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Multiridge Detection and
Time–Frequency Reconstruction

Reńe A. Carmona,Member, IEEE, Wen L. Hwang, and Bruno Torrésani

Abstract—The ridges of the wavelet transform, the Gabor
transform, or any time–frequency representation of a signal
contain crucial information on the characteristics of the signal.
Indeed, they mark the regions of the time–frequency plane where
the signal concentrates most of its energy. We introduce a new
algorithm to detect and identify these ridges. The procedure
is based on an original form of Markov chain Monte Carlo
algorithm especially adapted to the present situation. We show
that this detection algorithm is especially useful for noisy signals
with multiridge transforms. It is a common practice among
practitioners to reconstruct a signal from the skeleton of a
transform of the signal (i.e., the restriction of the transform to the
ridges.) After reviewing several known procedures, we introduce
a new reconstruction algorithm, and we illustrate its efficiency on
speech signals and its robustness and stability on chirps perturbed
by synthetic noises at different SNR’s.

Index Terms—Continuous wavelet transform, redundancy, sig-
nal detection, signal reconstruction, stochastic relaxation meth-
ods, time–frequency analysis.

I. INTRODUCTION

AWIDE CLASS of signals may be conveniently described
in terms of time-dependent amplitude and frequency

(see, for example, [9] or [2]) or sums of such amplitude
and frequency-modulated components (like in speech analysis
and synthesis applications [12], [13], [17].) However, the
main problem is still the numerical estimation of these time-
dependent characteristics. Time–frequency representations [9]
offer a convenient setup, and the problem of the estimation
of the local amplitude and frequency is well understood in
the noise-free case with only one component. However, the
situation becomes more problematic in the presence of noise
and/or of several components.

We proposed in [5] a new constrained optimization approach
for processing one-component signals in very noisy situations.
At high signal-to-noise ratios (SNR’s), one-component signals
can be analyzed by means of their instantaneous amplitude and
frequency, for which the estimation theory is well developed
[2]. The nonparametric approach used in [5] was based on
the solution of variational problems. This strategic choice
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was motivated by the desire to handle low SNR’s. We also
note that bilinear representations such as the (generalized)
Wigner distributions [3], [9] can be extremely precise in the
one-component case but may completely fail in the multicom-
ponent situation because of interference terms. We describe
here a new approach capable of handling multiple component
signals. This new approach is based on a new Markov chain
Monte Carlo (MCMC) approach, which uses the energetic
distribution provided by a time–frequency representation of the
signal. Given the fact that the energy of the signal concentrates
around curves in the time–frequency plane, which we shall call
“ridges,” the Markov chain is constructed in such a way that
the random walkers (hereafter called “crazy climbers”) are at-
tracted by these 1-D structures. The analysis is complemented
by an “synthesis step” devoted to the reconstruction of the
“part(s)” of the signal that produced the ridge(s).

Throughout the paper, the discussion is restricted to the
cases of the Gabor and wavelet transforms. Notice that since
our detection algorithm is only a special postprocessing
of a time–frequency transform, it can be used with other
time–frequency energetic representations, for example, the
family of Wigner distributions discussed in [1]. On the
contrary, the reconstruction algorithm is specific to the
representations. We develop it for wavelet and Gabor
transforms, but the modifications required to extend it to other
linear time–frequency representations are straightforward.

The thrust of the present paper is twofold. First, we give
a new ridge detection algorithm that can efficiently detect
multiple ridges in the modulus of a transform, and second, we
propose a signal reconstruction procedure from the knowledge
of the skeleton of the transform on arbitrary points of its
ridges. Our detection procedure is based on an original Markov
chain Monte Carlo algorithm. It is designed in such a way
that weighted occupation densities draw the ridges on the
time–frequency plane. Most importantly, its robustness to
noise is remarkable. The reconstruction procedure is restricted
to linear transforms. It is based on the classical idea of spline
smoothing as presented in [20]. We already used it in the case
of the wavelet transform (without much explanation) in the
companion correspondence [5]. We present it in full detail
here. As for the ridge detection, it performs very well in noisy
situations. Both components of our work (ridge detection and
reconstruction) are illustrated on two specific data sets. The
first one is the superposition of a real life sonar bat signal with
an artificially generated chirp. It is analyzed with the wavelet
transform. The second one is the speech recording considered
in [14]. We analyze it using the Gabor transform.
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We close this introduction with a short summary of the
contents of the paper. After a short section devoted to notation
and discretization issues, our detection algorithm is presented
in a general setting in Section III. We also try to emphasize the
similarities and the differences with known procedures such as
minimization by simulated annealing or the more recent “re-
assignment” procedures advocated in [1] and [14]. Section IV
contains a detailed discussion of a first numerical example: a
discussion of the specifics of noisy signals and a Monte Carlo
analysis of the robustness of the ridge detection algorithm.
Section V gives our reconstruction procedure of the original
signal from the estimates of the transform on the ridges. Some
details of the penalization procedure are postponed to the
Appendix. Because we choose to illustrate the efficiency of
this reconstruction on speech signals, a short Section VI is
devoted to the specifics of the sinusoidal model for speech.

The algorithms presented in this paper have been imple-
mented in the S-plus environment. The data files and the
S-code needed to produce all the numerical results and figures
given as examples in this paper are available on the Internet
[6].

II. NOTATION FOR THE CONTINUOUS

GABOR AND WAVELET TRANSFORMS

We set the stage by introducing the time–frequency repre-
sentations that we use to illustrate the crazy climber algorithm.
Even though the latter may be used as post processing of any
time–frequency representation, we shall restrict the present
discussion to the cases of the continuous wavelet and Gabor
transforms for the sake of simplicity. Indeed, the behavior
of these transforms is easy to understand for amplitude- and
frequency-modulated signals.

We work with the complex Hilbert space of square-
integrable functions. Our convention for the Fourier trans-
form is , and consequently, the
Plancherel formula reads

A. Continuous Time–Frequency Transforms

Let be a fixed integrable function such that
Such a function is called an

analyzing wavelet. We use the notation

(1)

for the wavelet with scale and location The wavelet
transform of a signal with respect to is defined
by

(2)

Throughout this paper, we restrict ourselves to complex-valued
wavelet belonging to the Hardy space , i.e., such that

In addition, we find convenient to introduce
the auxiliary variable With such notation, it
follows directly from Taylor’s formula that if we consider

signals of the form

(3)

where the amplitudes are continuously differentiable
and the phases are twice continuously differentiable,
then their wavelet transform can be written in the form

(4)

with Therefore, if is localized
near a certain value in the frequency domain, the
wavelet transform square modulus is
localized near the curves with equations

These curves are called theridges of the transform.
Our goal is to present efficient algorithms to estimate ridges.

Next, we describe the case of the Gabor transform (also
called STFT.) Although Gabor’s original representation was
discrete, we use a continuous version which we still call the
Gabor transform. The Gabor transform of is
defined as

(5)

where is a window function with a good time–frequency
localization. We shall use the notation

(6)

for the time–frequency atoms used in the Gabor transform.
The same argument as before shows that the continuous Gabor
transform of signals of the type (3) may be written as

(7)

Again, the remainder term depends on the derivatives
of the amplitudes and the local frequencies. Assuming, for
simplicity (this is the case for the Gaussian windows as well
as for the Hamming windows), that the Fourier transform of
the window has fast decay away from the origin of frequencies,
we end up again with a Gabor transform square modulus

exhibiting a certain number of ridges.

B. Discretizations

In practice, we have only access to discrete data, and the
wavelet and Gabor transforms have to be discretized. The
discretization of the Gabor transform is traditionally a regular
sampling of the continuous formulas. In practice, we sample
the Gabor transform at the same rate as the signal.

Sampling the wavelet transform is somewhat more problem-
atic. Indeed, the classical discretization scheme for wavelet
transforms involves the so-calleddyadic grid of the form

Such a choice is not convenient for
our purpose because it isnot shift-invariant. The discrete
transform of a shifted copy of the signal is not the shifted
copy of the original signal’s transform. To overcome such
a drawback, it is convenient to introduce more redundancy
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into the transform and work with discretization grids of the
form , or in terms of the auxiliary variable

, we will use a grid of the form with
, i.e., a regular grid again.

III. D RAWING THE RIDGES OF A SURFACE

As we have seen, characterization of the signal’s instanta-
neous frequency by the wavelet or the Gabor transform can
be achieved by estimating numerically the ridges as the sets
of local maxima of the transforms square moduli, which are
denoted hereafter by , where is either the log of
the scale variable (wavelet case) or the frequency variable
(Gabor case). The problem we are addressing in this section
is to determine the ridges of the surface When the
surface is the energy landscape over the time–frequency plane
given by a specific transform, a second challenging problem
is, for each ridge, to estimate the corresponding component
of the signal and reconstruct it. We shall address this second
problem in Section V.

According to [10], ridges may be defined in a very general
setting as curves on a surface They are completely
characterized by their projection on the plane. We also
call these curves ridges by a convenient abuse of language. We
will be interested in the special class of ridges we describe
below.

We start with a subset of the upper (time–frequency)
half plane. will be bounded in the applications, but we can
think of as the whole upper halfplane for the purpose of
the present discussion. We shall use the notation for the
points of the domain We consider a non-negative function

defined on We define the ridge set as the set of
local maxima in of the functions when the
variable is held fixed. We assume that the surface
is smooth enough so that the ridge set is the finite union of the
graphs of smooth functions slowly varying on their respective
domains. In other words, we assume that

(8)

where each is the graph of a smooth function
defined on a subset of the domain of

the variable In the practical applications we have in mind,
the ridge functions are slowly varying. Notice that we
do not make any assumption on the lengths of the individual
ridges or even the fact that they could cross.1

A. The Crazy Climber Detection Algorithm

The main idea of the “crazy climber” algorithm is as
follows. A large number of particles (the climbers) are initially
randomly seeded on the domain at step 0. Then, each
climber evolves according to a Markov chain on with a

1In fact, in the cases under consideration, namely, wavelet and Gabor
transforms, ridges never cross; even if we generate a signal whose analytical
expression is the sum of two frequency-modulated components with intersect-
ing frequency-modulation curves, the ridges will not reproduce exactly the
frequency modulations near their expected intersection. We have no simple
explanation for this “experimental” fact. Notice that such a remark is specific
to wavelet or Gabor transforms. Indeed, ridges of Wigner–Ville representations
do cross.

transition mechanism depending on the local values of the
function. This chain is designed to relax to a steady

distribution that is essentially concentrated on the ridges. The
projection of the motion on theaxis is the standard symmetric
random walk, say, with elastic reflection at the boundary
points of the interval, and consequently, the projection of the
steady distribution on the-axis is the uniform distribution.
Vertically, the climbers are encouraged to “climb on the hills”
to reach the ridges by a Hastings–Metropolis penalization
and a temperature schedule similar to the simulated annealing
algorithm. However, contrary to simulated annealing, the crazy
climber algorithm looks for all the local maxima when the
time variable is fixed instead of searching only for the global
maxima. In fact, a natural implementation of the simulated
annealing would lead to the simulation of one single sample
path of a Markov chain in the very complex space of all the
ridge candidates (see, for example, [5] for an implementation
in this spirit), whereas the crazy climber detection algorithm
requires the simulation of many sample paths of a Markov
chain in the time–frequency plane (or, more precisely, its
discretized version), which is a state space of a much lower
complexity indeed.

Obviously, the implementation involves a discretized ver-
sion of the time–frequency plane. We assume that the time
interval over which the signal is analyzed is discretized into a
finite set with elements. We also assume
that the values of the frequency variableare discretized into
a finite set We thus reduce the analysis
of the modulus of the transform to the analysis of a finite

matrix with nonnegative entries.
1) Crazy Climbers:At time , we initialize the posi-

tions of climbers on the grid
The climbers are labeled by the parameter

The initial positions are chosen independently
of each other uniformly over the grid The climbers evolve
independently of each other according to the same law. If a
climber is at the point at time , i.e., if ,
then its position at time , say, ,
is determined according to the following law:
with probability 1/2 and with probability 1/2 (we
do not discuss the particular cases and
involving boundary conditions so that we not to confuse the
issue). Then, when the climber has decided to move to the left
(when ) or to the right (when ) in the
horizontal direction, a possible vertical move is considered. As
for the horizontal component, the climber tries to move up, i.e.,

, or down, i.e., , with equal probabilities.
Again, we ignore the boundary conditions for the sake of
simplicity. Unlike in the case of the horizontal direction, the
move does not always take place. The transition from
to takes place if the value of the function increases,
i.e., if its so-called Delta is non-
negative. On the other hand, the move does not necessarily
take place if the function decreases, i.e., if Indeed,
in this case, the transition is made, i.e.,
with probability , and the climber does not
move vertically, i.e., with probability
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Fig. 1. Occupation measures for a simple windowed sine wave. Top left: The signal. Top right: Its Gabor transform modulus. Bottom left: Unweighted
occupation measure. Bottom right: Weighted occupation measure.

At each time , we consider two occupation measures. The
first one is defined by

It is obtained by putting a mass at the location of each
of the climbers on the grid. In other words, is the
proportion of climbers in at time The second one is the
“weighted” occupation measure obtained by putting a mass
equal to the value of the function at the current location
of the climber

We finally consider the corresponding “integrated occupation
measures,” which are defined by ergodic averages as

(9)

The occupation measure is only given here for the sake of
completeness. Indeed, its main shortcoming is the fact that it
assigns nonzero mass to regions without ridges if the lengths
of the ridges are smaller than the length of the window. This
is due to the very nature of the unrestricted horizontal motions
of the climbers. Because the modulus of thedenoisedversions
of the functions , which we use in the applications, are

essentially zero away from the ridges, the occupation measure
gives much better results when it comes to detecting

ridges.
Further Remark: The climbers evolve independently of

each other without interaction and with the same distribution
so that the computer code generating the motions of the
climbers is the same for all the climbers. This indicates that
the algorithm can naturally be parallelized on a SIMDIM
machine (such as, for example, the massively parallel
computers MASPAR I and II.) We will not report of such
an implementations here.

2) Simple Examples of Occupation Measures:To illustrate
the crazy climber algorithm, we first present, in Fig. 1, a
simple example, namely, that of the Gabor transform of a sine
wave multiplied by a Gaussian envelope (top left). The square
modulus of the Gabor transform with a Gaussian window is
displayed at the top right of the figure, and the two integrated
occupation measures are displayed in the bottom of the figure.
We clearly see in the figure the different meanings of the
two measures; in particular, the weighted occupation measure
appears as a shrunk copy of the Gabor square modulus. In
addition, the time dependence is essentially the same as that
of the square modulus. This suggests that thresholding the
weighted measure is likely to yield good results for ridge
detection. We will not elaborate on that here.

3) Chaining: The output of the algorithm described above
is a measure on the domain We identify it with its density,
which is a function on The next step of the algorithm is
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Fig. 2. Bat sonar signal with an additional chirp.

to associate with it the various ridges This is done via
a chaining procedure that replaces the occupation density by
one-dimensional (1-D) curves. This procedure is based on the
two steps:

1) Thresholding of the density function obtained as the
output of the crazy climbers algorithm;

2) “propagation” in the direction: Given a point
belonging to a given ridge , look for the “best
neighbor” among and (here,

and are parameters fixed in advance), and then,
iterate the process until only values below the threshold
can be reached.

The result is a series of ridges, which are graphs of curves

IV. NUMERICAL RESULTS AND EXAMPLES

The crazy climber algorithm was tested on several signals
containing multiple ridges. We restrict the present discussion
to two examples: one treated with the wavelet transform and
the other with the Gabor transform.

A. First Numerical Results

The first signal (which is displayed at the top of Fig. 2)
is the sum of a (real) sonar signal emitted by a bat (this
particular signal, which is displayed at the very top of Fig. 2,
together with noisy versions, was intensively studied in [5])
and a “linear chirp,” i.e., a function of the form
with a Gaussian function and a quadratic phase. We

used the Morlet wavelet Even though
it is not strictly admissible, is small enough for the
wavelet to be considered to be “numerically admissible.” The
continuous wavelet transform was computed for 60 different
values of the scale, more precisely, for scales of the form

The time variable was sampled at
the same rate as the original signal. Fig. 2 shows the modulus
of the wavelet transform of the signal, together with the three
different ridges found by the crazy climber method: the main
ridge of the bat signal, the first harmonic component, and the
chirp signal. The horizontal axis is the time axis, and the
vertical axis corresponds to the logarithm of the scale, i.e.,
the variable alluded to above. The modulus is represented
with gray levels proportional to the values of the modulus of
the wavelet transform. The different ridges are displayed with
different gray levels.

The second signal is a speech signal, namely 250 ms of
the word /one/ sampled at 8 kHz. The signal is displayed
at the very top of Fig. 5, and the squared modulus of its
Gabor transform is the third item of the figure. We used a
Gaussian window , where

is a scale parameter, but other choices, such as the Hamming
windows (which are very popular in speech processing), would
be as convenient. The scale parameterwas set so that the
window has a size approximately equal to 16 ms (following
the lines of [12]). The Gabor transform was computed over the
range 0–4000 Hz with 100 different values for the regularly
sampled frequency; see the discussion above. The horizontal
axis is the time axis, and the vertical axis is the frequency axis
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(the convention for the square modulus and ridge displays
are the same as before). The crazy climbers algorithm (500
climbers, 10 000 time steps for each) found 18 different ridges,
which are displayed at the bottom of Fig. 5.

We shall come back to these examples when discussing the
reconstruction from ridges, which are displayed on the same
figures.

B. The Case of Noisy Signals

In many applications, we can assume that we have obser-
vations of an unknown signal in the presence of
an additive noise with mean zero. In other words, we
work with the model , where the noise
is given by a mean zero stationary process with (unknown)
auto-covariance function The case

corresponds to an additive white noise
with variance In some situations, “a priori” knowledge
of the noise is available. For instance, it may happen that
the power spectrum of the noise is known, or a piece of
the signal is known to contain only noise, which gives us
the chance to learn about the statistics of this noise. Then
the detection algorithm may be improved by “renormaliz-
ing” the time–frequency representation, i.e., subtracting what
is supposed to be the “typical” contribution of the noise.
This contribution could be chosen to be the expectation

Moreover, if ana priori model for the noise
is available, such a quantity may be estimated by Monte Carlo
simulations or sometimes by a direct computation.

Example: Assume that is a second-order mean zero
stationary process with power spectrum of the form

and that we are using the continuous wavelet transform.
In this case,
provided the analyzing wavelet is such that

In most practical applications, we
only have one realization of the noise component, and it is
impossible to compute directly this expectation, but a simple
ergodic argument justifies the use of the estimate

(10)

Then, in the penalty term used to define themotion of
the climbers, the squared modulus of the time–frequency
transform may be replaced by

(11)

Remark: In situations where a reasonable estimate of the
power spectrum is available, aprewhitened transform
may be preferred to the usual transform. For example, in
the case of the continuous wavelet transform, the following
transform was used in [11]:

(12)

where denotes the covariance operator of the noise.
The modifications (11) and (12) avoid “trapping” the ridge

in regions dominated by the noise. Notice that they can always

be used, as long as the noise may be modeled as a weakly
stationary process.

As an illustration, we display in Fig. 4 the ridges of the
same signal as before, embedded into a Gaussian white noise
with SNR 1 dB. We can see that the main ridge is quite well
reconstructed and that the ridge of the chirp is also recovered,
although only its most energetic part has been detected.
The first harmonic component of the bat signal has not
been detected. (The corresponding wavelet transform square
modulus was too low compared with the typical size of the
noise, which, here, is of the form for some constant )

C. Robustness

In the analysis of noisy signals, one of the main difficulties
is the dependence of many algorithms on the realization of
the noise perturbation. It happens too often that the parameters
and the results of the analysis are too sensitive to the noise,
limiting the realm of applicability. The crazy climber algorithm
(together with the associated chaining) seems to be very stable
when facing many noise realizations. In order to illustrate
its robustness, we ran the following experiment with another
speech signal borrowed from Maes [14]. We added a Gaussian
white noise with variance to the signal /How are you?/ of
[14], we computed the Gabor transform of the noisy signal
so obtained, and we ran the crazy climber algorithm to detect
the ridges in the modulus of the transform. We then measured
the performance of the detection algorithm by computing the
following measure of discrepancy between the setof the
ridges detected in the original Gabor transform and the set
of ridges found in the modulus of the transform of the noisy
signal

(13)

This distance is always between 0 and 1, it is equal to 0
when the two sets and are identical, and it is equal to
1 when the two set have no point in common. We calibrated
the values of the variance of the white noise so that the
corresponding SNR would be equal to 20, 10, 5, 0, and5
dB, respectively. For each value of the SNR from this list,
we generated 32 samples of the white noise. For each of
them, we computed the Gabor transform, determined the ridge
set with the crazy climber algorithm, and computed the
corresponding value of the distance, as shown in Table I.
These numerical results show that only 3% of the ridge points
are misdetected at SNR 20 dB and 25% at SNR 0 dB.
Moreover the 95% confidence intervals are relatively short.
The situation deteriorates at low SNR’s because the definition
of penalizes heavily all the mismatches, even if a ridge
point is detected but misplaced by a very small amount.

V. RECONSTRUCTIONSFROM THE RIDGES

We now address the problem of the reconstruction of a
signal from the knowledge of a transform on its ridge(s). This
problem was already discussed in [8] as well as many articles
on speech processing (see, e.g., [12]). We describe here an ap-
proach based on a penalization procedure, which was alluded
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Fig. 3. Reconstruction from the ridges. Last plot: Full curve, reconstructed chirp. Dashed curve: The original chirp.

TABLE I

to in [5]. Even though the ridge-detection part of the algorithm
was independent of the time–frequency representation, this is
not the case for the reconstruction. In particular, our approach
is not adapted to bilinear time–frequency representations such
as those given by the Wigner–Ville transform. We shall restrict
ourselves to the cases of the wavelet and the Gabor transforms.
Nevertheless, our approach extends to linear representations
such as those obtained from matching pursuit as discussed in
[15] or those developed in [19].

A. General Discussion

In order to put our reconstruction algorithm in perspec-
tive, we first review the procedures currently used (a large
number of illustrations may be found in [6]). The methods
outlined in Section V-A3 will be developed with more detail
in Section V-B.

1) The Transform Skeleton:The first reconstruction is the
simplest one (once the ridges have been estimated). It consists
of restricting the transform (whether we are working with the

wavelet transform of the Gabor transform) to the ridges. It
is motivated by the approximate formulas (4) and (7). More
precisely, using the notation used throughout the paper, this
reconstruction is given in the Gabor case by

(14)

where the summation in the right-hand side is restricted to
the ’s for which makes sense (in particular,
when there is no ridge at “time”) and by a similar formula
in the wavelet case. The restriction of a transform to a ridge
is sometimes called the “skeleton” of the transform [8].

This is a very simple scheme, and as Fig. 3 shows, the
results of this naive reconstruction can be extremely good.
Its main shortcoming is that it requires the knowledge of
the transform atall the points of the ridges. This limitation
makes it impossible to subsample the ridge (for compression
purposes, for example.)

2) Parametric Reconstruction:For the sake of complete-
ness, we quote a nonlinear reconstruction scheme that has
been successfully used in speech processing in the framework
of the so-called sinusoidal model. See [12] for a review.
The main observation is that although the wavelet and the
Gabor transforms restricted to ridges are often very oscillatory
(and then uneasy to compress), the corresponding amplitudes

and frequencies are sometimes
slowly varying. This is true, for instance, for the Gabor
transform of speech signals when the window is broadband.
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Fig. 4. Bat’s sonar signal and chirp embedded into a Gaussian white noise (SNR= 1 dB).

Whenever amplitudes and frequencies are slowly varying,
they may be very well approximated by a class of functions
characterized by a small number of numerical parameters. The
reconstructed signal is then obtained via parametric estimation
of the amplitude and the frequency and then by integrating the
estimate of the frequency to recover the phase

(15)

and computing This may be done for all
the ridges of a given signal. The reconstructed signal is the
sum of all the components of the form

3) Ridge Penalization:To reduce the amount of data neces-
sary for the reconstruction, it is tempting to start by selecting a
few sample points from each ridge and to use such points and
the corresponding values of the representation to reconstruct a
signal. The reconstructed signal takes the form of a superposi-
tion of elementary waveforms located at the sample points of
the ridge. Such waveforms are, in general, mere perturbations
of wavelets or Gabor functions.

As we shall see, such solutions may be derived from general
principles, namely, by minimizing a suitably chosen quadratic
functional and using the values of the time–frequency repre-
sentation at the sample points of the ridge as linear constraints.

B. The Penalization Approach

We now focus on the penalization approach, and we treat
the Gabor case and the wavelet case in the same setting.
We present a reconstruction algorithm that produces, from

the mere knowledge of a time–frequency transform at sample
points of the ridges, a very good approximation of the original
signal (this reconstruction procedure was implemented and
tested in [5] in the case of the wavelet transform of a signal
in the “one-ridge case.”)

We assume that the ridges can be parameterized by con-
tinuous functions ,
where is the ridge label. These ridges are
usually constructed as smooth functions resulting from fitting
procedures (spline smoothing is an example we are using
in practical applications) from the sample points obtained
from ridge estimation algorithms such as the crazy climbers
algorithm presented in this paper or the snake annealing
described in [5].

1) Statement of the Problem:We consider a (linear)
time–frequency transform of an unknown signal of
finite energy , which we denote generically by

, where the time–frequency atoms
are either wavelets or Gabor functions. We assume

that the values of are known at sample points
with , which are regarded

as representative of the ridges associated with the (unknown)
signal We use the notation for the value of the
transform of at the point and for the
corresponding function The set of sample
points , together with the values , constitute
what we call theskeleton of the transformof the signal
to be reconstructed. Let us denote by the linear form
defined by As we already explained, we
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Fig. 5. Two hundred fifty milliseconds of the speech signal /one/ (sampling frequency: 8 kHz).

use smooth functions , which fit the sample points,
and we use the graphs of these functions as our best guesses
for the ridges of the modulus of the transform of The
reconstruction problem is to find a signal of finite energy
whose transform satisfies

(16)

and has the union of the graphs of the functions as
a set of ridges. We recall that this means that for each,
the points of the time–frequency plane are the local
maxima of the function

2) The Penalty Functions:We start with the case of the
wavelet transform. Let us assume that we are given a series
of ridges of the form As explained
in the Introduction, the reconstructed signal is obtained as
the function minimizing a quadratic functional

with the constraints In the case
of the wavelet transform, we use given by the integral
operator defined by the kernel

The aim of the term is to enforce smoothness of
on the ridges, i.e., of the functions

It is given by

(17)

In the case of the Gabor transform, the quadratic formis
given by the integral kernel

(18)

where enforces smoothness of on the ridges, i.e.,
of the functions It is given by

(19)
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For the sake of simplicity, we have assumed that the window
is real valued.

C. Solution of the Optimization Problem

The reconstruction problem has been reformulated as a
problem of minimization of a sesquilinear functional with
linear constraints. This is a classical problem. We outline
the solution for the sake of completeness. It may be conve-
niently reformulated as a minimization problem in the real
domain rather than the complex domain by noticing that since
we restrict ourselves to real-valued signals, both kernels are
sesquilinear ( is even real valued) and may be be
replaced by their real part (which we shall still denote by the
same letter). For each , the complex constraints
(15) may be replaced by the real constraints as follows. Set

(20)

, and . (Here, and stand for the real
and imaginary parts, respectively.) Then, the new constraints
read

(21)

Consequently, there exist real numbers
(the Lagrange multipliers of the problem) such that the

solution of the optimization problem is given by

(22)

where the functions are defined by
The Lagrange multipliers are determined by requiring that the
constraints (21) be satisfied. In other words, we must demand
that the wavelet transform of the functiongiven in (22) be
equal to the ’s at the sample points of the time-scale
plane. This gives a system of linear equations from which the
Lagrange multipliers ’s can be computed. More precisely, if
we denote by the column vector consisting of the Lagrange
multipliers, and by the vector of values , we obtain

and
Remark: If we denote by the total number of

ridge samples, we have to deal with matrices, i.e.,
very large matrices. However, such matrices are, in general,
sparse because of the localization properties of the functions.
In particular, if the different ridges of the transform are “well
separated,” i.e., if they are located in different regions of the
time–frequency domain, the matrix may be approximated
by a block diagonal matrix. In other words, the contributions
of all ridges may be reconstructed independently. This reduces
the complexity from to , where is an average number
of sample points per ridge. The Lagrange multipliers are then
obtained as follows. If we denote by the column vector
consisting of the Lagrange multipliers for fixedand by
the vector of values for fixed , we obtain the expression
for the Lagrange multipliers with fixed
with a new matrix , whose elements are given by

D. The Reconstruction Algorithm

The results of the discussion of this section may be sum-
marized in an algorithmic walk through our solution to the
reconstruction problem.

• Determine a finite set of ridges and, on
each of them, a set of sample points

on the ridge.
• Construct smooth estimates of the ridges from

the sample points.
• Compute the matrix, i.e., or , of the

smoothness penalty along the ridge estimate.
• Compute the reconstruction time–frequency atoms

localized (in the time–frequency plane) at
the ridge sample points.

• Compute the coefficients

The solution of the reconstruction problem is then given
by (22). Numerical examples are discussed below.

E. The Case of Noisy Signals: Smoothing
Spline-Type Reconstruction

The synthesis presented above requires the knowledge of
the exact values of the transform at a finite sample of points
of the time-scale or time–frequency plane. We now consider
the possibility of an additive (possibly colored) noise in the
observations of the input signal and the possibility of noise in
the computation of the transform of the signal. As before, our
approach is motivated by the smoothing splines technique, as
presented in [20]. The generalization presented in this paper
was alluded to as a possible extension to the reconstruction
algorithm derived and used in [4] and [5]. The motivation of
[4] was to simplify the algorithm given in [16] to reconstruct
a signal from the extrema of its dyadic wavelet transform. The
motivation of [5] was to generalize this approach to the case
of the continuous wavelet transform, where the role of the
extrema of the dyadic wavelet transform was played by the
ridges of the continuous wavelet transform.

The reconstruction we present now is based on a varia-
tional approach involving a penalty on the smoothness of the
transform along the estimated ridges. However, contrary to
[5], the observations of the transform along the ridges are
used to define a second penalty component. This form of the
variational problem allows for a delicate balance between the
fit of the transform of the solution to the observations and the
smoothness of the modulus of the transform along the ridges.
As before, we use the notation for a transform that
could be the wavelet transform as well as for the
Gabor transform

We assume that we are dealing with the signalnoise
model introduced earlier in Section IV-B; after computation
of the transform of the observations, estimation of the ridges
of the transform, and sampling these estimates, we end up
with a discrete set
in the transform plane and observations of the
transform of the unknown signal at these points. We assume
that the observations follow the usual linear model
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where the computational noise terms are assumed to be
identically distributed and uncorrelated between themselves
and with the observation noise terms Hence, the final
model is of the form

(23)

where is the linear form representing the value of the
transform at the point and where

The assumption that the two sources of noise are uncorrelated
implies that the covariance matrix of the is the sum
of the covariance of the and the covariance of
the Because the latter is of the form , we have

, where the entries of the matrix are
given by

The reconstruction algorithm is formulated as the solution
of the minimization problem

(24)

where denotes the vector of observations ,
denotes the vector of values of the transform of the candidate
function at the points , and the constant
is introduced to balance the effects of the two components of
the penalty. In [20], Theorem 1.3.1 implies that the solution
is given by

(25)

where the coefficients are the entries of the matrix
, and the matrix is defined by its entries

Remarks:

• Notice that we did not use the full generality of the
smoothing spline problem as defined in [20]. Indeed,
we could have chosen a quadratic penalty of the form

, where is the projection onto the or-
thogonal complement of a subspace of finite dimension.
In this generality, it is possible to avoid penalizing
special subspaces of functions (for example, the space
of polynomial functions of degree smaller than a fixed
number, ). Since the form of the solution is much
more involved and since we did not find an application
justifying this level of generality, we decided to use the
smoothing spline approach in our simpler context. Consult
[20] to see the specific feature of the smoothing splines
technique.

• The approach presented here was alluded to as a possible
extension to the reconstruction algorithm derived and
used in [4] and [5]. The latter corresponds to the case
where the knowledge of the wavelet transform of the
unknown signal is assumed to be perfect. In other words,
it corresponds to the case where bothand are

assumed to be zero. It is easy to see that under these extra
assumptions, the reconstruction procedure given by the
above minimization problem reduces to the minimization
of the quadratic form under the constraints (15).
This is the problem that was solved in [4] and [5].
It appears as a particular case of the more general
procedure presented here. The advantages of the latter
were explained in the introduction. We will not reproduce
this discussion here.

• Notice that the reconstructed signal appears as a linear
function of the observations. Nevertheless, our whole
analysis is nonlinear because of the ridge estimation and
the sampling of the latter.

F. An Example

Let us return to the wavelet analysis of the bat signal
with the additional chirp. We used ridges, say,

and , and we chose on each ridge estimate a
number of samples proportional to the length of the ridge and
inversely proportional to the corresponding scale according to
the sampling theory of wavelet transforms; see [7].

We used the value 0.5 to reconstruct the signal. The
result of the reconstruction is given in the second part of Fig. 3.
The last two plots of Fig. 3 give the reconstructions of the two
components: the bat signal, reconstructed from two ridges (to
be compared with the top plot in Fig. 2) and the chirp (the
original chirp and the reconstructed one are displayed on the
same plot: the bottom of Fig. 3). As we can see, the agreement
is very good (except at the end of the chirp, where the ridge
was a bit smaller than the true signal. In addition, we stress
that the number of coefficients needed to characterize such
a signal, i.e., twice the number of complex constraints, was
approximately one fifth of the number of samples. Although
compression was not our goal, the method seems to have a
definite potential.

VI. RIDGES AND THE SINUSOIDAL

MODEL FOR SPEECH SIGNAL

A popular representation of speech signals is to view the
signal as the output of a slowly time-varying filter excited
by a glottal waveform. The filter models the resonant char-
acteristics of the vocal tract. We will not go into the details
of speech modeling here (see [12] and [14] for a detailed
presentation), but we notice that the resulting model for speech
signal is of the form given in (3). Hence, it is natural to
use a time–frequency representation in order to separate the
components of the signal. Since those components are close to
harmonic, the Gabor transform is better suited than the wavelet
transform for the description of these signals. Indeed, since the
wavelet processing may be viewed as a filter bank of constant
relative frequency, it is not able to separate the components
of the high frequencies (nevertheless, see [14] for a method to
separate the first low-frequency components).

Hence, we use the continuous Gabor transform with a
Gaussian window of length approximately equal to 160 ms.
Our approach is, at least in spirit, similar to that of [12]. How-
ever, there is a major difference; since the detection algorithm
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described in Section III returns ridges, i.e., 1-D structures, the
chaining method required by the McAulay–Quatieri approach
is not needed here.

We illustrate this discussion on the example of the /one/
signal displayed at the top of Fig. 5. Our results were ob-
tained using approximately 200 ridge samples, i.e., 400 real
constraints, whereas the signal’s length is 2048. As can be seen
on the top two plots of the figure, the reconstructed signal
is very close to the true one. Of course, such a comparison
is not significant from the speech processing point of view.
However, we stress the fact that the main features of the signal
are preserved (in particular, the pitch.) Since the-norm (or
any other norm for that matter) of the difference between
the original and the reconstructed signal cannot be used as
a measure of quality as far as speech is concerned, listening
to the two sounds remains one of the best ways to evaluate
the performance of the synthesis algorithm. We did so in the
example discussed above: We could not hear any significant
difference. The sounds turn out to be almost indistinguishable.

VII. CONCLUSIONS

We presented a new technique to detect ridges on a surface.
This algorithm is based on the stochastic relaxation of a par-
ticle system of a new type. Our detection technique performs
extremely well, especially at very low SNR’s. It can be used
to detect ridges in all the energetic distribution representations
of a signal, and it is especially useful for multicomponent
signals. Moreover, we used a Monte Carlo analysis to show
that it is extremely robust. We also presented a reconstruction
procedure from the knowledge of a linear transform (such as
the wavelet or the Gabor transform) on the ridges. In the case
of the Gabor transform, we showed that it was performing very
well on speech signals, even in the presence of significant
noise disturbances.

The most important extension to the results presented in
this paper would be a real-time implementation. It is relatively
easy to find approximations of the reconstruction procedure,
which would be amenable to on-line implementations. It seems
more difficult to modify the ridge detection algorithm to
accommodate frequent updates.

APPENDIX

DERIVATION OF THE RECONSTRUCTIONKERNELS

We give a derivation of (16) and (17) and their counterparts
(18) and (19) in the case of the Gabor transform. In both
cases, the first term aims to enforce the localization of the
transform near the ridges. This is achieved by minimizing

with the constraints (15). This term alone would
yield a solution of the form

where the time–frequency atoms are
either the wavelets or the Gabor functions, and where the
coefficients are obtained from the by multiplication
with the inverse of the matrix Numerical
tests show that such a solution gives accurate results if

the sampling of the ridge is fine enough. Otherwise, an
extra term has to be introduced in order to enforce the
smoothness of on the ridges. An adequate candidate
for such a term could be given by the -norm of the
restriction of the modulus of the transform to the ridges.
In the case of the wavelet transform, such a term reads

, but unfortunately, this does
not define a sesquilinear form. However, if we set

, it follows from the analysis of [8] that near the
ridges number , we have This
suggests the approximation

(26)

and, hence, the use the sesquilinear functional

(27)

An explicit computation shows that the corresponding kernel
is as in (16) and (17).

The derivation in the Gabor case goes along the same lines.
Instead of minimizing

we minimize the approximate objective function

(28)

which is sesquilinear. The complete derivation is given in [6].
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