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Abstract

Teams of artificially intelligent planetary rovers have tremen-
dous potential for space exploration, allowing for reduced
cost, increased flexibility and increased reliability. However,
having these multiple autonomous devices acting simultane-
ously leads to a problem of coordination: to achieve the best
results, the they should work together. This is not a simple
task. Due to the large distances and harsh environments, a
rover must be able to perform a wide variety of tasks with a
wide variety of potential teammates in uncertain and unsafe
environments. Directly coding all the necessary rules that
can reliably handle all of this coordination and uncertainty is
problematic. Instead, this article examines tackling this prob-
lem through the use of coordinated reinforcement learning:
rather than being programmed what to do, the rovers itera-
tively learn through trial and error to take take actions that
lead to high overall system return. To allow for coordination,
yet allow each agent to learn and act independently, we em-
ploy state-of-the-art reward shaping techniques. The article
uses visualization techniques to break down complex perfor-
mance indicators into an accessible form, and identifies key
future research directions.

Introduction
Imagine for a moment that you’re tasked with teleoperat-
ing (controlling with a joystick) a Mars rover as it navigates
across the surface. You watch the feed from the on-board
camera as the rover rolls along the surface, when you notice
the terrain changing ahead, so you instruct the rover to turn.
The problem? You’re 6 minutes too late. Due to the speed-
of-light delay in communication between yourself and the
rover, your “monolithic” multi-million dollar project is in
pieces at the bottom of a Martian canyon, and the nearest
repairman is 65 million miles away (NAS 2003).

There are, of course, solutions to this type of problem.
You can instruct it to travel a very small distance and re-
evaluate the rover’s situation before the next round of travel,
but this leads to painfully slow processes that take orders of
magnitude longer than they would on earth. The speed of
light is slow enough that it hinders any attempts at interact-
ing regularly with a rover on another planet.

But what if, instead of attempting to control every aspect
of the rover’s operation, we were able to take a step back
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and simply tell the rover what we’re trying to find, and have
it report back when it finds something we’ll think is inter-
esting? Giving the rover this type of autonomy removes the
need for constant interaction, and makes the speed of light a
moot point.

Hard-coding a procedure for handling all of the cases a
rover could encounter while navigating — and the thousands
of other tasks that a rover might have to undertake — is
not a good option in these cases. The need for flexibility is
key, and the onboard storage space is typically quite limited.
Due to the large distances, communication lag, and changing
mission parameters, any efforts in space exploration need to
be extremely robust to a wide array of possible disturbances,
and capable of a wide array of tasks. In short, as the human
race expands its efforts to explore the solar system, artificial
intelligence will play a key role in many high-level control
decisions.

However, giving a rover that cost many man-years of la-
bor and a multi-million dollar budget complete autonomy
over its actions on another planet might be a bit unnerving.
Space is a harsh and dangerous place; what if it isn’t able to
achieve the tasks it needs to? Worse, what if the rover finds
an unpredicted and creative way to fail? These are legitimate
concerns, worth addressing seriously.

One way to mitigate these concerns is to take the concept
of a single traditional monolithic rover and broke it up into
many pieces, creating a team of rovers, with one to embody
each of these pieces. Each would be simple, and perform

Figure 1: The speed-of-light communication delay makes
artificial intelligence a necessity for space exploration.



just a few functions. Though each of the pieces is less effec-
tive individually than the monolithic rover, the sum of the
pieces is greater than the whole in many ways.

First, any of the members of the team is significantly more
expendable than the whole monolithic rover. This alleviates
a large number of concerns, and opens many opportunities.
If one rover does find a way to fail creatively, the remain-
der of the team is still completely operational. By the same
token, the team of rovers can undertake more dangerous mis-
sions than the monolithic rover; if the dangerous conditions
lead to the failure of one rover, the rest can complete the
mission. Additionally, redundancy can be designed into the
team for particularly dangerous or critical roles.

Beyond the disposability of the individual team members,
there are other benefits to this team-based approach. Sav-
ings can be realized in construction, as each rover can be
designed with parts from a lower-cost parts portion of the
reliability curve. Similar savings are available in the design
process, as a new team can be formed with some members
that have been previously designed.

In addition, a team of rovers can have capabilities that a
single monolithic rover cannot, like having presence in mul-
tiple locations at once, which is incredibly useful for plane-
tary exploration. Ephemeral events can be simultaneously
observed from separate locations (Estlin and et al 2010),
even from the ground and from orbit simultaneously (Chien
and et al 2011), which can make interpreting the situation
significantly easier. Construction tasks that might be im-
possible for a single rover with limited degrees of freedom
become much easier. Teams can survey areas separated by
impassible terrain and share long-range communication re-
sources (Chien et al. 2000).

However, the concerns that we must address expand
rapidly once we start to consider the possibilities that arise
with multiple rovers acting in the same area simultaneously.
How do the rovers coordinate so that their efforts lead to
the maximum amount of interesting discoveries? How does
a rover decide between achieving a task on its own versus
helping another rover that has become stuck? How does it
decide between covering an area that’s been deemed inter-
esting, or exploring an area that hasn’t received much atten-
tion? These are all issues that fall under the larger umbrella
of multiagent artificial intelligence (or multiagent systems),
which is a ripe area of modern research (Wooldridge 2008).

One technique that has proven useful within the multia-
gent systems community is that of “reward shaping” used in
conjunction with reinforcement learning. In this paradigm,
instead of the rovers being told what to do, they each individ-
ually “learn” what to do through an iterative process of trial
and error 1. In this process, each rover learns to maximize
a reward function, measuring its performance. By carefully
shaping the rewards that the rovers receive, we can promote
coordination and improve the robustness of the learning pro-
cess (Mataric 1994; Taylor and Stone 2009). Our goals in

1Note the form learning used in this article is closely related
to direct policy search and evolutionary algorithms. Shaped re-
wards and shaped evaluation functions work similarly between
these methods.

reward shaping are to balance two fundamental tensions in
learning: 1) The rewards that the rovers are maximizing
should be informative enough that they can promote coor-
dination of the entire system, and 2) They should be simple
enough that the rovers can easily determine the best actions
to take to maximize their rewards. There are a number of
obstacles that can make achieving this goal more difficult.

Multiagent coordination is hard

Being able to automatically learn intelligent control policies
for autonomous systems is an exciting prospect for space ex-
ploration. Especially within the context of a coordinated set
of autonomous systems, we have the possibility of achiev-
ing increased capabilities while maintaining an adaptive and
robust system. However, these “multiagent” systems are
fundamentally different from other types of artificial intel-
ligence in two ways: 1) We have to promote coordination
in a multiagent system (See Figure 2), since agents learn-
ing by themselves may work at cross-purposes, and 2) We
have to overcome increased learning complexity as the ac-
tions taken by other agents increase the difficulty that any
particular agent has in determining the value of its actions
with respect to a coordinated goal.

In space applications, this coordination will involve many
issues like optimizing communication networks, maximiz-
ing scientific information returned from a set of sensors and
coordinating power usage through shared power resources.
As a guiding example, consider a group of autonomous rover
agents set to explore an area of an extraterrestrial body.
Their goal is to observe a series of points of interest, and
gain as much knowledge about these points as possible on a
team-wide level. This means that ideally each agent within
the multiagent system will cooperate toward the common
good, but how to do this is not immediately obvious. For ex-
ample, it may not be readily apparent in practice that a rover

Figure 2: Effective single agent learning may lead to incom-
patible interactions in a multiagent setting. Repetitive ex-
ploration and congestion are common problems.



is actively observing a point that has been well-studied at an
earlier point in time. The rover’s actions of observing that
point may be a very good choice, except that the other agents
acting in the environment had already gleaned the necessary
information from the point, making the action redundant.

Complex communication protocols or teamwork frame-
works may offer a solution to this problem, but it might not
be a practical one for space travel. Communication avail-
ability is limited, and failures of existing rovers or introduc-
tion of new rovers that weren’t originally planned into the
team are a realistic expectation for space exploration (Stone
et al. 2013). Because of the large travel times and distances,
and unpredictable and harsh environments, flexibility in im-
plementation is key, and the solution must be robust to all
sorts of disturbances.

This flexibility can be developed through the use of adap-
tive agent policies, which change over time to fit the situ-
ation the rover encounters. This creates a learning multia-
gent system, which allows the team to effectively deal with
changing environments or mission parameters. A key issue
in a learning multiagent system is the choice of the reward
function that the agents use.

How to judge a reward function
A multiagent learning system depends on a way to mea-
sure the value of each agent’s behavior. For instance, did
a particular sensor reading give additional scientific value?
Did a particular message sent efficiently use the commu-
nications channel? Did a particular rover movement put
the rover in a good location and not interfere with the ac-
tions of another rover? This measurement is called a re-
ward function, and changing what form the reward function
takes is the science of “reward shaping” (Chalkiadakis and
Boutilier 2003; Guestrin, Lagoudakis, and Parr 2002; Hu
and Wellman 1998; Mataric 1998; Stone and Veloso 2000;
Tumer, Agogino, and Wolpert 2002; Wolpert and Tumer
2001). An agent will seek to solely increase its reward func-
tion, forsaking all other concerns, so it is important that it
has two specific properties.

First, the reward function must be “sensitive” to the ac-
tions of the agent (Wolpert and Tumer 2001). An agent tak-
ing good actions should receive a high reward, and an agent
taking poor actions should receive a lower reward. In an un-
predictable, stochastic, or multiagent environment, there are
other factors affecting the reward that the agent will receive.
An ill-developed reward function will allow these random
factors to insert a large amount of “noise” into the “signal”
offered by the reward function, and as the signal-to-noise
ratio decreases, so does the agent’s performance.

Second, the reward function must be “aligned” with the
overall mission that the agent team must achieve (Wolpert
and Tumer 2001). That is, an agent that increases its
own reward should simultaneously be increasing the sys-
tem performance. A lack of alignment can lead to situa-
tions such as the Tragedy of the Commons (Hardin 1968;
Crowe 1969), wherein a group of rationally self-concerned
agents lead to a drop in system performance due to working
at cross-purposes. That is, agent A does what it perceives
in its own best interest, as does agent B; in some way, their

actions deplete their shared environment, and lead to both
agents being worse off than they would be had they cooper-
ated for the communal good.

Both of these properties — sensitivity and alignment —
are critical to multiagent systems. An agent must be able to
clearly discern what it has done to earn a high reward, and
continuing to earn that high reward must be in the best inter-
est of the system as a whole. This is especially the case in
space applications, because the large distances and commu-
nication restrictions introduced by limited bandwidth, lim-
ited power, or line of sight lead to time prevents outside in-
tervention if the system performance were to go awry. In
fact, even identifying a that a problem exists within the sys-
tem is challenging: space and extra planetary exploration is
a complex and difficult problem, and it might not be easy
to immediately diagnose when agents aren’t achieving their
full potential.

In this work we show one approach to diagnosing poten-
tial system performance issues through visualizing the sensi-
tivity and alignment of various reward structures in a simple
and straightforward manner.

Classic approaches to coordination

via reward shaping

There are three classic approaches to solving complex multi-
agent systems. Each has specific advantages and drawbacks.

Robot totalitarianism (centralized control) First, con-
sider a centralized system in which one agent is making all
necessary decisions for the entire system as a whole, and
all other agents are merely following orders. The advan-
tages here are that perfect coordination is possible, and the
pieces of the system as a whole will cooperate to increase
system performance. This typically works well for small
systems consisting of just a few agents (Sutton and Barto
1998). However, such a centralized system can fall prey
to complexities such as communication restrictions, com-
ponent failures — especially where a single point of failure
can stop the entire system — and simply the difficulty of si-
multaneously solving a problem for hundreds or thousands
of agents simultaneously. In most realistic situations, this is
simply not an option.

Robot socialism (global or team reward) Next, consider
a system in which each agent is allowed to act autonomously
in the way that they see fit, and every agent is given the iden-
tically same global reward, which represents the system per-
formance as a whole. They will single-mindedly pursue im-
provements on this reward, which means that their efforts are
directed toward improving system performance, due to this
reward having perfect alignment. However, because there
may be hundreds or thousands of agents acting simultane-
ously in the shared environment, it may not be clear what
led to the reward. In a completely linear system of n agents,
each agent is only responsible for 1/n of the reward that
they all receive, which can be entirely drowned out by the
(n − 1)/n portion for which that agent is not responsible.
In a system with 100 agents, that means an agent might only



have dominion over 1% of the reward it receives! This could
lead to situations in which an agent chooses to do nothing,
but the system reward increases, because other agents found
good actions to take. This would encourage that agent to
continue doing nothing, even though this hurts the system,
due to a lack of sensitivity of the reward.

Robot capitalism (local or perfectly learnable reward)
Finally, consider a system in which each agent has a local
reward function related to how productive it is, itself. For
example, a planetary rover could be evaluated on how many
photographs it captures of interesting rocks. This means that
its reward is dependent only on itself, creating high sensi-
tivity. However, the team of rovers obtaining hundreds of
photographs of the same rock is not as interesting as ob-
taining hundreds of photographs of different rocks, though
these would be evaluated the same with a local scheme. This
means that the local reward is not aligned with the system
level reward.

Summary Each of the reward functions has benefits and
drawbacks that are closely mirrored in human systems.
However, we are not limited to just these reward functions;
as we mentioned before, an agent will single-mindedly seek
to increase its reward, no matter what it is, whether or not
this is in the best interest of the system at large. Is there, per-
haps, a method that could be as aligned as the global reward,
while as sensitive as the local reward, while still avoiding the
pitfalls of the centralized approach?

Difference rewards

An ideal solution would be to create a reward that is aligned
with the system reward while removing the noise associ-
ated with other agents acting in the system. This would
lead agents toward “doing everything they can to improve
the system’s performance”. Such a reward in a multi rover
system would reward a rover for taking a good action that
coordinates well with rovers that are close to it, and would
ignore the effects of distant rovers that were irrelevant.

A way to represent this analytically is to take the global
reward G(z) of the world z, and subtract off everything that
doesn’t have to do with the agent we’re evaluating, reveal-
ing how much of a difference the agent made to the overall
system. This takes the form

Di(z) = G(z)−G(z−i) (1)

where G(z−i) is the global reward of the world without the
contributions of agent i, and Di(z) is the difference reward.

Let us first consider the alignment of this reward. G(z)
is perfectly aligned with the system reward. G(z−i) may
or may not be aligned, but in this case, it doesn’t matter,
because agent i (whom we are evaluating) has no impact on
G(z−i), by definition. This means that Di(z) is perfectly
aligned, because all parts that agent i affects are aligned:
agent i taking action to improve Di(z) will simultaneously
improve G(z).

Now, let us consider the sensitivity of this reward. G(z)
is as sensitive as the system reward, because it is identical.

However, we remove G(z−i) from the equation; that is, a
large portion of the system — on which agent i has no im-
pact on the performance — does not impact Di(z). This
means that Di(z) is very sensitive to the actions of agent i,
and includes little noise from the actions of other agents.

Difference rewards are not a miracle cure. They do re-
quire additional computation to determine which portions of
the system reward are caused by each agent. However, it is
important to note that it is not necessary to analytically com-
pute these contributions. In many cases, a simple approxi-
mation that serves to remove a large portion of the noise
caused by using the system-level reward gains significant
performance increases over using the system reward alone.

Although in this paper we focus on the continuous rover
domain, both the difference reward and the visualization ap-
proach have broad applicability. The difference reward used
in this paper has been applied to many domains, includ-
ing data routing over a telecommunication network (Tumer
and Wolpert 2000), multiagent gridworld (Tumer, Agogino,
and Wolpert 2002), congestion games such as traffic toll
lanes (Tumer and Wolpert 2004a; 2004b; Wolpert and
Tumer 2001) and optimization problems such as bin pack-
ing (Wolpert, Tumer, and Bandari 2004) and faulty device
selection (Tumer 2005).

Continuous rover domain

To examine the properties of the difference reward in a more
practical way, let us return to our example of a team of
rovers on a mission to explore an extraterrestrial body, like
the moon or Mars. We allow each rover to take continuous
actions to move in the space, while receiving noisy sensor
data at discrete time steps (Agogino and Tumer 2004).

Points of interest (POIs) Certain points in the team’s area
of operation have been identified as points of interest (POIs),
which we represent as green dots. Figure 4 offers one of
the layouts of POIs that we studied, with a series of lower-
valued POIs located to the left on the rectangular world, and
a single high-valued POI located on the right half. Because
multiple simultaneous observations of the same POI are not
valued higher than a single observation in this domain, the
best policy for the team is to spread out: one agent will

Figure 3: Artist’s rendition of a team of rovers exploring
various points of interest on the Martian surface.
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Figure 4: A team of rovers observing a set of points of in-
terest (POIs). Each POI has a value, represented by its size
here. The team will ideally send one rover to observe the
large POI on the right closely, while the rest spread out in
the left region to observe as many small POIs as possible.

Rover Sensor!

Points of Interest Sensor!

Points of Interest!

Figure 5: Rover sensing diagram. Each rover has 8 sensors:
four rover sensors and four POI sensors that detect the rel-
ative congestion of each in each of the four quadrants that
rotate with the rover as it moves.

closely study the large POI, while the remainder of the team
will cover the smaller POIs on the other side.

Sensor model We assume that the rovers have the ability
to sense the whole domain (except in the results we present
later marked with PO for partial observability), but even so,
using state variables to represent each of the rovers and POIs
individually results in an intractable learning problem: there
are simply too many parameters. This is also why a central-
ized controller does not function well in this case. We reduce
the state space by providing 8 inputs through the process il-
lustrated in Figure 5. For each quadrant, which rotates to
remain aligned with the rover as it moves through the space,
the rover has a ‘rover sensor’ and a ‘POI sensor’. The rover
sensor calculates the relative density and proximity of rovers
within that quadrant and condenses this to a single value.
The POI sensor does the same for all POIs within the quad-
rant.

Motion model We model the continuous motion of the
rovers at each finite timestep as shown in Figure 6. We main-
tain the current heading of each rover, and at each timestep
the rovers select a value for dy and dx, where the value of dy

Figure 6: Rover motion model. At each timestep, each rover
determines a continuous dy value to represent how far it
moves in the direction it is facing, and a dx value determin-
ing how far it turns. Its heading at the next timestep is the
same as the vector dx+ dy.

represents how far forward the rover will move, and dx rep-
resents how much the rover will turn at that timestep. The
rover’s heading for the next timestep is represented as the di-
rection of the resultant vector (dx+ dy), shown as the solid
line in Figure 6.

Policy search The rovers use multi-layer perceptrons
(MLP) with sigmoid activation functions to map the eight in-
puts provided by the four POI sensors and four rover sensors
through ten hidden units to two outputs, dx and dy, which
govern the motion of the rover. The weights associated with
the MLP are established through an online simulated anneal-
ing algorithm that changes the weights with preset probabil-
ities (Kirkpatrick, Gelatt, and Vecchi 1983). This is a form
of direct policy search, where the MLPs are the policies.

Reward structures

We present the visualizations for alignment and sensitivity
of four reward structures in this work:

• The perfectly learnable local reward, Pi, is calculated by
considering the value of observations of all POIs made by
agent i throughout the course of the simulation, ignoring
the contributions that any other agents had to the system.

• The global team reward, Ti, is calculated by considering
the best observation the team as a whole made during the
course of the simulation.

• The difference reward, Di, is calculated similarly to the
perfectly learnable reward Pi, with the exception that if a
second agent j also observed the POI, agent i is only re-
warded with the difference between the quality of obser-
vations. Thus, if two agents observe a POI equally well, it
adds to neither of their rewards, because the team would
have observed it anyway. If an agent is the sole observer
of a POI, they gain the full value of the POI observation.

• The difference reward under partial observability,
Di(PO), is calculated in the same manner as Di, but
with restrictions on what agent i can observe. Each rover
evaluates itself in the same way as Di, but because of the
partial observability, it is possible that two rovers will be
observing the same POI from opposite sides, and neither
will realize that the POI is doubly observed (which does
not increase the system performance), and both will credit
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Figure 7: Rovers under partial observability of range de-
noted by the dotted line. Both rover A and rover B can
sense and observe POI P, but cannot sense each other. In the
Di(PO) formulation, they both would calculate that theirs
was the only observation. Additionally, neither rover has
any knowledge of POI Q.

themselves. Likewise, each rover cannot sense POIs lo-
cated outside of its observation radius. This is represented
in Figure 7.

Visualization of reward structures

Visualization is an important part of understanding the inner
workings of many systems, but particularly those of learn-
ing systems (Agogino, Martin, and Ghosh 1999; Bishof,
Pinz, and Kropatsch 1992; Gallagher and Downs 1997;
Hinton 1986; Hoen and G. Redekar 2004; Wejchert and
Tesauro 1991). Especially in costly space systems we need
additional validation that our learning systems are likely to
work. Performance simulations can give us good perfor-
mance bounds in scenarios that we can anticipate ahead of
time. However, these simulations may not uniformly test
the rovers in all situations that they may encounter. Learn-
ing and adaptation can allow rovers to adapt to unanticipated
scenarios, but their reward functions still have to have high
sensitivity and alignment to work. The visualization pre-
sented here can give us greater insight into the behavior of
our reward functions. Our visualizations can answer impor-
tant questions such as how often we think our reward will
be aligned with our overall goals and how sensitive our re-
wards are to a rover’s actions. Through visual inspection we
can see if there are important gaps in our coverage, and we
can increase our confidence that a given reward system will
work reliably.

The majority of the results presented in this work show
the relative sensitivity and alignment of each of the reward
structures. We have developed a unique method for visu-
alizing these, which is illustrated in Figure 8. We use the
sensor information from the rover (left) to determine which
of the spaces we will update (right). The alignment or sen-
sitivity calculation (Agogino and Tumer 2008) is then rep-
resented by a symbol that takes the form of a ‘+’ or ‘-’ sign;
the brighter the shade of the spot, the further from the av-
erage. A bright ‘+’, then, represents a very aligned or very
sensitive reward and a bright ‘-’ represents an anti-aligned or
very non-sensitive reward for a given POI and rover density,
in the case of Figure 9. We also present these calculations
projected onto a specific case of the actual space that the
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Figure 8: Illustration of the visualization calculation pro-
cess. We use sensor data to determine which spot in the
state space a circumstance represents, and place a marker
in that location that represents whether the reward scores
highly (bright +), near random (blank) or lowly (bright −).

rovers move through in Figure 10. A more general version
of this technique projects onto the principal components of
the state space, which is more thoroughly explored in other
work (Agogino and Tumer 2008).

Sensitivity and alignment analysis

A reward with simultaneously high alignment and sensitiv-
ity will be the easiest for agents to use to establish high-
performing policies. Figure 9 presents the visualization for
each of the reward structures. Notice that the perfectly learn-
able reward Pi does indeed have high sensitivity across the
space, but has low alignment with the global reward in most
of the center areas, which correspond to a moderate concen-
tration of rovers and POIs. This area near the center of the
visualization represents circumstances that the rovers find
themselves in most often (Agogino and Tumer 2008).

The team reward Ti, on the other hand, is very aligned
throughout the search space, but is extremely lacking in sen-
sitivity (denoted by the many ‘-’ signs throughout the space).

The difference reward Di is both highly aligned and
highly sensitive throughout the search space. When we re-
duce the radius at which Di can sense other rovers and POIs,
the visualization from the Di(PO) row indicate that the sen-
sitivity remains strong everywhere, but there is a slight drop
in alignment throughout the space.

So, it would appear that difference rewards (Di) offer
benefits over other rewards, even with partial observabil-
ity (Di(PO)), but what does this mean in a more practical
sense? To address this, we created Figure 10, which projects
the same type of alignment into the actual plane in which the
rovers are operating.

The left figure presents the alignment for the perfectly
learnable reward Pi, and the indicated region is anti-aligned
with the system-level reward. That is, even though traveling
across this region would be beneficial to the team (because
traveling across this region is required to reach the large POI
on the right), the rovers that find themselves in this area of
the space are actively penalized.
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Figure 9: Alignment and sensitivity visualization for the
four reward types, projected onto a 2-dimensional space rep-
resentative of the state space. Note that the perfectly learn-
able reward Pi has low factoredness through most of the
space, and the team reward Ti is extremely non-sensitive
through most of the space, while both instances of the dif-
ference reward maintain high performance by both metrics.

The figure on the right presents the alignment for the
difference reward under observation restrictions Di(PO),
which is qualitatively different within the highlighted re-
gions: Di(PO) builds two “aligned bridges”, which allow
the rovers to pass through the highlighted region without
being penalized while they travel to the large POI on the
right. Furthermore, the other parts of the highlighted re-
gion are not anti-aligned with the system reward meaning
that the rovers are not penalized for traveling through this
space, they merely do not increase their reward while there.

Pi# Di#(PO)#

Aligned#Bridges#

Figure 10: Alignment visualization for the perfectly learn-
able reward Pi, and the difference reward under partial ob-
servability, Di(PO), projected onto the actual plane the
rovers operate within.

System performance

We present system-level performance in Figure 11, which
represents the final system reward after training (y-axis) for
teams of rovers trained on various rewards (line type), within
different experiments with varying restrictions on observa-
tion radius (x-axis). Points to the left represent performance
under extreme observation restrictions, and points to the
right represent near-full observability. The visualizations
performed in Figures 9 – 10 correspond to full observability
for all rewards except Di(PO), which corresponds to the Di

reward at a communication radius of 10 units in Figure 11.

The benefits in sensitivity and alignment offered by the
difference rewards Di does result in increased system per-
formance, as shown by the rightmost portion of Figure 11.
This reward leads to high-performing systems of rover
agents with very successful policies. The global shared team
reward Ti is capable of making some increases over a local
policy under full observability, but still falls short the differ-
ence reward.

The remainder of Figure 11 presents a result based on the
final system performance attained by agent teams operat-
ing with different rewards under restricted communications.
Agents trained on the difference reward Di are robust to a
reduced communication radius, which could easily happen
in cases of a dust storm, craggy landscape, or partial sen-
sor failures. Agents using the perfectly learnable reward Pi

are not affected by these restrictions, as the actions of other
agents don’t affect their policies.

Agents trained on the team or global reward Ti show an
interesting phenomenon, however. Agents operating with a
large communication radius are able to perform well as a
team, and as this communication radius is reduced, so is the
quality of the discovered policies — this much is expected.
However, as the observation radius is decreased further, ex-
perimental runs with very low observation radii actually per-
form slightly better than those with moderate observation
powers. This suggests that a little bit of knowledge about
the location of other rovers is actually a bad thing. This can
be explained: as the observation radius is reduced, agents
trained on the team reward will behave more selfishly, like
rovers using Pi, simply because they cannot sense the other
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Figure 11: Final performance attained vs. communication
radius for the different reward structures. Difference rewards
maintain robust performance, but team rewards lose signifi-
cant performance under restricted communication.

rovers in the area, thus the gap between their performance
decreases as the restrictions mirror this case.

Conclusions

Space exploration creates a unique set of challenges that
must be addressed as we continue our expanding our reach
in the solar system. One approach for dealing with these
challenges is through the use of reinforcement learning with
reward shaping. Care must be taken in any use of reward
shaping: a solution that works with a small number of agents
will not necessarily scale up in an expected fashion, and
might lead to catastrophic system-level results. The read-
ily obvious team reward and perfectly learnable reward both
lead to poor results due to their low sensitivity and align-
ment, respectively. There is a need for local-level rewards
that can be carried out quickly and efficiently that will scale
into favorable results at the broader system level.

Difference rewards are an effective tool for this by encour-
aging multiagent coordination by their guaranteed alignment
with the system objective, as well as their high sensitivity
to local actions. They maintain high learnability through-
out the state space, while offering perfect alignment with
the system-level reward. This results in benefits that can
be readily visualized within the space in which a team of
rovers works, creating “bridges of high reward” that rovers
can cross in between sparse POIs, and increasing overall sys-
tem performance over a personal or team-based reward.

These properties in tandem with the robustness to various
types of change within the environment show that their use
in space exploration applications is an ideal fit. The capa-
bility of using a difference reward to encourage agents to do
their best to help the team at whatever task is assigned allows
for a team that can quickly and deftly adjust when mission
parameters change. This can be as mundane as a sensor fail-
ing, or as dramatic as a complete mission reassignment.

While developing more sophisticated technologies for
sensing more about the environment in a more efficient man-
ner is a useful step forward, for multiagent space explo-

ration, the key problem remains as “What should the agents
do to work together?”. This persists as a fertile motivating
question for future research.
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