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Kiselyov, Oleg E., Multiresolutional/Fractal Compression of Still and 

Moving Pictures. Doctor of Philosophy (Computer Science), December, 

1993,134 pp., 3 tables, 51 illustrations, bibliography, 30 titles. 

The scope of the present dissertation is a deep lossy compression of 

still and moving grayscale pictures while maintaining their fidelity, with a 

specific goal of creating a working prototype of a software system for use in 

low bandwidth transmission of still satellite imagery and weather briefings 

with the best preservation of features considered important by the end user. 

Among the major results is a set of pyramidal compression algorithms 

with a loose wavelet basis specifically designed to reduce the entropy of the 

image representation as much as possible. Design principles are discussed 

and tradeoffs exposed. A number of examples of compressed and restored 

sample images are provided to demonstrate the quality of particular 

schemes. 

A modification of the wavelet transform is introduced that lets the 

user control the amount of distortion and compression for arbitrary specified 

image areas. A particular feature of this non-uniform compression scheme is 

a seamless and smooth incorporation of almost non-distorted information 

into broader context of large-scale features. Examples are provided. 

A regularized discrete derivative of an image is developed which 

effectively removes the local background and the fine-scale noise. 

Therefore, it may be used for localizing image patterns regardless of the 

lighting conditions, etc. 



A discovery of the property of self-similarity of the pyramidal image 

transform has opened up an entirely new approach to compression: zooming 

out from a (possibly shrunken) low-resolution image producing a sharp and 

crisp "natural looking" high-resolution view. It is demonstrated that the 

technique has features of preserving thinness of lines on expansion, 

translational invariance and providing a perfect high-resolution 

representation of the gradient fill. 

The multiresolutional transform algorithms and "smart" image 

magnification developed for still images have been generalized to deal with 

moving pictures as a three-dimensional, spatio-temporal frame sequence, 

which permits rapid compression, and has potential for use in video 

transmission in real time. 
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CHAPTER I 

INTRODUCTION 

1.1 The Goal and its Significance 

The goal of the present research is a deep compression of still and 

moving grayscale pictures. The purpose was to perform basic research, 

develop algorithms and implement them in a working prototype of a 

software system for use in low bandwidth transmission of still satellite 

imagery and weather briefings. The software should also be suitable for 

other applications that would require video transmission at such limited 

bandwidth. A characteristic feature of the goal that determines all aspects of 

the research is a deep lossy compression of still and moving imagery while 

maintaining fidelity, which is dictated by the limited bandwidth requirement. 

The other feature of the present project is an extensive use of the 

multiresolutional image/video analysis. Specifically it includes developing 

modifications and extensions of the wavelet transform and exploring a 

discovered local self-similarity of the wavelet decomposition. 

Over the past few years, a vast variety of communities, both military 

and non-military, are coming to realize the demand and urgent necessity for 

data compression, especially of images and other two-dimensional still and 

continuous data. First of all, it is called for by the need to transmit ever 

increasing amounts of information over low capacity channels. This is 



clearly stated in a request for research for the department of Navy: 

"However, due to the limited data transmission bandwidth (2 to 25 kHz) 

available from secured satellite channels, the need exists to develop a means 

of efficient imagery transmission without sacrificing resolution in areas of 

interest within the imagery" [SBIR93]. Data compression is even 

considered a stipulation in future progress of space exploration: "Space 

Based observations require the transmission of a variety of different types of 

data through the spacecraft communications on the ground. The data must 

be sent through a communications system that is limited in bandwidth and is 

being shared among sensors. Greater utilization of the limited resources of 

an observation system can be accommodated by the use of data compression. 

Data compression is an enabling technology that interfaces to many 

components of a Space Based Observation System" [DCP92]. Data 

compression is becoming increasingly important in efficient archiving and 

retrieval of image data, for example, unprecedented volumes of space data 

expected from Earth Observation System instruments [NOVI93]. Another 

example is a compact storage of fingerprints in the computer, which is 

essential to the development of the forthcoming Automated Fingerprint 

Identification System [HOPP92]. 

The techniques enabling video compression are key to implementation 

of multimedia. One such application of technology is the ability to provide 

video briefings to both ships in a fleet as well as to offices scattered over the 

world from a central source, and using low communication speed. Another 

application is video-conferencing, emerging on the market by efforts of 

AT&T, PictureTel, Northern Telecom, IBM, and a number of other 



companies. Though the role of video is only supplementary to audio 

conferring and file exchange, it takes special hardware to acquire, transmit, 

and display moving pictures of talking parties in real time; and it puts an 

immense burden on the communication lines (which in many instances are 

regular telephone lines). Any effort to accelerate the video processing and to 

reduce the bandwidth requirements necessary for video transmission while 

keeping the visual quality acceptable should be taken to make the 

teleconferencing technology more cost effective relative to communication 

bandwidth. The last, but not the least, application of the efficient video 

compression is the emerging digital television, which is entirely contingent 

upon it. 

In most, if not all cases, a deep compression of imagery data is 

required, which comes from the stipulation that information is to be 

transmitted over low capacity channels having a limited bandwidth. 

Transmitting a typical weather satellite 512x512 image with 256 shades of 

gray over a telephone line or similar channel with capacity around 20K 

bits/sec within a couple of seconds requires compression ratios of 30:1 to 

100:1. As far as the video transmission is concerned, compression ratios 

starting from 50:1 and up to 2000:1 are necessary to play eight-128x128 

frames a second up to the high end of twenty-512x512 frames/sec in real 

time. 

Despite the extreme significance of the topic, deep image and video 

compression has yet to be properly investigated. Various standards 

developed for compression of individual images, or images arranged in a 

temporal sequence, do not address the high levels of compression required. 



For example, a popular JPEG standard does not allow a satisfactory 

compression of still images with ratios of more than 10:1 to 15:1. Beyond 

this limit, the quality of the restored image quickly deteriorates to a point 

where it becomes completely unacceptable. The most promising approaches 

to deep compression of still pictures are wavelet and fractal compression. 

These techniques have emerged less than a decade ago and by no means 

have been fully investigated. It is also the case that the performance is still 

erratic, sometimes excellent, sometimes not very good. Moreover, existing 

implementations do not properly address the question of the visual and other 

consequences of the data loss due to high levels of compression. The 

problem of which type of image deterioration would be considered most 

acceptable by a particular group of end users has yet to be investigated, as 

well. 

As far as the video compression is concerned, the somber state of the 

art was reflected in a talk given at the Data Compression Conference '93 by 

Dr. Richard Baker, a chief scientist of PictureTel Corporation [BAKE93]. 

He was practically pleading with the audience to apply promising still image 

compression techniques to moving pictures, to design new methods of 

motion compensation, etc. "Almost everything," he asserted, "would do 

better than existing H.261 and MPEG standards." 



1.2 How Compression is Accomplished: Methods of Attack 

This section outlines the design issues needed to be addressed in the 

present research and provides justification of the techniques and major 

decisions that have been adopted in the course of this study. 

• Deep image compression is lossy 

The prime objective of any compression technique is to remove 

redundant information. If the amount of information removed still allows 

one to reconstruct the original data identically, the compression scheme is 

called lossless. Techniques that work beyond that limit are lossy in that 

some information deemed to be insignificant is irreversibly lost as the result 

of the compression. Lossless and lossy data compression algorithms are 

each suitable for different kinds of applications. Lossless algorithms, which 

take advantage of allocating different number of bits to different characters, 

sequences of characters, or patterns to reduce the data to a compressed form, 

preserve the original data precisely. It should be noted that since lossless 

algorithms operate within the perfect reconstruction limit, the amount of 

compression should not be expected to be very high; generally it does not 

exceed 2-3 times for typical pictures. 

Lossy compression algorithms allow some approximations to be made 

in the process of bit allocation (by disregarding differences between distinct 

but "similar" patterns or units of data and treating them as identical). When 

dealing with imagery, a lossy compression method is acceptable and often 

preferable. The primary reason being that imagery information is almost 

never absolutely precise in that it always contains noise due to the intrinsic 



inaccuracy of the equipment used to produce the imagery, e.g., sensors, 

amplifiers, digitizers. Therefore, introducing additional distortion due to the 

lossy compression while storing and/or communicating the imagery 

information is acceptable, as long as the signal-to-noise ratio stays within 

acceptable limits. Moreover, it is only with the lossy compression 

algorithms that one can hope to achieve the deep compression discussed 

above. 

• Eliminating redundant information: Spacio-temporal correlations 

In compressing images, the redundant information manifests itself in 

local correlations of pixel intensities. This means that the value of a pixel 

does not deviate much from the values of its neighbors, and can be fairly 

accurately predicted from the pixel's surroundings. This is even more the 

case in video images, where temporal correlations between adjacent frames 

exist, in addition to the spatial correlations within a frame. Indeed, pixels of 

the background stay the same for a number of frames. Moving parts are 

usually relatively big and move slowly (compared to the frame rate). This 

means the movement of pixels can generally be predicted by simple 

extrapolation of motion detected in the previous frames. Therefore, any 

image compression algorithm should effectively eliminate these correlations: 

the more prediction can be utilized, the better compression would be. 

Hence, the possibility for deep compression of the video imagery lies in 

taking full advantage of the correlation as mentioned, and omitting the 

constant or unchanging information that can be inferred. Wavelet 

decomposition and the fractal image compression based upon the property of 
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the local image self-similarity are the two most promising techniques for 

decorrelating the pixel values. 

• Minimizing loss of the relevant information: Non-uniform compression 

The very nature of environmental images, or any image for that 

matter, suggests that not every detail of the picture is equally important to 

the observer. For example, the area of the hurricane eye on a satellite image 

should be of high resolution, while the tight cloud cover of the hurricane 

body is less informative and may be rendered with a lower resolution, 

though it cannot be completely discarded. In disseminating the weather 

information to ships, a meteorologist at a particular ship needs very accurate 

data on cloud cover, wind direction, temperature, etc. just in the vicinity of 

his ship. The information about what is going on outside that small area is 

used for prognosis and does not have to be of very high precision. 

Accordingly, the amount of loss and inaccuracy that can be tolerated during 

the communication varies not only from one user to another but also from 

one region of the image to another. This raises the problem of a non-

uniform, lossy compression, i.e., compression where the loss varies with the 

location/features/frequencies, etc., and tailoring such compression to a 

particular user and circumstances. Preserving the information during 

compression to the extent the user needs, but not more, helps to drastically 

reduce the amount of data that has to be transmitted. 

Multiresolutional image analysis is the proper tool because it allows 

one to both select the information which is relevant to a particular user (in 

automatical mode or interactively), and to transmit the selected data with the 

minimal number of bits. Moreover, multiresolutional analysis based upon 
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the coarse-to-fine image processing is naturally designed for a progressive 

transmission that provides fast and efficient browsing. Chapter II discusses 

the multiresolutional transform and its advantages in greater detail. 

• Rapid processing: a necessary requirement 

Finally, processing should be fast enough to carry out compression 

and decompression on-line. It is especially the case for video, where the 

ability to compress and decompress a set of frames as it plays is a natural 

requisite. 

1.3 Structure of the Thesis 

Chapter II provides basic definitions and other necessary background 

in the techniques that have been used extensively in the present study. The 

multiresolutional analysis, which is a principal tool in this research, receives 

most of the attention. Fractal image compression and current standards of 

video compression are covered, as well. 

Chapter IE thoroughly investigates a particular scheme of the 

pyramidal image decomposition with loose wavelet bases and a number of 

its modifications. The motivations behind the algorithms specifically 

designed to reduce the entropy of the image representation as much as 

possible is explained in detail. Though there is no clear winner, several 

particular wavelet compression schemes proved to be successful in 

providing deep compression at the required level while maintaining fair to 

good quality of the restored image. The results are comparable with those 



achieved to date by other researchers [DCC93]. The developed algorithms 

differ in the nature and the amount of distortion incurred and the degree of 

compression. Since for some applications one kind of distortion is more 

acceptable than the other, the final choice is left to the user. The chapter 

gives the compression results and provides illustrations so that the reader can 

judge for himself. One of the first implementations of the non-uniform 

compression in the multiresolutional context is presented as well. 

Chapter IV introduces a combined fractal/multiresolutional image 

compression based on the discovered property of self-similarity of the 

wavelet image transform. The property of self-similarity is elucidated in a 

variety of examples. They also help reveal such features of the property as 

the ability to perform the magnification of the picture that keeps thin lines 

thin and gives a sharp and crisp 'naturally looking' high-resolution view 

without blockiness and jaggedness. The chapter introduces a new approach 

to image compression based on the 'smart' magnification thus defined. A 

number of examples are provided to illustrate the capability of the method. 

A generalization of the multiresolutional pyramidal approach to deal 

with moving pictures is discussed in Chapter V. It introduces algorithms of 

wavelet pyramidal decomposition of a three-dimensional spatio-temporal 

frame sequence. The chapter also observes that the transform coefficients 

arranged in the form of a four-dimensional octpyramid possess the property 

of self-similarity that was noted for the pyramidal decomposition of still 

pictures. Implications of the discovery to the real-time video compression 

are discussed and illustrated. 
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The last section of the dissertation, Conclusions, provides a summary 

of the results and outlines their possible extensions and directions for further 

research. Applications of the present study in the public and private sectors 

are discussed as well. 

1.4 Achieved Results 

The main results accomplished in this dissertation are: 

• It is demonstrated that the entropy of the pyramidal representation has 

little to do with the number of basis functions and decomposition 

coefficients. It justifies the quest for the minimum entropy pyramid; 

some criteria for the quest have been outlined. This suggests that, as far 

as image compression is concerned, one needs to consider not the 

number of basis functions but the entropy of the representation in 

designing the best image transformation. The redundancy, where it 

exists, can be exploited to help reduce the entropy of the resultant 

representation. 

• Using this general understanding, a generic Laplacian pyramid algorithm 

and a number of modifications and pyramid decomposition schemes 

have been investigated. Several methods were found to provide the 

required deep compression with fair to good quality for the restored 

image. 

• Non-uniform wavelet compression schemes have been designed, which 

marks one of the first developments of the non-uniform image 
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compression within the multiresolutional context. The technique 

selectively preserves image features according to the degree of 

importance assigned by the user to image areas. The notion of criteria 

sets is introduced, which allows one to formulate arbitrary rules for 

specifying important image characteristics. The method thus minimizes 

the distortion of the important features during the lossy compression and 

still achieves deep reduction in the information content of the image. 

• The pyramidal decomposition was shown to greatly expedite linear 

operations on images, such as image filtration, edge crisping, and edge 

detection. New operations, a discrete total derivative of the picture and 

multiresolutional filtration, were introduced and implemented based 

upon the wavelet transform. 

• A mixed context predictive model for the arithmetic compression of the 

image transform has been designed and finely tuned to the properties of 

the pyramidal decomposition. The experiments showed that this 

specialized encoder outperforms general methods such as LZC, adaptive 

Huffman and the generic arithmetic encoder in compressing the pyramid. 

• During the course of investigation of wavelet transforms for images and 

image sequences, a discovery was made that a multiresolutional 

pyramidal wavelet decomposition of still and moving pictures does 

possess a property of local self-similarity. It has opened up an entirely 

new approach to compression: zooming out a given sequence of frames 

both in space and in time; in other words, magnifying a separate frame to 

discern greater detail as well as increasing the time resolution to produce 

smoother motion. 
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A Laplacian octpyramid has been introduced as a multiresolutional 

representation of an image sequence. The pyramid was designed by 

generalization of the methods developed for still images to the three-

dimensional space-time sequence of frames. Simple examples of video 

images; as well as a clip of a real weather briefing, gave evidence that 

the octpyramid is well suited for compression of image sequences and 

their enhancement based on the local self-similarity. 

An image and video manipulation language has been designed, which is 

based upon the C++ class library for dealing with images, rectangular 

areas, and image sequences. 

A portable software implementing quadtree/octtree construction and 

manipulation, pyramidal decomposition of still images and octpyramidal 

decomposition of frame sequences, local self-similarity estimation of the 

transforms and "smart" image magnification, arithmetic compression, 

and communicating imagery between the mainframe and Macintosh 

computer has been developed, totaling 24,000 lines of C++ code. The 

designed software allows the user to go from video acquisition through 

compression, telecommunication, and decompression to playback, and 

constitutes an engineering prototype of the still or video compression 

system. ' 

A real-time video compression of 128x128 frames at the rate of 4-5 

frames/sec with fairly good quality has been achieved as the outcome of 

the present research. A VHS tape of a weather briefing has been 

produced that contains the original video clip and those compressed and 
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re-expanded using several developed algorithms, playing side-by-side. 

The tape is available upon request. 

1.5 Related Work 

The present research has been sponsored in part by the Navy as part of 

the following projects, where the author has been the technical director: 

1) SBIR N00039-92-C-0063 Phase I Compression of Geophysical Data, 

November 1, 1991 - April 30, 1992 (N91-016) 

This project was concerned with the compression of data types found in the 

repertoire of geophysical data elements. Such elements included images, 

binary data, isoplots, and text, among others. During this six-month period, 

we investigated the JPEG standard compression technique applied to single 

image data. Additionally, a wavelet compression algorithm EPIC (Efficient 

Pyramid Image Coder) was acquired and tested against the JPEG results. 

The results of this effort convinced us that the wavelet algorithm was better 

at higher levels of compression than JPEG, and so our research focus 

narrowed for image compression to consider wavelet compression as the 

focal point for further studies. 

2) Battelle Scientific Services Program 91-589-0058 Compression of Naval 

Environmental Data , September 24, 1991 - January 31, 1993 

In concert with the previous effort, this research centered on the 

development of a measure to better evaluate the effects of compression upon 

an image. Also from the results of the previous project, when the use of 
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wavelets was decided upon as the compression technique of preference, an 

algorithm for non-uniform compression over an image was developed. As a 

second aspect of this work, an optimal arithmetic compression algorithm 

was developed which would work with the new implementation of the 

wavelet algorithm which used a non-orthogonal basis. With this algorithm 

we were able to test higher levels of compression, and work on eliminating 

the side effects of compression, such a blockiness and loss of definition. As 

a last effort in this contract, the algorithms were taken to a Navy site and 

used for end-to-end transmission of Navy environmental data. At the 

conclusion of this contract, an early form of the wavelet compression 

algorithm existed, an optimal arithmetic compression algorithm existed, and 

an error measure more closely matching human visualization was created. 

3) SBIR N00039-93-C-0048 Phase I Video Compression, December 22, 

1992 - June 22,1993 

In this effort, the extension of the wavelet algorithm developed in the 

previous projects to include fractal compression of the wavelet coefficients 

was achieved. This work, using the results from both of the previous efforts 

has provided the ground work to allow the development of a software system 

for compression. 



CHAPTER n 

BACKGROUND EXPLANATION OF THE SUBBAND AND FRACTAL 

IMAGE CODING 

2.1 Multiresolutional Image Analysis and Wavelet Transform 

Multiresolution transforms have been thoroughly studied in computer 

vision. At different resolutions, the visible details of an image generally 

characterize different types of physical structures. One of the popular 

examples of that is a satellite image of a coastal region [MAT J.89b]. A 

coarse resolution image gives a description of only the overall shape of the 

coast. When the resolution of the image is increased, we are able to 

successively distinguish the local relief of the region, and if the resolution 

gets even finer, we can recognize the various types of local vegetation. In 

order to process these different structures separately, researchers have 

attempted the extraction of the change in information between the 

approximation of an image at two different resolutions. The efforts resulted 

in a multiband image decomposition, the representation of an image as a 

sequence of details corresponding to progressively increasing resolutions. 

The coarser the resolution, the fewer details are available, so the stack of 

image representations at increasing resolutions appears as a pyramid; 

therefore the multiresolutional transforms are often referred to as a 

pyramidal image representation. 

15 
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Separating image features according to their 'scale', that is, 

classifying them into appropriate resolution subbands, is equivalent to 

passing the image through a two-dimensional (or three-dimensional in case 

of the video) filter bank, a collection of filters where each filter passes only 

one particular 'frequency/resolution band' of image features and cuts off 

everything else. Each of the bands can be subsampled. This by itself 

provides compression gain as coding of subbands outperforms direct coding 

of the full-band original, which is discussed in more detail below. 

The multiband image decomposition is an alternative image 

representation other than just a pixel matrix. From the mathematical point of 

view, it can be regarded as a decomposition of the image into a set of some 

basic features (primitive images): 

image^ = J,crOr(i,j) (1) 
r 

Here <Dr represents a particular 'feature', and the corresponding 

decomposition coefficient cr signifies the extent to which the feature 

appears in the picture; imageQ is the value of the image pixel at the i-th row 

and the j-th column and Q>r(i,j) is the value of the (i,j)-th pixel of the r-th 

(basis) feature. It should be noted that the set of coefficients 

{cr, r - 0.. rmax} represents the image as well as the pixel matrix image$ 

does. Indeed, given the set of coefficients, the pixels can be reconstructed 

according to eq. (1). We will refer to such change of representation from the 

pixel matrix image^ to the set of coefficients as the transformation of the 

image; the set { cT} itself is often called the image transform. When 

functions <3>r possess some special properties, coefficients cr might turn 

out to be easier to deal with. In particular, the set of coefficients may have 
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less entropy, and, therefore, it can be encoded with fewer bits. This is 

indeed the case. 

There is almost an unlimited number of ways of choosing the 

functions O r and estimating the coefficients c r. One requirement that is 

often imposed is that the coefficients should be computed as a linear 

combination of pixel values. In other words, the transformation should be 

linear. Though there is no ironclad rule that it cannot be done otherwise, 

linear transformations are easier to use, compute and analyze, and there are 

several important mathematical results established about such transforms. 

There are some other properties of the basis functions which are considered 

highly desirable [SIM091], they are: 

• An explicit representation of scale. Several authors [MALL89a,b] have 

argued that the correct partition in terms of scale is one in which the 

scales are related by a fixed constant of proportionality, generally by a 

factor of two. In the frequency domain, this corresponds to a 

decomposition into localized subbands with equal widths on the 

logarithmic scale. There is some experimental evidence [MALL89b] 

that the human visual perception follows the same pattern; 

• Spatial localization in addition to localization in frequency; i.e., the 

transform should encode position information; 

• Orientation. For two dimensional signals, a localized region in the 

frequency plane corresponds to a particular scale and orientation. 

Orientation of the basis functions specifically allows the transform to 

extract higher order structures typically found in images, such as edges 

and lines; 
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• Orthogonality. It is usually justified in terms of decorrelation, with the 

reference to the Karhunen-Loeve transform which is orthogonal and 

decorrelates the signal, i.e., makes the covariance matrix diagonal. 

Although there are some other advantages to be discussed later, certain 

types of non-orthogonal transform appear to perform better in some 

situations (Chapter HI). 

In order for eq. (1) to qualify as a multiresolutional, or subband, image 

decomposition, the basis functions O r should satisfy the property of space-

frequency localization deemed to be fundamental for that decomposition. 

This means the basis function should differ from zero only within a 

relatively small compact area of the image and should describe features that 

can be characterized by a single scale. The coefficient beside a particular 

basis function in the decomposition (1) can then tell how the corresponding 

region of the image (where the function significantly differs from zero) at 

the specific scale is represented in the image. To emphasize the fact of the 

space-frequency localization, we will split the index r labelling a basis 

function O r and the decomposition coefficient into three separate indices: 
imagey = J , c f m ^ m ( i , j ) ( 2 ) 

k,l,m 

Superscript k indicates the 'scale' of the function, while the (I, m) indices 

specify the localization of the function ( i j ) according to that scale. 

Note, since the image details can be characterized by only a few samples at a 

coarse resolution, the range for I and m gets smaller as k decreases (generally 

by a factor of 2). 

One particular type of the subband decomposition exists when the 

separate filters in the bank are constructed according to a single rule. This 
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representation has been discovered to be closely related to the wavelet 

transform [MALL89a]. We will consider this first in the one-dimensional 

case for simplicity. Wavelets have been introduced by Grossman and Morlet 

[GROS84] as functions ys(x) whose translations and dilations 

can be used for expansions of L2 (R) functions. Moreover, it has been 

shown that there exist some wavelets y/(x) such that 

V 2 * V ( 2 * ( * ~ 2 ~ * 0 > keZ, leZ 

is an orthogonal basis of L2 (R). See [MALL89a,b and references therein]. 

In the case of discrete one-dimensional signals with 2^ m a x samples (or, in 

other words, for the space l2(Q..2kmax-1)) the basis functions y/f can be 

represented as follows: 

y/f (0 = V2*"*™" y/(2lc~kmax i -1), l = Q..2k -l,k-0..kmax (3) 

Some notational conventions are in order here. Throughout the rest of the 

thesis, discrete (sampled) one- and multidimensional signals, images, and 

sequences of frames would imply that all the indices pertaining to them, 

sample labels, etc., are integers. Division operation performed in that 

context is assumed to yield an integer result; i.e., the result of the division is 

rounded in the direction of zero, unless otherwise specified. 

If the basis wavelet y/(x) (called also a mother wavelet) differs from 

zero only within a relatively small compact area of its domain, functions (3) 

are scale and spatially localized. To demonstrate, consider the simplest 

possible basis wavelet, namely, a 5-function: 

V(') = { otherwise < e Z (4) 

With this choice of the mother wavelet, basis (3) can be written as follows: 
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Yi k ̂  _ ^j2k~ktmx i=2bmx~kxl,2*™'* x(/+l)-l 
otherwise 

(5) fl if 
[0 ot 

1 = Q..2k-I, k = 0..kmax, 

which is justified by the fact that when, say, k=0, a factor i • 2~kmax = if 2kmax 

vanishes for all integer i from 0 up to 2^max -1. The following picture 

demonstrates graphs of some basis functions for the interval [0..7] (zero 

through 7); for the sake of clearness, the function values are represented as 

bars, yet one has to keep in mind that the functions are discrete. Chapter m 

gives similar pictures for two-dimensional wavelet bases. 

Y(i) 

1 
0.8 

0.6 

0.4 

0.2 

0 

Ok=3.l=3 

=2,1=3 

k=1 ,l=0 

0 1 2 3 4 5 6 7 

Sample points, i 

Fig. 1. Graph of sample basis functions. 

The graphs clearly demonstrate that the functions are indeed localized in 

space. The distinction in scale between the functions is also quite obvious. 

Moreover, the graphs show that the finer the scale (i.e., the bigger the scale 

index k), the more precisely the function is localized. This is the universal 

property of the wavelet bases and follows from the fact that the wavelet filter 

bank (to be discussed later) has constant relative bandwidth and provides 

so-called constant-Q filtering with octave-band filters. Incidentally, this 

behavior is often regarded as an asset because the coarse-scale context of the 

image (or any signal for that matter) does not have to tell a precise location 
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of features; since the features are coarse-grained themselves, approximate 

localization will suffice. It also implies that the coarse-scale band can be 

represented by only a few samples, which contributes to the compression. 

One has to emphasize that different bases for different scales look similar, in 

the sense they are built by the same rule. As far as the orthonormality is 

concerned, the set of functions (5) for each single value of k constitutes an 

orthonormal basis (yet not complete unless k=kmax). 

The question remains how to perform the decomposition of a one-

dimensional signal f i into the wavelet basis (3), or, in other words, how to 

estimate coefficients cf of the decomposition 

/ ,=Xc iVf(i) (6) 
k,l 

Note, that this equation is a one-dimensional version of eq. (2); therefore, we 

need only one index (subscript) to specify the localization of the basis 

function. It is easy to see that the set of functions { y / f } for all 1 and k is 

overcomplete. It is especially evident from the basis (5), which, at k=kmax, 

turns to just a 5-function 

v T t / = 0 . . 2 t a » - l (7) 

Obviously, any discrete one-dimensional signal with 2^m a x samples (or, in 

other words, belonging to the space l2(0..2kmax-1)) can be uniquely and 

easily decomposed in basis (7); the decomposition coefficient cf™* is just 

the signal sample value ft . The question is why we need1 y/f with k other 

than kmax. The answer is that it is the redundancy of the overall basis (3) 

which allows one to perform the multiresolutional decomposition. Indeed, 

the coefficients of the decomposition (6) can be evaluated in a great variety 

of ways due to the overcompleteness of the basis; some of the schemes 
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would be consistent with the subband analysis in that the coefficients will 

indeed describe the contributions of the features according to their scale and 

position. In the following paragraphs, we will demonstrate one way how it 

can be done. 

As was mentioned before, decomposition of the signal in the basis set 

w T ) 

fi = Zafmaxyfjrx(i), i,l = 0..2kmax-1 (8) 
I 

represents the signal in its entirety. Decomposition coefficients, which we 

will denote aj*™1* to distinguish from the coefficient of the true subband 

decomposition, describe contribution of all the features, starting from the 

finest up to the largest-scale ones. In the simplest case of basis (5), the 

coefficients are nothing but the samples ft of the signal themselves. The 

set of functions { , corresponding to a twice as coarse resolution, is 

also an orthonormal basis and can be used as well to decompose the signal. 

Due to the property of orthonormality, the decomposition coefficient 

abnax-1 js unambiguously and easily obtained by just evaluating the inner 

product of the signal with the basis functions: 
afmx-l = £ fiyhnax-l^ [-Q 2*"""' -1 (9) 

Recall now that { } does constitute a basis of our space 

/2 (0.. 2kmax-1), and any function of this space, including , can be 

decomposed in that basis: 

v T " - 1 ( 0 = I g u n v T " ( 0 , i-o..2kmax~ l - 1 do) 
m 

where gim is just the decomposition coefficient. Inserting the above 

equation into eq. (9) results in 
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akmox-l = £ f.gim ybmx ( 0 = £ g i m ^ f , ytonax ( l ) 

i,m m i 

1 = 0..2kmax-l-l,m = 0..2kmax-l ( U ) 

m 

or, in the case of simple functions (5) 

= JrT(a%r+a%%) ( 1 2 ) 

This gives a signal representation of™*"1 at the twice as coarse resolution. 

Indeed, the coefficient describes the contribution of features of characteristic 

scale 2 and larger to the signal. Note that the features can now be located 

up to ±1 sample point (see the graph of the simple functions on Fig. 1), and 

small scale features are not represented. Indeed, if the signal changes 

significantly from one sample point to the next (i.e., at the scale of 1), that 

change would be smoothed out by the 'averaging' in eq. (12). Therefore, if 

one is to reconstruct the signal from 1 using the composition rule 

(13) 
i 

he will not obtain the original signal precisely. The finest, smallest-scale 

features will be missing. A restored fine-resolution representation 

tit™*=I /,• wf™ ( 0 = I vS*""1 (0 v f " w 
i,m 

.kmax-l 
= 1 Sun*. (14) 

m 

with 
(is) 

is therefore different from af™*. Hence, taking the difference between the 

representation of the signal with all the features, including the finest ones, 
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and the representation which describes all the details but the finest-scale 

ones, 
„kmax __ kmax *kmax (16) 
cx -ax -ax * 

would give us the contribution of only the finest features, which is exactly 

what we expected to obtain. 

The same procedure can be applied recursively to of™"-1 to obtain 

the contribution of features of scale 2 only. It follows exactly the same 

steps, eqs. (9-16), with kmax changed for kmax-1. We emphasize that 

because all functions yrf are scaled and translated versions of the same 

function, the mother wavelet, eq. (3), decomposition 
= 1 = 0 . .2* - 1 - l (17) 

m 

holds for any k with exactly the same set of glm. Indeed, inserting eq. (3) 

results in 
W / 2kmax~k+l - /) = V2X&„ Vd / 2kmax~k - m) 

m 

or 

y/(i 12-1)- V2 X gim V(i ~ m), l = 0..2k'1 -1 

m 

Keeping in mind eq. (2), one can infer that 

Sim=8( 21-m) 
(18) 

and eq. (17) then reads 

iir(i/2) = *j2y£Jg(-m)y/(i-m) (19) 

m 

which may be considered a definition of the function g. Note that neither 

eqs. (18) nor (19) contains index k. It means that the function g and 

coefficients gim are scale-independent, and, hence, the procedure of 
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obtaining the coarse resolution view af"1 from the finer resolution one, a\, 

eq. (11), remains literally the same regardless of the scale k. By the same 

token, 

glm=HWml(i)Vl(0 

i 

_ 2k-Kmax v ( i / 2kmax-k+l _ m ) ^ / 2 ^ " * - / ) 

V ( i / 2 - m ) y ( i - / ) (20) 

does not depend on k either and stays the same for all the scales. Moreover, 

it is easy to see that 

ghn = g{2m-l), 

g(m) = ^ T ^ ^ y / ^ + r n ^ ¥ ( i / 2 ) (21) 

One has also to emphasize that a f m x contains half as many points as 

ajmai jo e s^ whi ch is obvious from eqs. (8,11). Therefore, the whole 

decomposition can be represented in the form 

coniract xpand 

coniract pand 

4:1 

kmax-1 kmax-l 

kmax Details at 1:1 View at 1:1 
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Fig. 2. Construction of the Gaussian and Laplacian pyramids. 

The pyramid on the left-hand side of the figure is a Gaussian pyramid 

[BURT83], which represents a set of views of the signal at different 

resolutions. The bottom level of the pyramid is the exact representation of 

the original signal. Subsequent levels are constructed by successively 

applying a contract operation [UNSE92], eqs. (11)-(18), 

at1 =1,8(21 ~m)ak
m, l = 0..2k~l-l, m = 0 . . 2 * - l (22) 

m 

which 'averages out' fine image details and performs the subsampling, thus 

reducing the resolution twice. The Laplacian pyramid [BURT83] is on the 

right-hand side of the picture. It is obtained by using an expand operation, 

eq. (14), which, keeping in mind eq. (21), can be written as 

0* = X S ( 2 m ~ 0 a m l > 1 = 0.• 2*-1, m = 0..2*"1-1 (23) 
m 

The operation produces a\ with 2k samples from af~l with 2k~l samples, 

and, therefore, is in a sense the inverse of contract. Although expand 

increases the number of sample points twice, it does not increase the 

resolution nor restore the fine image details lost at contraction. Therefore, 

the difference between the signal representation and the expanded contracted 

version of it contains the details cf that are noticeable at the particular 

resolution, but not at the coarser resolution. The Laplacian pyramid then is a 

collection of signal features separated among the set of all possible 

resolutions, and can be considered as the most general implementation of the 

multiresolutional signal analysis. It should be stressed that the Laplacian 

pyramid is the exact representation of the original signal. Indeed, following 
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the arrows on Fig. 2 in the reverse direction starting from the top converts 

the Laplacian pyramid back to the Gaussian one, whose bottom level 

represents the original signal in full detail. 

It should be emphasized that the contract and expand operators, 

eqs. (22) and (23), are scale-independent and apply to any level of the 

Gaussian pyramid, because g and g do not depend on the scale k. This, as 

we saw earlier, is the consequence of the fact that all wavelet bases are 

generated from a single function, the mother wavelet (3). It is usually 

considered desirable [UNSE92] for those operators to satisfy the consistency 

rule 

contract ) = contract ̂  expand [ contract (ak )]| (24) 

which guarantees that the contract and expand operators are strictly 

complementary. It is easy to see that this is indeed the case with the 

orthonormal wavelet basis (3). Incidentally, if the set of {ty/f} for each k is 

an orthonormal basis, it can be shown that g and g are the same. 

Multiresolutional signal decomposition can be viewed from a quite 

different perspective. When performing recursive construction of the 

pyramid from the bottom to the top, Fig. 2, each step involves splitting a 

signal representation at hand at the current resolution af into the lower 

resolution signal af'1 and the detail signal c f . The contract operation that 

produces af eq. (22), has exactly the form of the low-pass filtering of af 

followed by the subsampling by two (keeping every other sample). In the 

simple case of basis (5) this operation is just the averaging, eq. (12). It 

clearly illustrates the fact that the filter g is indeed a lowpass filter. Since 

the frequency (resolution) band of the signal is reduced during the filtration, 
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the smoothed signal can be subsampled without any loss of information, 

according to the sampling theory. Operation expand is designed to undo 

the subsampling; indeed, formula (23) means inserting a zero between every 

two samples of a f - 1 followed by a low-pass filtering with a companion 

kernel g which performs interpolation. The consistency condition, eq. (24), 

guarantees that the result af is indeed the low-frequency component of af . 

Obviously, the difference cf, eq. (16), between the original and the low-

resolution component is the high-frequency component. Since cf is 

obtained eventually from the samples of af after several linear operations 

(convolutions), eqs. (22), (23), and (16), this fact can be written in a general 

form as 

cf = X W - m ) f l i , / = 0..2*-l, m = 0. .2*-l (25) 
m 

where h(i) is obviously a high-pass filter, which is related to g and g via 

eqs. (22), (23), and (16). The lowpassed band af"1 is treated in the similar 

way on the next step of the procedure, and split into the even lower 

resolution, and the detail components. Thus, the multiresolutional 

decomposition is equivalent to the separation of the signal into (octave) 

resolution bands by applying a bank of iterated filters g and h. This 

justifies the name of the subband analysis. The original signal can be 

reconstructed from the decomposition using the expand operation; in other 

words, by applying the iterated filter bank g to undo the subsampling, and 

merging low- andhighpass bands. 

In a particular case of so-called tight wavelets (which includes all 

orthonormal wavelets, eq. (3)), the highpassed component produced by the 
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filtration, eq. (25), can be subsampled, too! The detail signal is then obtained 

as 
cf = 5 > ( 2 f - » ) a £ . / = 0..2k"1—1, m = 0..2*-l (26) 

m 

(compare with eq. (25)). The samples discarded on decimation can be 

restored by performing the interpolation with a companion filter h 

cf =X^(2m—Oc*, Z = 0..2*-l, m = 0..2t_1—1 (27) 
m 

much in the same way it was done for the lowpass band, eq. (23). In the 

case of the simplest basis (5), 

g(m) = g(m) = ^ ^ 
1, m=0 __ -1, m=0 
l, m=-i, h(m) = h(m) = \ 1, m=-l (28) 

0, otherwise 0, otherwise 

that is, g and g are the ideal low-pass filters and h and h are the ideal high-

pass filters. It is obvious then that the sum of two upsampled bands af and 

cf is indeed identical to the signal af from which they have been extracted. 

When the filters are non-ideal, a part of the high-resolution component leaks 

into the lowpass band and becomes distorted upon subsampling, which, 

therefore, cannot be perfectly undone. It poses no danger if the detailed 

signal is computed according to eq. (16), because any inaccuracy in af is 

taken over by cf. However, subsampling the detail signal leaves those 

errors generally uncompensated. It is quite remarkable that with the tight 

wavelet basis, the reconstruction errors (aliasing) in the high- and lowpass 

bands, af and cf, exactly compensate for each other! Filters with the 

perfect reconstruction property have been studied in the signal processing 

theory for some time — the survey [SIM091] gives general treatment and 

general rules of design (as well as coefficients for some filters). 



30 

Thus, the tight wavelet bases of which ideal, eq. (5), orthonormal 

wavelets (3), biorthogonal wavelets (where functions g and g are no longer 

the same), quadrature mirror filters are the particular cases — all allow us to 

perform a subband decomposition and perfect reconstruction of a one-

dimensional set of data with subsampled highpassed bands. From this we 

can see that the total number of transform coefficients {cf} in that case is 

exactly 2kmax, the total number of the original signal samples. In a more 

general case of so-called loose wavelets, cancellation of alias errors on 

merging reconstructed low- and highpass bands is impossible, and the detail 

signal has to be left unsubsampled, as on Fig. 2. The original signal is still 

perfectly reconstructable, as was mentioned before while discussing the 

Laplacian pyramid. However, the total number of transform coefficients 

exceeds the number of samples, almost twice in the one-dimensional case 

and by 33% for a two-dimensional signal. Although it appears as an 

expansion at first glance, in reality the redundancy of the transform pays off. 

The amplitude of the coefficients may turn out to be smaller, and this allows 

for more efficient compression. The question will be considered in detail in 

Chapter IE. 

Thus, there is a great variety of different wavelet bases and particular 

schemes for performing the decomposition from which to choose. Indeed, 

due to the overall redundancy of the basis {y/f}, there are a number of ways 

of carrying out subband analysis and selecting the filter coefficients 

(providing the consistency rules such as eq. (24) are satisfied). This makes 

the wavelet transform flexible enough to meet the requirements of a very 

broad range of applications. It is rather fast, too: due to the successive 
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subsampling, the total complexity is 0(3NM), where N is the total number 

of samples and M is the size of the filter window. One has to mention that 

the latter quantity, which is nothing but the number of nonzero coefficients 

of filters g, g, h, etc., is usually significantly less than 2 • 2kmax implied by 

eqs. (22-23). Indeed, in the simplest ideal basis, eq. (5), where the mother 

wavelet is a 5-function, the filter kernels differ from zero at only two points, 

eq. (28). It was shown that only the ideal 5-fiinction wavelet basis has such 

short filters. Note a well-known Haar basis with the mother wavelet, 

f l ' 1 = 0 

yr(i) = j- -i. i=i (29) 
0, otherwise 

v * 

is a variation of the 5-function basis. One has to point out that in both bases, 

the impulse response of the filters is too clear-cut with abrupt transitions 

from zero to non-zero levels. If smoother filters are desired, one can use a 

biorthonormal Daubechies basis with 2M coefficients, which collects the 

signal energy into the low band to the extent that the original signal is 

represented by polynomials of degree M-l or less. Daubechies six 

coefficient wavelets are quite efficient for compressing natural scene images. 

The review article by Rioul and Vetterli [RIOU91] and the lecture notes by 

Daubechies [DAUB92] provide good introductions to these and other 

wavelet types that have been developed for signal analysis and data 

compression. 

The multiresolutional analysis is easily extended to higher dimensions 

by forming a Cartesian product of one-dimensional transforms. One way of 

doing this is first applying a one-dimensional filter bank to separate image 

rows. The result is a 'lowpassed image' and a 'highpassed' image, each 
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with half the number of columns of the original image (assuming the wavelet 

is tight and the highpass band can be subsampled). The same filter bank is 

applied again, this time to the columns of these images. Four images, each 

one-fourth the size of the original image result: one lowpassed image, and 

three highpassed images that can be characterized by the column and row 

filter as high-lowpassed, low-highpassed and high-highpassed images. One 

can continue the decomposition of the lowpassed image to form a two-

dimensional multiresolution transform of the original image. Chapter III 

expounds upon a slightly different approach that uses a two-dimensional 

filtering of the original image to get the lowpass band and the detail image. 

Multiresolutional decomposition of the signal by itself provides for 

efficient compression. It was shown [PEAR91] that the subband coding is 

asymptotically optimal from the information/ communication theory point of 

view (in a rate-distortion sense) for the Gaussian source and variable width 

subbands: "Decimated subband processes on the average have less 

'memory', or, for Gaussian processes, have flatter spectra, than the full-band 

source. The coding gain has been related to that entropy reduction" 

[PEAR91]. In other words, since a decomposition coefficient c\ describes 

a feature which is located within a predefined limited range of signal 

samples and can be discerned only within a restricted range of resolutions, 

and since most of the images are far from the white noise (which has no 

correlations in local intensities nor 'features'), the coefficient c\ has a small 

magnitude, and requires fewer bits to encode. Moreover, the transform as a 

whole contains a number of repetitive patterns, which contributes to efficient 

compression. An entropy encoding of the coefficients as they are, gives a 
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lossless compression, as the original signal can be restored identically. 

Additional (and far more significant) compression gains can be achieved 

with the appropriate quantizing of the coefficients. A paper [DEV092] 

shows that if images can be characterized by their membership in some quite 

broad smoothness classes, then the wavelet-based methods are near optimal 

within a larger class of stable (in a particular mathematical sense) transform-

based methods of image compression. Moreover, with the multiresolutional 

speech and image decomposition, it is possible to take advantage of the fact 

that the human visual and aural systems have different sensitivities for 

different frequency/resolution bands of features. Therefore, it is possible to 

adapt the quantization noise to the human sensitivity along each resolution 

band. This enables one to introduce a minimum amount of perceivable 

distortion in the reconstructed signal. 

Thus, in summary, the wavelet decomposition offers a unique 

opportunity to look at the image at different scales. Data compression using 

wavelets is a form of the transform-based coding, where a reversible linear 

transformation is applied to the input data signal. The transformation 

decomposes the signal into a weighted sum of basis functions. These 

weights, or coefficients of the basis functions, are an alternate description of 

the original signal. If the data in this coefficient space are less correlated 

that the data in the original signal space, lossless or near lossless 

compression of the signal can result after entropy coding the weights. In 

addition, the transform domain may be a better space in which to quantize 

data for lossy compression. The transform space may have some physical 

interpretation or other properties that help us tailor the distortions to match 
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some model or to otherwise optimize the reconstructed data for subsequent 

use. For example, we quantize natural scene images to match the human 

visual system as closely as possible. 

2.2 Fractal Image Compression 

A classical (and so far the only viable) scheme for fractal image 

compression is conceptually based upon simple fractal generating algorithms 

exploring a property of self-similarity. Thus, the basis for the scheme is 

completely different from traditional compression methods — an image is 

partitioned into parts that can be approximated by other parts of the same 

image after some scaling and/or rotation operations. The result of an 

encoding process is a set of transformations, which, when iterated upon any 

initial image, converge to a fixed point that is an approximation of the 

original image. The idea of looking for fractal algorithms to approximate a 

given natural image was first proposed by M.F. Barnsley. Since simple 

fractal algorithms can typically generate very complex images, he suggested 

that only relevant parameters of the algorithm need be stored, resulting in 

significantly reduced memory requirements for the storage of images. 

Iterated function systems fractals and fractal transform fractals that 

constitute the basis of the fractal image compression scheme are explained in 

great detail in a recently published book by Barnsley and Hurd [BARN93]. 

One of the best introductions into the subject is a review [FISH92], which 

we will briefly follow. As was already mentioned, the fractal compression is 
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based on a self-similarity; i.e., a similarity between a whole and a part of it. 

In Chapters IV and V we will study a number of examples of that property. 

To begin with, one has to define the exact meaning of being similar. In the 

context of fractal image compression, one small part of an image is said to 

be similar to another if there is an affine transformation that makes the parts 

coincide (or almost coincide). The affine transformation on the plane is just 

a transformation of the following general form: 

(30) 
X ' 

= A 
X V 

= A - 4 -

y _ J . ty 

which includes rotation, scaling, and translation. If one finds a 

transformation (or set of transformations) that maps an entire image into 

some of its corresponding blocks, and those transformations are eventually 

contractive [FISH92], then, according to a generalized collage theorem 

proved by M.F. Barnsley, applying the transforms recursively starting from 

an arbitrary image (i) does converge to a single image, and (ii) that picture is 

the original image, or a very close approximation of it. Thus, a 

transformation (or, precisely, a set of parameters in eq. (30) that define it) 

can be regarded as an encoding of an image. The following popular example 

of a Sierpinski gasket (triangle), borrowed from [FISH92], gives an idea 

how a picture can be represented by transformations. 

The following figure depicts the original gasket within the coordinate 

frame, 
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0 i 0 0.5 1 

Fig. 3. Self-similarity of the Sierpinski gasket. 

which demonstrates that the entire gasket is similar to the three parts 

(quadrants) of itself, with the transformations 
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(31) 

which means squeezing the image twice and translating along coordinate 

axes. The following pictures show how the triangle is reconstructed iterating 

the transforms upon a starting image: 

0 i 0 0.5 1 

Fig. 4. Application of transforms (31) to a starting image. 
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Fig. 5. Subsequent steps of iterating transforms (31). 

Since the Sierpinski triangle is reconstructed precisely from the 

transform as Figs. 4 and 5 show, the coefficients of eq. (31) are an exact 

representation of the gasket, which can be encoded with only a few bits. 

Note that even if the starting image is different (say, with half gray and half 

white), the result will be the same; indeed, after a certain number of steps the 

starting image is contracted to a single pixel, of which it turns out the gasket 

is made. Since the pixels have no smaller parts, the details of the starting 

image are not important, either. Note that to get a gasket twice as big, one 

need only to apply the same algorithm to a bigger starting picture. This fact 

is indeed remarkable: since the transform possesses no information about the 

absolute size or dimension of the picture, the same set of transforms can be 

used to generate images of arbitrary size without any loss of resolution. 

Obviously one cannot expect that every image is precisely similar to 

its quadrants, as the Sierpinski triangle is. However, a suitable partitioning 

of the image may be used to split it into relatively small patches (domains), 

which have much simpler structure than the whole. Therefore, a small 

domain can be more precisely 'covered', or found similar to, another 

(generally smaller) patch of the same picture (so-called range). The 
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following figure shows a regular splitting of a sample picture into domain 

blocks, which is often used in practice [FISH92] : 

Fig. 6. Splitting a sample picture into domain blocks. 

The common choice for domain blocks is a 16x16 square, and the minimum 

size of the range blocks is 8x8. The following pseudocode [FISH92] 

sketches the fractal image compression algorithm: 

• Set R] = entire_image and mark it uncovered 

• While there <ire uncovered ranges Ri 

— out of the possible domains, find the domain Di and the 

corresponding transformation T i that best covers Ri 

— if the cover is good enough or R i is small enough 

mark Ri as covered and write out the transformation Ti 

— else 

partition Ri into smaller ranges, mark them as uncovered, and 

remove R( from the list of uncovered ranges 

The pseudocode gives only a general framework of the algorithm. A 

particular implementation must choose a specific regular or irregular 

splitting of the image into domain blocks, a way of obtaining the best 

possible match, and a criterion for a 'good enough' match, etc. One has to 

note that the algorithmic complexity of the algorithm is 0(N4), where N is 



39 

the dimension of the image. Indeed, if the image size increases twice, the 

number of both range and domain blocks increases 4 times, which would 

make the search for a match between a domain and a range block take 16 

times longer. 

Since its discovery in 1988, the fractal compression of images has 

been in vogue. Its merits are well known, partly because of the products 

produced by Iterated Systems, Inc., founded and chaired by M.F. Barnsley 

and A.D. Sloan. Compression ratio varies with the image content, but 

typical images of people and nature can be compressed up to 50-100 times 

without significant deterioration of visual quality. The algorithm is lossy. 

Since the fractal compression describes the relationship between parts of the 

image rather than millions of individual points in the image, it opens up all 

sorts of possibilities for computer vision, image understanding, soft-copy 

photographic keys, and aids in image interpretation. Some flaws in the 

algorithm are also well known: it takes an enormous amount of time to find 

an appropriate fractal transformation (though the decompression is fast). 

Software compression takes up to three hours for a 512x512x8 image on 

IBM PC 486 30 MHz. Hardware compression requires a proprietary 

integrated circuit board that is currently available only for the IBM PC. The 

algorithm itself is proprietary. At high compression ratios, the 

decompressed image exhibits a tile effect as if built from blocks not 

perfectly adjusted to one another. It is especially evident when not enough 

time is allocated for the compression algorithm to work. Spurious features 

and stray marks might also appear. 
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It is rather straightforward to see that the fractal image compression 

can be complemented (and benefit from) the multiresolutional analysis. 

There are several directions for investigation. One may look for similarities 

between different parts of the image at some reduced resolution, or one may 

be concerned with the similarity between representation of the whole image 

or parts of it at two (or several) resolutions. A combined approach is also 

possible. The merit of the former is that the image at a reduced resolution 

might still contain all the information which is 'interesting' or important, but 

as the size of the image significantly decreases, the fractal transformation is 

much easier to find. A single level of the multiresolutional pyramid contains 

only small corrections and details that are discernible just at that particular 

resolution, making the level easier to handle than the original image. The 

combined multiresolutional/fractal compression makes it straightforward to 

select features/areas that are important and control the fractal transform to 

approximate them to a better extent. Finally, different levels of the 

multiresolutional pyramid may exhibit some degree of similarity. This fact 

was mentioned previously by Mallat [MALL89a]. He pointed out that this 

topic is promising because multiscale decompositions, such as wavelet 

transform, are well adapted to evaluate the self-similarity of a signal and its 

fractal properties. 
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2.3 Video Compression Environment 

In the 1980's, several standards committees worked to establish 

uniform approaches to video compression. These groups were the Joint 

Photographic Experts Group (JPEG), the Motion Picture Experts Group 

(MPEG), the International Standards Organization (ISO), and the 

Consultative Committee for Telephone and Telegraph (CCITT). So far, 

three popular video compression schemes have emerged. A paper [LEE92] 

and talk [BAKE93] provide an excellent review of the subject. 

The H.261 standard — commonly called Px64, and optimized to 

achieve very high compression ratios for full-color, real-time motion video 

transmission — was finalized in 1989 by CCITT. The JPEG standard, 

optimized for full-color images, was published in 1991. The MPEG 

standard, aimed at full-color, full-motion video, is still under development, 

though in the final stage. 

The CCITT Px64 compression algorithm combines intraframe and 

interframe coding to provide fast processing for on-the-fly video 

compression and decompression applications. The algorithm begins by 

coding an intraframe block using the Discrete Cosine Transform (DCT), 

quantization and entropy coding, in much the same way JPEG does. 

As the coded block is converted to bit stream output, however, it is 

also decompressed using a reverse process and then stored in an internal 

buffer memory. Each subsequent frame is then coded, in terms of its 

predecessor, using predictive interframe coding. 
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In the predictive interframe coding process, a pixel block from the 

current image frame is loaded. Then a motion estimator executes a series of 

search and comparison operations with respect to the previous image stored 

in the past reference memory. This search identifies a matched block from 

the previous frame and the motion vector which associates the past block 

with the current block. A differentiator takes the two matched blocks as its 

input and outputs a new pixel block representing the difference between the 

two blocks. Finally, the difference block is coded using the DCT, 

quantization and entropy coding. The block is output as coded bits, along 

with an encoding of the associated motion vector that is needed to 

reconstruct the original block upon decompression. That block is also 

decompressed internally and stored as the new reference for the next frame 

block. 

The CCITT Px64 standard is optimized for applications such as video 

based telecommunications. Because these applications are usually not 

motion-intensive, the algorithm uses limited motion search and estimation 

strategies to achieve higher compression ratios. However, achieved 

compression is not high enough for a full-scale video transmission, and even 

for videoconferencing [BAKE93]. A videoconferencing system developed 

by PictureTel which uses a proprietary algorithm based on the Laplacian 

pyramid provides twice as high video throughput [BAKE93]. 

The JPEG coding utilizes DCT, quantization and entropy coding to 

achieve intra-frame coding. Under JPEG compression, a YUV 

(chrominance and luminosity) pixel block is DCT transformed into a 

frequency matrix value. Then a quantization operation yields a matrix of 
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compressed frequency values, which is entropy coded to produce the 

resultant compressed bit-stream. The coded bits can be stored or transmitted 

digitally and then decompressed through a reverse process to regenerate the 

pixel image. Originally targeted for the full-color, still-frame applications 

(compression rates average 15:1), JPEG is also used for some real-time, full-

motion video applications. 

MPEG provides all of the basic intraframe compression functions and 

combines predictive interframe and interpolative interframe coding for 

motion compensation. The MPEG algorithm first compresses an initial 

intraframe block using DCT, quantization and entropy coding. The same 

coded block is also decompressed and stored in the internal past memory 

buffer. The algorithm then uses predictive interframe coding similar to that 

used by the Px64 to code nonadjacent future frames. Again, the future frame 

block is internally decompressed and stored in the internal future memory 

buffer. 

Interpolated interframe coding is used to estimate and code frames 

between subsequent intraframes or interframes. The interpolated interframe 

coding used in MPEG is very similar to the predictive interframe coding 

used by Px64, except that the motion estimation involves a comparison and 

search with respect to both images in the past and future reference frame 

buffers. The results of the motion estimation are an average of the matched 

blocks found in the reference buffers and a motion vector associated with 

each matched block found. Differentiation produces a new pixel block 

representing the difference between the current block and the average of the 

past and future blocks. Then DCT, quantization and entropy coding are 
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applied to the difference block, and the eventual coded bit-stream thus 

produced is stored and transmitted, along with the associated motion vectors 

needed to reconstruct the original pixel block. After coding all interpolated 

pixel frame blocks, the image data in the future memory buffer is moved to 

the past memory buffer, and a new future-basis frame is coded using either 

intraframe or predictive interframe coding. The MPEG standard supports 

deep-motion search, and is optimized for motion intensive video applications 

such as found in CD's. The MPEG approach achieves compression rates of 

200:1, but requires higher transmission rates. One has to stress that the 

backward frame prediction used in MPEG requires one to know a future 

frame before the current one. It is easy to achieve while playing back 

movies recorded on the CD-ROM where a random access to information 

blocks is possible. Incidentally, CD-ROM movie playback was the primary 

objective of the MPEG standard. Using MPEG for the on-the-fly video 

compression/decompression is very cumbersome apd demands immense 

computing and memory capacities [BAKE93]. Moreover, a required bit rate 

of 1.5 MBits/sec is far too high for regular telephone communication 

channels. 

QuickTime [QUIC92] is a development environment for video image 

processing. It was originally released for the Macintosh, but it is now 

available in PC-Windows. We have chosen to adopt QuickTime as a host 

environment for processing video signals, primarily because it has an open 

architecture and provides a means to use a multiplicity of compression 

schemes which can be easily incorporated into the QuickTime framework. 
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QuickTime provides several features that make it an ideal 

development environment. These are: 

• Open architecture for addition of new media types, compression 

routines, and sound processing; 

• Standard support of custom compression boards or digitizer boards; 

• Human interface capabilities to allow considerable user input to process 

and control both media input and output; 

• Several standard routines for media processing and control; 

• Simple interface into the AppleTalk communication system for 

transmission of media between computer systems; 

• Storage and preview components to allow replay or review of media 

prior to processing; 

• Media grabber interface to allow easy selection of compression, source, 

and sample settings for video and sound capture channels; 

• Media conversion routines for all standard formats. 

Using QuickTime has allowed the project to continue with little time 

required for developing standard routines which duplicate the capabilities of 

QuickTime but are necessary for the development of a system capable of 

video and voice communication. 



CHAPTER m 

MULTIRESOLUTIONAL IMAGE ANALYSIS 

3.1 Laplacian Pyramid Image Decompositions: Overview of the 

Algorithm 

In the present section, we will be concerned with a multiresolutional 

analysis of a two-dimensional signal: 
image v = ((',/') (1^ 

k,l,m 

where imageQ is the value of a pixel at the crossing of the z'-th row and the j-

th column of the image, and is the value of a basis function at 

this position. Recall that index k tells the 'scale' of the function, and the I, 

m indices specify the localization of the function 0*m according to that 

scale. Note, since the image details can be characterized by only a few 

samples at a coarse resolution, the range for I and m gets smaller as k 

decreases (generally by a factor of 2). 

The simplest possible decomposition basis is a generalization of the 8-

function basis (2.5) for two dimensions. The basis was shown to provide for 

the optimal compression of images in a sense of the rate-distortion function 

[DEV092], and was extensively used in the present research [KIFI92 and 

KIFI93]. Specifically, are indicator functions of a square of the size N 

/2k with the upper left corner at (l x N/2k, m x N/2k), where N is the 

image dimension (which is assumed to be a power of two). In other words, 
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the basis function equals one within the square and zero elsewhere. The 

following figure depicts several sample basis functions with different scales 

and various localizations for a 8x8 image. To avoid the clutter, zeros are 

displayed as dots. 
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i i i i 
1 1 1 1 
1 1 1 1 

i i 
i i 

i i 
i i 
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O oo <D 10 21 o 23 

Fig. 7. Example of functions for the simplest basis. 

A coefficient cfm of decomposition (1) tells the contribution of the 

corresponding square to the image. Clearly, the basis functions with the 

same k are orthogonal, because the squares do not overlap. Moreover, the 

two-dimensional basis ( i j ) is a Cartesian product of one-dimensional 

bases y f ( / )> e q . ( 2 . 5 ) : 

®L(iJ)=Wi(i)Vkm(j) (2) 

Multiresolutional decomposition of an image follows the general 

scheme, Fig. 2, which is redrawn below for easy reference (and slightly 

adjusted for the two-dimensional case): 
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Fig. 8. Multiresolutional analysis of an image. 

Recall that the Gaussian pyramid (which is on the left-hand side of the 

Fig. 8) represents a set of views of the image at different resolutions. It is 

constructed by successively applying a contract operation, which reduces 

the image resolution (and, therefore, the size) twice in each dimension. The 

Laplacian pyramid, on the right-hand side of the picture, is obtained by using 

an expand operation. It reverses the subsampling of the contract operator 

and increases the span of the picture twice in each dimension, but it does not 

increase the resolution. Image details filtered out when reducing the 

resolution are lost and cannot be restored from the contracted version. 

Therefore, the difference between the image and the expanded contracted 

version of it contains the details that are visible at the particular resolution, 

but not at the coarser resolution. The Laplacian pyramid then is a collection 

of image features separated among the set of all possible resolutions. 
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As follows from the discussion in Chapter II, contract operation 

involves filtering with an appropriate lowpass filter followed by 

subsampling, eq. (22). Operator expand reverses the subsampling by 

performing the intersample interpolation, which is carried out as upsampling 

followed by another lowpass filtration, eq. (23). It should be stressed that 

due to the overcompleteness of the overall basis, an exact form of the 

contract and expand operations can be selected in a variety of ways. One 

particular form of the contract operator that was used with the ^-function 

basis for the one-dimensional signal is averaging two adjacent samples, eq. 

(12). The same idea also works for images; namely, the contract operation 

is selected to literally take an average of the corresponding 2x2 square, 

ay*1™ = imagey, kmax = logN, / , j = 0 . . N - 1 

4"1 = averaSe{a2i,2j + 4+1,2; + a2i.2j+l + a2M,2j+l)' (3) 

k = kmax.A, i,j = 0..2k~l-I 

where the average is the mean arithmetical average rounded to the closest 

integer. In the one-dimensional case, the expand operation was just 

duplicating every sample with appropriate normalization. By the same 

token, expanding an image is to be performed by replacing each pixel by a 

2x2-block of the same intensity. Thus, the expansion and subtraction 

operations (see Fig. 8) necessary to obtain nodes cfj of the Laplacian 

pyramid can be written in the following simple form: 
cij = aii ~ a i i i J ^ = ^cmax" i j = 0..2k - I (4) 

Note that the way the pyramid is constructed satisfies the consistency 

condition, in that the contract and expand operators are strictly 

complementary; i.e., 
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contract(i'mage) = contract[expand[contract(imflge)]] (5) 

compared to eq. (2.24). This can easily be verified by considering a sample 

image with one quadrant blackened. 

We emphasize once again that the decomposition {cfm} is an exact 

representation of the original image regardless of the way the contract and 

eHpand operations are performed. Indeed, reversing arrows on Fig. 8 

restores the Gaussian pyramid from the Laplacian one, the bottom level of 

which is the original image itself (or its exact transform). For example, the 

averaging in eq. (3) can be computed as either the mean arithmetical value, 

or median value, etc. of the four integers. One can take advantage of this 

arbitrariness in designing the pyramid with the least entropy. This question 

will be discussed in more detail in the next section. 

The generic algorithm of the multiresolutional image analysis 

(construction of the Laplacian pyramid) can now be outlined as follows: 

Step 1 

assign c1-™*: = image^, for j, j = 0 . . 2 k m a x - 1 

Step 2 

for k=kmax-l downto 0 do 

4 •= "average" of 4\2y, c $ l 2 J , c g l J + l , and c $ i a j + 1 ; 

i,j = 0..2*-l 

Step 3 

for k=l to kmax 

rk •- rk -rk~l 
ij ij i/2,j/2 

Step 4 (optional) 

for k=l to kmax 
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apply linear or nonlinear transformation to the set 

c2i,2j> c2i+\,2j > c2i,2j+l * an^ c2i+l,2j+l 

Step 5 (optional) 

quantization 

Step 6 

Arithmetic encoding of the set of resulting 

coefficients c\ 

Step 2 of the algorithm builds the Gaussian pyramid [BURT83], Step 

3 turns it into the Laplacian pyramid. The coefficients {c\m} of the 

decompositions are arranged into a quadtree. This quadtree is represented in 

the program as a one-dimensional array of nodes in the breadth-first 

traversal of the tree with a certain canonical ordering of nodes within one 

level. Note that the image was assumed to be a square of size N = 2kmax. 

Step 4 of the algorithm performs a renormalization of the 

decomposition coefficients, for example: 
c2i,2 j' ~ c2i,2 j + c2i+l,2j + C2i,2 j+l + c2i+l,2j+l> 

c2i+l,2j: = C2i+12j + c2i,2j» c2i,2j+l: = c2i,2j+l + c2i,2j» 

c2i+l,2 j+l: = c2i+l,2 j+l + c2i,2 j 

(6) 

This is equivalent to a transition from the decomposition basis illustrated on 

Fig. 7 to slighdy different basis functions sketched on the following pictures: 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

i i 
i i 
i i 
i i 

i i 
i i 

i i 
i i 
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Fig. 9. Examples of functions for the renormalized basis. 

As one can notice, basis functions bear orientation now; i.e., they separate 

image features not only according to their scale and localization, but also 

their orientation, which is a desired property (see Chapter II). What is more 

important is that this basis provides a noticeably better compression. It 

should be mentioned that the basis is non-orthogonal, as easily seen on Fig. 

9. Hence, the renormalization can be viewed as a simple way of 

decomposing the signal in a non-orthogonal wavelet basis. The procedure 

may also be regarded as an implementation of the generic rule of computing 

the detail signal c» as a high-pass filtration of the corresponding level of the 

Gaussian pyramid, see eq. (2.25). However, if the average in eq. (3) is 

meant to be a rounded mean arithmetical value, a non-linear operation, the 

convolution in eq. (2.25) with the high-pass filter kernel should be 

understood rather figuratively. Note that in general, the highpass band c\ 

cannot be downsampled; i.e., the wavelet basis is loose. We will return-to 

that question in the next section. 

Step 5 of the algorithm performs trimming or quantization of the 

Laplacian pyramid. It means the c» are quantized (i.e., rounded-off to be an 

even multiple of the quantizing factor) or simply chopped off if 'small'. The 

goal is to reduce the number of distinct c» values and/or make some of them 

zero. Both operations lower the entropy of the decomposition and thus 

contribute to efficient compression. Note that this is the only operation that 
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introduces a non-recoverable loss. It is because of the quantization that the 

image restored after the decomposition differs from the original one. 

Trimming of the Laplacian pyramid is based on the observation that 

some terms of the decomposition, eq. (1), can be dropped without significant 

impact to the reconstructed image. Indeed, according to Fig. 7, a 

decomposition coefficient cfj tells how one square of the image stands out 

against the larger embracing square. It implies that the quantity 

(?) 

represents the product of the level of "contrast" by the level of "detail". 

Thus, having specified a certain threshold x, we keep only those terms in the 

decomposition whose norm (7) is above the threshold. This produces the 

image with large scale (large grain) and/or large 'outstanding' features 

preserved and with fine grain and small contrast features eliminated. Note 

that the last identity in eq. (7) assumes a space Lx for the evaluation of the 

norm of basis functions. Trimming the Laplacian pyramid also guarantees 

that the overall image reconstruction error (per pixel) in Lx norm is limited 

by %x [DEV092]. It is argued that using this norm in evaluating the image 

distortion goes along with the human visual perception [DEV092]. Our 

experiments seem to confirm that. 

Quantizing is a milder form of trimming. It means that the are 

rounded to be an even multiple of some quantization criterion rather than 

being either kept or discarded. Again, we want to make sure that the 

resulting inaccuracy in the coefficient multiplied by the norm of the 

corresponding basis function stays less than a predefined threshold x. This 

requirement defines the quantization criterion Qk for c | : 
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6k =floor(xl2kma-k) + \ (8) 

It should be stressed that the quantization according to (8) is consistent with 

the trimming, and guarantees an upper bound of %z of the reconstructed 

image error. Moreover, quantization noticeably reduces the number of 

distinct coefficient values, which gives a significantly better compression. 

Our experience attests to that. 

3.2 Entropy Encoding of the Decomposition Coefficients 

An arithmetic coding of the stream of assures an (asymptotically) 

entropy encoding; i.e., in a sense as much compression as one can get 

without distorting the information [BELL90]. The coding procedure is 

carried out by a universal arithmetic codec that compresses/decompresses a 

given symbol using an estimated probability for its occurrence. The codec 

has to be complemented by a model which is to supply the probabilities to 

the codec. The encoding part has been implemented in the object-oriented 

style in C++, based on the sample code given in [BELL90]. However, a 

simple adaptive first order model found in the book was significantly 

modified and tailored to the distribution of the wavelet decomposition 

coefficients for gray-scale still images. The distribution of the coefficient 

values is found to be almost ideally modeled by the Lorentzian curve with a 

very strong peak at zero, as the following plot demonstrates: 
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Fig. 10. Histogram of c\ for the sample image 'lenna'. 

This a priori information is used for an initial setup of the symbol 

frequency tables in the prediction model. As symbols are processed, the 

frequency tables are updated in a way similar to that described in [BELL90] 

to finely adjust the distribution. However, rescaling of the frequencies is 

carried out more frequently than is necessary to prevent overflow in the 

coder. The reason is that the rescaling of the model makes it gradually 

forget past experiences, and tunes in the model to the recent data. It makes 

sense if the ideal source model changes with the time, as is certainly the case 

in the Laplacian pyramid, where the probability distribution for different 

layers may be different. A number of parameters controlling the adaptation 

of the model and the rescaling were carefully adjusted for typical image 

decompositions. Note that the initial setup, adaptation and rescaling of the 

model implicitly increases its order; that is why we will refer to the model as 

a mixed predictive adaptive model adjusted to the Laplacian image 

decomposition. 

Another major innovation of the predictive model is the use of the 

histogram to determine which symbols are expected to occur and how often. 
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It effectively solves the zero-frequency problem [BELL90]. Indeed, the 

simple adaptive model wastes the probability space by assigning the 

frequency count of 1 to a number of symbols that might have appeared but 

never occur in reality. For example, a decomposition coefficient c» for 8-

bit images can, in principle, take any value from the interval [-255,255]. 

The simple adaptive model assigns all possible 511 symbols a frequency 

count of at least 1. However, only about 130 of these symbols turn out to 

occur for typical gray-scale images; i.e., only a 130/511 fraction of the 

probability space is utilized. In the present model, the histogram of symbols 

(decomposition coefficient values) is built prior the encoding to find out 

which symbols actually occur, and to estimate very roughly their probability. 

The frequency tables of the model are allocated only for the symbols that 

actually occur rather than those potentially needed. The frequency 

information from the histogram is also used for the initial distribution setup. 

The tables are subject to modification and rescaling as symbols are encoded, 

much in the same way it was outlined above. The following table gives an 

example of compression of the Laplacian pyramid for a 512x512 test image 

Compression Method Size of the encoded file, bytes 
Run-length+ UNIX compress 
Run-length+Witten's arithmetic 
Mixed context adaptive model 
Histogram-based adaptive model 

16,070 
14,106 
18,680 
12,435 

Table 1. Comparison of different encoding schemes for the Laplacian 

pyramid image decomposition of 'clouds'. 
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Note that the last two procedures mentioned in the table (which are based on 

the predictive models developed in the present research) encode the stream 

of decomposition coefficients as it is, without the run-length coding of 

commonly occurring stretches of zeros. However, the overall compression 

does not suffer, which demonstrates the optimality of the arithmetic 

compression. As one can see, the histogram-based mixed context predictive 

model (discussed above) together with the arithmetic encoder, outperform 

general compression procedures such as LZC (UNIX compress utility), 

adaptive Huffman (UNIX compact utility) and a generic first order model 

arithmetic encoder [BELL90] in compressing the Laplacian pyramid image 

decomposition. 

3.3 Quest for the Minimum Entropy Laplacian Pyramid 

It should be stressed once again that the decomposition {c^} is an 

exact representation of the original image, no matter how the coefficients are 

evaluated, renormalized, or encoded. However, different methods of 

computing the decomposition may lead to image representations with 

different entropies. To illustrate that, consider the following simple example 

of a 4x4 gradient-filled image: 

1 2 3 4 
3 5 5 6 
5 7 8 8 
7 8 9 10 
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Fig. 11. Sample image with the zero order entropy H=3.155. 

The Laplacian pyramid decomposition, eqs. (3-4), of the sample image is 

shown on the next figure, where the average in eq. (3) is assumed to be an 

exact mean arithmetical value. Since this operation generally does not yield 

an integral result, we need to perform a special normalization to make the 

decomposition coefficients integral. 
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Fig. 12. Tight wavelet decomposition with the entropy H=3.250. 

Note that this decomposition is tight. Indeed, if the average in eq. (3) is an 

exact mean arithmetical, the sum 4,2; + 4+1.2; + 4,2,+i + 4>u;+i is 

precisely zero. It means that one coefficient of every four may be discarded 

without any loss of information; in other words, the highpass band can be 

downsampled. It has an advantage that the total number of coefficients, 16, 

in the decomposition, Fig. 12, is exactly equal to the number of pixels. 

However, the entropy of the coefficients is higher than the original image 

itself. 

Taking the average in eq. (3) as a rounded mean arithmetical value 

yields already integer coefficients without any need for normalization. The 

Laplacian pyramid in this case is as follows: 
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Fig. 13. Loose wavelet decomposition with the entropy H=2.679. 

Note that the sum of the four coefficients is no longer exactly zero, 

because of the rounding in computing the mean value. It indicates that the 

wavelet basis is loose, resulting in a total of twenty-one coefficients of the 

decomposition, which is five more than the number of pixels. However, the 

entropy turns out to be smaller, which is a consequence of the smaller 

number of distinct values of the coefficients and their magnitude. The 

example, Fig. 11, is admittedly rather crude, but it does illustrate general 

features of the wavelet transform. The histogram of Fig. 10 shows that even 

in the case of typical real images, most of the values of the loose Laplacian 

decomposition are small, which contributes to the small entropy of the 

transform. To give another, more realistic example, let us consider different 

Image Representation Number of 
symbols 

Size of the 
encoded 

file, bytes 

Compression 
ratio 

Original image 
gzip compressed image 
Laplacian pyramid 
Renormalized pyramid 

262,144 
262,144 
349,525 
349,525 

265,322 
212,951 
177,808 
169,389 

1.25:1 
1.49:1 
1.57:1 



60 

Table 2. Comparison of different exact representations of the test image 

'lenna'. 

The first row in the table refers to the image as it is. The second row 

describes the representation obtained by the lossless compression of the 

image using one of the best universal entropy encoders, UNIX 'gzip -best' 

utility (based on the LZ77 algorithm). The last two rows deal with the loose 

Laplacian pyramid decomposition encoded using the prediction model 

discussed in the previous section. Coefficients are not quantized or trimmed, 

therefore the compression is lossless and the representation is exact. Since 

both LZ77 and arithmetic compression provide the entropy encoding, the 

size of the output file can be considered as a measure of the entropy of the 

input: a stream of pixels or decomposition coefficients. As the table clearly 

indicates, the redundant Laplacian pyramid (with more coefficients than the 

pixels) has smaller entropy. Additional evidence that the transforms with the 

larger number of coefficients may have actually less entropy can be found in 

[GOLD91]. 

Thus, the apparent redundancy in a representation proves to have little 

to do with the redundancy of the information contained in the representation. 

This suggests that, as far as image compression is concerned, one needs to 

consider not the number of basis functions and their smoothness, but the 

entropy of the representation in designing the best image transformation. 

The redundancy of the representation, where it exists, can be exploited to 

help reduce the entropy of the resultant representation. This understanding 

is one of the primary features of the present research. Specifically, it implies 



61 

that one ought to strive to reduce the amplitude of the transform coefficients 

and the number of the unique values the coefficients can take. 

According to the generic framework for the Laplacian pyramid 

decomposition discussed in the previous section, there are two types of 

arbitrariness one can take advantage of to reduce the entropy of the 

decomposition. First, there is a wide margin in selecting the averaging of 

four numbers in eq. (3). It can be chosen to be a median value, median value 

clipped to the quartiles, any of the four numbers, an exact mean arithmetical 

value, a mean arithmetical value rounded to a closest integer, or to an even 

integer, etc. Note that the median, quartiles, rounded mean arithmetical 

values and their convex combinations are proved to be near best constant 

approximations of a function on the interval [DEV092]. The median value 

and other order parameters do not seem to be very suitable candidates 

because they may fail to reduce the amplitude of the decomposition 

coefficients. Consider a simple example of four nodes of the Gaussian 

pyramid, 

a2i,2j-®-> a2i+l,2j = a2i,2j+l = a2i+l,2j+\ = x (9) 

where x is an arbitrary number. Taking the average in eq. (3) as a median 

value gives a\fx - 0. According to eq. (4), the amplitude of c-j is then the 

same as that of that is x, which can be quite big. On the other hand, if 

the average in eq. (3) is taken as a rounded mean arithmetical value, then 
aij 1 = [* / 4] and the amplitude of the transform coefficients is x - [x / 4], 

which is relatively smaller. 
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Another way of controlling the entropy of the transform coefficients is 

to perform the renormalization, for example, according to eq. (6) or simply 

as 

c2i,2 j: = c2i,2 j + c2i+l,2 j + C2i,2 j+1 + c2i+\,2 j+1 ( ^ ) 

with the other c-j unchanged. Note that the Haar transform can also be 

obtained in the same way using an appropriate renormalization. As our 

experiments show, the renormalization leading to the Haar transform does 

not provide any improvement. Although transformation (10) gives the least 

entropy of the unquantized representation (the best lossless compression), 

the renormalization according to eq. (6) proves to be more 'robust' against 

the quantization. 

We have experimented with a number of different methods of 

computing the average and performing the renormalization. Some of the 

>est results are summarized in the following table: 
Averaging/renormalization method No. distinct Size of the encoded 

values of file, bytes 

Rounded mean arithmetical 129 12,502 
Median 160 13,333 
Mean arithmetical rounded to an 124 12,424 
even integer 
Rounded mean arithmetical and 144 12,314 
renormalization, eq. (6) 
The same as above with quantizing 95 9,924 

Table 3. Comparison of different methods of computing the Laplacian 

pyramid image decomposition for the test image 'clouds'. 

All the results referred to in the table are obtained for the 512x512 eight-bit 

test image 'clouds', which was decomposed using several modifications of 
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the Laplacian pyramid algorithm. The transform was then trimmed with the 

threshold x=50, except for the method described in the last row of Table 3 

when quantization was used instead. The resulting stream of coefficients 

was encoded using the arithmetic coding with the histogram-based mixed 

predictive model discussed in the previous section. Computing the average 

as a rounded mean arithmetical value followed by renormalization, eq. (6), 

proved to be the best modification found in the present study. Incidentally, 

it provides the compression of 26:1 with the root mean square error (RMSE) 

5.35, and almost without any visual degradation in the image quality. The 

examples of several test images restored after being compressed with the 

best found algorithm are given below. 

We should point out that printing a gray-scale image with 256 shades 

of gray is a formidable task. It is clear that the printed image would always 

be different (and much worse) than that displayed on the screen of the 

terminal with at least 8-bit depth. That is why taking pictures from the 

screen of a high quality monitor still remains the best way of including the 

gray-scale images in a document. However, if one does wish to print such 

pictures, a special processing is necessary to produce the output that retains 

at least a fraction of features and visual appearance of the original image. 

One method of such processing is a histogram equalization [PAVL82], 

which achieves full utilization of the dynamic range of pixels and yields the 

pixel values distribution with brightness levels spaced apart. Sometimes 

better results can be produced by a contrast enhancement technique, a 

normalization of the contrast by forcing the lightest pixels to white, the 

darkest pixels to black, and linearly rescaling the ones in between. For dark 
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images, the enhancement procedure yields a better printed picture if one first 

exchanges black and white (called LUT, the color look-up table, inversion). 

Light, bright images may require another correction, which is essentially a 

recalibration of pixel values to make a printed dot appear with the same 

subjective darkness as the corresponding spot of the displayed image. This 

recalibration is called y -correction [PAVL82]. Most image editing packages 

can carry out these corrections, in particular, a freeware Image package 

created and distributed by the National Institute of Health. We indicate the 

image correction method in captions to the figures. 
:Ir '• " •' ' 

i 

Fig. 14. Original and compressed image 'lenna', threshold 50, compression 

ratio 19:1, RMSE 6.60, Lj error 4.25. Printed at scale 2:1 after the y-

correction with the factor 1.85. 
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V / 

Fig. 15. Original and compressed image 'clouds', threshold 50, compression 

ratio 26:1, RMSE 5.35, Lx error 3.64. Printed at scale 2:1 after the contrast 

enhancement of the inverted LUT. 

Figure 16 is a test image from the National Imagery Transmission Format 

(NITF) Technical Board, released to the public domain by Bill Puckett 

(Chairman). 
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Fig. 16. Original and compressed image 'fingerprints', threshold 80, 

compression ratio 9:1, RMSE 25.50, Lj error 20.17. Printed at scale 1:1 

after histogram equalization. 

3.4 Non-uniform Compression 

As was discussed in the Introduction, it is the omission of 

insignificant' information and elimination of features of little importance 

(which however are lost and cannot be recovered) that makes possible a deep 

compression of images. The generic algorithm of the pyramidal image 

decomposition, outlined in Section 3.1, achieves such information reduction 

through trimming or quantization of the transform coefficients. This is 
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equivalent to discarding certain features of the image (which are of low 

contrast and/or 'small'). The algorithm of trimming/quantization discussed 

in Section 3.1 (and commonly used in applications of the wavelet transform 

[DEV092]) pares the image features regardless of their position within the 

image regardless of their significance to a particular end user. This may be 

adequate in many cases. However, for some applications, such a sweeping 

elimination of details is not appropriate simply because the interest within 

the image is not uniform over the entirety of the view. This brings to light a 

problem of non-uniform image compression, a lossy image compression 

with the amount of loss (and, correspondingly, compression) varying over 

the area of the image, or, more general, over some regions of features of 

interest. 

In order to the select areas of interest, we have defined some 

preliminary concepts which allow specification of portions of an image or its 

characteristics that certain users may wish to preserve according to the 

utilization or function of the image. We call the rules used to select the areas 

of interest 'criteria sets'. For example, such a set might include an 

algorithm that would govern the threshold value or other criterion used in 

approximating transform coefficients for better compression. In the long 

run, controlling the threshold relates to the distortion that is introduced 

during the compression within a specific area of image, or at specific 

frequencies, etc. One has to recall that a wavelet transform coefficient bears 

information about the scale, absolute position, and sometimes, orientation of 

specific image features. This is the reason that the wavelet transform lends 

itself perfectly to the non-uniform compression. The actual establishment of 
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criteria sets will depend upon the final disposition and requirements of the 

users and the understanding of the use or purpose of the images. The criteria 

sets that are listed here still seem to cover all of the applications that we can 

find to date: 

• High or low frequency portions of a picture which are characterized by 

the frequency with which the intensity of the adjacent pixels changes 

along the rows and/or columns of the image. This criteria set will be 

called FREQUENCY'; 

• Edges characterized by the sharp and abrupt change in the local contrast. 

This criteria set will be called 'EDGE'; 

• Selected areas or regions of the picture specified by their shape, size and 

position. Region specifications may be either absolute (relating only to 

the image border and its size but not to the contents of the picture), or 

bound to specific image edges, features, etc. This criteria set will be 

called 'AREA'; 

• Selected ranges of pixel intensity found within a specific region. This 

criteria set is called 'RANGE'; 

• Selected patterns of pixel arrangements such as those described by 

texture, colors, or relative intensity. This criteria set is called 

PATTERN'. 

Our numerous discussions with a variety of people who use image 

compression showed that the idea of non-uniform compression is valid and 

very interesting. Moreover, several implementations of the non-uniform 

wavelet compression have appeared since the idea was introduced in 1992 

[KIFI92]. The rest of the present section discusses an original 
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implementation of a criteria set 'AREA' [KIFI92] that uses a weighted norm 

in estimating the norm of a basis function. 

The general transform quantization algorithm discussed in Section 

3.1 utilizes a norm | Ofm | = 2kmax~k of the basis function; see eq. (7). Since 

the norm does not depend on the localization of the function (on indices / 

and m), it implies that the image features are pared uniformly over the entire 

image. One of the methods that can be used to introduce a non-uniform, 

position-dependent norm, is to employ a weight function that controls the 

level of detail to be retained in any particular region of the image. The non-

negative weight function r(i,j) is specified as an image of the same size as 

that being processed. The function is used to compute a non-uniform norm 

of a basis function in the functional space lx ([0.. N-1]2) as follows: 

or, using the definition of the basis functions, Fig. 7, 
(l+l)2bma~k 

= I XKU) 

v rykmax-k n x 

~~ rljn V 1 1 ) 

where ar
k
l m is a coefficient of the Gaussian pyramid decomposition of the 

'mask' image that specifies r(ij). Strictly speaking, if the average in eq. 

(3), which is used to construct the Gaussian pyramid, is a rounded mean 

arithmetical value, the last equality in eq. (11) is only approximate. 

However, the high precision is not required as the user specified distinction 

between an 'important' region(s) of an image and 'unimportant' ones is only 

semi-quantitative at best Thus, the quantization criterion for the image 

transform coefficient cfm becomes (compare to eq. (8)): 
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el = floor(T / 2kmax~k / ar*m) +1 (12) 

Obviously, the quantization of the transform coefficient depends now on the 

localization of the coefficient (see Fig. 7 as to how subscripts I and m relate 

to the position of an image detail), and is controlled by the weight function. 

If r(i,j) = 1 then eq. (12) reduces to the uniform quantization rule, eq. (8). 

On the other hand, if r(ij) is significantly larger for some (ij)- s, then the 

features within the corresponding regions of the original picture would be 

left almost untouched during quantization. Note that the larger the degree to 

which an image detail intersects with the region of the 'significant interest', 

the less amount of loss it will incur. 

Thus, the criteria set 'AREA', telling relative importance of image 

regions, is specified as a new image, the mask image, which defines the 

weight function The bright regions of the mask image, or in other 

words, where r(ij) is large, are considered 'more important'; they get more 

'weight' and the features of the original image within the corresponding 

regions have better chances to survive trimming or quantization against the 

threshold. Figuratively speaking, if one imagines the mask image lying over 

the original one, then white spots of the mask image shield the underlying 

areas of the original picture during the quantization. It should be 

emphasized that the pixel of the mask image can take any value from 1 to, 

say, 255. Therefore, there is an ample leeway in assigning the relative 

significance to image regions. Obviously, the regions of importance can be 

of any form and shape. Figures 17 and 18 below compare original test 

images with those compressed using the non-uniform compression with the 

mask (weight function) that is equal to 10 within the central 256x256 square 
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of the image, and equals 1 elsewhere. Clearly, details in the center of the 

restored images look almost as good as those in the original images, while 

the fringes are fairly blurred. However, it is very difficult to find a sharp 

boundary between the regions of harsh and mild quantizations. Indeed, 

blurring emerges very gradually. This feature can be regarded as an 

(somewhat unexpected) advantage of the present non-uniform compression 

method. 

H - f f , 

A 

Fig. 17. Original and non-uniformly compressed image 'clouds', threshold 

310, compression ratio 34:1, RMSE 7.12, Lx error 4.79. Printed at scale 2:1 

after the contrast enhancement of the inverted LUT. 
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Fig. 18. Original and non-uniformly compressed image 'lenna', threshold 

310, compression ratio 24:1, RMSE 9.17, error 5.63. Printed at scale 2:1 

after the y-correction with the factor 1.85. 

3.5 Filtering the Decomposed Image and Estimation of a Discrete 

Derivative 

The image decomposition, eq. (1), may turn out to be of some help in 

performing various image transformations. Such transformations are often 

necessary or desirable in order to improve the visual appearance of the 

image, or to obtain some unusual visual effect, or highlight details or areas 

of particular interest. Another application is edge detection or, in general, 
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finding a derivative of the image [KIFI92] where such a derivative marks 

changes in the local contrast in the image. Most of the transformations of 

this kind, for example, smoothing, low- or highpass filtration, edge 

sharpening, edge detection, are linear and can be represented by the 

following general formula: 
image- = J^image^H^j, ( 1 3 ) 

or, if the impulse response function H ^ y is translationally invariant, in the 

form of the convolution: 
image-j = £ imagery H(i - j - j ' ) ( 1 4 ) 

<V 

Although the formulas look rather simple, a straightforward 

computation is very time consuming and requires Q(N2M2) operations, 

with M being a window size of the transform kernel H. Utilizing the Fast 

Fourier Transform reduces the computational (theoretical) complexity, but at 

the expense of using floating point (and, in general, complex) arithmetic and 

evaluating transcendental functions. Multi-resolutional image 

decomposition, eq. (1), provides a better alternative. Inserting eq. (1) into 

eq. (13) gives 

image'y = ( 1 5 ) 

k,l,m 

where 
; , 7 ) = K 0 ' . 7 " ) % r (16) 

i'j' 

Calculations in eq. (16) can generally be performed in advance. The 

computations become much simpler in case of a translational invariant 

H(i,j) of eq. (14). Indeed, basis functions ( i j ) o f the multi-

resolutional decomposition within the same scale are all translated versions 
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of a single function €>QO (/,;). And so is due to the linearity of 

eq. (16). This is represented by the following formula: 

0* J ) = Translation^0 (/,;)) *y (/ • 2 ^ " ^ , m • 2Ama*-*) (17) 

Equation (17) implies that only xFQ0(/,;) needs to be evaluated according to 

eq. (16), the other functions ( i j ) can be obtained solely by translation 

(as a matter of fact, in the actual algorithm no translations are required at 

all). All this greatly reduces the complexity of the transformation to 

0(log N - N2). This implies that the entire process is approximately as fast 

as the restoration of the image after the compression, which is carried out by 

reversing steps 1 through 3 of the generic algorithm in Section 3.1. 

Obviously, this requires no floating point arithmetic. It should be pointed 

out that the procedures represented by eq. (17) need only be applied to the 
lFfm(/,j) that contribute to the image; i.e., whose coefficients cj^ in the 

decomposition are non-zeros. Trimming and quantization of the 

decomposition, which is necessary to achieve the deep compression, reduces 

the number of these non-zero coefficients to a fraction of the total number of 

coefficients. This fact further contracts the computational time. Our 

experiments show that the filtering procedures become very fast indeed. 

Multi-resolutional decomposition also provides for multi-resolutional 

filtration, i.e., a linear transformation of the image with the kernel depending 

on the resolution. One possible application is smoothing out large-scale 

jaggedness that appears in the images which are restored after compression. 

A difficult aspect of the criteria sets is an idea of finding patterns or 

ranges. The derivative (in the calculus sense) of an image can provide 

information concerning edges and frequencies. Furthermore, the derivative 
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is immediately available from the wavelet transform. Specifically, we define 

the image derivative as a Lx norm of the discrete gradient vector: 

Dimage = \Drimage\ + \Dcimage\ (18) 

where the row and column partial derivatives are defined as 

Drimage(i,j) = image(i +1 J) - imageii - IJ) 

Dcimage(i,j) = image(ij +1) - imageii, j -1) . (19) 

This is a particular case of the general linear transformation upon an image, 

eq. (14) and can be treated in the same way. Specifically, a derivative 

operator can be transferred from the image to a basis function by inserting 

eq. (1) into eq. (19): 

Drimage(i,j) = SctaDr®te(''i)> (20) 
k,l,m 

and similarly for the column partial derivative. It is straightforward to 

compute partial derivatives of the basis function: Figure 19 schematically 

outlines a basis function (i,j) and its row and column partial 

derivatives. 

1111 
1111 
1111 
1111 

A basis function A row derivative A column derivative 
/.• r\ /• n >kk OldJ) Or<S>l(i,j) D c0fm(i,j) 

Fig. 19. Partial derivatives of a basis function 

Taking a numerical derivative of a signal, it should be noted, is an ill-

posed problem because it tends to intensify the noise always present in the 
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digital signal. Fortunately, the wavelet transform offers a simple way to 

perform a regularization; i.e., to obtain a stable numerical approximation of a 

derivative in the presence of noise. Since the noise is usually related to high 

frequencies, which are represented by c^ a x , performing 

trimming/quantizing of the transform coefficients with an appropriate 

threshold can neutralize the impact of local noise. This is an example of the 

lossy compression acting as a (non-linear) filter — an idea that is becoming 

increasingly popular [DEV092a]. Note that this approach allows one to 

obtain a 'large scale' derivative image. Figure 20 provides an example of a 

'regularized' numerical derivative of a test image. 

* -"Kr **• i 

Fig. 20. Original high-altitude image and its regularized derivative, 

threshold 19. Printed at scale 2:1 after histogram equalization. 
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3.6 Smooth Laplacian Pyramid 

A Smooth Laplacian pyramid is yet another pyramid representation of 

the image. Like the regular Laplacian pyramid, it implements the 

multiresolutional image analysis, eq. (1). As has been discussed earlier, 

decomposition (1) is an exact representation of an image; given the set of 

coefficients cfm, the image can be reconstructed in its entirety without any 

distortion. However, if the coefficients of the decomposition are discarded, 

quantized or otherwise approximated to achieve better compression, 

composing the image back according to eq. (1) gives only an approximation 

of the original image. It has been shown [DEV092] that the approximation 

is optimal in that it minimizes the mean square or mean absolute error at a 

given bit rate (provided the quantization is appropriate). However, it is well 

known that objective image quality criteria like the mean square error do not 

always agree with the subjective visual perception of the picture. In the case 

of the Laplacian pyramid, the distortion of the image due to the 

approximation of the decomposition coefficients manifests itself in block 

image artifacts and false edges. The tiling effect [FARR90] is especially 

noticeable when one approximates the coefficients corresponding to the 

medium scale basis functions. The following picture illustrates the effect of 

a harsh quantization on the test image 'lenna'. 
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Fig. 21. A central part of the image 'lenna', original picture and restoration 

from the decomposition quantized with threshold 250. 

Indeed, the quantization is harsh, but so is the compression; the compression 

ratio is 39:1. 

Blocking artifacts and false edges can be suppressed should the basis 

functions be not so clear-cut. Indeed, with the basis functions of the regular 

Laplacian pyramid, Fig. 7, should some coefficient cfm get discarded, the 

corresponding square (associated with the basis function) Vanishes' from 

the image, leaving the black hole with sharply defined edges. If the basis 

function were a little bit blurred, the hole would not be so clear cut and 

noticeable; at least, it would not look like a missing square tile. Moreover, if 

the support regions for the basis functions partially overlap, then the 
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vanishing of one basis function would be partly made up for by the 

neighbors, thus reducing the effect. 

The simplest possible choice is to use a blurred version of the 

Laplacian pyramid basis, 
1 3 3 

16 
A* y 

l 
3 9 9 3 
3 9 9 3 
1 3 3 1 

(21) 

where each element of the matrix represents a square of the size N/2^+1 and 

the upper left square of the matrix is located at ((i-l)*N/2k+l, (j-l>N/2k+l 

). The following figure, Figure 22, displays some of the functions (compare 

with Fig. 7): 

3 3 1 

9 9 3 

9 9 3 

3 3 1 

.16 

Basis function Basis function Basis function 
16-O oo 16*® Jo 16* O 2 

21 

Basis function 
>3 
23 16* O? 

Fig. 22. Example of the basis functions for the smooth Laplacian 

pyramid, eq. (21). 

Note that the function is clipped if it sticks out of the boundary of the image. 

As one can see, the functions decay not so abruptly, are overlapping and not 

orthogonal. However, dealing with these functions is not as easy. From 

general mathematical considerations, decomposition into a non-orthogonal 

basis is quite cumbersome and involves the solution of a set of simultaneous 

equations. However, redundancy of the pyramidal decomposition makes the 
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process much easier. Indeed, we need to perform decomposition for a whole 

set of levels, k.. At each single level we are content only with an 

approximate decomposition; the error can be propagated up to the next level 

and resolved there. The separation of image features into different scales is 

distorted slightly, but the resulting decomposition is exact (in the same sense 

as was discussed for the regular Laplacian pyramid). Moreover, since the 

basis functions are blurred and overlapping, quantizing the decomposition 

coefficients would not be so noticeable. 

The construction of the smooth Laplacian pyramid follows the same 

general scheme, Fig. 8. However, the implementations of the contract and 

expand operators have to be changed. The first version of the smooth 

Laplacian decomposition program provided a different implementation for 

only one operator, expand; that is, the Gaussian pyramid is constructed in 

exactly the same way it was done for the regular Laplacian pyramid analysis, 

eq. (3). As previously mentioned, we have a large choice in selecting a 

particular implementation for the two basic operators. An algorithm, eq. (3), 

for the contract operator works well for the regular Laplacian pyramid 

decomposition, and, moreover, possesses some optimal properties mentioned 

earlier. Since the smooth basis, Fig. 22, does not differ much from the 

regular one, Fig. 7, carrying out the contract operator according to eq. (3) 

appears to be quite appropriate for the smooth Laplacian pyramid 

decomposition. The expand operator must change to accommodate the 

new basis function, eq. (21). One of the possibilities is to use eq. (21) 

literally: 
lv 4 + 1 = I « t a ® L ( ' . 7 ) (22) 

lm 
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Note that since the basis function (/,;') differs from zero only for a small 

range of i's and/ s, Fig. 22, the sum in eq. (22) actually includes only a few 

terms. Thus, given afj evaluated according to eq. (3), the value of the node 

cfj of the Smooth Laplacian pyramid is computed then as follows: 

nk _ k 9 nk-l Xnk~l (23) 
cij ~ a i j -\6ail%jl2 ~ 16 ai'l2J/2 16 ai/2,j'/2 16 ai'/2,j'I2 

Here i' is the 'closest' to i row in the next quadrant, i.e., 

i" = (2m-2) N/2k+1 if i is "even" 

(i.e. i = 2m x N/lk+1 for some m) (24) 

i' = (2m + 2) N/2k+1 if i is "odd" (i.e. i = (2m +1) x N/lk+1) 

and so is j'. The formula should be clear from the observation that the basis 

function say, for k=kmax-l, covers not only its characteristic square 

2x2, but spans one more pixel in each direction (see Fig. 22). It means that 

each node of a pyramid level is affected not only by its parent 

(corresponding node of the higher level), but its three closest 'uncles' as 

well. 

Level 1 of the smooth Laplacian pyramid is treated exactly in the 

same way as that of the regular one, 
c\ = a]j -QQQ, /, j = 0,1 (25) 

This is because at such a coarse resolution it makes no sense to use smooth 

functions, as their 'fringes' lie completely outside the image and have no 

effect on smoothness of the image within its boundaries. 

To reconstruct the image from its decomposition, one need only apply 

eq. (1) from right to left; in other words, compute corresponding sums. Even 

simpler, one can reverse the algorithm, Fig. 8, that computes the Laplacian 
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pyramid from the Gaussian one, and take advantage of the fact that the 

bottom level of the Gaussian pyramid is the image itself. 

The problem with the first version of the smooth Laplacian pyramid 

decomposition oudined above is that the contract and expand operators 

are no longer complementary; i.e., the consistency condition, eq. (5), no 

longer holds. It should be clear from the fact that the contract operator 

does not take into account that the basis, eq. (21), has a broader support than 

the regular Laplacian pyramid basis, Fig. 7, while the expand operator 

does. Although the consistency condition is by no means an ironclad rule, it 

does guarantee to a significant extent the separation of the image features 

according to their scale. Therefore, in the second version of the Smooth 

Laplacian Pyramid, decomposition program a»~l is obtained not only from 

a2i,2j* a2i+\, 2j> a2i, 2j+i» a n d a2i+i,2j+i but also from their neighbors. 

The contract operation now is not the simple averaging, but rather a 

filtering with the kernel, 
1 - 3 - 3 1 

1 
Gu -13 16 

3 9 9 -3 

3 9 9 -3 

1 - 3 - 3 1 

(26) 

followed by decimation by two (dropping every other sample), just as in the 

generic case of the wavelet decomposition discussed in Chapter II. This 

implementation for the contract operator is consistent with the expand 

operator discussed above, and condition (5) now holds. However, 

performing a convolution as implied by the filtration may seem rather 

expensive. Fortunately, there is a simpler way of achieving the same results, 

namely, 
nk~l 4— ±-n

k nk~l 3_ k-1 _ 3 
u i / 2 J i 2 ^ 16 ip ai'/2,j/2 ~ 16 a i p ai/2J'I2 ~~ \Eaij 



83 

sjk 1 _j_— JL/7̂  
ai'l2,j'l2

 + - 16 ij 
(27) 

for all i j = 0..2K-1, providing that initially all afj 1 are zeros. 

As was already mentioned, the clear advantage of the current version 

over the previous one is the consistency in the sense of eq. (5). To illustrate 

that, consider an image that is comprised of a single basis function located 

somewhere, as that on the left-hand side of the figure below: 

13 3 1 
3 9 9 3 
3 9 9 3 
13 3 1 

Original image contracted image 

Fig. 23. Original and contracted sample images. 

The contracted image; i.e., the layer above the bottom one in the Gaussian 

pyramid, would contain only a single non-zero node which corresponds to 

the basis function. Applying the expand operator, eq. (22), yields the 

original image, on the left-hand side of Fig. 23. Obviously this is even more 

than the consistency condition, eq. (5), asks for. Incidentally, it makes the 

bottom level of the Laplacian pyramid completely zero, according to the 

generic algorithm, Fig. 8, as well as eqs. (23-24). Unfortunately, the 

improvement stops here. The next level of the Gaussian pyramid, obtained 

by contracting the contracted image, on the right-hand side of Fig. 23, 

would contain a number of non-zero nodes because the image that consists 

of only a single non-zero pixel requires many basis functions with broad 

support to represent. The situation is similar to that in the Fourier analysis, 



84 

where a single impulse requires infinitely many sine waves to represent. 

From the informational point of view, the multitude of non-zero 

decomposition coefficients means that the entropy of the decomposition is 

high and the compression is poor. Note that using an approximate 

contraction, eq. (3), in the previous version of the smooth Laplacian 

pyramid decomposition prevented a single impulse from spreading onto the 

next level of the Gaussian pyramid. We have tried to combat that spreading 

by utilizing the redundancy in constructing the pyramid and replacing 

negative a^~l (which may well result from formula (27)) by zeros. The 

rationale here is that each level of the Gaussian pyramid should represent a 

view of the original image at some particular resolution; an image view at 

the lower resolution ought not to contain 'negative' pixels. It helps, but only 

minimally. 

Another way of reducing the entropy of the smooth Laplacian 

pyramid decomposition is to play with the normalization of the basis 

function and the filters utilized to perform two basis operations, contract 

and expand. For example, the following basis function: 
1 3 3 1" 

(28) O- = -lJ 4 
3 9 9 3 
3 9 9 3 
1 3 3 1 

differs from that specified in eq. (21) only by a normalization factor, which 

is now 1/4 rather than 1/16. The filter, eq. (26), used in the contraction 

operation, has also to change its factor for 1/64 . Since the basis function 

has now a bigger effect (or, in other words, coefficients after filtration with 

the new filter come out four times smaller), the dynamic range of the node 

values of the pyramid is smaller. That decreases the entropy of the 
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pyramidal representation and makes the transform coefficients easier to 

compress. On the downside, because of the bigger 'weight' of the basis 

functions, a slight change in coefficients has a large impact on the 

reconstructed image. Accordingly, upon the quantization, the compression 

is bigger, but so is the distortion. 

Therefore, one definitely has to balance the entropy of the 

decomposition with the impact an approximation of the decomposition 

coefficients has. The following choice of the basis functions appears to be 

near optimal: 

k 1 
m = -lJ 8 

1 3 3 1 
3 9 9 3 
3 9 9 3 
1 3 3 1 

(29) 

The function has now a scaling factor of 1/8 (unlike 1/4 in the previous 

version), and the Gaussian pyramid construction filter has the scale factor of 

1/32 (compared to 1/64 in the previous version). The smaller factor at the 

basis function has now made the cost of one unit of the coefficient value 

slightly lower, and the value itself slightly larger. This results in a bigger 

amplitude of the transform coefficients, and, therefore, smaller (relatively to 

the previous version) compression. However, the quantization of the 

coefficients will not lead to large distortion, as it did in the previous version. 

Actually, the results turned out to be better than those for the original version 

of the smooth Laplacian pyramid, eqs. (3), (23-24); the present version 

provides a better compression at a smaller distortion (error). The following 

picture in Fig. 24 shows the result of a test image compression using the new 

version of the smooth Laplacian pyramid. 
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Fig. 24. A central part of the image 'lenna', original picture and restoration 

after the compression, threshold 100, compression ratio 25:1. Printed at 

scale 1:1 after histogram equalization. 

Another option of the basis for the smooth Laplacian decomposition 
that has been tried is 

_1_ 

64 

1 7 7 1 

7 49 49 7 

7 49 49 7 

1 7 7 1 

(30) 

Note that the function is more contained within the characteristic square and 

has a smaller margin. In a sense, it is a middle point between the sharp basis 

of the regular Laplacian pyramid, Fig. 7, and a significantly blurred basis on 

Fig. 22. The contraction filter is given by the following formula: 
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G„ = — 9 256 

1 - 9 - 9 1 

-9 81 81 -9 

-9 81 81 -9 

1 - 9 - 9 1 

(3D 

The pictures below show some sample results of the compression with 

that type of the smooth Laplacian pyramid. Note that the pyramid gives very 

little distortion (as seen from the RMSE error, and visually). 

j . ' :--c v . " ' 

'V 
iit 

Fig. 25. A central part of the image 'lenna', original picture and restoration 

after the compression, threshold 100, compression ratio 19:1, RMSE 10.70, 

Lj error 7.50. Printed at scale 1:1 after the y-correction with the factor 1.85. 
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Fig. 26. Original and compressed image NITF11, threshold 50, compression 

ratio 52:1, RMSE 4.82, Lx error 3.71. Printed at scale 2:1 after the contrast 

enhancement of the inverted LUT. 
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Fig. 27. Original and compressed image of the hurricane Gilbert, threshold 

100, compression ratio 17:1, RMSE 15.46, Lx error 10.25. Printed at scale 

2:1 after histogram equalization. 



CHAPTER IV 

SMART PICTURE MAGNIFICATION BASED ON THE LOCAL SELF-

SIMILARITY OF THE MULTIRESOLUTIONAL DECOMPOSITION 

4.1 The Problem and the Objectives 

The present chapter deals with an alternative scheme to eliminate the 

redundant information from the image on compression and to fill it in on 

decompression. The technique is based on, and makes extensive use of the 

property of self-similarity. However, unlike the Fractal Image Compression 

algorithm discussed in Chapter II, we are estimating and exploring the self-

similarity within the multiresolutional pyramidal decomposition of the image 

rather than within the image as it is. Specifically, the redundant information 

in an image, which comes mainly from local correlations in pixel intensities, 

can be effectively reduced by simply squeezing (or decimating) the picture. 

This by itself can be regarded as a very fast compression. Indeed, squeezing 

an image 4 times in each dimension reduces the amount of required storage 

16 times. Compressing the shrunken picture at least 10:1 (which as we saw 

in Chapter in introduces little visual loss) would result in a hefty overall 

compression of 160:1! Unfortunately, a dumb expansion of the squeezed 

image back to its original size gives a very jagged and blocky picture (see 

examples below). Therefore, the problem is to explore the remaining 

(mostly high-level) correlations in the squeezed image to perform a smart 

90 
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image magnification, which ought to result in a smooth and 'natural looking' 

picture. 

Thus, our goal is to find a way to estimate the self-similarity of the 

multiresolutional image decomposition and perform an image expansion 

based upon that. We have developed an idea of a formula of self-similarity 

to estimate the self-similarity in the pyramidal decomposition. The next 

section illustrates the idea on a very simple example of a self-similar image. 

We will next introduce a concept of local self-similarity in a complex image 

and consider its application to a 'smart' image expansion. Several particular 

implementations will be discussed and the results of the smart image 

expansion will be given for a variety of images. Simple images of straight 

lines, gradient fills and other basic elements that constitute a complex 

realistic picture will help to clarify the potential of this approach and its 

implementations. In conclusion, we will show how the method works in the 

case of realistic complex images, including frames of a weather video 

broadcast. It is significant that the algorithm is very fast, much faster than 

that based on the Iterative Function System Fractals [BARN93]. 

4.2 A Simple Example of the Self-similarity in the Multiresolutional 

Image Decomposition 

We start the discussion of self-similarity and how it emerges in the 

multiresolution decomposition by examining the following example of a 
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simple self-similar image. Each small square on the image in Fig. 28 stands 

for a pixel of an 8x8 image. 
R - J ~ N _ T - R - R - Y ^ 

I j j l_J 

j i j i 
1 — r - i — ! - • ! i i i i t i 
I " • • I ~ I I 

•B î" i ~ i 
A . — J L _ I I I — J 

Fig. 28. A simple test image. 

The image appears too trivial to be called fractal, but in fact, it is one 

of the simplest fractal images. Consider, for example, a set of views of the 

image at different resolutions, which are stacked one upon another to build a 

pyramid-like structure, a Gaussian pyramid [BURT83] (Fig. 29). 

/ / / / / Z—WKF^ / 

*T , J|V 

Fig. 29. Gaussian pyramid for the simple fractal image. 

The bottom of the pyramid is the original image itself. The layer just 

above it is a view of the image at a coarser resolution, obtained by replacing 
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a 2x2 square of 4 pixels by one pixel. This pixel takes an average brightness 

of the original 2x2 square. In our case, the new pixel is blackened if the 2x2 

square contained at least two black pixels. The middle layer is, in turn, 

reduced to give the top layer of the pyramid. From this example we can 

easily see that all image views at different resolutions 'look alike', indicating 

that our test image is indeed fractal. 

More complicated examples of the pictures that possess the same 

property are clouds and coastline maps. "Until now we stressed that 

coastlines' geometry is complicated, but there is also a great degree of order 

in their structure. Although maps drawn at different scales differ in their 

specific details, they have the same generic features. In a rough 

approximation, the small and large details of coastlines are geometrically 

identical except for scale. When each piece of a shape is geometrically 

similar to the whole, both the shape and the mechanism that generates it are 

called self-similar" [MAND83]. This notion can be given a more precise 

meaning. Consider the first two top layers of the pyramid. The top 2x2 

image represents the entire image at a very coarse resolution; but it is 

identical to, say, the left lower quadrant of the layer below it, which 

represents only a part of the original image. Thus, we are able to map an 

entire image into a part of itself at a finer resolution. So, in precise terms, "A 

bounded set S is self-similar, with respect to the ratio r and an integer N, 

when S is the union of N nonoverlapping subsets, each of which is congruent 

to r(S), a scaled version of S. Congruent means identical except for 

displacement and/or rotation" [MAND83]. 
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As far as the pyramid in Fig. 29 is concerned, the property of self-

similarity can be expressed in the form of a precise algorithm that tells how 

an image view at some resolution can be arranged such that it produces an 

image view at a lower resolution. In the case of a Gaussian pyramid, the 

difference in resolution between two adjacent layers is always 4, two in each 

dimension. 

H 
Fig. 30a. Image A, a view of the Fig. 30b. Image B, a finer view of 
original image at the very coarse image A, divided in quadrants, 
resolution. 

Figure 30 displays two views of the original test image, Fig. 28, at 

resolutions 4:1 and 2:1. The images are two adjacent layers of the Gaussian 

pyramid, Fig. 29. Obviously, image B is 4 times bigger than A. Image B is 

split into 4 quadrants, labelled by the numbers in the upper left corner of a 

quadrant. A quadrant of image B has exactly the same size (dimensions) as 

the entire image A, so that it is possible to consider a mapping between A 

and quadrants of B. These mappings define a formula of the self-similarity 

of the image, which in our case looks like— 
quadrant #0 of B is equal to 0 * A 
quadrant #1 of B is equal to 1 * A 
quadrant #2 of B is equal to 0 * A 
quadrant #3 of B is equal to 1 * A 
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Exactly the same relationship holds between the middle layer of the 

pyramid, Fig. 29, and the bottom one. Consequently, the formula above is a 

unique description of the image, and captures all its essence. It opens up a 

possibility of expanding the image to get an image at even finer resolution. 

Indeed, applying the formula to the original image in Fig. 28 gives us Fig 

31a. Fig. 31b depicts the result of a 'dumb' expansion; i.e., inflating each 

pixel into a 2x2 square. Obviously the expansion based on the property of 

self-similarity looks less jagged and blocky, and goes along with our 

intrinsic feeling as to how the expansion of Fig. 28 should look. 

Fig. 31a. 'Smart' expansion of the Fig. 31b. 'Dumb' expansion of the 
original image, Fig. 28, based on the original image, Fig. 28. 
formula of self-similarity. 

In general, the relation between the image and a quadrant of itself at a 

finer resolution may be more complicated than in the simplest case shown 

above. First, a quadrant of the finer resolution image may be darker or 

brighter than the entire coarse resolution image by some specific factor. 

Moreover, we might need to rotate image A and/or perform the reflection 

before trying to match it with quadrants of B. Thus the formula of the self-
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similarity between two images is defined to be a set of the four pairs. Each 

pair {x,y} in the set tells the relation between the entire smaller picture and 

the corresponding quadrant of the larger image. The first number in the pair, 

x, specifies that the image A is to be rotated by Ixl x 90° clockwise and, if x < 

0, reflected in y-axis. The second number, y, tells that the intensity of all the 

pixels of A is to be increased y times. After rotation, flipping, and intensity 

scaling, the image A then matches a corresponding quadrant of B. 

4.3 Local Self-similarity and 'Smart' Expansion 

Realistic images with which we are concerned are a bit more 

complicated than the test example, Fig. 28. One can hardly expect that, say, 

a frame of the weather broadcast video can be described entirely by a single 

simple formula as we have discussed earlier. However, we believe that a 

small separate part of the complicated picture does possess that property. 

Indeed, one small piece of an image may well be a segment of the straight 

line, which as we saw is very well described by the formula of self-

similarity. Moreover, clouds, flowers, rugged views of mountains, and other 

well-known examples of self-similar images can make up a (significant) part 

of a realistic picture. In other words, although the property of self-similarity 

normally holds only for fractal images, one can hope that it applies locally 

for usual images as well. 

At present, we have explored the application of self-similarity to the 

'smart' expansion of the image as sketched above. In more detail, the 
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procedure is as follows: Given an image, simple or realistic, it is reduced 4 

times in each dimension, 16 times total. We construct different kinds of 

multiresolutional representations for the shrunken image, and estimate the 

local self-similarity between the bottom level of the pyramid and the level 

just above it. The formulas of self-similarity are then used to predict a new 

layer of the multiresolutional pyramid, one level deeper than the bottom 

level. The procedure is then repeated and the pyramid is extended one more 

level. Thus, the multiresolutional pyramid of the 4 times shrunken image is 

extended by two levels in depth. From that extended pyramid, we can 

reconstruct an image, which in each dimension is 4-times larger than the 

shrunken image. Thus we shrank the original image 16 times and then 

expanded it 'smartly' to the original size. Comparison of the two images, 

original and shrunken/expanded, then gives an idea how good the expansion 

procedures is. 

Local self-similarity can be estimated by comparing quadrants of the 

4x4 square of the bottom level of the pyramid with the 2x2 pixel square of 

the higher level that is a view of the original 4x4 square at a coarser 

resolution. Fig. 32 displays the squares we are talking about. 
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Fig. 32. Local self-similarity in the multiresolutional pyramid. 
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As demonstrated above, the formula of the self-similarity tells how 

one image (a 2x2 square in our case) can be rotated and brightened/darkened 

to match a part of itself at a finer resolution (a quadrant of the 4x4 pixel 

image). Apparently, it is not always possible to get a perfect match; i.e., no 

rotation and scaling of the intensity of the 2x2 square can give an image that 

looks exactly like some quadrant of the 4x4 square. However, we are 

content with a match which is rather good, though it might not be perfect. 

To choose among non-perfect matches we need some quantitative criterion. 

At present, we are using a scaled projection of one image considered as a 

multi-dimensional vector onto another. Thus if a 2x2 block of pixels is 

considered a multidimensional vector, then the similarity between two 

vectors may be related to an angle between them. Indeed, if the angle is 

zero, we have a perfect match; on the other hand, if the vectors are 

orthogonal, they have nothing in common. The cosine of the angle between 

vectors vl and v2 can easily be estimated from their scalar product, 

cos(vl,v2) = g § § (1) 

If the cosine is zero or negative (meaning the vectors are orthogonal or 

pointing to different directions), the vectors are apparently dissimilar, so the 

coefficient of the formula of self-similarity is put to zero. If the match is 

perfect, the angle between the vectors is zero (the cosine equals exactly one), 

and we can estimate the coefficient of the formula, the amount one vector is 

bigger than the other, just by taking the ratio of their sizes: 
c o e f f = 9 ( 2 ) 

The determination of the coefficient becomes complicated in the situation 

where the match between two vectors is good (i.e., the cosine, Eq. (1), is 
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positive) but not perfect (the cosine is smaller than one). One solution, 

which is actually implemented in the program, is to scale the 'ideal' 

coefficient, Eq. (2), down by the degree of the dissimilarity, i.e.: 

coeff = cos(vl, v2) (3) 

Note that one may want to scale down the coefficient even more if the match 

is not perfect; for example, one may multiply the ideal coefficient by the 

squared cosine (or use even higher degrees). Thus, given one 2x2 block of 

pixels and another block which is a quadrant of the larger 4x4 block (see 

Fig. 32), a scalar product of two image-vectors is computed for different 

rotations and/or reflections of the coarse resolution block, and the maximum 

is noted. The transformation that provides the maximum of the similarity is 

then encoded in x, the first component of the formula of self-similarity. The 

coefficient y of the formula is then estimated according to eqs. (3) and (1). 

Incidentally, since the multiresolutional pyramid is represented internally as 

a quadtree, the pixels of the bottom level are child nodes of the quadtree, and 

pixels of the higher levels are their parent and (great)grandparent nodes. 

One can hope that while the magnitude of father and son nodes may vary 

among different levels of the quadtree, the coefficient, eq. (3), a scaled 

quantity, would remain almost constant (at least, among the descendants of 

the patriarch that was used to evaluate the coefficient in the first place). This 

justifies 'prediction' procedures, which try to predict grandchildren and 

great-grandchildren based on the relation established between parents and 

children, somewhat like tracing down the lineage. 

There are many ways for the image to be represented in the 

multiresolutional form. The first choice is a Gaussian pyramid, Fig. 29, a set 
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of image views at progressively decreasing resolutions. The Laplacian 

pyramid and its various smooth modifications discussed in Chapter IH 

should also be considered. Given below are results of the 'smart' expansion 

obtained with several different multiresolutional representations. 

4.4 Smart Expansion of Simple Pictures 

In the present section, we will show how the method works for 

simple images. Note that the figures throughout the section show the pixel 

value as the number rather than the shade of gray. For example, a pixel with 

value 8 is displayed as the number eight. A zero pixel is shown as a dot for 

clarity. The selected test images are indeed very simple, but one can 

consider them as a tiny part of a complex picture. Therefore, if expansion of 

the simple images seems indeed 'smart', one can expect good results for 

realistic images, too. 

Figures 33 through 35 are segments of the straight line, which is the 

atomic part of any picture. In these examples, we are interested to see if the 

expansion of a thin line looks as thin rather than bloated. Thinness of the 

line is very important here, because if this property is preserved upon 

expansion, the magnified image would look as crisp and sharp as does the 

original. In Fig. 34, which is a shifted version of Fig. 33, we are also 

looking at whether the property of keeping thin lines thin upon 

magnification is preserved through translation, the bane of the pyramidal 

transforms [MALL89]. As one can see, surprisingly it does. This result is 
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indeed astonishing since the reduced resolution representations can be 

severely distorted when the input is shifted. The problem is known in the 

quadtree literature as the shift-dependence of the description. In the worst 

case, a one-pixel shift of the input image can lead to a significantly modified 

pyramid structure [see refs. in MONT91]. As it turns out, even though the 

multiresolution decomposition is altered by the shift, it still preserves the 

property of self-similarity. 

Fig. 33a. Original image. 
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Fig. 33b. Dumb expansion. 

Fig. 33c. Smart expansion based Fig. 33d. Smart expansion based on 
on Gaussian pyramid. Laplacian pyramid. 



102 

Fig. 33e. Smart expansion based on 
smooth Laplacian pyramid. 

Fig. 34a. Original image. 
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Fig. 34b. Dumb expansion. 

Fig. 34c. Smart expansion based Fig. 34d. Smart expansion based on 
on Gaussian pyramid. Laplacian pyramid. 
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Fig. 34e. Smart expansion based on 
smooth Laplacian pyramid. 
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Fig. 35a. Original image. Fig. 35b. Dumb expansion. 
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Fig. 35c. Smart expansion based Fig. 35d. Smart expansion based on 
on Gaussian pyramid. Laplacian pyramid. 
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Fig. 35e. Smart expansion based on 
smooth Laplacian pyramid. 
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Fig. 36a. Original image. Fig. 36b. Dumb expansion. 
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Fig. 36c. Smart expansion based Fig. 36d. Smart expansion based on 
on Gaussian pyramid. Laplacian pyramid. 
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8 7 9 11 12 12 14 14 

7 7 9 10 11 12 13 13 

7 7 9 10 12 12 15 14 
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7 7 9 10 11 12 13 13 
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9 8 9 12 11 12 14 13 

Fig. 36e. Smart expansion based on 
smooth Laplacian pyramid. 

Figure 36 presents the results for a stripy image with a horizontal 

gradient fill. Note that the smart expansion based on the Gaussian pyramid 

does not perform well. This illustrates the situation when two layers of the 

pyramid look very similar yet have different background brightness. This 

may happen because a layer of the Gaussian pyramid represents the entire 

image rather than local contrast at a particular resolution. Obviously 

offsetting a vector (a block of pixels) changes its norm, which interferes with 

the determination of the coefficient of the self-similarity formula; see eq. (3). 

This problem does not arise for the Laplacian pyramid, where all levels 

represent only the local contrast, and therefore, the background brightness 

(or average intensity over a 2x2 block of pixels) for any layer stays very 

close to zero. One astounding feature of the smart image expansion based 

on the Laplacian pyramid is its ability to reproduce an utterly perfect, 

smooth gradient fill upon magnification. Indeed, Fig. 36d shows gradual 

smooth transitions from one stripe to another, which is precisely how a high-

resolution picture of the gradient fill is supposed to look. The results for the 
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smooth Laplacian pyramid might look less 'perfect'; but one should keep in 

mind that the decomposition performs smoothing by definition, which is 

apparent in the realistic images below. 

Since our method of expansion is based on the self-similarity, it ought 

to work perfectly for 'classical' self-similar images. To demonstrate that 

this is really the case, we chose one such picture, a Sierpinski gasket 

[MAND83, FTSH92]. All the various implementations of the smart image 

magnification we have discussed earlier have expanded Fig. 37a into Fig. 

37c, which is a correct view of the gasket at the finer resolution. 

Fig. 37a. Sierpinski gasket Fig. 37b. Dumb expansion. 

Fig. 37c. Smart expansion. 
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4.5 Smart Expansion of Realistic Images 

The first example to which we apply our method of expansion is 

'lenna', a famous image of a lady before the mirror. It is a very complicated 

image including both smooth regions and areas with many tiny high-

frequency details. The picture has become an unofficial standard in image 

processing. Virtually every paper that proposes a new technique in image 

compression demonstrates it first for that image. The picture even appeared 

on the cover of several books on image analysis and compression. Fig. 38a 

is an original image, Fig. 38b displays a shrunken/dumb expanded one. It is 

very easy to see the staircase view which is so typical of dumb expanded 

images. Fig. 38c gives the result of the smart expansion using the 

multiresolution decomposition based on a regular Laplacian pyramid. 

Finally, Fig. 38d is obtained using the smooth Laplacian pyramid. Figures 

39a-d demonstrate the same set of expansion methods for an IR satellite 

image of a part of an ocean covered with clouds, and Figs. 40a-d do the 

same for a frame of a weather video broadcast. 
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Fig. 38a. A central part of the original Fig. 38b. Shrunken/dumb expanded, 
lenna. Printed at scale 1:1 after the y-

correction with the factor 1.85. 

i-v 

Fig. 38c. Smart expansion using the 
Laplacian pyramid. 

Fig. 38d. Smart expansion using the 
smooth Laplacian pyramid. 

A 
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Fig. 39a. Original Clouds. Printed at scale Fig. 39b. Shrunken/dumb expanded. 
2:1 after the contrast enhancement of the 

inverted LUT. 
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Fig. 39c. Smart expansion using the 
Laplacian pyramid. 

Fig. 39d. Smart expansion using the 
smooth Laplacian pyramid. 

Fig. 40a. Original video frame of a 
weather briefing. 

WWSMM 

Fig. 40b. Dumb expanded x2. 
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Fig. 40c. Smart expansion using the 
Laplacian pyramid. 

Fig. 40d. Smart expansion using the 
smooth Laplacian pyramid. 



CHAPTER V 

SMART MAGNIFICATION OF MOVING PICTURES 

5.1 Objectives of the Search for Multiresolutional Self-similarity in 

Moving Pictures 

In the previous chapter, we have discussed a fractal image 

magnification based on self-similarity of the multiresolutional image 

decomposition. The central idea of the approach is the similarity between a 

part and a whole; in our case, between an image at some resolution and parts 

of it at a finer resolution. That similarity allowed us to extend the 

multiresolutional pyramid in depth, thus producing image views at finer and 

finer resolutions. On the other hand, zooming out of the picture implies that 

one has to fill in gaps between the magnified features, i.e., to perform 

interpolation. It has been demonstrated that the method of 'smart' 

magnification produces a more 'natural looking' magnified image. 

In the present chapter, the approach is focused on video imagery. 

Now, we are given not just a single image but an ordered sequence of 

frames, which are snapshots of some time-varying scenery. The challenge 

now is to take into account the third dimension, time. The smart 

magnification problem extends now to zooming out a given sequence of 

frames both in space and in time. In other words, the issue here is how to 

magnify a separate frame to discern greater detail as well as increase the 
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time resolution to produce smoother motion. Note that an alternative 

approach might be to perform time extrapolation rather than interpolation. 

The extrapolation may appear more promising in that it would then allow 

one to predict the position of moving details in subsequent frames based on 

few initial frames. On the other hand, the time interpolation also has its 

merits. In fact, the minimum frame rate of around 6-8 frames a second 

[HAIN93] is justified mainly not from the informational, but from that 

psychophysiological point of view. In fact, chopped motion, large area 

flicker (which is especially noticeable on large and bright picture areas) and 

other visible artifacts of the moving picture are very disturbing to the viewer 

and impair his/her ability to judge the scene [HAIN93]. Bandwidth 

restrictions generally do not allow for a high field rate used in the 

transmission, leaving the elimination of the display flicker to the receiver. 

So, if it is possible to fill in between two adjacent frames by performing the 

interpolation of motion, one can accommodate the viewer without sacrificing 

the bandwidth (the bit rate). Thus, the goal is not only to eliminate 

blockiness within the frame, but the chopped motion and resulting flicker 

between frames. 

A multiresolutional decomposition of the frame sequence provides a 

foundation for the smart magnification of moving pictures, as it does for still 

images. In our explanation, we will closely follow the path of Chapter IV, 

but perform all the work in three dimensions. The subsequent sections will 

show that it is possible to expand the image sequence in all three 

dimensions, producing crisp, sharp looking individual frames as well as 

smooth motion between the adjacent frames. A program has been written 
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that constructs the multiresolutional frame sequence decomposition, 

determines the formula of local self-similarity and uses it to perform the 

frame sequence expansion. Sample results of the program will be 

demonstrated and discussed below. The examples used in the discussion are 

rather simple (though capturing the essential characteristics of typical 

moving pictures), as it is unfeasible to include pictures of all the frames of a 

real movie in the document. However, a real-life example of compressing 

and decompressing a clip of a weather briefing is presented on a 

demonstrational video tape (available on request). 

5.2 A Simple Example of the Self-similarity in the Multiresolutional 

Frame Sequence Decomposition 

Similarly to the two-dimensional case, we start the discussion of self-

similarity in the spatial-temporal multiresolutional decomposition by 

examining the following test frame sequence, which is composed of 

snapshots of a single moving vertical line. Each small square in Fig. 41 

stands for a pixel of a 4x4 image. 

Fig. 41. A simple self-similar test frame sequence. 
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By decreasing the resolution twice in each dimension (both in space and in 

time), the following sequence is obtained: 

Fig. 42. A low resolution frame sequence. 

Reducing the resolution even more results in a single black pixel. Stacking 

the frame sequences one upon another gives us a Gaussian pyramid, a set of 

views of the original frame sequence at different resolutions. Note that a 

pixel of a frame sequence is represented by a small cube rather than square, 

which emphasizes the idea of the third, temporal dimension of the moving 

picture. 

Fig. 43. Gaussian pyramid for the test frame sequence. 
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The bottom of the pyramid is the original sequence itself, Fig. 41. Located 

above it is the same sequence but at the resolution 2:1, Fig. 42, which has 

half the number of frames at half the size. As was already mentioned, 

reducing the resolution twice in all dimensions turns the middle layer to a 

single pixel, the tip of the pyramid. Incidentally, the layout of the pyramid 

illustrates clearly the way the resolution is reduced. The middle layer 

consists of 8 pixels arranged in a 2x2x2 cube. Four pixels of the one face of 

the cube belong to one frame and the other 4 pixels comprise the 

corresponding 2x2 square of pixels of the next frame. The process of 

resolution reduction replaces all these 8 pixels by a single one, with the 

average intensity. This new pixel can be considered a 'parent' of the 8 

original pixels, since it describes the same part of the moving picture as do 

they, but it does so at twice as coarse resolution. Indeed, averaging over 2x2 

squares of a frame leaves only large-scale features intact, while averaging 

over adjacent frames eliminates fine changes between the frames; in other 

words, averages out a small-scale motion. The nodes of the pyramid along 

with their ancestral links constitute a tree. Each node (except the top one) of 

a tree has one parent, and each node (except the leaf) has exactly 8 

offsprings. Incidentally, this is the reason the tree is called octtree. 

Another multiresolutional image representation would be to take the 

difference between two adjacent levels of the Gaussian pyramid, which leads 

to a Laplacian pyramid. In precise terms, the algorithm for constructing the 

Laplacian pyramid is to subtract the value of a parent node from each of its 8 

children. Therefore, a node of the pyramid tells how this particular piece of 

the moving picture stands out from its local background at a given 
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resolution. In other words, each level of the Laplacian pyramid represents 

the features that are visible just at this particular resolution. Coincidentally, 

the top level of the Laplacian pyramid is the same as that of the Gaussian 

one. The following figure depicts the Laplacian pyramid for the test 

sequence, Fig. 41. Cross-hatched cubes on the picture stand for the 

pyramidal nodes with the value of minus one. 

Fig. 44. Laplacian pyramid for the test frame sequence. 

From the point of view of estimating the formula of self-similarity, the 

advantage of the Laplacian pyramid is that subtracting the value of the 

parent node from a pyramid node removes the local background. It really 

makes the difference as far as the estimation of self-similarity is concerned. 

Consider, for example, two sets of nodes of the Gaussian pyramid that look 

almost the same except one set is a bit brighter than the other. The present 
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algorithm for estimating the formula of self-similarity, outlined in Chapter 

IV, would fail to recognize the resemblance of the two sets of pixels. 

However, after the background is removed, the sets become identical, and 

their similarity is easy to detect. 

As was mentioned before, the multiresolutional pyramid separates 

features of the original frame sequence, Fig. 41, according to their scale. 

Each level of the pyramid contains the characteristics of the entire frame 

sequence at a particular resolution. Though the scale and features of two 

pyramid layers are all different, there is a striking similarity between them. 

Moreover, parts of the finer resolution layer appear similar or identical to 

the entire coarse-resolution layer. We have met the similarity of that type 

before while discussing fractal images. Now we see that certain image 

sequences also possess the self-similarity of the same kind. As in the two-

dimensional case, the property of self-similarity can be expressed in the form 

of a precise algorithm that tells how a frame sequence viewed at some 

resolution can be arranged such that it produces a frame sequence view at a 

higher resolution in space and in time. 

The formula of the self-similarity in the three-dimensional case can be 

derived then as follows: The bottom level of the pyramid on Fig. 44 

describes the frame details and the motion that are discernible at the 

resolution 1:1; the level just above it contains larger scale details and refers 

to a coarser motion, corresponding to the resolution 2:1. Obviously, the 

former sequence is 8 times bigger than the latter. The high resolution 

sequence can be split into eight octants, each of them having exactly the 

same size (dimensions) as the entire low resolution sequence, so that it is 
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possible to consider a mapping between the latter and the octants of the 

former. These mappings define a formula of the self-similarity of the 

moving picture, which in our case looks like-
upper left back octant of the high-res seq. = 1 • 
lower left back octant of the high-res seq. = 1 • 
upper left front octant of the high-res seq. = 0 • 
lower left front octant of the high-res seq. = 0 • 
upper right back octant of the high-res seq. = 0 
lower right back octant of the high-res seq. = 0 
upper right front octant of the high-res seq. = 1 
lower right front octant of the high-res seq. = 1 

low resolution seq. 
low resolution seq. 
low resolution seq. 
low resolution seq. 
• low resolution seq. 
• low resolution seq. 
• low resolution seq. 
• low resolution seq. 

Consequently, the formula above is a unique description of the sequence, 

and captures all its essence. It opens up a possibility of expanding the 

sequence to create a moving picture at even finer resolution with even more 

incremental motion. Indeed, applying the formula to the bottom level of the 

pyramid on Fig. 44produces-

! 
i 

is: 
Fig. 45. New level of the Laplacian pyramid obtained by the application of 

the formula of the self-similarity. 

Converting the extended Laplacian pyramid (appended with the layer in Fig. 

45) back to the Gaussian one and taking the bottom level of it gives us a 

magnified original sequence: 
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Fig. 46. Magnified image sequence obtained using the formula of self-

similarity. 

Figure 47 displays for comparison the frame sequence obtained by the 

'dumb' magnification: 

l i i i 

Fig. 47. "Dumb" magnified image sequence. 

The moving line remains thin upon the 'smart' magnification, a critical 

feature of the multiresolutional fractal magnification that we have already 

seen in the case of still pictures. However, it should be noted that the 

movement of the line between the snapshots is smooth and even flowing. It 

indicates that the algorithm is powerful enough to permit the motion 

prediction, which is a very important result here. 

In general, the relation between the frame sequence and an octant of 

itself at a finer resolution may be more complicated than in the simplest case 

shown above. Rotation and/or scaling may be needed to match the cube and 

the octant, just as in the two- dimensional case. In addition, rotations 

relative to the third axis (time) are now possible, though we have not 

examined this possibility. As in the two-dimensional case, the formula of 
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the self-similarity is specified by a pair of numbers. The first number is a 

code of the rotation/reflection operation upon one sequence necessary to 

match it with the octant of the other. The other number of the pair, a 

coefficient, tells the intensity ratio between the frame sequences under 

consideration. In the three-dimensional case, we are also content with a 

'good' match, not necessarily the perfect one. The method for obtaining the 

match is the same as that discussed in detail in Chapter IV. 

5.3 Local Self-similarity and 'Smart' expansion 

Realistic moving pictures, which are our concern here, are a bit more 

complicated than the test example, Fig. 41. Hardly can one expect that, say, 

all frames of the weather broadcast video can be described entirely by a 

single simple formula as we have discussed earlier. However, we believe 

that a small separate part of the moving picture does lend itself to the self-

similarity analysis; i.e., the self-similarity property does hold locally, locally 

in space and in time. 

At present, we have looked into the application of the self-similarity 

to the 'smart' expansion of frame sequences as sketched above. The 

algorithm looks almost the same as that for still images. It is repeated here 

for completeness. Given a moving picture, simple or realistic, it is reduced 2 

times in each dimension, 8 times total. We construct different kinds of 

multiresolutional representations for the shrunken sequence, and estimate the 

local self-similarity between the bottom level of the pyramid and the level 
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just above it. The formulas of self-similarity are then used to predict a new 

layer of the multiresolutional pyramid, one level deeper than the bottom 

level. Thus, the multiresolutional pyramid of the twice-shrunken frame 

sequence is extended by one level in depth. From that extended pyramid, we 

can reconstruct a sequence, which is twice as big in each dimension as 

compared to the shrunken sequence. Thus, we shrank the original moving 

picture 8 times and then expanded it 'smartly' to the original size. 

Comparison of the two frame sequences, original and shrunken/expanded, 

then gives an idea of how good the 'smart' expansion is. In the following 

section we present results of the program for some relatively simple sample 

moving pictures. 

5.4 Smart Expansion of Simple Moving Pictures 

The example of the movie we will consider is a translation of a simple 

object against the static background. Four consecutive frames of the sample 

movie are presented below: 

Fig. 48. Frames of the sample movie. 

The following figure shows the results of the smart magnification of the 

sequence; only first 5 frames are shown, but it is easy to imagine the rest. 
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Fig. 49. Several consecutive frames of the predicted magnified sample 

movie. 

Another example of smart magnification is presented in Figs. 50 and 51. 

Unlike the previous example, the translated object is relatively small and 

compact and does not span across the frame. Moreover, it is translated 

diagonally rather then horizontally. 

Fig. 50. Frames of the sample movie. 

Fig. 51. Several consecutive frames of the predicted magnified sample 

movie, Fig. 50. 

Though the predictions for the high resolution sequence are not exact, 

they are quite close to what one would expect. It should be noted here that a 

prediction does not have to be perfect, as one can always encode the error 

separately. If the prediction is quite accurate, the error will be small and can 
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be transmitted at a low bit rate. As shown in Fig. 51, this is the case here. It 

must be stressed that the motion in the predicted frame sequence is indeed 

small and smooth as it should be. 



CHAPTER VI 

CONCLUSIONS 

New data compression technologies which yield high-ratio data 

compression while maintaining the fidelity of raw data are sought 

everywhere by researchers, by agencies of the Federal Government and by 

industry. Potential applications range from on-board data reduction in the 

Space Exploration Program and disseminating weather and other types of 

imagery between a variety of different computer systems spread across 

thousands of miles, to compressing fingerprints and pictures of ID holders 

for efficient storage in databases. The present work has outlined a prototype 

technology, a multiresolutional image analysis and pyramidal 

decomposition, that lends itself to all these applications, and, in fact, has 

proved to be feasible. 

The quest for the minimal entropy pyramid is by no means complete. 

In the present work, we have summarized several basic principles to follow 

in search for the less (and least) redundant pyramidal image representation. 

We have given and thoroughly discussed several designs of the Laplacian 

pyramid, which clearly demonstrate how the principles can be applied and 

what tradeoffs are involved. The discussion would help in developing new 

pyramidal representations of images, e.g., based on the filters with broader 

margins, etc. From the practical point of view, the methods of the wavelet 

image compression designed in the present work offer a variety of lossy 
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image compression schemes with different properties; each particular 

algorithm preserves certain features better than the others at the same 

compression ratio. The performance of the schemes is illustrated in Chapter 

III on a large number of examples of compressed and restored sample 

images of various kinds. The examples clearly demonstrate what is 

preserved and what is lost during the lossy compression and should help an 

informed user choose the scheme that best suits his requirements. 

A non-uniform compression has emerged as a powerful technique that 

is crucial to a variety of applications like disseminating weather information 

over the broad area of users or space imagery communications over low 

bandwidth communication channels. The non-uniform compression allows 

for a significant compression with a high fidelity of useful information, as 

features of little interest or known to be distorted by noise during the data 

acquisition would not be transmitted at all. Note that in this guise, the non-

uniform compression is related to a (generally nonlinear) filtration, which 

unlike traditional schemes is more flexible and allows for greater control on 

the part of the end user. Chapter III has presented one of the first 

implementations of the non-uniform wavelet image compression. It has a 

particular feature of seamless and smooth incorporation of almost non-

distorted information within a broader context of large-scale features. 

Formulation of the criteria sets allows for the further development of the 

non-uniform compression of areas of a picture into a non-uniform 

compression of arbitrary image features that are of interest to a particular 

user. 
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One formulation of the non-uniform compression relates to a 

progressive transmission of information. Spatial-frequency localization of 

the wavelet transform coefficients and their layout in a quadtree are vital 

parts of the technique. An example would be an interactive transmission of 

a satellite image of a coastal region. The image itself can be stored in the 

data processing center in a decomposed (transform) form, which is just 

another exact representation of the image and allows perfect reconstruction. 

A user at a remote site may want to request first only a coarse view of the 

picture, which involves communicating only a few coefficients of the 

decomposition. In fact, our experiments demonstrate that it takes merely 

0.5% of the total number of the decomposition coefficients to get a fairly 

good coarse resolution representation. Having received the coarse view, the 

user can select those areas of the coast which interest him, and more 

coefficients will be delivered describing those selected areas in more detail. 

Since the user now is able to see medium-size features (e.g., the relief) 

within the selected areas, he may want to narrow his choice. More 

coefficients will be sent in from the data processing center. Ultimately, the 

user will be able to see small selected areas with as good a resolution as the 

original image, while having the context(s) rendered at coarser resolutions at 

his wish. Note that the total amount of information communicated is only a 

fraction of that of the entire original image. All the transmitted transform 

coefficients are used to reconstruct the image to the extent and detail the user 

desires, and no communicated information is wasted. 

In automatically selecting features and areas of an image for the non-

uniform compression, a discrete derivative of the image can be useful. The 
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regularized discrete derivative discussed in Chapter i n effectively removes 

the local background and the fine-scale noise; therefore, it may be used for 

localizing image patterns regardless of the brightness of the picture, lighting 

conditions, etc. Finally, the derivative of an image can have value by itself, 

as in interpreting the IR satellite imagery. 

The present work has embarked on the study of self-similarity of the 

wavelet image transform and combined fractal/ multiresolutional image 

compression. We have outlined only a bare idea of the approach and 

demonstrated some startling properties as the preservation of the self-

similarity upon translation. It has opened up an entirely new approach to 

compression: zooming out a (possibly shrunken) low-resolution picture 

producing a sharp and crisp 'natural looking' high-resolution view without 

blockiness and jaggedness. The smart image magnification based on the 

self-similarity of the multiresolutional pyramidal transform has been shown 

to preserve thinness of lines on expansion and provide a perfect high-

resolution representation of the gradient fill. The method is moderately 

successful in magnifying real images. Although the study of the 

multiresolutional self-similarity has just begun, the achieved results look 

encouraging and clearly warrant further investigation. 

Another feature of the present research is the generalization of the 

multiresolutional pyramidal approach to deal with moving pictures. We 

have developed and experimented with algorithms of wavelet pyramidal 

decomposition of a three-dimensional spatio-temporal frame sequence. 

Moreover, we have discovered that the transform coefficients arranged in the 

form of a four-dimensional octpyramid possess the property of the self-
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similarity that we observed for the pyramidal decomposition of still images. 

This leads to the idea of the 'smart' magnification both in space and in time, 

which allows one to restore fairly accurately a high resolution video 

sequence from the low resolution one. This concept permits rapid 

compression, and has potential for use in video compression in real time. 

Note that the algorithm for estimating the formula of local self-similarity 

implicitly involves a non-uniform compression. However, we believe that 

the algorithms and techniques we have developed for the non-uniform 

compression of still images will be even more successful when applied to 

moving pictures. 

A tangible result of the research is the software that has been 

developed to handle images and image sequences, quadtrees and octtrees, 

carry out a variety of image decompositions and experiment with them, 

communicate imagery information between different computers (Macintosh 

and UNIX server) over the network using the TCP protocol. Although some 

code is specific to a pyramidal image decomposition, the bulk of it has a 

broad applicability and can be used in any application dealing with image 

and image sequences. The object-oriented structure of the software makes it 

easy to experiment with and develop new versions of the image processing 

and compression techniques. 

Another accomplished result is an engineering prototype of the image 

and video communication over lower capacity channels, such as regular 

telephone lines. The prototype can be developed to produce a system which 

is as simple to use as the telephone, and would provide the shared working 

environment for individuals involved in any joint projects. The commercial 
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market for this technology is unlimited since every firm that deals with 

remote offices or locations is a potential user of such facilities. With the 

availability of cellular phones, the portable or notebook computer will 

provide enough computational power to allow video communication outside 

of hard wire connections. Now the office at home concept can be fully 

realized even in today's limited interconnection scheme. Truly, a capability 

like that emerging as the prospect of the present research will have major 

impact upon the development of working life within the next decade. 
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