

match the pattern, thereby reducing the number of nodes queried.

Multi-Resolution Data Collection: Multi-resolution data extraction can proceed along

the hierarchical organization by first extracting and analyzing low-resolution data from

higher level clusterheads. This analysis can be used to obtain high-resolution data from

sub-regions of the network if necessary. There are many circumstances under which such

progressive data gathering might be useful. One instance is real-time monitoring of events

of a bandwidth constrained network where all data cannot be extracted from the network

in real-time. In such an instance, a compressed summary of the data can be communicated

in real-time with the rest of the data being collected in non-real time when the bandwidth

utilization is less (Wisden [Xu et al. 2004]).

Approximate Querying of Wavelet Coefficients: Summarized coefficients that result

from wavelet decomposition have been found to be excellent for approximate querying

[Chakrabarti et al. 2001][Vitter et al. 1998], and to obtain statistical estimates from large

bodies of data. Often, good estimates for counting queries ([Hellerstein et al. 2003][Zhao

et al. 2002]) can be obtained from higher level wavelet coefficients (range sum queries

[Vitter et al. 1998]). coefficients at higher levels of the decomposition are often effective

in capturing many interesting features in the original data. The hierarchy is aged progres-

sively, with more compressed coefficients being stored for longer periods of time. Queries

that mine patterns over long time-scales are executed on the compressed coefficients rather

than the original dataset.

Network Monitoring: Network monitoring data is another class of datasets that ex-

hibits high correlation. Consider wireless packet throughput data: throughput from a spe-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 13

Symbol Parameter
S Local storage constraint

f(t) User-specified aging function

g(t) Provided step function

ri Size of each summary communicated from a

level i clusterhead to a level i+1 clusterhead.

Raw data is not communicated

Ri Total data communicated in the network be-

tween level i and level i + 1
si Storage allocated to a level i clusterhead for

storing summaries from level i − 1
ci Compression ratio at level i

Agei Aging Parameter for level i, i.e., duration in

the past for which a level i − 1 summary is

available at a level i clusterhead

N Number of nodes in the network

β Resolution bias of the greedy algorithm

Table II. Parameters for the Aging Problem

cific transmitter to two receivers that are spatially proximate are closely correlated; sim-

ilarly, throughput from two proximate transmitters to a specific receiver are closely cor-

related. DIMENSIONS serves two purposes for these datasets: (a) they can be used to

extract aggregate statistics with low communication cost, and (b) discontinuities represent

network hotspots, deep fades or effects of interference, which are important protocol pa-

rameters, and can be easily queried.

5. AGING PROBLEM

Having discussed the architectural components and usage models of our system, we now

address the core question in distributed storage: How does each node age summaries such

that that network can provide a long-term storage capability?

The storage allocation problem arises due to the finite storage capacity at each node.

When a node’s local storage is filled up, then, for each new summary that needs to be

stored at a sensor node, a decision needs to be made about what data to discard in order to

create storage space for the new summary. In this section, describe the criteria to consider

while designing an aging strategy, formalize the aging problem and describe an efficient

optimization-based solution.

5.1 Aging Problem Formulation

Consider a network with N nodes placed in a regular grid structure, over which a k-level

(k ≤ log4 N) multi-resolution hierarchy is constructed. The network is homogeneous, and

each node samples sensor data at a rate of γ bytes per epoch, and has storage capacity, S,

which is partitioned among summaries at different resolutions.

The goal of this analysis is to identify how the storage capacity of each node, S, can be

partitioned among summaries at different resolutions. In order to derive the aging scheme,

we use the fact that the system provides a load-balancing mechanism that distributes data

approximately equally between nodes in the network. Therefore, in the analysis, we will

assume perfect load-balancing, i.e., each node has identical amount of storage allocated to

data at each resolution. We also assume that the network is a perfectly dyadic grid, i.e., a

square with side 2i, where i is an integer.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

14 ·
5.2 Communication overhead

The communication rate at level i is given by ri, which determines the communication

between a clusterhead at level i and a clusterhead at level i + 1. Raw, uncompressed

sensor data has rate γ, r0 corresponds to temporally compressed data which is transmitted

to a clusterhead at level 1 from a level 0 node. Similarly, ri for i ≥ 1 corresponds to

communication overhead from level i to level i+1. The rate ri depends on the compression

ratio chosen for a summary at level i, ci, defined as the ratio between size of compressed

data transmitted from a clusterhead at level i to one at level i + 1, and the total amount

off raw data that the level i quadrant generates. The relation between rate, ri, and the

compression ratio that it corresponds to, ci, is thus:

ri =
4iγ

ci

(1)

since there are 4i nodes within each quadrant at level i, each generating γ bits, whose

data is compressed by a factor ci by the clusterhead for the quadrant.

To compute the total amount of data communicated in the entire network from level i to

level i + 1, Ri, we use the fact that there are 4log
4

N−i clusterheads at level i. Thus,

Ri = ri4
log

4
N−i (2)

In this paper, we will assume that the compression ratios, and therefore, the rates, have

been appropriately chosen for the sensor data being studied. In practice, the relationship

between lossy compression and query performance would need detailed study with the

sensor dataset in question. Our goal, however, is to obtain appropriate aging parameters

for a given choice of rates, ri.

5.3 Query quality

Drill-down queries over this network can proceed hierarchically until summaries are avail-

able for the requested data. For instance, in the case of a 3-level hierarchy as shown in

Figure 4, if only the coarsest summary is available, the query terminates at the root, if both

the coarsest and finer summaries are available, it terminates at level 1, and so on. We define

the query accuracy if a drill-down terminates at level i to be qi. Thus, in the hierarchy in

Figure 4, the query accuracy if only the coarsest resolution is queried is q2, if the coarsest

and finer resolutions are queried is q1, and if all resolutions including raw data are queried

is q0. In practice, q0 ≥ q1 ≥ ... ≥ qk, i.e., query quality increases with more drill-down

levels since finer data is being queried.

5.4 Storage Overhead

The amount of storage required at any level is related to the total amount of data commu-

nicated to it from the lower level. For instance, a level 2 clusterhead receives summaries

from four level 1 clusterheads, stores these summaries for future queries, and generates

summaries of its own that are sent to level 3. We define si as the amount of data that a each

node in the network allocates for summaries from level i. The per-epoch network-wide

storage requirement for summaries from level i is Ri, which is the total amount of data

communicated from level i to level i + 1 in the network.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 15

In
cr

ea
si

n
g
 Q

u
er

y
 A

cc
u
ra

cy

Increasing Time

User−defined expected quality f(t)90%

30%

1 week 1 year

Provided query quality g(t)

Fig. 5. Providing graceful quality degra-

dation by aging summaries

Time

Q
u

er
y

 A
cc

u
ra

cy

quality difference is evaluated

Points at which instantaneous

Fig. 6. Objective Function

5.5 Approximating user-specified aging function

Let f(t) be a monotonically decreasing user-specified aging function which represents how

much error a user is willing to accept as data ages in the network. Such a function can be

provided by a domain expert who has an idea of the usage patterns of the sensor network

deployment. The solid curve in Figure 5 is one instance of such a function, in which the

user would like 90% query accuracy for data that is only a week old, and 30% accuracy

for data that is over a year old, with a monotonically decreasing accuracy in between these

two times.

We wish to approximate the user-defined aging function using a step function, g(t), that

represents query degradations due to summaries being aged. As shown in Figure 5, the

steps correspond to time instants at which summaries of a certain resolution are aged from

the network. We represent this age of each summary by Agei.

Since each node allocates si data to level i summaries and there are N nodes in the net-

work, the total networked storage allocated to data from level i is Nsi. The total storage re-

quired for level i summaries is Ri, given by Equation 2. Assuming perfect load-balancing,

the age of summaries generated at level i is:

Agei =
Nsi

Ri

=
4isi

ri

∀i ≥ 1 (3)

Age of the raw data, Ageraw is a special case, since it is not communicated at all. If

sraw storage slots are allocated to each node for locally generated and stored raw data, the

age of raw data, Ageraw = sraw

γ
.

The cost function that we choose is the quality difference, qdiff (t), that represents the

difference between the user-specified aging function and the achieved query accuracy at

time t (shown in Figure 6). The objective is to minimize the quality difference over all

time. The minimum error aging problem can, thus, be defined as follows.

Find the ages of summaries, Agei, at different resolutions such that the the maximum
quality difference is minimized.

Min0≤t≤T (Max (qdiff)(t))) (4)

under constraints:

Drill-Down Constraint: Queries are spatio-temporal and strictly drill-down, i.e., they

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

16 ·
terminate at a level where no summary is available for the requested temporal duration

of the query. In other words, it is not useful to retain a summary at a lower level in the

hierarchy if a higher level summary is not present, since these cannot be used by drill-

down queries.

Agei+1 ≥ Agei 0 ≤ i ≤ k (5)

Storage Constraint: Each node has a finite amount of storage, which limits the size

of summaries of each level that it can store. The number of summaries of each level

maintained at a node (si

4ri
) is an integer variable, since a node cannot maintain a fractional

number of summaries.

Σ0≤i≤ksi ≤ S
si

4ri

= integer variable

Additional Constraints: In formulating the above problem, we consider only drill-down

queries and a network of homogeneous devices with identical storage limitations.

Our formulation can be extended to deal with different sensor network deployments and

queries. For instance, queries may look at intermediate summaries directly, without drilling

down. Previous research has proposed a tiered model for sensor deployments ([et al 2001]),

where nodes at higher tiers have more storage and energy resources than nodes at lower

tiers. Some of these constraints can be added in a straightforward manner to the above

optimization problem.

For a monotonically decreasing user-specified aging function, qdiff needs to be evalu-

ated only at a few points (as shown in Figure 6). The points corresponds to the ages, Agei,

for each of the summaries in the network. As can be seen, the value of qdiff at all other

points is greater than or equal to the value at these points.

The minima of a maxima in Equation 4 can be easily linearized by introducing a new

parameter µ

Min0≤i≤n {µ} (6)

qdiff(Agei) ≤ µ ∀ i (7)

The complexity of the resulting optimization procedure depends on the form of the user-

specified aging function, f(t). For instance, if f(t) is a linear function of time, the opti-

mization can be solved using a standard linear solver such as lp solve.

5.6 Choosing an Aging Strategy

The constraint-optimization problem presented in Section 5.1 is straightforward to solve

when all parameters are known. This brings up an important question: How does one
design an aging strategy with limited a priori information?

Figure 7 shows different options that might be possible depending on the availability of

prior datasets for the application. In traditional wired sensor networks, the entire dataset

would be available centrally, and could potentially be used to construct an optimal aging

strategy using the above-mentioned constraint-optimization procedure1.

1The size of the dataset and the latency in estimating parameters using the entire dataset could preclude optimal
aging even in a wired instance of the problem.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 17

High

Low

Optimization on

entire dataset

Optimization on

Online training

Greedy

heuristic

training dataset

Full

E
x
p
ec

te
d
 q

u
er

y
 a

cc
u
ra

cy

Information available prior to deployment

NonePartial

Fig. 7. Aging algorithms that operate on different levels of a priori information.

Distributed scenarios such as wireless sensor networks have to operate with less infor-

mation due to the overhead of centralized data collection. In some scientific applications, a

data gathering phase might precede full-fledged deployment (e.g.: James Reserve [Hamil-

ton]), potentially providing training datasets. In other cases, there might be available data

from previous wired deployments (e.g.: Seismic Monitoring [Kohler]). These datasets

can be used to train sensor calibration, signal processing and in our case, aging, parame-

ters prior to deployment. The usefulness of a training procedure depends greatly on how

well the training set represents the raw data for the algorithm being evaluated. For instance,

if the environment at deployment has deviated considerably from its state during the train-

ing period, these parameters will not be effective. Ultimately, a training procedure should

be on-line to continuously adapt to operating conditions.

Systems, sometimes, have to be deployed without training data and with little prior

knowledge of operating conditions. For instance, [Intanagonwiwat et al. 2000] describes

sensor network deployments in remote locations such as forests. In the absence of training

datasets, we will have to design data-independent heuristics to age summaries for long-

term deployment.

We design algorithms for aging in two cases: with training data and without training

data. For the case when prior datasets are available, we use the optimization problem

to compute aging parameters, both for a baseline, omniscient scheme that uses full in-

formation, and for a training-based scheme that operates on a limited training set. For

deployments where no prior data is available, we describe a greedy aging strategy.

5.6.1 Omniscient Algorithm. An omniscient scheme operates on the entire dataset,

and thus, has full knowledge of the query error obtained by drilling down to different

levels of the hierarchy. The scheme, then, computes the aging strategy by solving the

optimization function, presented in Section 5.1, for each query type. The pseudo-code

for such a scheme is shown in Algorithm 1. Omniscience comes at a cost that makes

it impractical for deployment for two reasons: (a) it uses full global knowledge, which

in a distributed sensor network is clearly impossible, and (b) it determines optimal aging

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

18 ·
Level (i) Rate from level i to

level i + 1 (ri)
Storage required per-
epoch for data at level
i (4ri)

si (with greedy algo-
rithm β = 1)

Agei

Raw 1024 1024 0 0

0 (finest) 64 256 256 4

1 (finer) 16 64 128 32

2 (coarsest) 8 32 128 256

Table III. Example of a greedy algorithm for a 16 node network

parameters for each query separately, whereas in practice, a choice of aging parameters

would need to satisfy all possible queries together.

Algorithm 1 Omniscient Algorithm Pseudocode

for Each query in Q in set of QueryTypes do

qi = Query accuracy for Q obtained from entire dataset

Solve constraint-optimization in Section 5.1

end for

5.6.2 Training-based Algorithm. The training scheme differs from the omniscient scheme

in two ways: (a) data corresponding to a brief training period is chosen for determining ag-

ing parameters, rather than the entire dataset, and (b) a single choice of aging parameters

is determined for all query types being studied.

Ideally, the choice of a training period should be such that the parameters extracted from

training set is typical of the data that is sensed during system deployment. Often, however,

practical limitations such as deployment conditions, storage, communication bandwidth

and personnel limit the amount of training data.

Unlike the omniscient idealized algorithm, the training scheme cannot choose aging

parameters per-query. In a practical deployment, a single allocation scheme would be

required to perform well for a variety of queries. Therefore, the training scheme uses

the error for different queries to compute a weighted cumulative error metric as shown

in Algorithm 2. The cumulative error can be fed to the optimization function to evaluate

aging parameters for different summaries.

Algorithm 2 Training Algorithm Pseudocode

Require: : Q: Set of all query types

Require: wi: Weight for query type i
Require: Ei: Error for query type i from the training set

/* Evaluate weighted cumulative error over all query types */

qi =
P

i∈Q
wiEi

|Q|

Solve constraint-optimization in Section 5.1

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 19

2 1 0 2 1 2 2

First Pass Second Pass Pass
Third

Pass
Fourth

Local Storage Capacity = 512 units

Fig. 8. Local Resource Allocation using

the Greedy Algorithm. 4 coarsest, 2 finer,

and 1 finest summaries are allocated

1 1

2222 22

past present

Time

coarsest

finest

Resolution
level

...512 epochs

64 epochs

0 epochs

Fig. 9. Resource allocation where very

long-term storage is achieved but low

query accuracy is obtained old data.

0

1 1

222

1

2

1

0

presentpast

Time

...

finest

coarsest

Resolution
level

...

...4 epoch

256 epochs

32 epochs

Fig. 10. Resource allocation scheme

where medium-term storage is achieved

with medium accuracy for queries over

old data.

00

past present

Time

Resolution
level0 epochs

0 epochs coarsest

finest...8 epochs

Fig. 11. Resource allocation scheme

where short-term storage is achieved with

high accuracy over old data.

5.6.3 Greedy Algorithm. We now describe a simple greedy procedure that can be used

in the absence of prior datasets. The greedy procedure assigns weights to summaries ac-

cording to a measure of expected importance of each resolution towards drill-down queries,

represented by the parameter resolution bias (β). Algorithm 3 shows the greedy allocation

procedure: when available storage is larger than the size of the smallest summary, the

scheme tries to allocate summaries starting with the coarsest one. The ratio of the coars-

est summaries to summaries that are i levels finer are βi. For instance, in a three-level

hierarchy (Table III), a resolution bias of two means that for every coarse summary that is

stored, two of finer, and four of the finest summaries are attempted to be allocated. The

resolution bias parameter is used to control how gradually we would like the step function

(in Figure 5) to decay.

The greedy allocation procedure specifies how the per-node parameters si are deter-

mined for each resolution level i. The networked age of each summary is determined from

si using Equation 3. For instance, consider a greedy allocation with resolution bias of 1 in

a 64-node network with parameters provided in Table III. There are three levels in such a

hierarchy, with every node storing raw data, 16 clusterheads at level 1 storing summaries

transmitted from 64 clusterheads at level 0, 4 at level 2 storing summaries from 16 level

1 clusterheads, and 1 clusterhead at level 3 storing summaries from 4 clusterheads at level

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

20 ·
Algorithm 3 Greedy Algorithm Pseudocode

Require: N : number of nodes in the network

Require: k: number of levels

Require: ri: the size of a summary at level i
Require: wi: Weight for query type i

while at least the smallest summary can fit into the remaining storage space do

Assign Summaries starting from the coarsest

for level i = k down to 1 do

if storage is available then

allocate βk−i summaries of level i
end if

end for

end while

2. Consider an instance where the local storage capacity is 512 units and the sizes of each

summary are as shown in Table III. The greedy allocation scheme allocates summaries

starting with the coarsest level as shown in Figure 8. Note that storage is allocated in units

of 4ri since there are four clusterheads at level i sending data to each i + 1 clusterhead. In

the first pass, one of each summary except raw data is allocated, in the second, one coarsest

and one finer summary is allocated, and in the third and fourth, one coarsest summary is

allocated. Thus, a total of 128 bytes for coarsest, 128 bytes for finer, and 256 bytes for

finest summary are allocated at each node. The age of summaries at various levels can be

computed using the parameters provided in Table III on Equation 3. For instance, Age0 is
40s0

r0

= 256
64 = 4 epochs.

The resulting aging sequence is shown in Figure 10. The resulting allocation favors the

coarsest summary more than the finer ones. Thus, the network supports long-term querying

(256 epochs), but with higher error for queries that delve into older data. Raw data is

aged very quickly, therefore, queries after four epochs will be unable to query raw data.

Similarly, other allocations can be considered under the same resource limitations. Figure 9

shows an allocation that balances favors duration over detail, whereas the allocation in

Figure 11 favors detail over duration.

6. EXPERIMENTAL EVALUATION

In this section, we describe the implementation of long-term storage and aging on a linux-

based network emulation platform, Emstar ([Girod et al. 2004]). Since available dense

wireless sensor network datasets lack sufficient temporal and spatial richness, we chose a

geo-spatial precipitation dataset [Widmann and C.Bretherton] for our performance studies.

The dataset provides daily precipitation for the Pacific Northwest from 1949 to 1994, with

50km resolution. It comprises a 15 x 12 grid of daily precipitation data for forty five years,

where adjacent grid points are 50 kilometers apart.

Some features of the dataset were interesting from a system performance evaluation

perspective. First, the dataset involved a reasonably long time-history, which would be

useful for analyzing a data summarization algorithm. In addition, since precipitation is

likely to have annual cycles, many years of data would provide us with sufficient temporal

redundancy to test our data summarization techniques thoroughly. Second, the data had

a reasonable spatial scale (15x12) which would enable us to explore both processing and

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 21

Wavelet Codec

1D

3D
Quad Tree

Distributed
Sensor Data

Local

level N level N−1 ...

Circular Buffer Per Level

Local Storage

Fig. 12. Implementation Block Diagram

querying techniques over a spatial area. Finally, many different queries could be evaluated

over the dataset due to its spatial and temporal richness. This includes temporal queries

such as averages, maxima and minima, as well as spatial queries such as edges. Thus,

while both the spatial and temporal sampling are much lower than what we would expect

in a typical sensor network deployment, this dataset has edges and exhibits spatio-temporal

correlations, both of which are useful to understand and evaluate our algorithms. In all

our experiments, we replayed this dataset. While such geo-spatial datasets are readily

available, further research has to be done to understand if such datasets are representative

of sensor datasets such as at James Reserve ([Hamilton]).

6.1 Ipaq Wavelet Codec Implementation

The wavelet codec software is based on a high-performance transform-based image codec

for gray-scale images (freeware written by Geoff Davis ([Davis]). We extended this coder

to perform 3D wavelet decomposition to suit our application. For our experiments, we

use a 9/7 wavelet filter, uniform quantizer, arithmetic coder and near-optimal bit allocator.

The 9/7 filter is one of the best known for wavelet compression, and especially for images.

While the suitability of different filters to sensor data requires further study, this gives us a

reliable initial choice of wavelet filter.

Since the spatial scale of the dataset is 15x12, it is not feasible to use wavelet processing

along the spatial axis. In practice, a grid of size, at least 32x32 would be required before

spatial wavelet processing can be expected to be effective. For the given dataset, therefore,

multi-resolution datasets were constructed by repeated temporal processing.

Communication overhead over a multi-resolution hierarchy is governed by the rates, ri,

that are determined as shown in Equation 1. We do not address the problem of finding the

optimal ri for a given dataset. Our objective is to choose a representative set of parameters

that determine the communication overhead, i.e., the compression ratios at each level, ci,

and the amount of data per epoch, γ, such that the rates, ri increase slowly with the level

of the hierarchy.

We select the parameters as follows:

—γ = 3epochs ∗ 365samples/epoch ∗ 2bytes/sample = 2190bytes. To construct sum-

maries, we used an epoch of three years i.e., the summary construction process repeats

every three years. The choice of a large time-period was due to the temporal infrequency

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

22 ·

Quantization
RLE

Encoder
Huffman
Encoder

RLE

Decoder
Transmission
over the air

Filter 3D Array
Reconstructed

Huffman
Decoder

Decoding at Level i+1 clusterheadCoding at Level i clusterhead

3D DWT

Cost Metric:
Number of Zeros

Summaries from
Level (i−1)

Combine Data into
3D Array

X

Y

Time

Fig. 13. Codec for the Ipaq

Hierarchy level
(i)

Num Cluster-
heads (Nc)

Compression
Ratio

Rate (ri) Total
Data
(Ncri)

Raw 180 1 2190 (γ) 394.2K

0 to 1 180 5.97 367.1 66.08K

1 to 2 48 11.91 689.1 33.08K

2 to 3 12 23.46 1400.1 16.8K

3 to 4 4 50.9 2933.5 11.73K

Table IV. Communication Rate per Level

of samples. Each node in the network would have 1095 samples to process every three

years, enough to offer reasonable temporal compression benefit. In a typical deploy-

ment, where nodes generate more data, the epoch would be much shorter.

—c0 : c1 : c2 : c3 = 6 : 12 : 24 : 48. Compression ratios should be chosen such

that the exponential effect of aggregating data is mitigated. Our choice of compression

parameters has two features that mitigate the increase in data, (a) temporal compression

ratio of 6 means that approximately 367 bytes are communicated by each node at level 0,

instead of 2190 bytes, and (b) the compression ratios increase by a factor of two instead

of four (in Equation 1), thus, data implosion towards the root is less severe.

The total communication overhead for summaries at each level is shown in Table IV.

The first row (Raw data) corresponds to uncommunicated data. The results from the

codec were within 4% the input compression parameters. The standard deviation results

from the fact that the dimensions of the grid are not perfectly dyadic (power of two) and

therefore, some clusterheads aggregate more data than others.

6.2 Drill-down Query Performance

We use the summarized data constructed by wavelet compression to evaluate the perfor-

mance of drill-down queries.

6.2.1 Query Types. Our implementation considers four types of queries (shown in Ta-

ble V) that involve different extents of spatio-temporal processing that evaluate both ad-

vantages and limitations of wavelet compression. These queries can be classified into

different categories corresponding to the spatial and temporal scales that they process as

shown in Figure 14. The GlobalYearlyEdge and LocalYearlyMean queries explore features

for which wavelet processing is typically well suited. The Max queries (GlobalDailyMax,

GlobalYearlyMax) looks at the Max values at different temporal scales. The GlobalYear-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 23

Type Query
GlobalDailyMax What is the maximum daily precipitation for year X?

GlobalYearlyMax What is the maximum annual precipitation for year X?

LocalYearlyMean What is the mean annual precipitation for year X at location Y?

GlobalYearlyEdge Find nodes along the boundary between low and high precipitation areas for year X

Table V. Spatio-temporal queries posed on Precipitation Dataset

S
p

at
ia

l
S

ca
le

YearlyMax
DailyMax’

Edge

PerNodeMean

Temporal Scale

YearlyDaily

S
in

g
le

 N
o
d
e

A
ll

 N
o
d
es

Not evaluated

Fig. 14. Classification of Spatio-temporal Queries

lyMax query looks at the maximum yearly precipitation in the entire network, while the

GlobalDailyMax queries for the daily global maximum.

Both the LocalYearlyMean query and the two Max queries are processed as regular drill-

down queries. The query is processed on the coarsest summary to compute the quadrant

to drill-down, and is forwarded to the clusterhead for the quadrant. The GlobalYearlyEdge

query tries to find nodes in the network through which an edge passes, and involves a more

complex drill-down sequence. This query is first processed by the highest-level cluster-

head, which has a summary covering the spatial extent of the entire network. The cluster-

head uses a standard canny edge detector to determine the edge in its stored summary, and

fills a bitmap with the edge map. The query and the edge bitmap are then forwarded to all

quadrants that the edge passes through. The cluster-heads for these quadrants run a canny

detector on their data, and update the edge bitmap with a more exact version of the edge.

The drill-down stops when no edge is visible, and the edge bitmap is passed back up, and

combined to obtain the answer to the query.

6.2.2 Query Performance. We now evaluate the performance of drill-down queries

over the multi-resolution dataset constructed as described above. Our goal in this section

is to demonstrate the search features of the system and prove our claim that multi-resolution

storage can be useful for a broad variety of queries.

To evaluate performance, each of the queries shown in Table V was posed over the

dataset. For yearly queries (GlobalYearlyEdge and and GlobalYearlyMax), there were 45

instances each, since there are 45 years of data. For the GlobalDailyMax query, the results

are averaged over 16801 instances (one for each day), and for GlobalYearlyMean, the

queries were averaged over 8100 queries (180 nodes x 45 years).

The query accuracy for a drill-down query that terminates at level i (qi) is measured as

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

24 ·

Fig. 15. Query error decreases as they drill-down to lower levels of hierarchy. Summaries at lower levels typically

contribute less to reducing query error than higher level summaries.

the fraction error i.e., the difference of the measured drill-down result and the real result

over raw data over the real result (measured - real/real). Figure 15 shows the variation of

query quality for queries defined in Table V for different levels of drill-down.

Performance for LocalYearlyMean, GlobalYearlyMax and LocalDailyMax queries are

very similar, as shown in Figure 15. All of them have an error of 40-50% if only the

coarsest (level 4) summaries are queries, but reduce rapidly when the drill-down proceeds

to the lowest level. Even one or two levels of drill-down significantly improve error, for

instance, querying level 3 in addition to level 4 reduces error to under 20%, and querying

level 2 as well reduces error to less than 5%.

For the GlobalYearlyEdge query, we measure error as the fraction of nodes missed from

the real edge. This query exhibits a different trend from other queries, with lower error by

querying the coarsest level, and less benefit due to further drill-downs. Thus, in Figure 15,

the error is 15% when only the coarsest (level 4) summaries are queried. The error reduces

to 11% with an additional level of drilldown, however, further drill-downs do not improve

the result. This trend is consistent with what one would expect for edge detection, the edge

is more visible in a lower resolution (and consequently, higher level) view, and becomes

more difficult to observe at lower levels of the hierarchy. In a larger network, with more

levels, improvement might be observed using drill-down. Additionally, a more relaxed

definition of query error can be considered, for instance, only nodes that are not nearest

neighbors of the real edge are considered erroneous. The edge error is seen to be less than

2% with such a definition.

The communication overhead of in-network processing of these queries is extremely

low as well. Even with false positives, the total query overhead of a GlobalYearlyEdge

query is less than 10% of the network. Other drill-down queries such as GlobalYearlyMax

and LocalDailyMax drill-down query only around 5% of the network. This performance

results from hierarchical processing of queries, and for many queries that require a single

answer (mean,max,min), the overhead is only O(log4N) (one branch probed per level),

i.e., only around 5% of the network is queried for the result.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 25

Level
till
which
drilled
down

GlobalYearlyMax GlobalDailyMax LocalYearlyMean GlobalYearlyEdge Cumulative
Training
Error

Omniscient Training Omniscient Training Omniscient Training Omniscient Training
1 1.6% 1.2% 3.2% 6.6% 1.0% 1.0% 11.2% 7.5% 5.4%

2 5.5% 5.0% 7.2% 8.9% 5.9% 6.1% 11.2% 7.5% 9.2%

3 16.9% 12.2% 17.6% 12.9% 20.9% 21.0% 11.2% 7.5% 17.9%

4 38.6% 32.2% 40.8% 30.4% 48.4% 49.8% 15.6% 7.5% 39.9%

Table VI. Comparing the error in Omniscient (entire) Dataset vs Training (first 6 years)

Dataset

These results demonstrate a key advantage of multi-resolution storage. While there is an

initial overhead of communicating summaries, this overhead can be amortized over many

queries posed by the users.

6.3 Aging Performance Evaluation

In this study, we consider linear aging functions of the form,

f(t) = 1− αt (8)

The parameter α can be varied depending on the rate at which the user would like the

aging function to decay. A large α would generate a rapidly decaying aging function.

As shown in the previous section, different summaries contribute differently to the over-

all query quality, with the top-level summary contributing maximum. For instance, in the

case of the GlobalDailyMax query, query error reduces by 50% by storing only the level 4

summary. Adding an additional level of summaries decreases error by 15%, and so on till

storing raw data results in 0% error. This trend motivates the aging problem, which allo-

cates storage to different summaries based on their marginal benefit to query processing,

and their storage utilization. In this section, we will look at the impact of aging summaries

based on their relative importance. Since raw data adds little to the overall query result

(Figure 15), we will assume that nodes store only summaries at various levels and not raw

data.

The parameter, α, in Equation 8 is varied between 0.01 and 0.002, and determines

whether the user would like a fast decay of query accuracy over time, or a slower decay.

We evaluate the three aging schemes, using the globally omniscient scheme as a baseline

to compare the more practical training-based and greedy schemes. In this comparison, we

increase the amount of local storage allocated to each node in the network from 0KB to

100KB, in steps of 4KB blocks. As with the previous section, our metric for error is qdiff

(Equation 4).

6.3.1 Omniscient Strategy: Establishing a Lower Bound for Query Error. The omni-

scient scheme uses the query error for each query on the entire dataset (Figure 15) to deter-

mine the optimal choice of aging parameters for each query type. As shown in Table VI,

the error from the coarsest summaries ranges from 30% to 50% for different queries. As

the local storage capacity increases, however, the optimal algorithm performs dramatically

better, until 0% error is achieved when all levels can be drilled down. This behavior is

also shown in Figure 16, which shows the performance of this scheme for the GlobalYear-

lyMax query on one instance of a user-specified linear aging function (α = 0.002). In

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

26 ·
α Omniscient Training Greedy

Duration

(β=0.5)

Balanced

(β=1)

Detail (β=2)

0.01 (fast) 13.6% 14.8% 20.6% 13.7% 13.9%

0.0033 15.0% 15.9% 25.3% 16.0% 16.0%

0.002 (slow) 18.2% 19.2% 28.6% 20.0% 26.1%

Table VII. Comparison of between omniscient, training and greedy schemes. Training is within 1% of the om-

niscient scheme. The greedy algorithm shows significant variability to the choice of β, however, the balanced
resolution bias performs within 2% of the omniscient scheme.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

F
ra

c
ti
o
n
 E

rr
o
r

(m
e
a
s
u
re

d
 -

 r
e
a
l)
/r

e
a
l

Local Storage Size (KB)

Omniscient
Training

Greedy - Detail
Greedy - Balanced
Greedy - Duration

Fig. 16. Comparison of Omniscient, Training and Greedy strategies for GlobalYearlyMax query(α = 0.002)

networks composed of nodes with low local storage capacities, the error is high since only

the coarsest summaries can be stored in the network .

6.3.2 Evaluating Training using Limited Information. In our evaluation, we use a

training period of two epochs of data (10% of total deployment time) to predict the query

accuracy for the entire dataset. Summaries are constructed over the training set, and all

queries in Table V are posed over these summaries. Ideally, the error obtained from the

training set would mirror error seen by the omniscient scheme.

How effectively does the the training dataset represent the entire dataset? Table VI shows

that the predicted error from the training set is typically within 5% of the query quality seen

by the omniscient scheme, but is almost 10% off in the worst case (GlobalDailyMax query

over level 4 summaries). Also, in the case of the GlobalYearlyEdge query, the error seen

from the training dataset is consistently off of the average result. Thus, the training set is

moderately representative of the entire dataset.

To compute the cumulative error using Algorithm 2, we use equal weights for all queries.

When usage statistics of sensor networks become available, application-specific weighting

schemes can be used. This cumulative error can be fed to the optimization function to

evaluate aging parameters for different summaries.

The first column in Table VII shows the difference between the performance of training

and the optimal schemes. These results are aggregate results over a range of storage sizes

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 27

(0 - 100KB) and query types (shown in Table V). Training performs exceedingly well, and

in fact is on average less than 1% worse than the optimal solution. These results are very

encouraging since it suggests that even with moderately representative training datasets,

very good performance can be observed.

Having seen the aggregate result, we look at a single run in Figure 16, that shows how

the performance varies as the amount of storage allocated to a node is increased. Fig-

ure 16 shows the result of such a resource allocation for the GlobalYearlyMax query. As

expected, increasing the storage size reduces error for all schemes. Notably, the training

curve follows the omniscient storage allocation curve very closely (almost indistinguish-

ably). Similar results were obtained for other queries as well.

6.3.3 Greedy Algorithm. We use three settings for resolution bias (β), a low resolution

bias (β = 0.5), that favors duration over detail, a medium bias (β = 1), that balances
both duration and detail, and a high bias (β = 2), that favors detail over duration.

As seen in Table VII, varying the settings of resolution bias for the greedy heuristic

significantly changes the performance of the greedy heuristic. When α is large, the user-

specified aging function has a steep slope. In this case, a low resolution bias (duration)

performs poorly since it prefers coarser summaries much more than finer ones. In contrast,

when α is small and the user-specified aging function has a gradual slope, a high resolution

bias (detail) performs exceedingly bad, since allocates more storage to finer summaries,

thereby reducing duration. In both cases, the balanced summary assignment performs

well, and has a worst-case performance of around 5% in comparison with the omniscient

scheme, and 4% in comparison with the training scheme.

This result can be understood by looking at the relationship between resolution bias,

β, and the slope of the user-specified aging function, α. A low value of resolution bias

(duration) results in more storage being apportioned to coarser summaries, thus biasing

towards very long duration, but low accuracy. The maximum user error (max(qdiff))is

observed for queries that look at recent data, where the user expects high accuracy, but the

system can only provide coarse summaries. Thus, such an allocation performs well when

the user-specified aging function requires very long duration storage (eg: α = 0.002),

but badly for short duration storage (eg: alpha = 0.05). In contrast, a higher value for

resolution bias (detail) allocates significant storage to finer summaries. The error is low for

queries on recent data, but the age of all summaries is limited as well. Queries on old data

will result in a large max(qdiff) because summaries will be unavailable in the network for

old data. Thus, as we vary the resolution bias, β between these extremes, we get different

results from the greedy algorithm. An ideal choice of β is seen to be β = 1 (balanced),

which lies between these extremes, and results in more gradual aging of summaries.

This hypothesis also explains Figure 16. For a user-specified aging function that favors

duration (α = 0.002), the greedy algorithm with detail bias consistently has high error,

whereas balanced and duration bias perform significantly better.

7. USAGE MODEL: PROGRESSIVE LOSSY DATA COLLECTION

Having described the DIMENSIONS system and its implementation for Linux-based nodes,

we describe one of the usage models outlined in Section 4.5 - progressively lossy data

collection. Many existing deployments for sensor networks have been deployed for data

collection since they enable collection of previously unavailable fine-grained datasets for

many different scientific disciplines. In this section, we describe how a subset of the archi-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

28 ·

Vibration Radio

Threshold−based
Event detection

Flash Storage
File System

 Decomposition

Quantization
Encoding

BitStream

EEPROM
Sensor

Event Storage Manager

Progressive Data Collect Application

Wavelet Run−length

Real−time Wavelet

Thresholding

Fig. 17. Component Diagram of Mote implementation

tecture that we described can be used to enable scalable data collection in sensor networks.

The implementation was done over motes as part of the Wisden [Xu et al. 2004] system.

Wisden is a wireless sensor network system for structural-response data acquisition. The

system continuously collects structural response data from a multi-hop network of sensor

nodes, and displays and stores the data at a base station. Wisden can be thought of as

a first-generation wireless structural monitoring system; it incorporates some in-network

processing, but later systems will move more processing into the network once the pre-

cise structural monitoring applications are better understood. In being essentially a data

collection system, the system resembles other early sensor networks such as those being

deployed for habitat monitoring [Hamilton ; Mainwaring et al. 2002].

While the architecture of Wisden is simple—a base station centrally collecting data—its

design is a bit more challenging than that of other sensor networks built till date. Structural

response data is generated at higher data rates than most sensing applications (typically,

structures are sampled upwards of 100 Hz). The relatively low radio bandwidths, the high

packet loss rates observed in many environments, and the resource constraints of existing

sensor platforms add significant challenges to the system design.

To address the latency of data acquisition, we have designed and implemented a pro-

gressive storage and transmission strategy on the motes. This approach uses local storage

on the motes as a in-network cache for raw data and transmits low-resolution compressed

summaries of data in near-real time. The user can visualize this summarized event data and

the raw data can be collected from the distributed caches when required. This on-demand

data collection has to occur within the time window before which data in the cache is re-

placed by newly generated samples. As we show below, such an approach can compress

vibration data by a factor of 20; when coupled with event detection, it can reduce the

acquisition latency to less than in a minute in many cases.

7.1 Wavelet Codec Internals

We use an optimized implementation for the motes due to memory and computation con-

straints. For this reason, many design choices that we make are simpler than other progres-

sive codecs such as JPEG2000. The component diagram of our implementation is shown

in Figure 17. We now describe the individual system components in more detail.

Integer-Integer Wavelet decomposition: Our implementation uses the bi-orthogonal

Cohen-Daubechies-Feauveau (2,2) (CDF(2,2)) integer wavelet lifting transform that relies

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 29

solely on integer addition and bit shifting operations. Wavelet lifting involves two steps:

(a) a prediction step when the odd values of the time-series are predicted from the even

values, and (b) an update step when the even values are updated to capture the error in the

prediction step. The predict and update operations for the CDF(2,2) lifting transform are:

di ← di −
1

2
(si + si+1)

si ← si −
1

4
(−di−1 − di)

The choice of the above lifting transform over other kernels was based on two factors:

computation overhead and compression performance. Using longer wavelet filters involves

more computation overhead but does not provide significant compression improvement

over the chosen filter, at least for the building vibration dataset that we studied ([Kang

et al.]).

While the lifting transform itself is very efficient, normalization of coefficients at var-

ious subbands involves floating point operations. The normalization coefficients for the

CDF(2,2) transform are:

nH =
√

2 (9)

nL =
1√
2

where nH is the higher frequency subband and nL is the lower frequency subband. We per-

form the normalization operations during the wavelet thresholding step rather than during

wavelet decomposition to be more computationally efficient.

The wavelet codec operates on buffers of length 2n, where n is a positive integer. To

avoid blocking artifacts at the buffer boundaries, we pad each buffer with a few samples at

either end.

Quantization: Quantization involves representing a range of values in a signal by a sin-

gle value. This reduces the number of symbols that are required to represent a signal, and

hence makes the signal more compressible. We implemented a simple uniform quantizer

that can be used to reduce the resolution of data depending on the range of the signal and

the number of bits allocated to each sample.

Signal Thresholding: Thresholding is a technique used to modify the wavelet decom-

posed signal such that the resulting signal contains long sequences of zeros that can be

efficiently compressed by an entropy coding scheme. We use a hard thresholding scheme

in which if the absolute value of any wavelet falls below the threshold, it is set to zero. We

maintain a probability density function (pdf) of the signal to facilitate the selection of an

appropriate threshold. The user specifies what percentage of the signal need to be zeros in

the lossy version, and the pdf can be used to determine the appropriate threshold.

The thresholds for different subbands are normalized using the coefficients shown in

Equation 9. This operation needs to be done only once, hence, it reduces the computation

requirements of normalizing the signal.

Run-length encoding: Wavelet decomposition, quantization and thresholding process

the signal to make it more amenable for compression by an entropy coding scheme, but no

compression has yet occurred. An entropy coding scheme is typically designed such that

the symbols that occur most frequently use the least amount of bits. Run length coding

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

30 ·
is the simplest of such schemes that exploits runs of a particular value in the signal. This

scheme was preferred over other encoding schemes such as Huffman or Arithmetic coding

due to its simplicity of implementation, a necessary requirement for Mote-based software.

BitStream: The run-length encoded signal is a series of symbols of different lengths

depending on the number of bits used in quantization and the lengths of the special symbols

used in the run length encoding process. A bitstream module is used to pack these variable

length symbols into the data segment of a TinyOS message packet. Each time the data

segment of a packet is filled up, it can be scheduled for transmission to the base station.

7.1.1 Operation Description. The progressive transmission operation involves three

steps: event detection, local data storage, and progressive coding. An event detection

scheme (discussed in detail in [Xu et al. 2004]) runs continually, and triggers when an event

is detected. The event signal then undergoes wavelet decomposition, and the decomposed

signal is written to the persistent external flash memory on the mote. Until this point, no

compression has occurred, hence, the lossless event data is available on flash.

A separate periodic task reads the flash memory and compresses the signal using the

five step process described in Section 7.1, after which it transmits the bitstream to the

base-station. The choice of signal threshold and number of quantization bins is assumed to

be determined by a priori analyis of training data to obtain maximum compression benefit

within the specified error bounds.

A user at the base-station can analyze the low-resolution signal in real-time and request

either the raw data or additional detail in the signal. Since the raw data is stored on flash,

the difference between the previously transmitted resolution and the requested resolution

is coded by the steps described in Section 7.1 and transmitted to the base-station. This

progressive transmission procedure should be completed before the data on flash is over-

written by future events.

This implementation is currently not integrated into the rest of our system due to the

need for significant memory optimization.

Computation

Time

Memory

Utilization

Wavelet Decomposition

and Flash Storage

6.44ms 288bytes

Uniform Quantizer 0.32ms 7bytes

Run-length Encoder 6.30ms 20bytes

Table VIII. Performance of 128-sample 4-level transform

7.2 Performance Evaluation

We evaluate the performance of our system on three fronts: (a) the applicability of wavelet

compression to structural vibration sensor data, (b) the computation and memory overhead

of doing the wavelet compression in real-time on a mote, and (c) the compression gain by

using our scheme, which translates to the latency of data acquisition. We used data from

shaker table tests at CUREE-Kajima [Kang et al.].

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

25

30

35

40

Normalized Frequency (xπ rad/sample)

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 (

d
B

/
ra

d
/s

a
m

p
le

)

π

Fig. 18. Periodogram of the Power Spectral Density estimate of the structural vibration event. Energy is concen-

trated in the low-frequency bands, making the use of wavelet compression ideal.

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Number of Bits Per Sample

Fig. 19. Compression Ratios

2 3 4 5 6 7
2

3

4

5

6

7

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

(R
M

S
)

Number of Bits Per Sample

Fig. 20. Root Mean Square Error

7.2.1 Applicability of Wavelet Processing. Our progressive transmission strategy for

vibration data uses wavelet compression. The applicability of wavelet techniques follows

from characteristics of large structures, whose frequency response is usually focused in

the low-frequency components [Vetterli and Kovacevic 1995]. Figure 18, which shows the

power spectral density of a real vibration signal collected as part of the CUREE-KAJIMA

project. It illustrates quite clearly that low-frequency components dominate the power

spectral density, motivating the use of wavelet-based data processing.

7.2.2 Computation and Memory Requirements. Table VIII shows the computation and

memory requirements of the core components of our compression system. The computa-

tion time is low, and enables us to perform the entire operation in real-time. We were able

to perform sensor data sampling, 128 sample CDF(2,2) wavelet lifting transform as well as

writing the decomposed buffer to the EEPROM for sampling rates upto 250Hz. As can be

seen in Table VIII, the memory requirements are low as well, making it easier to integrate

with other components of the system.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

32 ·
7.2.3 Compression and Error Performance. The compression and error results from

using such a scheme are shown in Figure 19 and Figure 20 respectively. Both graphs use

a threshold that sets 80% of the decomposed signal to zero. The trends of both graphs

are as expected; as the number of quantization bits increases, both the compression ratio

and the RMS error reduce. One sweet spot that emerges from these two graphs is a 4-bit

quantization scheme. This choice gives us about 20-fold reduction in data size with very

low RMS error of 3.1. The peak-to-peak signal to noise ratio (PSNR) for the above choice

of parameters is 30dB.

These results are very promising are indicate that such an approach can be used to allow

near real-time structural data acquisition from tens of sensors.

8. FUTURE RESEARCH PROBLEMS

Having discussed distributed data storage and aging, we point to some interesting potential

research directions with distributed storage. There are many aspects of distributed storage

that need to be addressed.

8.1 Building Long-term Data Archival Systems

Many current sensor network deployment are data collection-based ([Hamilton ; Mainwar-

ing et al. 2002]) as they collect data for scientists to provide more datasets for analysis.

As sensor network deployments become more commonplace, we believe that the need to

optimize for lifetime of such networks will result in a shift towards distributed storage and

querying systems.

Long-term data archival systems for sensor networks will need new tools. First, dis-

tributed storage and search techniques need to be adapted to heterogeneous sensor net-

works with different sensor modalities and nodes with different storage and processing

constraints. Systems approaches for such heterogeneous networks will require careful

splitting of processing and storage functionality. However, we believe that multi-resolution

techniques are well-suited to such networks due to its ability to adapt the compression ratio

to the resource-constraints on different devices. Second, much of the focus in the sensor

network community has been about optimizing the power-constrained network rather than

integrating it to a wide-area system. Eventually, sensor networks will form the edges of a

larger wide-area network. Thus, an interesting question is how to build a wide-area query-

ing system where data is archived at the edges.

8.2 Coping with Irregular Spatio-Temporal Sampling

A central issue that impacts our data storage system is the impact of irregular sampling on

many different aspects of sensor network design. A large class sensor network deployments

will have irregular spatial configurations for two fundamental reasons: (a) the phenonmena

of interest are not uniformly distributed and the deployment of sensor resources will be

variable in order to achieve denser sensing where there is greater spatial variability (e.g.,

on the edge of biological regions), and (b) terrain and other deployment practicalities bias

deployment locations to where necessary power sources, communication or access can

be achieved. For instance, in environmental monitoring networks such as that shown in

Figure 8.2, node placement is irregular.

Irregular deployments impacts the design and performance of our system. Consider a

2-dimensional grid of sensor data where samples are taken in a non-uniform manner. A

naive scheme would be to assume that the samples were regular and perform the wavelet

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 33

Fig. 21. Micro-climate monitoring sensor network de-

ployment at James Reserve: Node placement is irregular,

with the lower left being more densely deployed than the

rest of the network

1.5 2 2.5 3 3.5 4 4.5 5 5.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
DAILY MAX: Error VS Drilldown Level

DrillDown Level

F
ra

c
ti
o
n
 E

rr
o
r

(O
b
ta

in
e
d
 V

a
lu

e
/G

ro
u
n
d
 T

ru
th

)

Fig. 22. Drill-down Daily MAX query performs quite

well in an irregular setting.

compression accordingly. However, this creates numerous artifacts, and can distort the

original data greatly since spatial correlation is not correctly captured.

Irregular spatial samples are routinely regularized in geo-spatial data processing since

analysis of irregular datasets is significantly more complex than that of regularly spaced

ones. This regularization procedure, called resampling, typically involves interpolation

and can be used to deal with irregularity. The cheapest interpolation scheme for distributed

sensor data is nearest neighbor, which assigns the value of a resampled grid point to the

nearest known data sample. Such sampling can be done in a distributed and inexpensive

manner by constructing the Voronoi cells corresponding to each sensor node. Ease of local-

ized construction of voronoi cells [Ganeriwal et al. 2003; Meguerdichian et al. 2001] makes

them particularly attractive as means to deal with irregularity. Higher degree polynomials

can be used to improve the precision of the interpolation, especially if node distribution is

highly skewed.

We combined nearest neighbor interpolation with DIMENSIONS to deal with highly

irregular topologies. Figure 22 shows the performance of a GlobalDailyMax query over

a highly irregular topology. While the performance trend is similar to the results in the

regular topology case, the quality of the drill-down solution does not always improve with

the level as one would expect. This can be attributed to artifacts in the interpolation scheme

caused due to the large extent of data irregularity. We hope to improve these results with

better interpolation and modeling.

9. CONCLUSIONS

As sensor networks start being deployed, the question of data storage and querying will be-

come increasingly important. A closely related technological trend that demonstrates this

importance is RFIDs. Data management in RFIDs is quickly becoming a critical problem

as massive amounts of information being generated by these systems. Similarly, sensing

the physical world makes it essential to deal with the large volumes of data generated by

sensor networks. In-network storage and search in sensor networks is one of the main

aspects of data management and poses considerable challenges. In-network storage is nec-

essary for sensor networks because in power-limited systems, it is more efficient to store

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

34 ·
data locally than to transmit to a central location. Significant research challenges emerge

due to the need to optimize for resources, power, and the types of queries that are posed on

the data.

Ideally, a search and storage system for sensor networks should have the following prop-

erties: (a) low communication overhead, (b) efficient search for a broad range of queries,

and (c) long-term storage capability. In this paper, we present the design and evaluation

of DIMENSIONS, a system that constructs multi-resolution summaries and progressively

ages them to meet these goals. This system uses wavelet compression techniques to con-

struct summaries at different spatial resolutions, that can be queried efficiently using drill-

down techniques. We demonstrate the generality of our system by demonstrating the query

accuracy for a variety of queries on a precipitation sensor dataset. Our proposal for pro-

gressive aging includes schemes that are applicable to a spectrum of application deploy-

ment conditions: a training algorithm where training sets can be obtained, and a greedy

algorithm for others. A comparison shows that both the training and greedy scheme per-

form within 2% of an optimal scheme. While the training scheme performs better than

the greedy scheme in practice, the latter performs within 1% of training for an appropriate

choice of aging parameters.

REFERENCES

CERPA, A. AND ESTRIN, D. 2002. Ascent: Adaptive self-configuring sEnsor networks topologies. In Proceed-
ings of the IEEE Infocom. IEEE, New York, NY.

CHAKRABARTI, K., GAROFALAKIS, M., RASTOGI, R., AND SHIM, K. 2001. Approximate query processing

using wavelets. VLDB Journal: Very Large Data Bases 10, 2–3, 199–223.

DAVIS, G. Wavelet Image Compression Kit.

ET AL, A. C. 2001. Habitat monitoring: Application driver for wireless communications technology. In Proceed-
ings of the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean.

GANERIWAL, S., HAN, C.-C., AND SRIVASTAVA, M. B. 2003. Going beyond nodal aggregates : Spatial average

of a continuous physical process in sensor networks. In Poster in Sensys 2003. to appear.

GANESAN, D., ESTRIN, D., AND HEIDEMANN, J. 2002. Dimensions: Why do we need a new data handling

architecture for sensor networks? In First Workshop on Hot Topics in Networks (Hotnets-I). Vol. 1.

GANESAN, D., GREENSTEIN, B., PERELYUBSKIY, D., ESTRIN, D., AND HEIDEMANN, J. 2003. Multi-

resolution storage in sensor networks. In Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys).

GIROD, L., STATHOPOULOS, T., RAMANATHAN, N., ELSON, J., ESTRIN, D., OSTERWEIL, E., AND

SCHOELLHAMMER, T. 2004. A system for simulation, emulation, and deployment of heterogeneous sen-

sor networks. In Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems.

Baltimore, MD.

GREENSTEIN, B., ESTRIN, D., GOVINDAN, R., RATNASAMY, S., AND SHENKER, S. 2003. Difs: A distributed

index for features in sensor networks. Elsevier Journal of Ad Hoc Networks.

HAMILTON, M. James San Jacinto Mountains Reserve.

HELLERSTEIN, J., HONG, W., MADDEN, S., AND STANEK, K. 2003. Beyond average: Towards sophisticated

sensing with queries. In IPSN ’03. Vol. 1. Palo Alto, CA.

INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the Sixth Annual International Conference
on Mobile Computing and Networking. ACM Press, Boston, MA, 56–67.

KANG, T. H., RHA, C., AND WALLACE, J. W. Seismic performance assessment of flat plate floor systems.

CUREE-Kajima Joint Research Program.

KARP, B. AND KUNG, H. T. 2000. GPSR: greedy perimeter stateless routing for wireless networks. In Pro-
ceedings of Mobicom.

KOHLER, M. UCLA Factor Building.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 35

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-

SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale

persistent storage. In Proceedings of ACM ASPLOS. ACM.

LI, X., KIM, Y.-J., GOVINDAN, R., AND HONG, W. 2003. Multi-dimensional range queries in sensor networks.

In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems (SenSys). Vol. 1. to

appear.

MAINWARING, A., POLASTRE, J., SZEWCZYK, R., CULLER, D., AND ANDERSON., J. 2002. Wireless sensor

networks for habitat monitoring. In ACM International Workshop on Wireless Sensor Networks and Applica-
tions. Atlanta, GA.

MEGUERDICHIAN, S., KOUSHANFAR, F., POTKONJAK, M., AND SRIVASTAVA, M. 2001. Coverage Problems

in Wireless Ad-hoc Sensor Networks. In Proceedings of the IEEE Infocom.

RAO, R. M. AND BOPARDIKAR, A. S. 1998. Wavelet Transforms: Introduction to Theory and Applications.

Addison Wesley Publications.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A scalable content ad-

dressable network. In Proceedings of the 2001 ACM SIGCOMM Conference.

RATNASAMY, S., KARP, B., YIN, L., YU, F., ESTRIN, D., GOVINDAN, R., AND SHENKER, S. 2002. Ght -

a geographic hash-table for data-centric storage. In First ACM International Workshop on Wireless Sensor
Networks and their Applications.

ROWSTON, A. AND DRUSCHEL, P. 2001. Storage management and caching in past, a large-scale, persistent

peer-to-peer storage utility. In 18th ACM SOSP. Vol. 1. Lake Louise, Canada.

VETTERLI, M. AND KOVACEVIC, J. 1995. Wavelets and Subband coding. Prentice Hall, New Jersey.

VITTER, J. S., WANG, M., AND IYER, B. 1998. Data cube approximation and histograms via wavelets,. In

Proceedings of CIKM’98, D. Lomet, Ed. Washington D.C, 69–84.

WANG, W., YANG, J., AND MUNTZ, R. 1997. Sting: A statistical information grid approach to spatial data

mining. In Proceedings of the 23rd VLDB Conference. Vol. 1. Athens, Greece.

WIDMANN, M. AND C.BRETHERTON. 50 km resolution daily preciptation for the Pacific Northwest, 1949-94,

http://tao.atmos.washington.edu/data sets/widmann/.

XU, N., RANGAWALA, S., CHINTALAPUDI, K., GANESAN, D., BROAD, A., GOVINDAN, R., AND ESTRIN,

D. 2004. A wireless sensor network for structural monitoring. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys).

XU, Y., HEIDEMANN, J., AND ESTRIN, D. 2001. Geography-informed energy conservation for ad hoc routing.

In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom).
ACM, Rome, Italy, 70–84.

ZHAO, Y., GOVINDAN, R., AND ESTRIN, D. 2002. Residual energy scans for monitoring wireless sensor

networks. In Proceedings of the IEEE Wireless Communications and Networking Conference.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

