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of Industrial
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I
nspection of aircraft and power generation machinery using

a swarm of miniature robots is a promising application both

from an intellectual and a commercial perspective. Our

research is motivated by a case study concerned with the

inspection of a jet turbine engine by a swarm of miniature

robots. This article summarizes our efforts that include multiro-

bot path planning, modeling of self-organized robotic systems,

and the implementation of proof-of-concept experiments with

real miniature robots. Although other research tackles chal-

lenges that arise from moving within three-dimensional (3-D)

structured environments at the level of the individual robotic

node, the emphasis of our work is on explicitly incorporating

the potential limitations of the individual robotic platform in

terms of sensor and actuator noise into the modeling and design

process of collaborative inspection systems. We highlight diffi-

culties and further challenges on the (lengthy) path toward truly

autonomous parallel robotic inspection of complex engineered

structures.

For certain tasks, multirobot systems are a promising alter-

native to a single robot solution because they offer a higher

level of robustness due to redundancy and the potential for

individual simplicity. Also, the possibility of conducting work

in parallel potentially allows for a faster task execution, e.g., in

a coverage or an exploration task. This property is even more

striking when size constraints on the robotic platform do not

allow inspection of an environment with a single robot in

acceptable time. In addition to the locomotion constraints that

are specific to the environment, such a scenario poses numerous

design challenges such as limited interrobot communication,

determining the position or relative range and bearing [1], and

the design of efficient and robust algorithms for coordination of a

robot team. Benefits and challenges of miniature multirobot

coverage are well illustrated by the automatic inspection of (jet)

turbines (Figure 1), which is a promising commercial application

[2]. To minimize failures, jet turbine engines have to be inspected

at regular intervals for evidence of internal distress such as crack-

ing or erosion. This is usually performed visually by using bore-

scopes as well as ultrasound (US) and eddy current sensors [3],

which is a time-consuming and cost-intensive process, particu-

larly if it involves dismantling the turbine. One possible solution

for speeding up and automating the inspection process is to rely

on a swarm of autonomous, miniature robots that could beDigital Object Identifier 10.1109/MRA.2008.931633
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released into the turbine while still attached to the wing [4].With

the immediate prospect to reduce the downtime during regular

inspection intervals, the final goal of such an approach is a distrib-

uted control architecture that allows for a shift from a schedule-

based maintenance system to a condition-based system, which is

based on smart sensors and actuators [5]. Here, the deployment of

mobile sensors rather than the installation of permanent sensors

[6] is a compromise between the increased system cost and the

benefits arising with an in situ inspection [3].

Although this idea is intellectually appealing and could pave

the way for other similar applications in the inspection of

potentially complex, engineered or natural structures, it

involves a series of technical challenges that drastically limit

possible designs of robotic sensors and can loosely be classified

into three engineering thrusts: miniaturization of sensors and

actuators, control of distributed hybrid systems, and sensor

fusion for providing information to a human operator or an

expert system. The distributed system can be considered

hybrid in the sense as that the individual robotic platform is

controlled by a series of reactive continuous control laws,

which are switched by some logic function or algorithm. All

three thrusts are dominated by strong constraints on available

energy, sensing, actuation, and computation, which render

certain control approaches—particularly those that require

rich sensor information for performing extensive reasoning on

the individual robotic node—unfeasible. Rather, a distributed

system of unreliable or less controllable robotic nodes requires

the analysis of algorithms from a probabilistic perspective.

Finally, commands by human users that address the properties

on the swarm level need to be synthesized into control inputs

to the individual robots.

The focus of our work [7] is on algorithms for coordinating

a robot swarm for the coverage [8] of relevant parts of the tur-

bine’s interior, where individual units are subject to the

extrememiniaturization constraints on the individual platform,

rather than developing specific solutions for locomotion or

inspection for an individual robot in such an environment (see

e.g., [9] or [10], and [11], respectively, and references therein).

We undertake experimentation with real hardware (Figure 2),

which serves both as a validation and motivation for our algo-

rithms, where emphasis is on the robustness with respect to the

sensor and actuator noise of minimalist platforms in use.

In the following sections, we first summarize the design

challenges imposed by our case study and then describe our

experimental setup and hardware that we developed. Finally,

we compare results from both probabilistic and deterministic

control strategies.

Design Challenges
The turbine inspection scenario imposes a series of constraints

that drastically influence the possible design choices for the

robotic platform and potential coordination algorithms:

u Miniaturization can be considered as the toughest con-

straint. Miniaturization significantly limits the choice of

potential actuators, sensors, and available energy. In

particular, the available volume for energy storage on a

miniature platform limits the overall movement

autonomy, computational power, and communication.

u Energy limitations might be overcome by providing the

robots with tethers [2], which would also be useful for

easily removing broken or stuck robots from the turbine.

Tethers, however, have the disadvantage of requiring

stronger actuators, as the robot has not only to self-loco-

mote but also to pull the potentially entangled tether that

might quickly outweigh the robotic platform, particularly

if it is to be robust enough for the manual removal of

the robots. In a distributed system, entangling of tether

cables is even more likely and imposes additional con-

straints on path-planning algorithms.

u Because of the shielded and narrow structure of the

turbine that might act as a Faraday cage, communica-

tion is limited to short range. For the same reason,

closed-loop control of the system by an outside super-

visor (agent) is essentially unfeasible.

u Reliable locomotion in a highly structured, upside-down

environment poses tremendous mechanical challenges.

Figure 2. A simplified mock-up of a jet turbine being
inspected by a swarm of miniature robots showcased during

the Swiss-wide Festival Science-et-Cit�e in Spring 2005. (Photo
courtesy Alain Herzog.)

Figure 1. The compressor section of a jet turbine. The internal
dimensions are within the same order of magnitude as those

of the miniature robotic systems used in this article.
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Algorithms and analysis presented in this article tackle min-

iaturization, energy limitations, and limited range communi-

cation experimentally, although we are not exploring other

locomotion principles than wheeled differential-drive robots.

In addition to the physical constraints, the inspection task

also presents various algorithmic challenges:

u Potentially redundant sensory information provided by

the robot swarm needs to be fused and annotated with

the location within the turbine where it was recorded.

u The (3-D) data recorded within the environment

needs to be analyzed, e.g., for detecting flaws, poten-

tially using an expert system.

u Appropriate control commands need to be synthesized

and sent to the robot swarm to achieve a desired col-

lective behavior, e.g., for more closely inspecting a

certain region of the structure.

A Miniature Platform for
Autonomous Inspection
Our robotic inspection nodes (Figure 3) are based on the Alice

miniature robot [12], developed by Gilles Caprari at the Autono-

mous SystemLaboratorywhen still affiliatedwith EPFL. TheAlice

has a cubic shape of approximately 2 cm side length and is operated

by a PIC 16F877 microprocessor (4 MHz, 384 B of RAM, 8 kB

ROM). Driven by two watch (stepper) motors in a differential-

drive configuration, it can travel with a top speed of 4 cm/s. It is

endowed with four IR modules, which can serve as very crude

proximity sensors (up to 3 cm) and local communication devices

(up to 6 cm in range), providing a simple communication channel

at around 500 b/s,which can also be used for crude interrobot local

positioning. Its energetic autonomy with a 40-mAh (at 4.5 V)

NiMH rechargeable battery ranges from 10 min to 10 h, depend-

ing on the actuators and sensors used (see Table 1 for the detailed

energy consumption of selected components). The reason for the

extreme differences in autonomy is not the actual cumulative

power consumption but rather the maximal possible drain that the

battery is supporting. In practice, significant voltage drops are

already observed for drains of more than 0.5 C (1 C corresponds to

the nominal capacity), which makes the simultaneous operation of

the camera and the radiomodules (described later) impossible.

To improve the computational and communication capa-

bilities for ad hoc networking among the robotic swarm and to

eventually transmit the recorded data to a base station, we

developed an extension board, providing a Texas Instruments

(TI) MSP430 microprocessor (2 kB RAM, 60 kB ROM), a TI

CC2420 radio (ZigBee ready), and 4-MB flash memory. The

module can be conveniently programmed in TinyOS (http://

www.tinyos.net), which provides a growing number of ready-

to-use libraries for different purposes and allows easy integra-

tion with a wide range of compatible static sensor networks.

For inspection and localization, we designed a camera

module endowed with a PixelPlus Po3030k VGA miniature

camera that is downsampled to 303 30 pixels in red, green,

and blue (RGB) color. Using a PIC40F4620 with 4 kB RAM

at 32 MHz for image acquisition and processing, the Alice is

able to take pictures at a rate of around 2 Hz (Figure 4), as well

as uniquely identify color markers in the environment

(Figure 5). The Alice and the extension modules communicate

via an I2C two-wire bus (a block diagram is shown in Figure

6). With the two extension modules mounted, the inspection

robot fits well into a parallelepiped of 2 cm3 2 cm3 3 cm.

Experimental Setup
We simplify the real 3-D environment by unrolling the axis-

symmetric geometry of the turbine into a flat representation

with the blades as vertical extrusions. Blades are made from

aluminum and aligned in a 53 5 pattern on a 60 cm3 65 cm

large arena (Figure 2) made of steel. The blades are fixed by

self-adhesive magnetic tape. The fact that the arena is entirely

made from metal leads to significant communication loss due

to electromagnetic absorption, particularly when a robot’s

antenna is incidentally in direct contact with a blade.

For algorithms that require localization, the upper part of

the blades is equipped with a unique color marker that consists

of three colored bars (Figure 5). Saturation or depletion of any

of the three color channels (red, green, and blue) is used to

encode 3 b per color. Using the middle bar as references (all

channels at 50%) allows us to encode 64 different codes, of

which we are using 25 for identifying each blade. Experiments

showed 95% accuracy (average of 100 experiments) for cor-

rectly identifying a blade.

Distributed Coordination Schemes
for Multirobot Inspection
In our experiments, we are not concerned with the detection or

mapping of flaws but rather with the individual and groupmotion

2 cm

Figure 3. The miniature robot Alice (2 cm3 2 cm3 2 cm)
endowed with extension modules providing ad hoc

networking (middle) and imaging capabilities (right). A moteiv
Telos mote, which inspired the design of the communication
module, is shown in the background.

Table 1. Energy consumption for selected indi-
vidual subsystems of the inspection platform.

Individual Subsystem Energy Consumption (mW)

Alice, motors off 4.5

Alice, full-speed drive 15

Radio module active 60

Radio module sleep <1

Camera module active 60

Camera module sleep 15
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given the constraints of the turbine scenario. For the sake of

simplicity, we therefore assume that circumnavigating a blade in its

totality is a good emulation of a scanning-for-flawsmaneuver.

We consider various algorithms, which can be classified among

the control paradigm used, as well as based on their requirements

for the individual robotic platform. On the one hand, we consider

a fully reactive approach that has minimal requirements on the

robotic platform (low bandwidth, local communication, no local-

ization). Local infrared communication is then used for increasing

the dispersion of the robots in the environments. In this scenario,

the radio and camera can potentially be used for inspection but

require offline processing for mapping sensory and image data to

the location where they were recorded. On the other hand, we

consider deliberative approaches that require the ability of creating

a topologicalmap, aswell as a sufficient bandwidth for sharingmaps

among the robots, which requires some sort of localization. An

additional benefit of localization is the potentially easy mapping of

sensory data onto the arena.
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Figure 4. Pictures (303 30 pixels) taken by the on-board camera and transmitted over the radio with 72 packets of 25 B.
Vertical black stripes indicate packet loss. (a) The arena boundary (painted in black) can be seen. (c and d) The experimenter’s
upper part of the body is visible in the background.

Figure 5. The fully equipped Alice in an environment with

colored markers. The two-color code (the middle bar serves as
reference) can be recognized with 95% accuracy.
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Reactive Inspection using Local Communication
The motivation for a fully reactive approach is the potential

for its implementation on extremely minimalist robotic plat-

forms. The basic idea is to eventually cover the environment

by moving from blade to blade reactively. Local communica-

tion is used for enhancing dispersion in the

environment. We will first describe the

robot behavior and then present a method-

ology for modeling and predicting cover-

age performance.

Robot Behavior

The necessary behaviors for circumnavi-

gating all blades and avoiding collisions can

be divided as follows: search, avoid other

robots, avoid a wall, and circumnavigate a

blade. We implemented the following

sequence of behaviors: upon encountering a

blade, which can be distinguished from awall

by their color, a robot starts circumnavigating

its boundary until a time-out expires (10 s in

our experiments), and it arrives at its tip. The

combination of a time-out with a physical

event (arriving at the tip) ensures that blades

are circumnavigated with the least amount of

redundancy and that the influence of wheel-

slip and other disturbances (which count

toward the inspection time) are limited.

Robots perform another sweep along one

side of the blade with a probability of 50%, as leaving a blade at its

tip will induce a drift of the robots through the environment and

thus lead to a lower probability of inspection for some blades than

others. This robot controller can be summarized by the finite state

machine (FSM) diagram of Figure 7.

CC2420

2.4-GHz

Transceiver

TIMSP430

MCU

PIC16F877

MCU

PIC18F4620

MCU

Differential

Drive

Infrared

Distance

Sensors

VGA

Camera

I2C Bus

8

Figure 6. Block Diagram of the inspection platform measuring around 2 cm3

2 cm3 3 cm, endowed with two watch motors for differential drive, a 2.4-GHz

ZigBee-compliant wireless radio, a VGA camera, and three microcontrollers
connected by an I2C two-wire bus.

Avoid Robot

Avoid Wall

Avoid Wall

Search

Avoid Robot

Sweep

Sweep

Circle Virgin
Element

Inspect

Search

Circle Partly
Inspected
Element

Circle 
Inspected
Element

Figure 7. FSM and PFSM. The FSM (squares) is of lower granularity than the PFSM (ellipses) and does not consider the state of
an element (virgin, partly inspected, or inspected), as this information is not known to an individual robot.
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Robots can communicate locally by modulating the signal

sent on the infrared emitter-receiver pairs. This is used to com-

municate a robot state to other robots, and it is exploited by the

following additional behaviors, which aim at reducing redun-

dant coverage. For instance, a meeting between two robots dur-

ing the circumnavigation of the same blade will prompt one of

the robots to abandon the inspection. In case of a front-to-front

encounter, the robot with the blade to its left-hand side will

abandon the inspection, whereas in case of a back-to-front

encounter, the robot that detects the other robot by its front

sensors will abandon the inspection. The behavior of the robots

and sample trajectories are illustrated in Figure 8.

Probabilistic Modeling

Because of the high amount of noise that is intrinsic to minia-

ture robotic platforms and fully reactive coordination, deter-

ministic models are unsuitable for modeling the collective

dynamics of the system described earlier. Rather, we abstract

the FSM of an individual robot to a Probabilistic FSM (PFSM)

that captures the dynamics of our system at a sufficient level of

detail [13], [14].

If we assume a uniform distribution of robots and objects in

the environment, the probability to inspect an uncovered blade is

proportional to the total number of uncovered blades. Working

with time-discrete models, given the number [Mv(k)] of uncov-

ered blades at time step k, and the probability to encounter one

blade as pe, the probability for encountering a virgin blade at time

step k is given by peMv(k). In a PFSM for an individual robot,

peMv(k) is then the probability to switch from searching to

inspection of a virgin element at time step k. Notice that covering

of a virgin or inspected element corresponds to the same state in

the FSM but is captured by distinct states in the probabilistic

model (Figure 7) because this information is crucial for the system

performance considered but not known by individual robots (and

therefore not exploited at the controller level). The other state

transitions follow similar reasoning, which calculates the proba-

bility of an event by combining the encountering probability of

an object (or the intersection of two objects) with the number of

such objects at a given time. In the model, we approximate the

real probability distribution of leaving a given state with its mean

and assume constant probabilities over the experiment as model

parameters. The inverse of the average time spent in a state then

yields the constant probability for leaving that state. Encountering

probabilities and state durations necessary for modeling the

inspection case study are summarized in Table 2. One can then

simulate such a system for an arbitrary number of robots and thus

keep track of the number of robots in various relevant states.

The described formalism also allows us to summarize the

average state transitions by a set of difference equations. For

instance, the number of robots Nv(k) inspecting a virgin blade

are given by the following equation:

Nv(kþ 1) ¼ Nv(k)þ peMv(k)Ns(k)�
1

Te
Nv(k), (1)

where Te is the average time needed for inspection. In words,

the number of robots inspecting a virgin blade is increased by

the number of searching robots that encounter a virgin blade.

Robots leaveNv at an average rate of 1=Te, which corresponds
to an average time of Te spent in this state. The equations for

Figure 8. Using the self-organized, reactive controller, robots

are reactively moving through the environment and inspect
blades for a fixed amount of time. Blades are then left as soon
as the tip is reached. Robots and blades are differentiated

using on-board infrared sensors.

Table 2. State variables keeping track of the number of robots in a particular state,
as well as the coverage state.

State Variable Description Parameter Description

Ns Number of robots searching pe;pw ;pR Probability to detect a blade, a wall, or

any other robot during one time-step

of the model

Nar ;Naw Number of robots avoiding another

robot or a wall

Nv ;Np;Ni Number of robots inspecting a virgin

blade, a partly inspected blade, or an

inspected blade

Nb Robots acting as a beacon, when

sweeping back along a blade’s

contour

Te;Tar ; Taw ;Tb Average time to inspect a blade, avoid

a robot or a wall, and to sweep back

along a blade’s contour

Mv ;Mp;Mi Number of virgin, partly inspected, and

inspected blades

a Coupling among robots (a ¼ 0) corre-

sponds to no communication
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the other states are constructed similarly and allow us to calcu-

late coverage progress using the following difference equation

for the number of virgin blades:

Mv(kþ 1) ¼ Mv(k)� peNv(k� Te): (2)

Note that all parameters of this macroscopic representation

of the swarm dynamics are parameters that have a direct rela-

tion with the physical characteristics of the individual team

member. For instance, the encountering probability for a blade

pe is proportional to the size of the blade, a robot’s sensor range,

and its speed, whereas the time needed for inspection Te is a

function of the blades’ circumference and the time-out chosen

on the robotic platform. This property allows us to use the

macroscopic model for optimizing the swarm with respect to a

certain metric (here, time to complete coverage) and thus for

model-based synthesis of individual robot controllers.

Figure 9 compares the prediction for the number of

inspected bladesNi(k), given by the total number of blades (25)

minus the number of virgin bladesNv(k) at time k, for 100 real-

robot experiments with swarms of 10, 20, and 30 robots. For

each experiment, the robots were randomly distributed in the

environment and tracked by an overhead camera using the

open-source software Swistrack (http://swistrack.sourceforge.-

net) [15]. The experiment was considered terminated, when

the boundaries of each blade in the environment have been cov-

ered at least once. The model parameters have then been calcu-

lated based on the experimental data using a system

identification process [7], [16].

Noncollaborative Deliberative
Distributed Coverage
By creating a topological map with blades as nodes and naviga-

ble routes between them as edges, robots can calculate noncol-

laborative, complete coverage paths online. Coverage is

achieved by the exploration of a spanning tree constructed

online using a depth-first search algorithm.

Robots travel along the spanning tree by

executing a series of reactive behaviors that

allow them to navigate from one blade to

any other blade in its four neighborhood.

Although this approach is theoretically

complete, even with limited sensor and

actuator noise, robots are usually unable to

accurately navigate from blade to blade,

which causes the algorithm to deteriorate

to probabilistic completeness. We imple-

mented this algorithm on a team of ten

Alice robots that executed the algorithm

described earlier in parallel (without

explicit collaboration). Upon navigation

error (if positively detected by a robot),

robots restarted a spanning tree and eventu-

ally completed coverage. Over ten real-

robot experiments, coverage was achieved

within 788 6 375 s as opposed to 303 6

112 s (mean 6 SD) using the self-

organized, reactive approach. This counterintuitive result (a

reactive approach outperforms a deliberative algorithm) can be

explained mainly by the fact that the necessary reactive naviga-

tion schemes that underlie the deliberative algorithm for mov-

ing from blade to blade are very time-consuming when

compared with the reactive movements in the self-organized

approach. In fact, one can show that the deliberative approach

always outperform a reactive algorithm if the blade-to-blade

navigation time is the same and noise is low enough so that a

robot covers more than one blade before failing.

Collaborative Deliberative Distributed Coverage
Coverage time to completion and also redundancy can be

drastically reduced by sharing information about task progress.

Upon the reception of coverage progress of other robots, a

robot can take this information into account for determining

the next blade to which it will move by calculating the Dijks-

tra’s shortest path to the next unexplored node. Modeling the

environment as a graph with blades as nodes and edges as navi-

gable routes between them allows us to formally investigate

the key properties of our algorithms. Sensor noise, e.g., on the

vision-based localization mechanism, and actuator noise, e.g.,

due to wheel-slip, can instead be accommodated by simulating

multiple instances of the graph model. When calibrated and

validated using data from real robotic experiments (ranging

from simple tests for the localization subsystem to a limited
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Figure 9. Prediction of the macroscopic model (dotted line) and coverage
progress of a swarm of (a) 20, (b) 25, and (c) 30 robots (100 real robot

experiments per swarm size) using the self-organized, reactive controller (full line).
Error bars show the standard deviation of the experiments.

Limited computation,

communication, and available

energy arising when downsizing a

robotic platform seem to be

pertinent challenges.
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number of experiments with the full system), and realistic simu-

lation (Figure 10), such abstract models allow us to explore a

wide range of system parameters and collect statistical evidence

of their dynamics. For instance, using the microscopic graph

model and Webots (http://www.cyberbotics.com) simulations

(100 experiments for each team size and parameter set), we can

show that the collaborative algorithm gracefully degrades under

the influence of erroneous localization (Figure 11) and limited/

erroneous communication (Figure 12) to a randomized or non-

collaborative version of the deliberative algorithm, respectively.

Finally, assuming sufficient computational power and commu-

nication bandwidth, robots can also arbitrate coverage tasks among

them. For achieving a near-optimal solution, however, the envi-

ronment needs to be known beforehand. We implemented such

an algorithm that uses amarket-based algorithm for trading cover-

age tasks among the robots using an external host computer for

computation of shortest paths and corresponding bids. As cost

function serves the length of the shortest path over all coverage

tasks allocated to one robot, which is an instance of the traveling

salesman problem. To take into account robot failures (ranging

from wheel-slip to total loss), the coverage tasks are reallocated

recurrently. Real robot results for teams of five robots for the reac-

tive approach and the three deliberative approaches (noncollabora-

tive, collaborative, market-based) are compared in Figure 13.

Discussion
Self-organized and reactive algorithms have been shown to be

very competitive on a platform with limited capabilities and
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(DCWL), collaborative (DCL), and market-based algorithm
(MCR).

Figure 10. Realistic simulation of the inspection scenario using
the embodied simulator Webots from Cyberbotics, Ltd.
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might allow for even further downscaling of the robotic platform

due to the minimal requirements on the robotic unit. However,

reactive solutions seem to be best suited for regular environments.

For instance, in our experiments, all blades have the same size and

a single time-out parameter is sufficient. In a real turbine, how-

ever, the size of each blade changes as a function of its stage, and

an optimal algorithm would require the calibration of additional

time-outs—given that a robot could estimate the stage it is cur-

rently processing. This information in turn, will enable more

deliberative approaches, which might then become favorable

over fully reactive solutions for performance reasons.

Indeed, localization appears to remain a major challenge to

1) associate collected sensory information with the location

where it was recorded and 2) enhance the performance by

allowing robots to communicate using a common frame of

reference. Using markers, either optical- or radio-based, e.g.,

radiofrequency identification (RFID) tags, is an accepted pol-

icy but limited to man-made environments. Optical markers

scale badly, in particular when on-board processing is limited.

Possible solutions are relative coding schemes or relative range

and bearing systems, which are however difficult to obtain on

miniature robotic platforms. Centralized beacons are an alter-

native that combine radio and US emissions [17]. In the

turbine inspection scenario, these could be mounted on holes

placed in regular intervals along the turbine that were origi-

nally foreseen for borescope inspection. However, the narrow,

highly structured environment within the turbine will make

time-of-flight measurements of US signals difficult due to

unpredictable reflections and echoes.

From a safety and quality assurance perspective, provably

complete deliberative approaches seem to be preferable to

reactive approaches. However, deliberative algorithms have

shown to be strongly affected by sensor and actuator noise,

which causes them to deteriorate to probabilistic approaches.

Also, the possibility of physically getting stuck, which will

potentially require dismantling the turbine at the very end, is

independent from the chosen control paradigm. For coping

with these issues, rethinking of current approaches for algo-

rithmic design is necessary, and new methods for modeling

unreliable systems have to be developed. A similar transition

has been already undergone in the simultaneous localization

and mapping (SLAM) community, where uncertainty is

explicitly taken into account for algorithmic design. In minia-

ture multirobot systems and swarm robotics, only few model-

ing approaches that reflect the probabilistic nature of the

system have been developed. Such models are however neces-

sary in order for self-organized or reactive approaches to

become a viable alternative for engineering-dependable (i.e.

predictable) miniature multirobot systems (see [18]).

Although the limitation of our experiments to differential

drive robots seems reasonable as the miniature robotic plat-

form used in this article has been readily endowed with drives

made out of fibrillar adhesives [19], allowing them to climb up

a wall, and also magnetic wheels are being used on slightly

larger platforms [9]–[11], we believe that the regular structure

of the turbine environment is more suited to locomotion by a

customized truss-climbing mechanism, which would also ease

localization by node-counting. We note that the energy con-

sumption and navigation accuracy of the chosen locomotion

method might vary drastically and thus strongly influences the

remaining degrees of freedom for designing the whole system.

Conclusion and Outlook
This work systematically explores algorithms for the distrib-

uted boundary coverage problem on a turbine inspection case

study with respect to varying amounts of planning and coordi-

nation. The presented approaches range from minimalist reac-

tive schemes to highly coordinated, deliberative algorithms. It

turns out that minimalist approaches yield comparably good

performance (in terms of time to completion) when the

amount of sensor and actuator noise in the system is high or

when the available resources are limited, which has been illus-

trated in particular with respect to localization. As soon as

additional resources and capabilities become available to the

platform, we also show that their use is beneficial, even if the

information they provide is unreliable. In this case, the addi-

tional benefit of employing more advanced hardware and algo-

rithms becomes marginal when compared with its cost.

Limited computation, communication, and available energy

arising when downsizing a robotic platform seem to be pertinent

challenges; improvements in technology will then lead to applica-

tions of the lessons learned in this work on even smaller domains.

The commercial potential of such approaches is, however, not yet

clear, as only few applications and real-world use cases for submi-

niature inspection systems are imaginable given the technological

barriers still to be overcome. In our work so far, we were particu-

larly concerned neither with human–swarm interfaces nor with

expert systems that extract meaningful information from the

sensory information collected by the robot team. Although seem-

ingly independent from the multirobot coordination problem, it

is likely that potential expert systems will need to control the col-

lective behavior of the swarm, e.g, for guiding it toward points of

particular interest. In this case, synthesis methodologies are neces-

sary for generating the necessary individual behavior. Finally, for

moving toward real applications, currently available sensor

technology for inspection (e.g., US, eddy current, optical) needs

to be evaluated for its potential to be used in situ and integrated

into miniature robotic platforms.
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