
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 58, No. 1, 2010

Multirobot system architecture:

environment representation and protocols

S. AMBROSZKIEWICZ1,2∗, W. BARTYNA1,2, M. FADEREWSKI1, and G. TERLIKOWSKI2

1 Institute of Computer Science, Polish Academy of Sciences, 21 Ordona Ave, 01-237 Warsaw, Poland
2 Institute of Computer Science, University of Podlasie, 51 Sienkiewicza St., 08-110 Siedlce, Poland

Abstract. An approach to the problem of interoperability in open and heterogeneous multirobot system is presented. It is based on the

paradigm of Service Oriented Architecture (SOA) and a generic representation of the environment. A robot, and generally a cognitive and

intelligent device, is seen as a collection of its capabilities exposed as services. Several experimental protocols (for publishing, discovering,

arranging, and executing the composite services) are proposed in order to assure the interoperability in the system. The environment

representation, the description language for tasks and service interfaces definition, as well as the protocols constitute together the proposed

information technology for automatic task accomplishment in an open heterogeneous multirobot system.

Key words: multirobot system, interoperability, environment representation, SOA.

1. Introduction

Rapid development and ubiquitous use of intelligent devices

(equipped with sensors, microcontrollers, and connected to

a network) pose new possibilities and challenges in the Ro-

botics and Information Technology. One of them is creating

large open distributed systems consisting of heterogeneous

devices that can interoperate in order to accomplish complex

tasks. An example is Ambient Intelligence (AmI) that is cur-

rently one of the most explored research areas; see [1] and [2].

The general idea of AmI is that intelligent cognitive devices,

in a human environment, are able to interoperate to perform

a complex task delegated by people. Ubiquitous robotics is

a similar idea resulting from development in the ubiquitous

computing and the network technology. It claims that in the

near future humans will live in a world where all devices are

fully networked, so that any desired service can be provided

at any place at any time.

These ideas require new information technologies for

developing distributed systems that allow defining tasks in

a declarative way by human users and automatic task accom-

plishing by the system. Openness and heterogeneity of the

system are essential here because they enable extensibility

and scalability, that is, heterogeneous devices may be added

to (or removed from) the system, in the plug and play manner,

so that the system may grow to a large size and still keep its

basic functionality, (i.e. an automatic task accomplishing), if

there are still sufficient services in the system. The key prob-

lem here is a representation of the environment common for

people and other system components, that is, the devices.

Existing approaches to such systems are based either on

a direct controlling the devices via network (tele-operating),

or by using distributed objects technologies (like CORBA or

Java RMI). These systems are closed and dedicated to a fixed

collection of devices and a class of task to be performed

there. The examples include systems consisting of homoge-

nous robots executing similar actions (called swarm robotics,

see [3]) and systems consisting of heterogonous robots which

can share mutually data from their sensors, see [4]. There are

also some attempts to apply Semantic Web and Web Services

technologies to multirobot systems, see [5] or directly based

on SOA architecture [6]. The first one, the URSF project, tries

to directly apply technologies from the Web Services fami-

ly (OWL-S, WSDL, SOAP, and BPEL stack) in the domain

of Robotics. That kind of approach leads to problems like:

the necessity to build a separate knowledge, base for every

location where the services can be provided, lack of the pos-

sibility to define tasks in a declarative way, and impossibility

to compose services provided in different locations. The Pal-

Com project [6] offers a solution to easy integration of small

digital devices (seen as services) in groups called assemblies.

However, it is designed only for cognitive and computing ser-

vices so that the exchange of information is simply based on

appropriate data types. This is the reason that this approach

cannot be applied in multirobot systems consisting of phys-

ical services that can change the state of the environment,

where the local states also must be described, and the de-

scription exchanged between system components. Although

these approaches are based on SOA (as the one presented in

this article) they lack common and generic structure of rep-

resentation of the environment of multirobot systems, and the

language describing the representation. The language is nec-

essary for the task specification and communication between

heterogeneous devices. It seems that this very representation

and the description language are crucial for achieving interop-

erability in multirobot systems. The interoperability presup-

poses a communication (defined by protocols) between het-

erogeneous components of the system concerning task delega-

∗e-mail: sambrosz@ipipan.waw.pl

3



S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Terlikowski

tion, planning, and its joint realization. The communication,

in turn, presupposes a common formal language describing

the environment. However, the language (understood as its

syntax only) is not sufficient; it must be grounded on the en-

vironment, that is, it must have precisely defined semantics.

The environment representation mentioned above serves as

that semantics. In order to assure the understanding between

the communication partners, the representation must be com-

mon for them, as well as for people who delegate tasks to the

system to be executed. Hence, a universal representation of

the environment and the corresponding description language

are the basis for defining protocols needed for achieving in-

teroperability in multirobot systems.

In this paper a new experimental information technology

for distributed systems based on SOA paradigm is proposed.

Service Oriented Architecture is a modern approach to de-

signing flexible, open, and scalable distributed systems. The

proposed technology, (consisting of a common environment

representation, a common language for environment descrip-

tion, and communicational protocols), is a basis for develop-

ing multirobot systems based on services.

2. General architecture of service oriented

multirobot system (SOMRS)

In the proposed architecture, capabilities of devices are con-

sidered as services. Each service is able to perform some

action or function, like the transport service which moves an

object from one place to another, or search service performed

by a sensor network (or a mobile robot equipped with sensors)

that can recognize and localize an object based on given set

of its attributes. Another service example is a software appli-

cation performing special data processing.

Services should publish their ability in the form of the type

of operation they perform, preconditions necessary for oper-

ation execution, and effects (postcondition) of its execution.

The service ability, defined in this way, is called service inter-

face. In the case of a transport service provided by a mobile

robot, the precondition is a description of places where an ob-

ject may be initially, whereas the postcondition describes the

class of situations where the object may be after the service

execution. Each service interface is specified in the language

describing the common representation of the environment. For

a given interface, there may be many different implementation

of the operation specified by the interface. Hence, each inter-

face is independent from the implementation of the operation

it specifies.

The classic version of the SOA paradigm, see [7], may be

summarized as follows.

SOA provides a standard programming model that allows

self-contained, modular software components residing on any

network to be published, discovered, and invoked by each oth-

er as services. There are essentially three components of SOA:

Service Provider, Service Requester (or Client), and Service

Registry. The provider hosts the service and controls access

to it, and is responsible for publishing a description of its ser-

vice to a service registry. The requester (client) is a software

component in a search of a component to invoke in order to

realize a request. The service registry is a central repository

that facilitates service discovery by the requesters.

In the multirobot setting, a service, (performed by an in-

telligent device), is identified with the special dedicated soft-

ware component residing on the device microcontroller (or

somewhere in the Internet) that can control the service per-

formance.

The general purpose of a service-oriented multirobot sys-

tem (SOMRS for short) is to realize client’s intentions by

appropriately changing situation in the physical environment,

i.e., by executing a collection of services. Usually the client

is a human user, however sometimes it may be a software

application. In the proposed SOMRS architecture, see Fig. 1,

Task Manager (TM) is responsible for system interactions with

the user. This component provides a graphical user interface

(GUI) for defining a user’s intention, translates it to a com-

mon communication language, and delegates it (as a task) to

an Agent to realize. In the final phase, TM notifies the user

on the situations emerged during the task realization. After

receiving a task, the Agent discovers services (via Service

Registry (SR)) that (when composed) could jointly perform

the task. Then the Agent arranges (with the discovered ser-

vices) conditions of their execution and composes them into

a process of task realization.

A new service becomes available in the system, if it pub-

lishes its interface to the Service Registry.

Representation of the physical environment (in the form

of object maps) is stored in the Repository. It provides the

maps to the Task Manager (for intention formulation), to the

Service Registry (for determining services requested by an

Agent for task realization), and to some services that need

them for localization and navigation.

Figure 1 presents the general schema of the proposed mul-

tirobot system architecture, its components, and interactions

between them.

Fig. 1. The SOMRS system architecture

3. Environment representation

The basis for providing interoperability of heterogeneous de-

vices is universal common representation of the environment

for humans and devices. Classic representations in robotics

(see e.g. [8]) are based on metric and topological approach-

es dedicated mostly to tasks related to navigation. Another

approach, Spatial Semantic Hierarchy (SSH) [9], is based on

4 Bull. Pol. Ac.: Tech. 58(1) 2010



Multirobot system architecture: environment representation and protocols

the concept of cognitive map and hierarchical representation

of spatial environment structure. Recently, there have been

object-based approaches (see [10]) where the environment is

represented as a map of places connected by passages. Places

are probabilistic graphs encoding objects and relations be-

tween them. The main problem here is an automation of the

process of creating a map by recognition and classification of

objects applying probabilistic methods. For example, an ob-

ject, recognized (with some probability) as a refrigerator, is

supposed to belong to the class of kitchen. In the paper [11],

the environment representation is composed of two object hi-

erarchies; the first one (called spatial) related to sensor data

in the form of object images or occupancy grid, and the sec-

ond one (called conceptual) related to some abstract notions

of the representation. The recognition of places and objects

consists in matching sensor data against the abstract notions.

A variation of this approach is presented in [12], where the

probabilistic methods are used for object recognition.

Yet another approach was created for the needs of civil

engineering; it is called Building Information Model (BIM),

see [13]. It is dedicated to represent physical and functional

characteristics of buildings. BIM can be potentially used for

robot navigation, however it is complex. The approach pro-

posed in this paper is closely related to BIM, however, it is

much simpler because it is based on the concept of cognitive

maps that neglects a lot of technical details important for civil

engineering, but not for people in their everyday life.

Special attention deserves the approach proposed 20 years

ago by C. Zieliński, see [14–15], and [16]. It is based on the

notion of object defined by attributes, and relations between

the objects. The representation was created mainly for an en-

vironment of robot manipulators, and it was the semantics of

the robot programming language TORBOL.

Actually, the approach presented in the paper is based on

the general idea proposed by C. Zielinski. However, it in-

troduces additional hierarchy between objects, and abstract

objects like a space in a domestic premise.

The representation, proposed in the paper, is expressed

in XML; that is, attributes, relations, object types, and ob-

jects are XML-structures. There is also the formal language,

called Entish, see [17] for describing local situations in the

environment.

4. The concept of object maps

In the Computer Science related to Robotics, the term “ontol-

ogy” is equivalent to the “general structure of the represen-

tation of a multirobot system environment”. The most popu-

lar definition of ontology was given by Tom Gruber in 1993

(see [18]) in the following way: ontology is a specification of

a conceptualization. Conceptualization is understood here as

an abstract and a simplified model (representation) of the real

environment. It is a formal description of concepts (objects)

and relations between them. Since the model is supposed to

serve the interoperability, it must be common and formally

specified, i.e., the definitions of objects and relations must be

unambiguous in order to be processed automatically.

In the proposed representation, it is supposed that each

object is of some predefined type. Object is determined by

a collection of attributes, and optionally its internal hierar-

chical structure consisting of sub-objects and relations be-

tween these sub-objects. The objects that do not have internal

structure are called elementary, and their types are called el-

ementary types. The object of the WALL type may serve as

an example of elementary object. It is determined by the at-

tributes: width, height and colour. The type ROOM may be an

example of a complex type; its internal structure is composed

of elementary object such like walls, floor, ceiling, windows,

and doors, as well as the relations between these objects.

The general structure of the proposed representation of the

environment of a multirobot system is defined as a hierarchi-

cal collection of object types. An elementary type is defined

as a collection of attributes with restricted ranges, whereas

a complex type is defined by previously defined elementary

types of its sub-objects, and relations between the sub-objects.

The type BUILDING may serve as an example of a complex

type; its general internal structure consists of several storeys,

stairs, lifts, rooms, halls, passages, and so on.

Hence, the primitive attributes and primitive relations are

the basic elements for building representation, i.e., construc-

tion of object types. A particular object (as an instance of its

type) is defined by specifying concrete values of its attribut-

es, and (if it is of complex type) also by specifying its sub-

objects. An instance of the general structure (called also a map

of the environment) is defined as a specification of an object

of a complex type, for example, of the type BUILDING. In

order to support a possibility of automatic map building and

updating by mobile robots, appropriate primitive attributes

and relations must be measurable and recognizable by means

of sensors which the robots are equipped with.

5. Specification of service interface

In multirobot systems, the robotic devices can provide differ-

ent kinds of services:

1. Physical services – changing situation in the physical en-

vironment.

2. Cognitive services – that can recognize a situations (e.g.

perceive the location of a given object in relation to other

objects), or evaluate a situation described in the common

language, e.g. check if object having some features is in

a given place.

3. Software services – that process data.

An interface of a service is defined as a formula of the lan-

guage Entish [17]. Although the syntax of Entish is expressed

in XML, for the sake of presentation, semiformal version of

the syntax will be used. The language is a simplified ver-

sion (without quantifiers) of first order logic, that is, it has

logical operators (and, or, implies), names of relations (e.g.,

preconditions, postconditions), names of functions (e.g., ac-

tion, range), and variables. An interface formula consists of

the description of the initial situation, the final situation, the

name of the abstract action that the service realizes, and the

range of the service.

Bull. Pol. Ac.: Tech. 58(1) 2010 5



S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Terlikowski

Fig. 2. Schema of a physical service interface

In Fig. 2, the interface formula is the conjunction of four

sub-formulas, where a service is identified by its network ad-

dress (address), that is, an IP address combined with a port

number. In the first two sub-formulas are implications. In the

first one, “description of the initial situation”, is the formu-

la which implies the entry condition (preconditions) of the

service necessary for its invocation. In other words, if the for-

mula “description of the initial situation” is satisfied, then the

service can be executed. The second implication means that

after the service performance, the formula “description of the

final situation” becomes true. The third sub-formula identifies

the name of the type of action (action) realized by the service,

e.g. in the case of a transport service performed by a mobile

robot, the action may consist in pushing an object, or griping

an object, going to a place, and then lowering it. An action

type is added to the interface to simplify the reasoning to be

done during search for services that can realize a task.

The last sub-formula contains information about the range

of the service. It is a place where the device (providing the

service) operates. The range is defined as an identifier of an

object in the map of the environment, e.g., it may be a fixed

room in a building. The service range is crucial for planning

a task accomplishing.

6. Task definition

General schema of a task specified in the common language

is presented in Fig. 3.

Fig. 3. Schema of a task

A task formula is a conjunction of the three sub-formulas.

The first one is optional and is a description of the initial situ-

ation related to the task. The second one describes, in a declar-

ative way, the intended final situation in the environment by an

agent denoted here by “?agent”. In other words, the intention

of the agent will be realized if the formula “(description of

the final situation)” becomes true. The last formula specifies

(for an agent) the type of an action to be performed in order to

accomplish the task. The parameter “?agent” is a variable and

all variables in the Entish language are preceded by a question

mark.

The main purpose of the multirobot system is to realize

user’s intention. In order to do so in an automatic way (with-

out the need to specify the concrete plan by the user) the

appropriate plan must be generated.

Generally the planning problem is specified as follows.

„Given a set of actions, their preconditions and positive and

negative effects, a complete description of the initial state and

a user goal, find a sequence of actions achieving the goal”. In

other words, a typical planner takes three inputs: a descrip-

tion of the initial state, a description of the desired goal, and

a set of possible actions, all encoded in a formal language.

The planner produces a sequence of actions that lead from

the initial state to a state meeting the goal.

The most famous planner (actually the first one) is STRIPS

(Stanford Research Institute Problem Solver [18]), where state

descriptions are restricted to the no complex formula, that is,

conjunctions of (variable-free) positive propositions or First-

Order Logic. Additionally “The Closed World Assumption”

is used, that is, which is not given explicitly as true is false.

The action description language (ADL) is an automated

planning and scheduling system in particular for robots. It

is an advancement of STRIPS. The sense of a planning lan-

guage is to describe certain conditions in the environment,

and, based on these, automatically generate a chain of actions

which lead to a desired goal. A goal is a partially specified

condition. Before an action can be executed, its preconditions

must have beeen fulfilled. The action yields effects satisfying

the goal. The environment is described by means of predi-

cates, which are either fulfilled or not. Contrary to STRIPS,

the principle of the open world applies to ADL: everything

not occurring in the conditions is unknown (instead of being

assumed false). In addition, while in STRIPS only positive

literals and conjunctions are permitted, ADL allows negative

literals and disjunctions as well.

PDDL (Planning Domain Definition Language [19]) is

considered now, as “the standard” language for planning prob-

lems. It is an extension of STRIPS and ADL, where typing,

durative actions, and hierarchical planning were added.

The planning algorithms, designed for these languages

(created especially for the planning domain), can also be ap-

plied to the language used in the SOMRS system. The Entish

language, used to describe the environment representation, is

also based on the descriptions of the situations (spatiotempo-

ral states) in the environment. Service interfaces (excluding

the information about how to communicate with the service)

can be treated as PDDL’s operators, which also have pre-

condition and effect (postcondition). The services (like the

operators) can be appropriately sequenced in a plan leading

to the realization of the client’s intention. The intention of

the client can be treated as a goal for a planning algorithm,

although the forward planning may not always be possible

because the specification of the initial situation is not obliga-

tory.

The Entish language allows describing the features (at-

tributes) of the objects. So that one can define a task like:

move all objects of type T and of weight w and color c from

location x to location y. This feature is also used when defin-

6 Bull. Pol. Ac.: Tech. 58(1) 2010



Multirobot system architecture: environment representation and protocols

ing a service interface to include information about the service

restrictions, e.g. the transport service S1 cannot move objects

of width greater than x centimetres (this restriction may be

caused by the physical features of the gripper that the device is

equipped with). This enables choosing services based on the

concrete task and restrictions of the services during service

discovery phase.

An important property of the proposed approach stems

from introducing the arrangement phase during the process

of realization of an intention. Every step of a plan of the in-

tention realization must have been arranged before the plan

can be executed. The arrangement allows for:

• Checking if the plan can be executed in the currently avail-

able set of services.

• Choosing the best service for each of the plan steps.

• Agreeing on the condition of the service execution (e.g.

time requirements).

Because of this, the initial plan must be abstract, operate on

services types, not on the concrete services. The abstract plans

can be generated in the similar way as concrete plans. The

difference is that the planning algorithm should be based on

abstract interfaces of service types. An advantage of this ap-

proach is that the abstract plans can be reused for each of the

client’s intentions of the same class, e.g. transport tasks. Other

solution to planning problem is to generate “manually” such

abstract plans, e.g. for classes of intentions that are used most

often. A manual preparation of the plan allows for including

rules defining the behaviour in the case of occurrences of ex-

ceptional situations. This cannot be achieved by using known

planning algorithms. One way of solving this problem auto-

matically, with the exceptions, is to repeat a planning process

where the current exceptional situation is treated as the initial

state of the task.

7. Protocols

In distributed systems, the classic definition of a communi-

cation protocol specifies the format of messages exchanged

between two or more communicating parties, their order, as

well as the actions taken when a message is sent or received.

As usually, the message format consists of the header and

the body. The header includes information about the sender,

the recipient, the message type, the session identifier, and the

name and version of the protocol. The body contains formulas

of the common description language. The interpretation of the

formulas depends on the type of the message. In the proposed

protocol, there are ten message types that are grouped into five

request-response pairs. Each pair is related to a different phase

of the protocol:

1. The message types of service registration phase: register-

request (R-RQ) and register-response (R-RS).

2. The types of task delegation phase: task-request (T-RQ)

and task-response (T-RS).

3. The types of service discovery phase: info-request (I-RQ)

and info-response (I-RS).

4. The types of service arrangement phase: service-request

(S-RQ) and service-response (S-RS).

5. The types of service execution phase: execute-request (E-

RQ) and execute-response (E-RS).

The event of sending a message of the type type is denoted

by Stype, while receiving by Rtype. The term “negative mes-

sage” (used in the sequel) means that the message contains

only one formula false in its body. Particular phases of the

proposed protocol, related to the components of the SOMRS,

are presented in the form of finite automata in the following

sections.

7.1. Task manager. Task Manager is responsible for realiz-

ing intentions received from a client. The client can be a user

or a software application. An intention is a situation descrip-

tion specified, by the client, in the common language and

based on the common environment representation. The inten-

tion defines, in a declarative way, the situation in the environ-

ment required by the client; e.g. an object is placed in a fixed

location. The realization of the intention becomes the goal of

the Task Manager that takes appropriate actions, which are

shown in Fig. 4 as a finite automaton.

Fig. 4. Finite automaton of the Task Manager

The automaton represents states of the Task Manager and

their transition as the responses to events. The states are ex-

plained below.

• ready: In this state TM waits for an intention from software

client (event sc) or for human user (event hu).

• interaction: In this state human user specifies its intention.

TM should provide an appropriate graphical user interface

(GUI). In the case of cancellation (event ca) TM returns

to the ready state.

• planning: After user’s affirmation (event af ), or receiving

an intention directly from software client (sc), TM per-

forms planning, and then follows the plan to realize the

intention. The plan consists of a collection of tasks to be

sent to an Agent in messages of type task-request (event

ST−RQ). Each task is sent separately. After receiving the

response (RT−RS), TM analyses current situation after the

task execution and decides what to do next.

• idle: In this state TM waits for the response from Agent.

• response: In this state TM informs the client on the situ-

ation after tasks execution. TM moves to this state if the

Bull. Pol. Ac.: Tech. 58(1) 2010 7



S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Terlikowski

event (ex) occurs, that is, either the plan was realized suc-

cessfully, or it is not possible to appropriately modify the

plan after occurrence of an exceptional situation. After re-

sponding to the client, event (rs), TM comes back to the

ready state.

After receiving an intention, and having the object maps of

the physical environment from the Repository, Task Manager

generates a plan to realize the intention. The maps contain

the names of the objects, values of their attributes, relations

between these objects, and structures of complex objects. The

automatic plan generation, which relies on reasoning in the

common language, is based on the initial and final situation

of the intention and the abstract interfaces of the available

services types.

The generated plan is a collection of abstract tasks (that

should be specified, arranged, and executed in a specified or-

der), and a collection of rules defining TM behaviour in the

exceptional situations. An abstract task is a formula describ-

ing only the action realized by an appropriate type of service

without restrictions, specific for the concrete services of this

type. Then an abstract task with the detailed description of the

initial and final situation is sent to the Agent for arrangement

and execution.

An exceptional situation takes place after unsuccessful

task execution, that is, if that situation is different from the

intended final situation. A formula describing an exceptional

situation is sent to TM by the Agent. Handling of the ex-

ceptional situations is done by applying rules being actually

predefined emergency plans. For example, a rule may require

repeating the same task or modifying the initial and/or the

final situation of the task. The level of complexity of the ex-

ceptional situation, handling, depends on assumptions made

by the TM designer.

The tasks are sent by TM to the Agent, in the order spec-

ified in the plan, as the content of a message of the type

task-request. The Agent responds with a message of the type

task-response which contains a description of situation related

to a given task. After receiving results of the task execution,

TM may analyze it and send to Agent the next task to be ex-

ecuted, according to the plan, or apply one of the exceptional

situation rules, if necessary.

For example, let a situation, where an object (having some

fixed features) is placed in some location, be the client’s in-

tention. This intention can be realized by a plan consisting

of a search task and a transport task. The search task will

be executed when the current location of the object is not

known; i.e. the client has not specified the initial situation

of the intention. In this case, the description of the situation

(related to the object) obtained after executing the search task

becomes the initial situation of the transport task (if the object

was found). An exceptional situation may occur, if after the

execution of the transport task, the object is not in the desired

location. A rule, that can be applied here, is to execute a new

transport task in which the current situation of the object be-

comes the initial situation, whereas the final situation remains

the same.

7.2. Service Registry. The Service Registry (SR) is a system

component which gathers, stores, and provides information

about services available in the system. It can be represented

as a finite automaton (see. Fig. 5) having the following states.

• ready: In this state the Service Registry is ready to work,

and waits for a message.

• registering: After receiving a registration request from

a service (RR−RQ), SR stores the service interface, re-

sponds with the message having validity time of the ser-

vice registration entry (SR−RS), and goes back to the state

of readiness.

• searching: After receiving an information request from the

Agent (RI−RQ) containing a task formula, SR searches (in

its registration database) for an interface formula that corre-

sponds to the task formula. Appropriate interface formulas

are sent back to the Agent as the contents of the response

message. Then SR goes back to the state of readiness.

Fig. 5. The automaton for Service Registry

A service (that wants to be discovered and used by the

SOMRS system) sends its interface formula to the Service

Registry in the message of the type register-request. The ini-

tial situation of the formula may contain restrictions concern-

ing the operation performed by the service. In the case of

a transport service performed by a mobile robot, (that moves

objects from one location to another), the restrictions may

concern (due to the limitation of the robot gripper) the size

of moved objects and their weight.

In the state searching, SR matches task formula (sent by

the Agent in a message of the type info-request) against the

interface formulas stored (registered) in its database. This

matching may be quite complex, because of the ranges of

the services, and the fact that the task may require several

services to be realized. Hence, SR must perform a planning

using an object map of the environment where the task is sup-

posed to be realized. Finally, SR sends to the Agent a message

of the type info-response containing the plan of the task ex-

ecution. If there are no services that can realize the task, the

response contains false formula

The plan consists of interface formulas of the services for

each step of the plan (called subtasks), and a set of relations

describing the dependencies between the subtasks, e.g., the

execution order. So a subtask is an element in the plan of the

task execution generated by the Service Registry. It is defined

8 Bull. Pol. Ac.: Tech. 58(1) 2010



Multirobot system architecture: environment representation and protocols

in the same way as a usual task. The difference is that all the

subtasks in a plan of the main task execution realize the same

type of action as the main task. This is because the plan is

generated in cases where there is no single service that can

execute the main task but there exists a way to do it by a col-

lection of services with appropriate ranges. For example, the

main task of moving an object from one location to another

(that can not be executed by a single transport service) may

be divided into several transport subtasks.

7.3. Agent. The Agent is a system component that executes

tasks in a universal way independent from the type of the

tasks. The tasks are sent to the Agent by Task Manager. They

can also be sent by services, for example, a transport service

that wants the door (on its route) to be opened. In this case,

the service becomes a task manager from “the Agent’s point

of view”. The Agent executes each task according to the finite

automaton shown in Fig. 6. Its states are as follows:

• ready: In this state the Agent waits for a task.

• initialization: In this state the Agent initializes the task da-

ta structure based on the received task in a message from

TM, (event RT−RQ).
• discovery: After the initialization (in), the Agent requests

information (SI−RQ) from the Service Registry about ser-

vices that can execute the task. If the response (RI−RS)
from SR contains only false formula (that is, there are

no such services), the Agent sends negative response

(ST−RS−F ) to the TM, and then goes to the state of readi-

ness.

• arranging: After the successful service discovery (ssd), the

Agent arranges execution of the task by sending subtasks

to appropriate services (event SS−RQ). If one (or more)

of the services responses (event RS−RS) are negative, the

Agent cancels already arranged services, sends the nega-

tive response to the TM (event ST−RS−F ), and returns to

the state of readiness.

• executing: After the services have been successfully

arranged (sa), the Agent executes them in the specified or-

der by sending execution requests (SE−RQ). Based on their

responses (RE−RS), the Agent constructs the response to

the TM (ST−RS) containing the description of the current

situation related to the task, and then returns to the state

of readiness.

• idle: In this state the Agent waits for the responses related

to its requests.

A task data structure consists of the session identifier (the

same for every message during the task execution and gener-

ated by the task sender); the address of the task sender; the

timeout for task execution; the task formula; and the plan of

the task execution. A task data structure is initialized after re-

ceiving message of the type task-request. The plan of the task

execution is taken from the response message of the Service

Registry. The plan is in the form of a partial order defined in

a set of subtasks; the order corresponds to the execution order

of the subtasks. Each of the subtasks consists of the subtask

formula, a set of addresses of services that can execute the

subtask, description of the situation after the task execution,

and the current state of the subtask (that is “unarranged”,

“arranged”, “executing”, “executed”, or “cancelled”). Initial-

ly, all the states are set to “unarranged”.

Fig. 6. The automaton for Agent

At the beginning of the arranging phase the Agent sends

messages of the type service-request to the services that, ac-

cording to the plan, are to realize the first subtasks in the

execution order. The message contains the task specification

and the expected time of the start of the subtask execution.

The requested services may respond with the positive message

of the type service-response containing the estimated time of

the end of the task execution, or negative message meaning

that it is not able to execute the subtask. In the case of mul-

tiple requests to different services that can execute the same

subtask, the Agent chooses the one that commits to execute

the subtask at the earliest, and sets the state of the subtask as

“arranged”. Then, the Agent proceeds to the next subtasks in

the plan execution order (if there are any) and arranges them.

If all the subtasks are arranged, and the time of the estimated

execution of the last subtask does not exceed the task timeout,

the Agent goes to the executing phase.

The Agent sends the execution request (messages of the

type execute-request with the relation true) to arranged ser-

vices in the same order as they were arranged, and sets their

state as “executing”. Each of the services responds with mes-

sages of the type execute-response with description of the

situation after the successful subtask execution (its state is

changed to “executed”), or description of the exceptional sit-

uation that occurred during the subtask execution (its state is

changed to “cancelled”). In case of successful execution of

the entire plan, the Agent replies to the TM with message of

the type task-response containing description of the current

situation form the last subtasks in the execution order. Oth-

erwise, that is, at least one of the subtasks is cancelled, the

Agent sends to the TM descriptions of the situations from

the executed subtasks, and descriptions of exceptional situa-

tions from the cancelled subtasks. On the basis of its prede-

fined rules for handling exceptions, the Task Manager decides

what to do next. If the TM cancels the main task execution

(by sending negative message of the type task-request), the

Agent cancels the already made arrangements and current-

ly executing services by sending negative messages of the

Bull. Pol. Ac.: Tech. 58(1) 2010 9



S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Terlikowski

type service-request and the type execute-request respective-

ly.

7.4. Service. Any device (including mobile robots) is seen

by the SOMRS system as a collection of services that they

provide. A service represents any action (function) realized by

the device for which the interface was defined in the common

language and published (registered) in the Service Registry.

A service must also use the common environment representa-

tion and communication protocols. A service, from the system

point of view, is seen as a finite automaton shown in Fig. 7,

and has the following states:

• ready: In this state the service is ready to execute.

• registering: The service goes to this state for its first reg-

istration, or when the validity time of the current registra-

tion entry has expired (event ex). The service sends to the

Service Registry its interface formula in the registration re-

quest (SR−RQ). After receiving the response (RR−RS), it

updates the validity time (event up).

• idle: In this state the service waits for the response from

the Service Register.

• arranging: The service goes to this state after receiving

the message of the type service-request (RS−RQ) with the

task and the time of the start of the service execution. If the

service can execute the task, it sends to the Agent response

(message of the type service-response) with the estimated

time of the end of the task execution (SS−RS) , and then

goes to the waiting state. Otherwise, it sends to the Agent

negative message of the same type (SS−RS−F ) and returns

to the state of readiness.

• waiting: In this state the service waits for a message

from Agent of the type execute-request. After receiving it

(RE−RQ), it goes to the executing state. Receiving of the

negative message of the type service-request (RS−RQ−F )
means that the service arrangement was cancelled by the

Agent. The service deletes the appropriate arrangement and

returns to the state of readiness.

• executing: In this state the service executes the arranged

task. After the execution or in case of occurrence of an

exceptional situation it sends message of type execute-

response to the Agent (SE−RS) with the description of

the current situation related to the task. If the Agent sent

the negative message of type execute-request (RE−RQ−F ),
the service stops the task execution. After both of the de-

scribed events, the service returns to the state of readiness.

Each service stores a list of arrangements made in the ar-

ranging phase. An arrangement consists of the session iden-

tifier, address of the Agent, the task formula, and estimated

time of the beginning and the end of the task execution. An

arrangement is deleted from the list when the service returns

to the state of readiness. The service goes to this state when

(including the cases mentioned before) the arranged time lim-

its are exceeded, i.e. when the Agent has not requested the

task execution, or the service has not executed the task on the

time.

Fig. 7. The automaton of a service

Execution of some types of services (e.g. physical ser-

vices) takes a longer time than in the case of a simple cogni-

tive service, or a data-processing service. Such service has the

queue of the tasks to be executed. During the arrangement,

the service can add the arranged task to the existing queue

based on the estimated time of the beginning and end of the

task execution. Cancelled tasks are removed from the queue

and other tasks can be arranged in emptied time slots. Thus,

the time, returned to the Agent in the response to its service

request in the arrangement phase, depends on the estimated

time of the given task execution and on the first free time slot

with the appropriate length in the queue. It allows the service

to arrange tasks during execution of a previously arranged

task and to arrange more than one task ahead.

To sum up the presentation of the proposed protocol, the

order of messages exchanged between the components of the

SOMRS system and phases of task execution are shown in

Fig. 8.

Fig. 8. The order and types of messages in the protocol

The general external behaviours (roles) of the components

in the system are designed in the way that ensures clear and

strict separation between sets of functions that each of them

provides. A service represents (through its interface) specific

action or function executed by the device to which it belongs.

10 Bull. Pol. Ac.: Tech. 58(1) 2010



Multirobot system architecture: environment representation and protocols

Internally, it is a software application (running on the device)

responsible for execution of the action and communication

with the SOMRS system. Introduction of the Service Registry

is an intuitive solution for the problem of service publishing

and discovery, and the system openness (easy service adding

and removing).

The Task Manager provides: the means for the client com-

munication with the system, generating or choosing an exist-

ing abstract plan of the realization of the client intention,

arranging and following that plan (which includes handling

of the exceptional situations). The TM may be dedicated for

realization of a number of selected classes of intentions, for

which it can provide GUI and predefined abstract plans (or is

able to generate them). The role of the Agent is the execution

of a given task (which can be seen as a step in a plan of an

intention realization), in a universal way that does not depend

on the class of the task. Thus, there may exists more than

one Task Manager in the system. Each of them can provide

different functionality and different range of possible classes

of intentions that they can handle. On the other hand, there

is only one type of Agent in the system (although it can have

many instances), because it always provides the same func-

tionality. Any attempt to combine these two components (i.e.

Task Manager and Agent) and their functionalities into one

component would lead to unnecessary redundancy.

In case of several types of task managers and instances

of agents present in the system, each of task managers sends

tasks to an agent based on the agent address set in its con-

figuration. An agent always responds to the known address of

the task manager that has sent the task. A task manager can

also have a list of addresses of available agents. Because all

agents provide the same functionality, the criteria of choosing

an agent can be based on a network delay or the load of the

server where an agent is running as a software application.

The concept of Repository of object maps deserves a spe-

cial attention. In the SOMRS system there may be one Repos-

itory with large and rich maps of physical environments. In

this case there are no problems with synchronization and the

integrity of stored information. On the other hand, if a map

of a particular environment is intensively used (very often

queried and/or updated) it may be stored in a local Reposito-

ry appropriately synchronized with the main Repository.

8. Experiments

The first prototype implementation of the proposed SOMRS

system was realized in the Java programming language in

version 1.6. The Task Manager, the Agent and the Service

Registry were implemented as servlets (Java Servlet Technol-

ogy) and run on the Apache Tomcat 6.0 application server.

Services were provided by two mobile robots Pioneer 3 (P3-

DX). The communication between the robots and PC work

stations was based on a local wireless network. Two differ-

ent test environments, consisting of a room and an adjacent

corridor, were used to carry out the experiments.

Because of the available devices (two mobile robots

equipped with web cameras and grippers) the possible ser-

vices that they can provide include searching and moving ob-

jects. This small set of services allows, however, for realization

of standard and more complex intentions like moving objects

and inspecting a given set of locations. The abstract plans

(used by the Task Manager) for realization of these intentions

were created manually. The Service Registry can automatical-

ly decompose, if needed, the search and transport tasks into

subtasks based on hierarchical routing in the object maps of

the test environments.

The experiments, carried out in the physical environment

shown in Fig. 9, consisted in realizations of intentions hav-

ing the following description of the final situation: (small-

Box isAdjacentTo woodenCloset). The relation isAdjacentTo

means that two given objects are placed close to each other.

The initial situation was also specified by the client: (smallBox

isAdjacentTo bathroomDoor). So, the Task Manager could de-

fine a transport task directly from the intention formulas. The

Agent, after receiving this task, sent it to the Service Reg-

istry in order to obtain information about services that could

execute it.

Fig. 9. Schema of the physical test bed environment

The Service Registry determined the task location. It is the

lowest (according to the object hierarchy) object in the map

to which the initial and final locations of the task belong, that

is, the locations are its direct or indirect sub-objects. Because

bathroomDoor is located in the corridor storey2Corridor and

woodenCloset is located in the room room203 the task loca-

tion is storey2 to which these two objects directly belong. The

two registered transport services (provided by the two mobile

robots) operate in the corridor storey2Corridor and the room

room203 respectively. Thus there was no single service op-

erating in the task location. So the Service Registry had to

decompose the task into subtasks by determining a route be-

tween the initial and final location. Since the two locations are

placed next to each other, the route consisted of the two el-

ements: storey2Corridor and room203 for which appropriate

transport services were available. The door door203 was the

object connecting the two elements of the route. So the final

situation of the first subtask and the initial situation of the sec-

Bull. Pol. Ac.: Tech. 58(1) 2010 11



S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Terlikowski

ond subtask were the same: (smallBox isAdjacentTo door203).

The execution plan consisting of the two subtasks and the re-

lations of succession (the subtask in the storey2Corridor has

to be executed first) was sent to the Agent.

In the arranging phase, the Agent sent the two subtasks

to appropriate services (under the addresses specified in the

subtasks). The Service Managers of the two robots responded

positively. After the successful arrangement, the Agent sent

the execution request to the service realized by the robot op-

erating in the storey2Corridor.

The robot searched the region near the bathroomDoor

(Fig. 10a) and found the smallBox, what verified the initial

situation of its task. Then, it started the process of position-

ing in order to grasp the box (Fig. 10b).

Fig. 10. a) A robot searching for the box smallBox near the door

bathroomDoor; b) the robot grasping the box

In the next step, the destination location (the door

door203) is determined based on the object map of the test

environment and the description of the final situation of the

first subtask. The robot computed the route to the object in

an occupancy grid, (its own low level representation of the

local environment for navigation), and goes along the route

(Fig. 11a). After reaching the destination the robot put away

the smallBox (Fig. 11b) and sent to the Agent a message with

a description of current situation related to the task, which

in this case was identical with the final situation of the first

subtask.

Fig. 11. a) the robot navigates in the direction of the door door203;

b) the robot puts away the box smallBox

After receiving the response, the Agent sent the execution

request to the second service provided by the robot operating

in the room room203. The robot executed the arranged task

in the same way as the first robot and replied to the Agent.

Then, the Agent sent to the Task Manager the message with

the description of the current situation described by the for-

mula (smallBox isAdjacentTo woodenDoor).

9. Conclusions

The goal of the proposed information technology is to pro-

vide an infrastructure for building multirobot systems based

on new ideas like ambient intelligence or ubiquitous robotics.

The use of the SOA paradigm allows not only for supporting

system openness and heterogeneity, but also for easy integra-

tion with existing solutions in Robotics. Dedicated and spe-

cialized multirobot systems (even swarms) can be added to

the system as services which provide functionality described

in their interfaces.

Interoperability between such heterogeneous entities (ser-

vices) is achieved by defining ontology (common structure of

environment representation), common language for describ-

ing the environment, defining tasks and service interfaces, and

protocols for the communication between the system compo-

nents. The system components and their functionalities are

defined in a way that ensures extensibility and scalability of

the system by enabling easy addition of new heterogeneous

services and new instances of other components. The system

allows for automatic and dynamic task allocation through the

Service Registry and service discovery. A new feature of the

system, in comparison to existing solution based on SOA, is

that it also ensures the optimal task allocation in a given time

and location by introducing the arrangement phase into the

process of the client’s intention realization.

The experiments were limited by the number of services,

in this case, the number of robots. However, the main claim

of the work, that is, that the proposed information technology

can be applied to achieve interoperability between heteroge-

neous devices in SOMRS, seems to be verified. In the near

future more sophisticated experiments will be carried out.

Acknowledgements. The presented work was done in the

framework of the research project supported by the Polish

Government Grant MNiSzW 3 11C 38 29. The authors would

like to thank Prof. C. Zieliński for inspiration and constructive

criticism.

REFERENCES

[1] J. Hertzberg and A. Saffiotti, “Workshop on semantic informa-

tion in Robotics”, ICRA-07 Proc. 1, CD-ROM (2007).

[2] M.E. Jefferies and W. Yeap, “Robotics and cognitive ap-

proaches to spatial mapping”, in: Tracts in Advanced Robotics

Springer, vol. 38, Springer, Berlin, 2008.

[3] G. Beni, “From swarm intelligence to swarm robotics”, Swarm

Robotics: Lecture Notes in Computer Science 3342, 1–9

(2005).

[4] L. E. Parker, and F. Tang, “Building multi-robot coalitions

through automated task solution synthesis”, Proc. IEEE, Spe-

cial Issue on Multi-Robot Systems 94, 1289–1305 (2006).

[5] Y. Ha, J. Sohn, Y. Cho, and H. Yoon, “A robotic service frame-

work supporting automated integration of ubiquitous sensors

and devices”, Information Science 177, 657–679 (2007).

[6] PALCOM Project Home page: http://www.ist-palcom.org/.

[7] IBM Services Architecture Team, “Web services architec-

ture overview: the next stage of evolution for e-business”,

http://www.ibm.com/developerworks/webservices/library/w-ovr/,

(2000).

12 Bull. Pol. Ac.: Tech. 58(1) 2010



Multirobot system architecture: environment representation and protocols

[8] S. Thrun, „Robotic mapping: a survey”, in Exploring Artifi-

cial Intelligence in the New Millenium, eds. G. Lakemeyer and

B. Nebel, Morgan Kaufmann, Massachusetts, 2002.

[9] J. Kuipers, “The spatial semantic hierarchy”, Artificial Intelli-

gence 119, 191–233 (2000).

[10] S. Vasudevan, S. Gächter, V. Nguyen, and R. Siegwart,

“Cognitive maps for mobile robots – an object based ap-

proach”, Robotics and Autonomous Systems 55 (5), 359–371

(2007).

[11] D. Anguelov, R. Biswas, D. Koller., B. Limketkai, S. San-

ner, and S. Thrun, “Learning hierarchical object maps of non-

stationary environments with mobile robots”, Proc. 17th An-

nual Conf. Uncertainty AI 1, CD-ROM (2002).

[12] C. Galindo, A. Saffiotti, S. Coradeschi., P. Buschka, J.A. Fer-

nández-Madrigal, and J. González, “Multi-hierarchical seman-

tic maps for mobile robotics”, Proc IEEE / RSJ Int. Conf. on

Intelligent Robots and Systems 1, 3492–3497 (2005).

[13] C.P. Eastman, P. Teicholz, R. Sacks, and K. Liston, BIM Hand-

book. A Guide to Building Information Modeling for Own-

ers, Managers, Designers, Engineers, and Contractors, Wiley,

Hoboken, New Jersey, 2008.

[14] C. Zieliński, “Description of command semantics of program-

ming languages of robots”, Archives of Automatics and Teleme-

chanics of Warsaw University of Technology 35 (1–2), 15–45

(1990), (in Polish).

[15] C. Zieliński, “TORBOL: an object level robot programming

language”, Mechatronics 1 (4), 469–485 (1991).

[16] C. Zieliński, “Description of semantics of robot programming

languages”, Mechatronics 2 (2), 171–198 (1992).

[17] S. Ambroszkiewicz, “Entish: a language for describing data

processing in open distributed systems”, Fundamenta Infor-

maticae 60 (1–4), 41–66 (2004).

[18] T.R. Gruber, “A translation approach to portable ontology spec-

ifications”, Knowledge Acquisition 5 (2), 99–220 (1993).

[19] R. Fikes and N. Nilsson, “STRIPS: a new approach to the

application of theorem proving to problem solving”, Artificial

Intelligence 2, 189–208 (1971).

[20] PDDL – Planning Domain Definition Language, Drew V. Mc-

Dermott web site: http://cs-www.cs.yale.edu/homes/dvm/

Bull. Pol. Ac.: Tech. 58(1) 2010 13


