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Multiridge Detection and
Time—Frequency Reconstruction

Reré A. CarmonaMember, IEEE Wen L. Hwang, and Bruno Tagsani

Abstract—The ridges of the wavelet transform, the Gabor was motivated by the desire to handle low SNR’s. We also
transform, or any time—frequency representation of a signal note that bilinear representations such as the (generalized)
contain crucial information on the characteristics of the signal. Wigner distributions [3], [9] can be extremely precise in the
Indeed, they mark the regions of the time—frequency plane where ’ e .
the signal concentrates most of its energy. We introduce a new one—compone_nt case but may.completely fail in the muItlcom-
algorithm to detect and identify these ridges. The procedure Ponent situation because of interference terms. We describe
is based on an original form of Markov chain Monte Carlo here a new approach capable of handling multiple component
algorithm especially adapted to the present situation. We show Signa's_ This new approach is based on a new Markov chain
that this detection algorithm is especially useful for noisy signals Monte Carlo (MCMC) approach, which uses the energetic

with multiridge transforms. It is a common practice among . . . -
practitioners to reconstruct a signal from the skeleton of a distribution provided by a time—frequency representation of the

transform of the signal (i.e., the restriction of the transform to the ~ Signal. Given the fact that the energy of the signal concentrates
ridges.) After reviewing several known procedures, we introduce around curves in the time—frequency plane, which we shall call
a new reconstruction algorithm, and we illustrate its efficiency on «rigges,” the Markov chain is constructed in such a way that
speech signals and its robustness and stability on chirps perturbed ’ “ ; " _
by synthetic noises at different SNR's, the random walkers (hereafter called crazy clllmbers ) are at
_ ~ tracted by these 1-D structures. The analysis is complemented
'I”gex Te.rms_.conlt'”“ous wavelet transrf]orm* reo:””d"’_‘“cy’ Si9° by an “synthesis step” devoted to the reconstruction of the
nal detection, signal reconstruction, stochastic relaxation meth- ” . i
ods, time—frequency analysis. part(s)” of the signal that produ_ced the r@ge(s). .
Throughout the paper, the discussion is restricted to the
cases of the Gabor and wavelet transforms. Notice that since
I. INTRODUCTION our detection algorithm is only a special postprocessing

WIDE CLASS of signals may be conveniently describe@f @ time—frequency transform, it can be used with other
in terms of time-dependent amplitude and frequendijme—frequency energetic representations, for example, the
(see, for example, [9] or [2]) or sums of such amplitudéamily of Wigner distributions discussed in [1]. On the
and frequency-modulated components (like in speech analye@fitrary, the reconstruction algorithm is specific to the
and synthesis applications [12], [13], [17].) However, theepresentations. We develop it for wavelet and Gabor
main problem is still the numerical estimation of these timdransforms, but the modifications required to extend it to other
dependent characteristics. Time—frequency representationslifggar time—frequency representations are straightforward.
offer a convenient setup, and the problem of the estimationThe thrust of the present paper is twofold. First, we give
of the local amplitude and frequency is well understood i new ridge detection algorithm that can efficiently detect
the noise-free case with only one component. However, tAglltiple ridges in the modulus of a transform, and second, we
situation becomes more problematic in the presence of no@pose a signal reconstruction procedure from the knowledge
and/or of several components. of the skeleton of the transform on arbitrary points of its
We proposed in [5] a new constrained optimization approa¢ilges. Our detection procedure is based on an original Markov
for processing one-component signals in very noisy situatioréhiain Monte Carlo algorithm. It is designed in such a way
At high signal-to-noise ratios (SNR’s), one-component signaisat weighted occupation densities draw the ridges on the
can be analyzed by means of their instantaneous amplitude éinte—frequency plane. Most importantly, its robustness to
frequency, for which the estimation theory is well developeioise is remarkable. The reconstruction procedure is restricted
[2]. The nonparametric approach used in [5] was based tinlinear transforms. It is based on the classical idea of spline
the solution of variational problems. This strategic choicemoothing as presented in [20]. We already used it in the case
M ot ved Auaust 15. 1996 revised May 17. 1998, Thi of the wavelet transform (without much explanation) in the
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We close this introduction with a short summary of thsignals of the form
contents of the paper. After a short section devoted to notation N
and discretization issues, our detection algorithm is presented flz) = Z Ap(x) cos(¢r(z)) (3)
in a general setting in Section 1ll. We also try to emphasize the =1
similarities and the differences with known procedures such Mere the amplitudest, (x) are continuously differentiable

minimization by simulated annealing or the more recent e d the phases(z) are twice continuously differentiable,

assignment” procedures advocated in [1] and [14]. Section ﬁ{en their wavelet transform can be written in the form

contains a detailed discussion of a first numerical example: a N

discussion of the specifics of noisy signals and a Monte Carlo 1 P aa—

analysis of the rol?ustness of thg rigge detection algorithm. Ty(b,a) = 2 Z Ar(z)e . (b)w(ad)/’v(b)) +rba)  (4)

Section V gives our reconstruction procedure of the original =t .

signal from the estimates of the transform on the ridges. Somvéh (b, a) ~ O(|A|.|¢%|). Therefore, ify(£) is localized

details of the penalization procedure are postponed to thear a certain valu¢ = wy in the frequency domain, the

Appendix. Because we choose to illustrate the efficiency wfavelet transform square moduldd(b,a) = |T%(b, a)|? is

this reconstruction on speech signals, a short Section Vlligalized near theV curves with equations: = ax(b) =

devoted to the specifics of the sinusoidal model for speechwo/¢,(b). These curves are called thieges of the transform
The algorithms presented in this paper have been impf@ur goal is to present efficient algorithms to estimate ridges.

mented in the S-plus environment. The data files and theNext, we describe the case of the Gabor transform (also

S-code needed to produce all the numerical results and figucaled STFT.) Although Gabor’s original representation was

given as examples in this paper are available on the Interiiégcrete, we use a continuous version which we still call the

[6]. Gabor transform. The Gabor transform ¢f ¢ L?(RR) is
defined as
ll. NOTATION FOR THE CONTINUOUS Gi(b,w) = / fl@)gle — 0)e = gy (5)
GABOR AND WAVELET TRANSFORMS —oo

We set the stage by introducing the time—frequency repféhereg(z) is a window function with a good time—frequency
sentations that we use to illustrate the crazy climber algorithf@c@lization. We shall use the notation
Even though the latter may be used as post processing of any 9, (@) = gz — b)em(%b) (6)
time—frequency representation, we shall restrict the present . ]
discussion to the cases of the continuous wavelet and Gafftyr the time—frequency atoms used in the Gabor transform.
transforms for the sake of simplicity. Indeed, the behavid’® Same argument as before shows that the continuous Gabor
of these transforms is easy to understand for amplitude- af@nsform of signals of the type (3) may be written as
frequency-modulated signals. 1N ‘

We work with the complex Hilbert space? (IR) of square-  Gs(b,w) = 5 > Ap(@)e (gl (b) — w) + r(b,w). (7)
integrable functions. Our convention for the Fourier trans- k=1
form is f(¢) = [2 f(x)e™** dx, and consequently, the Again, the remainder term(b,«) depends on the derivatives

Plancherel formula readsf | = 2| f||2. of the amplitudes and the local frequencies. Assuming, for
simplicity (this is the case for the Gaussian windows as well
A. Continuous Time—Frequency Transforms as for the Hamming windows), that the Fourier transform of

the window has fast decay away from the origin of frequencies,
we end up again with a Gabor transform square modulus
M (b,w) = |G4(b,w)|? exhibiting a certain number of ridges.

Let ¢(x) be a fixed integrable function such thak c,, =
15 [0(&)* (dé/€) < oo. Such a functiom) is called an
analyzing wavelet. We use the notation

Py (x) = 1 ¢<x - b) (1) B. Discretizations
“ “ In practice, we have only access to discrete data, and the
for the wavelet with scalez and locationb. The wavelet Wavelet and Gabor transforms have to be discretized. The
transform of a signaf € L2(IR) with respect tay is defined discretization of the Gabor transform is traditionally a regular
by sampling of the continuous formulas. In practice, we sample
the Gabor transform at the same rate as the signal.
) dr. (@) Sampling the wavelet transform is somewhat more problem-
) atic. Indeed, the classical discretization scheme for wavelet
transforms involves the so-calledyadic grid of the form
Throughout this paper, we restrict ourselves to complex-valugtba), a?), j,k € Z. Such a choice is not convenient for
wavelet belonging to the Hardy spaéf(IR), i.e., such that our purpose because it isot shift-invariant. The discrete
1/3(5) = 0 V¢ < 0. In addition, we find convenient to introducetransform of a shifted copy of the signal is not the shifted
the auxiliary variabley = log(a). With such notation, it copy of the original signal's transform. To overcome such
follows directly from Taylor's formula that if we considera drawback, it is convenient to introduce more redundancy

z—b
a

Ty(0.0) = by = 5 [ 5600 (
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into the transform and work with discretization grids of théransition mechanism depending on the local values of the
form (kbo,a}), 4,k € Z, or in terms of the auxiliary variable M (b, ¢) function. This chain is designed to relax to a steady
¢, we will use a grid of the form(kbo, j¢o), 4,k € Z, with  distribution that is essentially concentrated on the ridges. The

o = log(ag), i.€., a regular grid again. projection of the motion on thigaxis is the standard symmetric
random walk, say, with elastic reflection at the boundary
lll. DRAWING THE RIDGES OF A SURFACE points of the interval, and consequently, the projection of the

steady distribution on thé-axis is the uniform distribution.

As we have seen, characterization of the signal’s 'nStanR?értically, the climbers are encouraged to “climb on the hills”
neous frequency by the wavelet or the Gabor transform c

?heen(gszgleh?/;(ariltj; tz\%l(\fé;?t (Y;Zi;e(ﬁ I;:Itf?eerlfgre]clo%ac;:a cllimber algorithm looks for all the local maxima when the

(Gabor case). The problem dd eque t%’. Fil%e variable is fixed instead of searching only for the global
) 7 P! we are addressing In this SECUghy;na 1n fact, a natural implementation of the simulated
IS to det.ermlne the ridges of the surfaﬂ;ﬁ({;,@. When the annealing would lead to the simulation of one single sample
surface is the energy landscape over the time—frequency pl N of a Markov chain in the very complex space of all the

given by a sp_ecn‘lc transf_orm, a second challe_nglng probl rﬁrc!ge candidates (see, for example, [5] for an implementation
is, for each ridge, to estimate the corresponding componen

. . . in thi irit), wher the crazy climber detection algorithm

of the signal and reconstruct it. We shall address this secorré% ui?ezpthe)’simﬁlaet?Sn of (r:n:n))// Zambpele dpea;s %f :?\;I)arkov

prOA?:Is(;T;dlirr: Sticflloor} \:i.d s mav be defined in a ver enercpain in the time—frequency plane (or, more precisely, its
. 9 » 1199 y y 9 Hiscretized version), which is a state space of a much lower

setting as curves on a surface= f(z,y). They are completely complexity indeed

characterized by t_he|r projection on _the, y) plane. We also Obviously, the implementation involves a discretized ver-

call these curves ridges by a convenient abuse of Ianguage.é/i\(/)en of the time—frequency plane. We assume that the time

\tl>v<IaII|05ve interested in the special class of ridges we desc”?l%erval over which the signal is analyzed is discretized into a

We start with a subseD of the upper (time—frequency) finite set{bo, by, -- -, bp 1} with B elgments. We aIs.o assume
. . L that the values of the frequency varialglare discretized into
half plane.D will be bounded in the applications, but we can . . .
. finite set{wo, ¢1,---,9x_1}. We thus reduce the analysis
think of D as the whole upper halfplane for the purpose %t the modulus of the transform to the analysis of a finite
the present discussion. We shall use the notgiiog) for the Y

oints of the domairD. We consider a non-negative functionB x K matrix with nonnegative entries.
b : 9 1) Crazy Climbers: At time ¢ = 0, we initialize the posi-

M(b, ¢) defined onD. We define the ridge sek as the set of tions X,,(0) of N climbers on the grid’ = {0, -- -, B— 1} x

?;?;bﬂixz?a;rfﬁigéhwgnacstlsoun;i ;;atj\;[h(g’fgrfvégéz th)e {0, -+, K — 1}. The climbers are labeled by the parameter
) @ = 1,---, N. The initial positions are chosen independently

is smooth enough so that the ridge set is the finite union of tﬁ?each other uniformly over the grifl. The climbers evolve

g;?,gzisngf Isnmc?t?gfyvgfggnjvzlgvgguﬁéytlﬂgton their reESpeCt'Vi(raldependently of each other according to the same law. If a

climber is at the pointj, k) at timet, i.e., if X,(¢) = (4, k),

R=UL R, (8) then its position at time + 1, say, Xo(t + 1) = (§', ),

is determined according to the following lawy* = j — 1

where eachR, is the graph of a smooth functiofb, min, with probability 1/2 andj’ = j + 1 with probability 1/2 (we

bemax] O b — @¢(b) defined on a subset of the domain otio not discuss the particular casgs= 0 andj = B — 1
the variableb. In the practical applications we have in mindinvolving boundary conditions so that we not to confuse the
the ridge functionsy,(b) are slowly varying. Notice that we issue). Then, when the climber has decided to move to the left

do not make any assumption on the lengths of the individuglhen j/ = j — 1) or to the right (whenj’ = j + 1) in the

ridges R, or even the fact that they could crdss. horizontal direction, a possible vertical move is considered. As
for the horizontal component, the climber tries to move up, i.e.,
A. The Crazy Climber Detection Algorithm k' = k+1, ordown, i.e.x’ = k — 1, with equal probabilities.

The main idea of the “crazy climber’ algorithm is ad\gain, we ignore the boundary conditions for the sake of

follows. A large number of particles (the climbers) are initiallypiMPlicity. Unlike in the case of the horizontal direction, the
randomly seeded on the domaid at step 0. Then, each™MoVe does not always take place. The transition f}(gmk)
climber evolves according to a Markov chain d@hwith a © (j', k') takes place if the value of the function increases,
i.e., if its so-called DelteAM = M (j', k') — M(j', k) is non-
lin fact, in the cases under consideration, namely, wavelet and Ga*?ﬂépative. On the other hand, the move does not necessarily

transforms, ridges never cross; even if we generate a signal whose analytic . . . .
expression is the sum of two frequency-modulated components with intersé_ra?(e place if the function decreases, i.e. A/ < 0. Indeed,

ing frequency-modulation curves, the ridges will not reproduce exactly thl this case, the transition is made, i.&,(t+ 1) = (§/, k")

frequency modulations near their expected intersection. We have no SimWﬂh probability exp[AM/T(t)], and the climber does not
explanation for this “experimental” fact. Notice that such a remark is specific . . S, . . .

to wavelet or Gabor transforms. Indeed, ridges of Wigner—Ville representatiorﬁpve Vert'ca"y’ '-e-v*Xw(t + 1) = (J ,k) with prObab'“ty
do cross. 1 — exp[AM/T(?)].
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Fig. 1. Occupation measures for a simple windowed sine wave. Top left: The signal. Top right: Its Gabor transform modulus. Bottom left: Unweighted
occupation measure. Bottom right: Weighted occupation measure.

At each timet, we consider two occupation measures. Thessentially zero away from the ridges, the occupation measure

first one is defined by pi7 gives much better results when it comes to detecting
N ridges.
N(O) _ 1 Z s Further Remark: The climbers evolve independently of
' N ot Xa(t): each other without interaction and with the same distribution

so that the computer code generating the motions of the
It is obtained by putting a masly NV at the location of each ¢limpers is the same for all the climbers. This indicates that
of the climbers on the grid. In other words,”(A) is the the algorithm can naturally be parallelized on a SIMDIM
proportion of climbers in4 at timet. The second one is the machine (SUCh as, for examp|e, the massive|y para||e|

“weighted” occupation measuye obtained by putting a masscomputers MASPAR | and 11.) We will not report of such
equal to the value of the functiof at the current location g3 jmplementations here.

of the climber 2) Simple Examples of Occupation Measurds illustrate
N the crazy climber algorithm, we first present, in Fig. 1, a
pe = Z M(Xa(1) 6x.)- simple example, namely, that of the Gabor transform of a sine
a=1 wave multiplied by a Gaussian envelope (top left). The square

We finally consider the corresponding “integrated occupatifedulus of the Gabor transform with a Gaussian window is
measures,” which are defined by ergodic averages as displayed at the top right of the figure, and the two integrated
occupation measures are displayed in the bottom of the figure.

o 1 T o 1 & We clearly see in the figure the different meanings of the
Hr =T Z pe and  pr = T Z Ft- (®)  two measures; in particular, the weighted occupation measure
=1 =1 appears as a shrunk copy of the Gabor square modulus. In
The occupation measuy€ is only given here for the sake ofaddition, the time dependence is essentially the same as that
completeness. Indeed, its main shortcoming is the fact thapft the square modulus. This suggests that thresholding the
assigns nonzero mass to regions without ridges if the lengtdgighted measure is likely to yield good results for ridge
of the ridges are smaller than the length of the window. Thifetection. We will not elaborate on that here.
is due to the very nature of the unrestricted horizontal motions3) Chaining: The output of the algorithm described above
of the climbers. Because the modulus of tfenoisedrersions is a measure on the domadn. We identify it with its density,
of the functionsi/, which we use in the applications, arewhich is a function onD. The next step of the algorithm is
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Bat’'s Sonar Signal

o Bat’s Sonar Signal with Chirp
ol Wavelet Transform Modulus
Q S

. Chained Ridges

=

Fig. 2. Bat sonar signal with an additional chirp.

to associate with it the various ridgd%. This is done via used the Morlet wavelet(z) = e~ /2¢iw0T  Eyen though
a chaining procedure that replaces the occupation densityibys not strictly admissible»(0) is small enough for the
one-dimensional (1-D) curves. This procedure is based on tlavelet to be considered to be “numerically admissible.” The

two steps: continuous wavelet transform was computed for 60 different
1) Thresholding of the density function obtained as théalues of the scale, more precisely, for scales of the form
output of the crazy climbers algorithm; 2 x 215 n = 0,---59. The time variable was sampled at

2) “propagation” in theb direction: Given a pointb, ) the same rate as the original signal. Fig. 2 shows the modulus
belonging to a given ridgeR,, look for the “best of the wavelet transform of the signal, together with the three
neighbor” amongb + €, ¢) and (b + €, ¢ £ €,) (here, different ridges found by the crazy climber method: the main
e, and ¢, are parameters fixed in advance), and theridge of the bat signal, the first harmonic component, and the
iterate the process until only values below the threshotdhirp signal. The horizontal axis is the time axis, and the

can be reached. vertical axis corresponds to the logarithm of the scale, i.e.,
The result is a series of ridges, which are graphs of curvé® variabley alluded to above. The modulus is represented
© = @e(b),b = b+ ..bfw_ with gray levels proportional to the values of the modulus of

the wavelet transform. The different ridges are displayed with
different gray levels.

The second signal is a speech signal, namely 250 ms of

The crazy climber algorithm was tested on several signglss word /one/ sampled at 8 kHz. The signal is displayed
containing multiple ridges. We restrict the present discussigp he very top of Fig. 5, and the squared modulus of its

to two examples: one treated with the wavelet transform agd,por transform is the third item of the figure. We used a

IV. NUMERICAL RESULTS AND EXAMPLES

the other with the Gabor transform. Gaussian window(z) = g,(x) = (1/sv/2x)e /2" where
) _ s is a scale parameter, but other choices, such as the Hamming
A. First Numerical Results windows (which are very popular in speech processing), would

The first signal (which is displayed at the top of Fig. 2be as convenient. The scale parametavas set so that the
is the sum of a (real) sonar signal emitted by a bat (thigindow has a size approximately equal to 16 ms (following
particular signal, which is displayed at the very top of Fig. 2he lines of [12]). The Gabor transform was computed over the
together with noisy versions, was intensively studied in [5fange 0-4000 Hz with 100 different values for the regularly
and a “linear chirp,” i.e., a function of the fora(z) cos(¢(z)) sampled frequency; see the discussion above. The horizontal
with A(z) a Gaussian function ant{x) a quadratic phase. We axis is the time axis, and the vertical axis is the frequency axis
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(the convention for the square modulus and ridge displage used, as long as the noise may be modeled as a weakly

are the same as before). The crazy climbers algorithm (58@tionary process.

climbers, 10000 time steps for each) found 18 different ridges,As an illustration, we display in Fig. 4 the ridges of the

which are displayed at the bottom of Fig. 5. same signal as before, embedded into a Gaussian white noise
We shall come back to these examples when discussing wigh SNR= 1 dB. We can see that the main ridge is quite well

reconstruction from ridges, which are displayed on the sameconstructed and that the ridge of the chirp is also recovered,

figures. although only its most energetic part has been detected.
The first harmonic component of the bat signal has not
B. The Case of Noisy Signals been detected. (The corresponding wavelet transform square

In many applications, we can assume that we have Obsg}gdulus was too low compared with the typical size of the

vations f(z) of an unknown signaffo(z) in the presence of noise, which, here, is of the ford{/« for some constank’.)
an additive noise:(z) with mean zero. In other words, we
work with the modelf(z) = fo(z) + ¢(z), where the noise C- Robustness
is given by a mean zero stationary process with (unknown)In the analysis of noisy signals, one of the main difficulties
auto-covariance functioft{e(x)e(y)} = v(x — y). The case is the dependence of many algorithms on the realization of
y(x —y) = 028(z — y) corresponds to an additive white noisehe noise perturbation. It happens too often that the parameters
with variances?. In some situations, & priori” knowledge and the results of the analysis are too sensitive to the noise,
of the noise is available. For instance, it may happen thahiting the realm of applicability. The crazy climber algorithm
the power spectrum of the noise is known, or a piece @bgether with the associated chaining) seems to be very stable
the signal is known to contain only noise, which gives ughen facing many noise realizations. In order to illustrate
the chance to learn about the statistics of this noise. Thigs robustness, we ran the following experiment with another
the detection algorithm may be improved by “renormalizspeech signal borrowed from Maes [14]. We added a Gaussian
ing” the time—frequency representation, i.e., subtracting whahite noise with variance? to the signal /How are you?/ of
is supposed to be the “typical” contribution of the noisg14], we computed the Gabor transform of the noisy signal
This contribution could be chosen to be the expectatiao obtained, and we ran the crazy climber algorithm to detect
E{M(b,¥)}. Moreover, if ana priori model for the noise the ridges in the modulus of the transform. We then measured
is available, such a quantity may be estimated by Monte Catle performance of the detection algorithm by computing the
simulations or sometimes by a direct computation. following measure of discrepancy between the RBgtof the
Example: Assume thatf<(z)} is a second-order mean zeraidges detected in the original Gabor transform and the?set
stationary process with power spectrum of the fgs(d) ~ of ridges found in the modulus of the transform of the noisy
o2¢> and that we are using the continuous wavelet transforgignal
In this caseE{M.(b,a)} = E{|T.(b,a)|?} ~ Kyo2a= "1
provided the {anal(yzin)g} wavé{ler;(a:) is such thatk, = D= H#ENEL N Rp)) + #( I\ F N Rl)),
1) u‘l|z/3(u)|2 du < oo. In most practical applications, we #i + # 1
only have one realization of the noise component, and it This distanceD is always between 0 and 1, it is equal to 0
impossible to compute directly this expectation, but a simplghen the two sets®k, and R, are identical, and it is equal to

(13)

ergodic argument justifies the use of the estimate 1 when the two set have no point in common. We calibrated
1 B the values of the variance? of the white noise so that the
Vie) = B / M(b, ) db. (10) corresponding SNR would be equal to 20, 10, 5, 0, ar'd
0

dB, respectively. For each value of the SNR from this list,
Then, in the penalty term used to define themotion of we generated 32 samples of the white noise. For each of
the climbers, the squared modulus of the time—frequentlyem, we computed the Gabor transform, determined the ridge

transform may be replaced by set R, with the crazy climber algorithm, and computed the
~ B 11 corresponding value of the distané® as shown in Table I.
M(b, ) = M(b, ) = V(p). (11) These numerical results show that only 3% of the ridge points

Remark: In situations where a reasonable estimate of tifé€ misdetected at SNR 20 dB and 25% at SNR- 0 dB.
the case of the continuous wavelet transform, the followirRf £ Penalizes heavily all the mismatches, even if a ridge

transform was used in [11]: point is detected but misplaced by a very small amount.
1 8 T d
Wi(b,a) = (TY2f, 9 ) = 5 / T w,a)(€) % V. RECONSTRUCTIONSFROM THE RIDGES
p
(12 We now address the problem of the reconstruction of a
signal from the knowledge of a transform on its ridge(s). This
wherel" denotes the covariance operator of the noise. problem was already discussed in [8] as well as many articles

The modifications (11) and (12) avoid “trapping” the ridgen speech processing (see, €e.g., [12]). We describe here an ap-
in regions dominated by the noise. Notice that they can alwagysach based on a penalization procedure, which was alluded
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Fig. 3. Reconstruction from the ridges. Last plot: Full curve, reconstructed chirp. Dashed curve: The original chirp.

TABLE | wavelet transform of the Gabor transform) to the ridges. It
is motivated by the approximate formulas (4) and (7). More
dB | average D | 95% confidence interval precisely, using the notation used throughout the paper, this
20 0.0313 (0.0229 0.0423] reconstruction is given in the Gabor case by
10 | 0.0632 (0.0437 0.0841] L
5 0.1752 [ 0.1427 0.2203] fl@) =20 )" Gz, wi(x)) (14)
0 0.2670 [0.2047 0.3315] =1

where the summation in the right-hand side is restricted to

to in [5]. Even though the ridge-detection part of the algorithrifi€ £'s for which w,(x) makes sense (in particulaf(z) = 0

was independent of the time—frequency representation, thig4@en there is no ridge at “time#) and by a similar formula
not the case for the reconstruction. In particular, our approatthth® wavelet case. The restriction of a transform to a ridge
is not adapted to bilinear time—frequency representations siggometimes called the “skeleton” of the transform [8].

as those given by the Wigner-Ville transform. We shall restrict ThiS is @ very simple scheme, and as Fig. 3 shows, the
ourselves to the cases of the wavelet and the Gabor transforfggults of this naive reconstruction can be extremely good.
Nevertheless, our approach extends to linear representatiiismain shortcoming is that it requires the knowledge of

such as those obtained from matching pursuit as discussedf fransform aall the points of the ridges. This limitation
[15] or those developed in [19]. makes it impossible to subsample the ridge (for compression

purposes, for example.)

2) Parametric ReconstructionFor the sake of complete-
ness, we quote a nonlinear reconstruction scheme that has

In order to put our reconstruction algorithm in perspedeen successfully used in speech processing in the framework
tive, we first review the procedures currently used (a largé the so-called sinusoidal model. See [12] for a review.
number of illustrations may be found in [6]). The method¥he main observation is that although the wavelet and the
outlined in Section V-A3 will be developed with more detailGabor transforms restricted to ridges are often very oscillatory
in Section V-B. (and then uneasy to compress), the corresponding amplitudes

1) The Transform SkeletoriThe first reconstruction is the A,(b) and frequencies/(b) = (1/2n)¢,(b) are sometimes
simplest one (once the ridges have been estimated). It conssstsvly varying. This is true, for instance, for the Gabor
of restricting the transform (whether we are working with thegansform of speech signals when the window is broadband.

A. General Discussion
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Bat + Chirp + White Noise (SNR = 1dB)

Wavelet Transform Modulus
o i l" II I II || u i |
; ‘\‘ hrkllml.‘}\ ﬁ I i i ' iJ ll‘ 1 \I “I‘J Ll ul ll.' Wi
Chained Ridges

Fig. 4. Bat's sonar signal and chirp embedded into a Gaussian white noise £SNRB).

Whenever amplitudes and frequencies are slowly varyinipe mere knowledge of a time—frequency transform at sample
they may be very well approximated by a class of functiormints of the ridges, a very good approximation of the original

characterized by a small number of numerical parameters. Tignal (this reconstruction procedure was implemented and
reconstructed signal is then obtained via parametric estimati@sted in [5] in the case of the wavelet transform of a signal

of the amplitude and the frequency and then by integrating tirethe “one-ridge case.”)

estimate of the frequency to recover the phase We assume that the ridges can be parameterized by con-
1 b tinuous functions[b; min, bemax] 2 b — @e(b) € (0,00),
Be(b) = pe(bo) + o / ve(x) dx (15) where? € {1,---,L} is the ridge label. These ridges are
T e usually constructed as smooth functions resulting from fitting

and computing4,(b) cos(¢¢(b)). This may be done for all procedures (spline smoothing is an example we are using
the ridges of a given signal. The reconstructed signal is tire practical applications) from the sample points obtained
sum of all the components of the foray (b) cos(¢p¢(D)). from ridge estimation algorithms such as the crazy climbers
3) Ridge Penalization:To reduce the amount of data necesalgorithm presented in this paper or the snake annealing
sary for the reconstruction, it is tempting to start by selectinggescribed in [5].
few sample points from each ridge and to use such points and ) Statement of the ProblemiVe  consider a (linear)
the corresponding values of the representation to reconstruginde—frequency transform of an unknown signal of
signal. The reconstructed signal takes the form of a superpasiite energy fo(z), which we denote generically by

tion of elementary waveforms located at the sample points @;[(1,7 ¢) = {(fo,ewy), where the time—frequency atoms
the ridge. Such waveforms are, in general, mere perturbations , are either wavelets or Gabor functions. We assume
of wavelets or Gabor functions. that the values of7;(b,¢) are known at sample points

As we shall see, such solutions may be derived from gene@l i) With j =1,---ng, £ = 1,--- L, which are regarded

principles, namely, by minimizing a suitably chosen quadratigs representative of the ridges associated with the (unknown)
functiqnal and using the v_alues of th_e time—f_requency réPr&ynal fo(x). We use the notatior ; for the value of the
sentation at the sample points of the ridge as linear constraigtgsform of fo at the point(be ;. ¢r,) and e, ;(x) for the
o corresponding functione(, . ., .y(z). The set of sample
B. The Penalization Approach points (b ;. ¢ ;), together with the values, ;, constitute
We now focus on the penalization approach, and we tresthat we call theskeleton of the transfornof the signal
the Gabor case and the wavelet case in the same settiogbe reconstructed. Let us denote hy; the linear form
We present a reconstruction algorithm that produces, fratefined byL, ;f = (f,ec ;). As we already explained, we
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Fig. 5. Two hundred fifty milliseconds of the speech signal /one/ (sampling frequency: 8 kHz).
use smooth functions — «,(b), which fit the sample points, . {(37 —Hy—-b ,,, z-2+ y}
and we use the graphs of these functions as our best guesses ag(h)? ag(b)
for the ridges of the modulus of the transform #f. The —(z—=b\ ,[(y—0b\ , y—1D
reconstruction problem is to find a signg(z) of finite energy - ¢<aé(b) )1/’ <a[(b) ) ay(b) [1 - a[(b)}
whose transforni; (b, ¢) satisfies L r—b y—b r—b
~ ¥ (G ) (i) o [ i)
Lejf =2, t=1,---L, j=1,---,n (16) ae(b) ae(b) ae(b)

and has the unio® of the graphs of the functiong,(b) as
a set of ridges. We recall that this means that for elach In the case of the Gabor transform, the quadratic fagnis
the points(b, (b)) of the time—frequency plane are the locagiven by the integral kernel
maxima of the functionp — |7;(b, ¢)|?. Y

2) The Penalty Functions.\/l/ef(startﬂwith the case of the Gl@,y) = 8z = y) + <Ga(z,9) (18)
wavelet transform. Let us assume that we are given a senéiereG(z,y) enforces smoothness [@F ;| on the ridges, i.e.,
of L ridges of the formb — a,(b),£ = 1,--- L. As explained of the functionsh — |G ¢(b,w¢(b))|. It is given by
in the Introduction, the reconstructed S|gnal is obtained a@
the function f(z) minimizing a quadratic functional[f] =

(f,Qf) with the constraintd’(be,;, ar,;) = z¢,;. In the case = Z </ < z—b)g (y—b) +g(z —b)g(y — b)
of the wavelet transform, We us@ given by the integral
operator defined by the kernel . [(x — b)(y — b)w)(b)?
W(z,y) = 6(z —y) + eWa(z,y). C(mty— Qb)w(b)wg(b)D
The aim of the termW,(x,y) is to enforce smoothness of ) _
|T7| on the ridges, i.e., of the functioris — |T'(b, a(b))|- cos(we(b)(z —y)) db
It is given by + / <g’(w = b)gly — b)[we(b) — (y — b)wip(D)]
db —f(x—b y—>b
Wal(z,y) =
e0) %: / ac(b)” <¢ <az(b)>w <az(b)> — g(z = )g'(y = B)[we(b) — (z — b)w;@])

a0 -1+ () () sin et =) db (19)
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For the sake of simplicity, we have assumed that the winddx The Reconstruction Algorithm

g(x) is real valued. The results of the discussion of this section may be sum-
marized in an algorithmic walk through our solution to the
C. SO|uti0n Of the Opt|m|zat|0n Problem reconstruction pr0b|em_

The reconstruction problem has been reformulated as @ Determine a finite se{R;},—; .. of ridges and, on
problem of minimization of a sesquilinear functional with  each of them, a set of sample points;,¢¢1) =
linear constraints. This is a classical problem. We outline (1), - -, (bn, e,ney = @e(bn(£)) on the ridge.
the solution for the sake of completeness. It may be conve- Construct smooth estimatés— ¢, (b) of the ridges from
niently reformulated as a minimization problem in the real the sample points.
domain rather than the complex domain by noticing that sinces Compute the matrix, i.e. W(z,y) or G(z,y), of the
we restrict ourselves to real-valued signals, both kernels are smoothness penalty along the ridge estimate.
sesquilinear §(x,y) is even real valued) and may be be « Compute the reconstruction time—frequency atems=
replaced by their real part (which we shall still denote by the Q_le(bc,j,w,j) localized (in the time—frequency plane) at

same letter). For each=1,--- L, then, complex constraints the ridge sample points.
(15) may be replaced by tt, real constraints as follows. Set « Compute the coefficients, ;.
() = Re . The solutionf of the reconstruction problem is then given
pe (@) = Reg j(x) J=1ne by (22). Numerical examples are discussed below
PM(@I%M( ) j=n+1---2n, (20) Y29 '

and |mag|nary parts respectlvely) Then, the new constra@ﬁhne -Type Reconstruction

read The synthesis presented above requires the knowledge of

Ri(f)={fpe;)=7;, j=1,---,2n.  (21) the exact values of the transform at a finite sample of points

of the time-scale or time—frequency plane. We now consider

Consequently, there exist real numbarg,j = 1,---2n¢, £ =  the possibility of an additive (possibly colored) noise in the
- L (the Lagrange multipliers of the problem) such that thghservations of the input signal and the possibility of noise in

50|UU0” f(x) of the optimization problem is given by the computation of the transform of the signal. As before, our
L 2n approach is motivated by the smoothing splines technique, as

— Z Aej Pl (22) presented in [20]. The generalization_ presented in this paper

=1 g1 T was alluded to as a possible extension to the reconstruction

algorithm derived and used in [4] and [5]. The motivation of

where the functiongi, ;(x) are defined bys,; = Q7 'p.,. [4] was to simplify the algorithm given in [16] to reconstruct
The Lagrange multipliers are determined by requiring that thesignal from the extrema of its dyadic wavelet transform. The
constraints (21) be satisfied. In other words, we must demamdtivation of [5] was to generalize this approach to the case
that the wavelet transform of the functighgiven in (22) be of the continuous wavelet transform, where the role of the
equal to thez;'s at the sample point®;, ¢;) of the time-scale extrema of the dyadic wavelet transform was played by the
plane. This gives a system of linear equations from which thigiges of the continuous wavelet transform.
Lagrange multipliers\;’s can be computed. More precisely, if The reconstruction we present now is based on a varia-
we denote by\ the column vector consisting of the Lagrangéonal approach involving a penalty on the smoothness of the
multipliers, and byR the vector of values ;, we obtain transform along the estimated ridges. However, contrary to
A=MTRand My .o 0 = (Q  puj, per i) [5], the observations of the transform along the ridges are

Remark: If we denote byN = %, n, the total number of used to define a second penalty component. This form of the
ridge samples, we have to deal wifti x N matrices, i.e., variational problem allows for a delicate balance between the
very large matrices. However, such matrices are, in gener@of the transform of the solution to the observations and the
sparse because of the localization properties of the functiosfmoothness of the modulus of the transform along the ridges.
In particular, if the different ridges of the transform are “welAs before, we use the notatidfy (b, ¢) for a transform that
separated,” i.e., if they are located in different regions of thepuld be the wavelet transforifis(b,a) as well as for the
time—frequency domain, the matri% may be approximated Gabor transformG (b, w).
by a block diagonal matrix. In other words, the contributions We assume that we are dealing with the sigmalise
of all ridges may be reconstructed independently. This redugasdel introduced earlier in Section IV-B; after computation
the complexity fromN? to Ln*, wheren is an average number of the transform of the observations, estimation of the ridges
of sample points per ridge. The Lagrange multipliers are thef the transform, and sampling these estimates, we end up
obtained as follows. If we denote by, the column vector with a discrete se{(bs;, e ;)¢ = 1,---L,5 = 1,---n¢},
consisting of the Lagrange multipliers for fixédand by R, in the transform plane and observatiohg(b, ;, . ;) of the
the vector of valuesy,; for fixed £, we obtain the epreSSIOI’ltransform of the unknown signal at these points. We assume
for the Lagrange multipliers. ; with fixed ¢, A, = M;*R; that the observations follow the usual linear model
with a newn, x n, matrix M,, whose elements are given by

(Mo)j5 = (Q7 g pejr)- 2 = Tr(bejs o) + €t
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where the computational noise terrﬂzs are assumed to be assumed to be zero. It is easy to see that under these extra
identically distributed and uncorrelated between themselves assumptions, the reconstruction procedure given by the
and with the observation noise term&e). Hence, the final above minimization problem reduces to the minimization
model is of the form of the quadratic form(f, Qf) under the constraints (15).

. This is the problem that was solved in [4] and [5].
“j=Leifotec,  t=1.-L j=L1--.n (23) It appears as a particular case of the more general

where L, ; is the linear form representing the value of the —Procedure presented here. The advantages of the latter

transform at the pointb, ;, ¢, ;) and where were explained in the introduction. We will not reproduce
T / this discussion here.
€0 = Te(beg, pe5) + € - * Notice that the reconstructed signal appears as a linear

function of the observations. Nevertheless, our whole
analysis is nonlinear because of the ridge estimation and
the sampling of the latter.

The assumption that the two sources of noise are uncorrelated
implies that the covariance matriX of the ¢ ; is the sum

of the covariance of th@.(b, ;,¢¢ ;) and the covariance of
the ¢, ;. Because the latter is of the form’?I, we have

¥ = 0’21 + =M, where the entries of the matrix® are - AN Example
given by Let us return to the wavelet analysis of the bat signal
with the additional chirp. We used. = 3 ridges, say,
Eélj)“k =/ er(x) Dz —y)ep y (x) dz dy. R, R,, and Rz, and we chose on each ridge estimate a

number of samples proportional to the length of the ridge and
The reconstruction algorithm is formulated as the solutidnversely proportional to the corresponding scale according to
of the minimization problem the sampling theory of wavelet transforms; see [7].
N A ) We used the value = 0.5 to reconstruct the signal. The
min -~ 12732 =T ()| + MQF, ) (24) result of the reconstruction is given in the second part of Fig. 3.
The last two plots of Fig. 3 give the reconstructions of the two
where Z denotes the vector of observations;, 7(-,-) components: the bat signal, reconstructed from two ridges (to
denotes the vector of values of the transform of the candid@jeé compared with the top plot in Fig. 2) and the chirp (the
function f at the points(b, ;, ¢ ;), and the constank > 0 original chirp and the reconstructed one are displayed on the
is introduced to balance the effects of the two components gdme plot: the bottom of Fig. 3). As we can see, the agreement
the penalty. In [20], Theorem 1.3.1 implies that the solutioR very good (except at the end of the chirp, where the ridge
is given by was a bit smaller than the true signal. In addition, we stress
n that the number of coefficients needed to characterize such
Z Aejéei(x) = Ae; Q ler;(x)  (25) asignal, i.e., twice the number of complex constraints, was
j=1 approximately one fifth of the number of samples. Although
compression was not our goal, the method seems to have a

where the coefficients, ; are the entries of the matrix = - :
’ definite potential.

(n)\I+E) 1%-1/27, and the matrix_ is defined by its entries
E] k — <1/}171/}k>
Remarks: VI. RIDGES AND THE SINUSOIDAL

« Notice that we did not use the full generality of the MODEL FOR SPEECH SIGNAL

smoothing spline problem as defined in [20]. Indeed, A popular representation of speech signals is to view the
we could have chosen a quadratic penalty of the forgignal as the output of a slowly time-varying filter excited
|QY/2 P, f||?, where P, is the projection onto the or- by a glottal waveform. The filter models the resonant char-
thogonal complement of a subspace of finite dimensioacteristics of the vocal tract. We will not go into the details
In this generality, it is possible to avoid penalizingpf speech modeling here (see [12] and [14] for a detailed
special subspaces of functions (for example, the spgmesentation), but we notice that the resulting model for speech
of polynomial functions of degree smaller than a fixedignal is of the form given in (3). Hence, it is natural to
number,...). Since the form of the solution is muchuse a time—frequency representation in order to separate the
more involved and since we did not find an applicationomponents of the signal. Since those components are close to
justifying this level of generality, we decided to use thédarmonic, the Gabor transform is better suited than the wavelet
smoothing spline approach in our simpler context. Consutansform for the description of these signals. Indeed, since the
[20] to see the specific feature of the smoothing splinegavelet processing may be viewed as a filter bank of constant
technique. relative frequency, it is not able to separate the components
« The approach presented here was alluded to as a possifléhe high frequencies (nevertheless, see [14] for a method to
extension to the reconstruction algorithm derived argkparate the first low-frequency components).
used in [4] and [5]. The latter corresponds to the caseHence, we use the continuous Gabor transform with a
where the knowledge of the wavelet transform of th€aussian window of length approximately equal to 160 ms.
unknown signal is assumed to be perfect. In other wordSur approach is, at least in spirit, similar to that of [12]. How-
it corresponds to the case where bdthand /2 are ever, there is a major difference; since the detection algorithm
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described in Section Il returns ridges, i.e., 1-D structures, tilee sampling of the ridge is fine enough. Otherwise, an

chaining method required by the McAulay—Quatieri approadxtra term has to be introduced in order to enforce the

is not needed here. smoothness ofZ%|? on the ridges. An adequate candidate
We illustrate this discussion on the example of the /onédr such a term could be given by thH'-norm of the

signal displayed at the top of Fig. 5. Our results were olpestriction of the modulus of the transform to the ridges.

tained using approximately 200 ridge samples, i.e., 400 rdal the case of the wavelet transform, such a term reads

constraints, whereas the signal’s length is 2048. As can be s&gn [ |(d/db)|Ts(b,a;(b))||*> db, but unfortunately, this does

on the top two plots of the figure, the reconstructed signabt define a sesquilinear form. However, if we $8b,a) =

is very close to the true one. Of course, such a comparisarg T;(b, a), it follows from the analysis of [8] that near the

is not significant from the speech processing point of viewidges numbe¥, we have(d/db)Q2(b, a) == (wo/ae(b)). This

However, we stress the fact that the main features of the sigeabgests the approximation

are preserved (in particular, the pitch.) Since fffenorm (or d

any other norm for that matter) of the difference between - Ty(b, ar(b)) = — [T#(b, ag(b)| e bac®)

the original and the reconstructed signal cannot be used as C wo b ae ()

a measure of quality as far as speech is concerned, listening te w |T5 (b, ag(b))]e™"*

to the two sounds remains one of the best ways to evaluate (26)

the performance of the synthesis algorithm. We did so in the

example discussed above: We could not hear any significamd, hence, the use the sesquilinear functional

difference. The sounds turn out to be almost indistinguishable.

N =trQn =P +e Y | <\%Tf<b,ae<b»
£

2

VII. CONCLUSIONS

We presented a new technique to detect ridges on a surface. B w3 (75 (b, ac(B)[2 ) db 27)
This algorithm is based on the stochastic relaxation of a par- ae(b)? AN )
ticle system of a new type. Our detection technique performs . ) )
extremely well, especially at very low SNR’s. It can be usef explicit computation shows that the corresponding kernel

to detect ridges in all the energetic distribution representatio§s@S N (16) and (17). _
of a signal, and it is especially useful for multicomponent The derivation in the Gabor case goes along the same lines.
signals. Moreover, we used a Monte Carlo analysis to shdgtéad of minimizing
that it is extremely robust. We also presented a reconstruction d
procedure from the knowledge of a linear transform (such as IFI1% + ¢ Z / ‘% |Gy (b, we(b)]
the wavelet or the Gabor transform) on the ridges. In the case ¢
of the Gabortransform, we shovyed that it was perform_ing_ Ve{¥e minimize the approximate objective function
well on speech signals, even in the presence of significant
noise disturbances. ) d

The most important extension to the results presented i /1=, Q0N = /1" +« Z / ‘% G (b, we(b))
this paper would be a real-time implementation. It is relatively ¢
easy to find approximations of the reconstruction procedure, — we(b)*|G (b, we(b))|?) db (28)
which would be amenable to on-line implementations. It seems. - is sesquilinear. The complete derivation is given in [6]
more difficult to modify the ridge detection algorithm to ' '
accommodate frequent updates.

2

db

2
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