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Analysis of fluxes across the turbulent/non-turbulent interface (TNTI) of turbulent

boundary layers is performed using data from two-dimensional particle image ve-

locimetry (PIV) obtained at high Reynolds numbers. The interface is identified with

an iso-surface of kinetic energy, and the rate of change of total kinetic energy (K)

inside a control volume with the TNTI as a bounding surface is investigated. Features

of the growth of the turbulent region into the non-turbulent region by molecular diffu-

sion of K, viscous nibbling, are examined in detail, focussing on correlations between

interface orientation, viscous stress tensor elements, and local fluid velocity. At the

level of the ensemble (Reynolds) averaged Navier-Stokes equations (RANS), the to-

tal kinetic energy K is shown to evolve predominantly due to the turbulent advective

fluxes occurring through an average surface which differs considerably from the local,

corrugated, sharp interface. The analysis is generalized to a hierarchy of length-scales

by spatial filtering of the data as used commonly in Large-Eddy-Simulation (LES)

analysis. For the same overall entrainment rate of total kinetic energy, the theoretical

analysis shows that the sum of resolved viscous and subgrid-scale advective flux

must be independent of scale. Within the experimental limitations of the PIV data,

the results agree with these trends, namely that as the filter scale increases, the viscous

resolved fluxes decrease while the subgrid-scale advective fluxes increase and tend

towards the RANS values at large filter sizes. However, a definitive conclusion can

only be made with fully resolved three-dimensional data, over and beyond the large

dynamic spatial range presented here. The qualitative trends from the measurement

results provide evidence that large-scale transport due to the energy-containing ed-

dies determines the overall rate of entrainment, while viscous effects at the smallest

scales provide the physical mechanism ultimately responsible for entrainment. Data

spanning over a decade in Reynolds number suggest that the fluxes (or the entrain-

ment velocity) scale with the friction velocity (or equivalently the local turbulent

fluctuating velocity), whereas Taylor microscale and boundary-layer thickness are

the appropriate length scales at small and large filter sizes, respectively. C© 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4861066]

I. INTRODUCTION

Physical processes occurring at the sharp and corrugated surface separating turbulent from non-

turbulent regions in shear flows such as jets and boundary layers have elicited considerable interest

for over half a century.1–6 Such surfaces are subjected to spatially varying advection and deformation

by turbulent eddies at various scales that tend to increase the surface area. Conversely, molecular

processes that typically occur at small diffusive scales in the immediate vicinity of the surface tend to

smooth, and thus reduce, the surface area. Work in the 1980s and 1990s had focussed on a possibly

fractal structure of surfaces in turbulence (cloud boundaries, flames, interfaces) as a reflection of

deformations caused by a hierarchy of eddy sizes in the turbulent (Kolmogorov’s) inertial range.7–11
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More recently, there has been growing interest in the structure of turbulence and transport

in the vicinity of the turbulent/non-turbulent interface (TNTI hereafter).6, 12–14 The recent work

has focussed mostly on turbulent jets at moderate Reynolds numbers, specifically on the question

of whether the entrainment of the turbulent region into the non-turbulent region is dominated by

large-scale processes through the energy-containing eddies (engulfment), or whether it is due to

small-scale diffusive processes occurring at the interface (viscous nibbling). Recent papers6, 13, 15, 16

provide evidence supporting both views. (As an aside, we note that the term “engulfment” is typically

defined in qualitative terms in the literature. If engulfment is used in the sense of ingestion of non-

turbulent fluid by the surrounding turbulent fluid,17 then it has been observed that the contribution

to total entrainment by the mass associated with the “ingestion” of fluid is small.6, 12 In such a

definition, it is difficult to separate particular length-scales responsible for the phenomena and yet,

relating large and small scales to engulfment and nibbling, respectively, is not uncommon.13, 18 Here

we propose to associate the concept of “engulfment” to any non-viscous transport mechanism that

can be associated to the large-scale energy containing eddies.16 Then a precise definition can be

proposed.) The question of engulfment versus nibbling has thus far not been settled, but as mentioned

by Mathew and Basu,12 if the interface has fractal scaling (outlined by Sreenivasan, Ramshankar,

and Meneveau10 and Meneveau and Sreenivasan11), the two views can be reconciled: the engulfment

caused by inertial flow structures at large and intermediate sizes increases the surface area where

diffusive processes can then act more effectively over larger areas but at the small scales. A recent

analysis by de Silva et al.19 has provided further evidence of fractal scaling of the TNTI using high

Reynolds number boundary layer data sets. However, a purely geometric analysis of surface area is,

by itself, insufficient to answer questions directly related to physical fluxes and rates of entrainment.

The aim of the present work is to examine transport processes along the TNTI at various scales,

to further clarify what physical mechanisms are responsible at each scale and to shed new light upon

the long-standing questions about large-scale engulfment versus small-scale viscous nibbling. We

shall consider the growth of the turbulent region via the fluxes of kinetic energy across the TNTI.

The fluxes separate into two categories: the viscous flux (at small scales) which we associate with

“nibbling”, and the advective flux (at large scales) to be associated with “engulfment”. Taking our

cue from the fractal description of the interface, we intend to ascertain/understand the scenario that

at the smallest scales only viscous flux is present, whereas at the largest scales only advective flux is

present, while at in-between scales both operate; however, irrespective of the scale the total flux is the

same. Furthermore, we aim to examine the physical processes by which the viscous and advective

fluxes transfer kinetic energy across the interface, and how they change, if at all, with length scale.

In order to enable a clear separation of scales, flows at very high Reynolds numbers are

ideally required, with at least a factor δ/η ∼ 103 available (where δ is a large-scale such as the

boundary layer thickness and η a small scale such as the Kolmogorov scale), in order to account

for a factor 10 on each side of the largest and smallest scales. Also the turbulent velocity field

needs to be measured with sufficient accuracy to apply criteria that can discern the TNTI based

on dynamically relevant variables instead of relying only on properties of surrogate, non-dynamic

fields such as passive scalars. The flow has to be probed in more than one dimension, ideally in three

dimensions, but planar cuts rather than point-wise measurements can already provide meaningful

results. Furthermore, for statistical convergence one requires large amounts of data acquired under

well-controlled experimental conditions. Over the past decade, significant progress has been made

in experimental techniques such as high-resolution Particle Image Velocimetry (PIV). For example,

planar PIV data by Westerweel et al.,13 Westerweel et al.,6 and Khashehchi et al.20 have been used

to study the conditional statistics at the TNTI in axisymmetric jets at moderate Re = 2000 to 6500

(based on the jet diameter and nozzle velocity). They have found, as first hypothesised by Corrsin

and Kistler1 (also see Ref. 21) that there exists a “jump” in the velocity tangential to the TNTI, which

is related to the jump in the Reynolds stress gradient. In fact, such a jump was also found by Chen

and Blackwelder22 from the conditional profiles using hot-wires, even though it was called a “shear

layer”. Furthermore, Westerweel et al.6 have used Re = 2000 jets to measure viscous vorticity fluxes

near the TNTI for understanding the nibbling mechanism. Direct Numerical Simulations (DNSs)

by da Silva, dos Reis, and Pereira18 and da Silva and Pereira23 (of planar jets) have confirmed

many of the conclusions regarding conditional averages and have also found that the size of the



015105-3 Philip et al. Phys. Fluids 26, 015105 (2014)

jump- or shear-layer thickness is related to the vortices residing on the TNTI. For boundary layers too,

Semin et al.24 (at Reτ = 600) and Chauhan et al.25 (at Reτ = 14500) have found that the conditional

profiles satisfy Reynolds’ jump conditions.21

To elucidate the role of large- and small-scale mechanisms of entrainment, Philip and Marusic16

pointed out that it is informative to separate the mean shear flows (such as jets, wakes, and boundary

layers) from the shear-free flows. Experiments and DNS of an “oscillating-grid” (shear-free flow)

by Holzner et al.15, 26 have identified the importance of viscous forces originating in strain for

entrainment, and that the smallest scales are of the order of Kolmogorov length scale (e.g., da

Silva and Taveira27). However, the results of Holzner and Lüthi28 show that the interface spreading

velocity is not well correlated with the Kolmogorov velocity, even though they note that the viscous

process involves a large surface area so that the global rate of turbulence spreading is set by the

largest scales of motion, in agreement with the notion of a multiscale process.10, 11 It is evident that

the structure of turbulence and transport in the vicinity of the TNTI is associated with a range of

scales. The present investigation aims to introduce and apply an analysis approach that is specifically

aimed at identifying fluxes and transport at the TNTI at various scales, ranging between the largest

to the smallest scales.

The paper is arranged as follows: Sec. II describes the experimental setup for the turbulent

boundary layer experiments as well as the method for the detection of the TNTI from the veloc-

ity fields; Sec. III develops relevant theoretical background to describe the evolution of the total

kinetic energy at the smallest scales governed by viscous fluxes—the nibbling process; Sec. IV

introduces a multiscale formulation characterizing the fluxes across the interface (at largest scales:

purely advective fluxes—to be associated with as explained later the engulfment process, and both

nibbling and engulfment at in-between scales identified through a spatial filtering process); Sec. V

undertakes calculation and discussion of fluxes and the physical process at multiple scales based on

the experimental data; and Sec. VI summaries and draws final conclusions. Throughout the paper,

x, y, and z represent the streamwise, spanwise, and wallnormal directions, and u, v, and w (or u1, u2,

and u3), the corresponding velocities. Whenever physical quantities are normalised by the viscous

length and velocity scales ν/uτ and uτ , respectively, they are represented by plus, + symbols, e.g.,

normalised length �+ = �/(ν/uτ ), velocity u+ = u/uτ , etc.

II. EXPERIMENTAL SETUP AND INTERFACE DETECTION

In this work, we apply planar PIV measurements in the wall-normal/streamwise direction to a

flow for the purpose of investigating the interface characteristics at significantly higher Reynolds

numbers than prior works.6, 24 We examine physical transport processes across the TNTI using two

experimental data sets in very high Reynolds number boundary layers, at Reδ = U∞δ/ν ≈ 2.37 × 105,

and 4.6 × 105, corresponding to turbulent Reynolds numbers based on friction velocity Reτ = uτ δ/ν

≈ 7870 and 14500. The Taylor Reynolds number at the mean interface location25 estimated using

isotropic relations and hot-wire data are ReλT
= λT u′/ν ≈ 230 and 300. Some relevant parameters

for the two databases are provided in Table I. Note that Table I also includes a smaller database

of Adrian, Meinhart, and Tomkins29 at Reτ = 2790 (ReλT
= 125 at the mean interface location)

available in the public domain, which shall be used only in reference to Figure 11 to understand the

TABLE I. Experimental parameters for the PIV databases, where Reδ = δU∞/ν, Reθ = θU∞/ν, and θ is the momentum

thickness.

U∞ uτ δ

Reτ Reδ Reθ [ms−1] [ms−1] [m] �x+ × �z+ No. of images

2790a 0.7 × 105 6845 11.4 0.4 0.1 36 × 25 50

7870 2.4 × 105 22400 10.1 0.33 0.36 52 × 52 1000

14500 4.6 × 105 40800 20.0 0.63 0.35 49 × 49 1250

aThe dataset at Reτ = 2790 is from Adrian, Meinhart, and Tomkins29 and is available in the public domain.
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FIG. 1. Experimental setup for the planar PIV measurements using eight cameras in the High Reynolds Number Boundary

Layer Wind Tunnel at the University of Melbourne.

Re-scaling. We note that for the different boundary layer databases, the PIV interrogation window

size is about 4 to 6 times the Kolmogorov length scale in the outer region.

Figure 1 shows the experimental setup for the PIV measurements performed in the High

Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne’s

Walter Bassett Aerodynamics Laboratory. The region of interest is illuminated by a laser sheet

in the spanwise centre of the tunnel, beamed from below the glass floor employing a Spectra

Physics “QuantaRay” Nd:YAG laser rated 400 mJ per pulse at 532 nm. PIV images are obtained

simultaneously on eight PCO 4000 cameras (4008×2672 pixels), four cameras arranged above the

rest, with the bottom cameras having a higher magnification and covering a smaller area, and an

overlap of about 2 cm between images. The eight individual vector fields are later stitched to provide

a single 2D velocity field. This provides a large dynamic range which is particularly suited to the

present study where we are interested in fluxes at the smallest scales to the largest ones. Further

details of the experiments (along with the comparisons of mean and turbulent statistics to hot-wire

data) and processing of PIV images can be found in Chauhan et al.25 and de Silva et al.30

Traditionally, the interface has been detected based on hot-wire velocity signals (e.g., see

Ref. 31 for a comprehensive list of detector functions commonly used at that time), wherein it is not

too difficult to distinguish the relatively quiet regions from those with high fluctuations. Techniques

employing scalars (ideally with relatively high Schmidt number) are also popular for interface

detection, both using 1D data (or a rake) from resistance thermometers (employing temperature in

the turbulent region as a marker22) and 2D imaging of passive dyes in experiments6, 10, 32–34 as well as

in Direct Numerical Simulations.35 More recently a threshold on vorticity magnitude has been used

not only to distinguish turbulent from the non-turbulent regions12, 36–38 primarily in DNS databases

but also in moderately low Reynolds number turbulent boundary layer experiments24 where they

had 3D velocity information from Tomographic-PIV measurements.

It is known (starting from the work of Corrsin and Kistler1) that velocity in the non-turbulent

region differs from that in the turbulent region, and thus mean velocity1, 39 or variance of velocity

fluctuations40 have also been used for interface detection. Of the plethora of techniques available

not all are suited for every type of measurement. In the present case, we have no passive scalar and

velocity fields that are obtained from PIV (which are generally at a lower resolution than hot-wires

and more prone to noise, especially in the non-turbulent region of the boundary layer due to large

velocities there, unlike jets). Vorticity based criteria tend to include nearly irrotational islands within

a fully turbulent region, which in turn leads to a highly intermittent and unconnected interface that

may also be affected by the inherent “inner intermittency” within the turbulent region. Consequently,

in this work we employ the kinetic energy of the flow for interface detection. In order to associate the

non-turbulent outer region with zero kinetic energy, we use the kinetic energy in the frame moving
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FIG. 2. Instantaneous view from planar PIV at Reτ = 14500. (a) Colour contours of kinetic energy K/(U 2
∞/2) in a logarithmic

scale. The solid black line indicates the location of the TNTI computed as an iso-kinetic energy surface using a threshold of

K0 = 10−3
(

1
2

U 2
∞

)
. (b) Zoomed in view of (a) presented as a grey region from 0.36 < x/δ < 0.46 and 0.68 < y/δ < 0.75

along with the velocity vector map in a frame moving with the free-stream. (c) The same zoomed view as in (b) with normals

to the interface n defined by n = −(∇K/|∇K |)K=K0
(in blue), and the corresponding tangent vectors (j × n) in black.

with the free-stream, i.e., the defect kinetic energy. The same technique was employed in the fractal

analysis reported in de Silva et al.19

The defect kinetic energy (its 2D surrogate) is defined according to

K =
1

2

[
(u − U∞)2 + w2

]
, (1)

where U∞ is the free-stream velocity in the x direction. When u is expressed in a frame moving

with the free-stream (in a frame in which U∞ = 0), the expression reduces to K = (1/2)(u2 + w2).

Figure 2(a) shows a sample PIV image and the interface determined based on the local defect kinetic

energy K, using a threshold of K = 10−3
(

1
2
U 2

∞

)
. This threshold yields an interface that agrees

very well with the location that visually can be observed to separate turbulent from non-turbulent

flow. The appropriate threshold to be used depends on the flow, as well as on the level of free-

stream (background) turbulence and measurement noise. In the present case random error in the

PIV measurements in the outer irrotational region is estimated to be about 1% of the free-stream

velocity employing an uncertainty of 0.15 pixel movement.41 In addition, the wind-tunnel free-

stream turbulence intensity is about 0.2%. A change in threshold value by up to 20% has been found

to have negligible effect on the computed numerical values (see Sec. V) and the general conclusions

are insensitive to an even bigger change. Threshold values similar to the present case have also been

employed by de Silva et al.19 and Chauhan et al.25 to characterise various interface properties such

as the fractal dimension, intermittency, and conditional averages.
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Figures 2(b) and 2(c) show a zoomed in view of a portion of the interface (as indicated by the

grey region in Figure 2(a)) along with velocity vectors, and local normals (n = −∇K/|∇K |K=K0
,

where K0 is the threshold level) and tangents to the interface defined as t = j × n, where j is the

unit vector in the y-direction perpendicular to the measurement plane. Notice that, in general, (as

well as in Figure 2(a)) one can also observe patches of non-turbulent regions inside the turbulent

region. With the present PIV measurements, we cannot ascertain if these patches are connected to

the outside non-turbulent region three-dimensionally or if they are genuinely disconnected volumes

of non-turbulent regions. In any case, we shall not include these patches in the analysis when

performing averages over the interface, and we will consider TNTI as the longest boundary that

separates the main turbulent region from the outside non-turbulent region. Finally, we remark that

(albeit for jets) based on DNS and experimental data there is evidence that using different interface

detection criteria do not significantly change the interface characteristics.39

III. KINETIC ENERGY EQUATION: FLUXES AT THE SMALLEST SCALES

Having observed that kinetic energy relative to the free stream provides a meaningful criterion

to determine the TNTI, we now turn to the dynamics and transport processes associated with kinetic

energy. We consider the transport of defect kinetic energy K(x, t), defined according to

K (x, t) =
1

2
[u(x, t) − U]2, (2)

where U is the constant velocity in the free-stream far outside the boundary layer. That is, in a

traditional frame of reference attached to the wall and a free-stream moving in the positive direction

(x-direction with unit vector i), we have U = U∞i (= U1i depending on the context), while in a

frame moving with the free-stream velocity in which the wall moves, we have U = 0. Note that

K(x, t) includes the kinetic energy in both the mean flow defect velocity field, as well as all the

kinetic energy in the turbulence since no averaging has yet been performed.

The momentum equation for a Newtonian incompressible flow (with viscous stress tensor

τ ν
i j = 2νSi j , where Sij is the strain-rate tensor), written for the momentum defect with respect to a

constant free stream velocity U, is

∂

∂t
(ui − Ui ) + u j

∂

∂x j

(ui − Ui ) = −
1

ρ

∂p

∂xi

+
∂τ ν

i j

∂x j

. (3)

Multiplying by the velocity defect, ui − Ui, results in the equation for K(x, t):

∂K

∂t
+

∂

∂xi

(ui K ) =
∂

∂xi

(
−(u j − U j )

p

ρ
δi j + (u j − U j )τ

ν
j i

)
− τ ν

i j

∂u j

∂xi

. (4)

Now consider a boundary layer control volume (Vbl) including as its top surface the TNTI as

sketched in Figure 3(a). The interface is defined as a K = K0 iso-surface, and the dashed line is

instantaneously coincident with the interface (fixed, not moving with the interface). For a boundary

layer, we have used K0 = c0
1
2
U 2

∞ and we specify the (small) dimensionless factor c0, e.g., c0 =

10−3 as was used in de Silva et al.19 and Figure 2. The kinetic energy equation for the total kinetic

energy in the boundary layer KVbl
=

∫
Vbl

K d3x in the (fixed) control volume reads

dKVbl

dt
= −

∫∫

Sbl

[
ui K − 2νSi j (u j − U j )

]
ni d S −

∫∫

Sbl

(
p

ρ

)
(ui − Ui )ni d S −

∫∫∫

Vbl

εdV, (5)

where ε = τ ν
i j∂u j/∂xi is the viscous dissipation rate. The advective flux can be further decomposed,

and the kinetic energy equation is rewritten as follows:

dKVbl

dt
= −

∫∫

Sbl

KUi ni d S −

∫∫

Sbl

(
K +

p

ρ

)
(ui − Ui )ni d S

−

(
−2ν

∫∫

Sbl

Si j (u j − U j )ni d S

)
−

∫∫∫

Vbl

εdV . (6)
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(a)

(b)

FIG. 3. Sketch of turbulent region bounded by an iso-kinetic energy surface as surrogate marker for the turbulent-non

turbulent interface. (a) Kinetic energy analysis for “inner control volume,” Vbl . (b) Outer control volume Vo. The mean

boundary layer thickness is δ.

We now concentrate on the surface integral over the interface portion of the bounding surface, S =

Sint, where the unit normal is given by n = −(∇K/|∇K |)K=K0
. The flux due to viscous work at the

interface is given by

�ν = −2ν

∫∫

Sint

[
Si j (u j − U j )

]
ni d S. (7)

At this stage, it is instructive to consider the control volume formed by the “outer” domain,

denoted by Vo in Figure 3(b). It is bounded by a closed surface So, which consists of the interface

Sint below, a flat horizontal surface above and a vertical surface on the left. Hence, for this control

volume we can write, using the same definition of n as before on the interface (i.e., n points into Vo),

dKVo

dt
=

∫∫

So

KUi ni d S +

∫∫

So

(
K +

p

ρ

)
(ui − Ui )ni d S + �ν − D, (8)

where D =
∫∫∫

Vo
εdV is the total dissipation rate in the outer control volume. In Appendix A, it is

shown that the closed-surface integral containing the inertial terms is very small, i.e.,

∫∫

So

(
K +

p

ρ

)
(ui − Ui )ni d S ≈ 0. (9)

This result assumes that the rate of change of kinetic energy inside Vo associated with outer but

weak “irrotational fluctuations” can be neglected (see Appendix A). This step shows that the flux of

defect kinetic energy across Sint due to fluctuating turbulence is largely cancelled by pressure work

due to fluctuating pressure. As shown in Appendix A, if there is a difference it contributes only to

irrotational kinetic energy in Vo, which is assumed to be small.

The term
∫∫

So
KUi ni d S is further simplified using U = U1i (and thus Uini = U1n1), and neglect-

ing K on the outer surfaces except at the interface, one obtains
∫∫

So
KUi ni d S ≈ K0U1

∫∫
Sint

n1d S.

(In Appendix A, we consider U1

∫∫
SL

K n1d S again, but including the small amount of kinetic energy

outside the interface in Vo, where K < K0 but still K > 0 possibly due to irrotational fluctuations.)

The integral
∫∫

Sint
n1d S is simply the projected area of the interface along the x-direction, i.e.,
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∫∫
SI

n1d S ≈ −dδ/dx Axy where Axy is the footprint area of the control volume. The negative sign

arises because n points into Vo and thus n1 < 0 on average if dδ/dx > 0).

Finally, we obtain

dKVo

dt
+ U1 K0

dδ

dx
Axy = �ν − D. (10)

Note that the integrated quantity KVo
represents kinetic energy in the full defect velocity field,

including mean flow and turbulent fluctuations. In a frame moving with the free-stream velocity, U1

= 0, thus the term U1K0Axydδ/dx vanishes, and dKVo
/dt is expected to be positive (increase of kinetic

energy in the outer volume Vo in time). On the other hand, in a frame attached to the wall, on average

we have 〈dKVo
/dt〉 = 0 due to stationarity, but it is replaced by the term U1K0dδ/dxAxy (recall that

U1 = U∞), which represents the positive advective flux of K0 due to the free-stream velocity. In a

sense, this term then “counteracts” the viscous diffusion �ν “moving back defect kinetic energy”

into the control volume and out of Vo along the interface. The dissipation D is expected to be small

in the outer region. Thus Eq. (10) shows that the growth rate 〈dKVo
/dt〉 or U1 K0

dδ
dx

Axy of defect

kinetic energy in the turbulent boundary layer is caused by the viscous flux at the interface, �ν .

Our aim later in the paper is to examine �ν from PIV data. A two-dimensional surrogate that

can be determined from planar PIV data (in the x1-x3 plane) along the intersection of the interface

with the measurement plane is:

�2D
ν = −2ν

∫ s f

s=0

(
Si j u j

)
ni ds, i, j = 1, 3, (11)

involving only two components and where the integration is performed along an interface-following

coordinate s that goes from the beginning of the interface at s = 0 to the end s = sf.

IV. MULTISCALE PROPERTIES OF FLUXES AT THE TNTI

In order to examine multiscale properties of entrainment/nibbling/fluxes at the TNTI defined in

terms of kinetic energy, we consider the kinetic energy field associated with descriptions at various

scales.

A. Mean flow: Ensemble (Reynolds) averaged formulation

We begin by the description at the level of Reynolds Average Navier-Stokes (RANS) and

ensemble averaging, i.e., emphasizing processes occurring at the level of the mean flow and the

largest scales of turbulence. At this level, surfaces are essentially flat, growing slowly like the

mean boundary layer. Denoting ensemble average by an over-bar, the kinetic energy in the mean

defect flow is defined as K R = 1
2
(ui − Ui )

2. The superscript “R” refers to Reynolds averaging (see

Figure 4(c)). The fate of kinetic energy in the mean defect flow is governed by

∂K R

∂t
+

∂

∂xi

(ui K R) = −
∂

∂xi

(
1

ρ
(u j − U j )pδi j − (u j − U j )τ

ν
j i + (u j − U j )u

′
i u

′
j

)

−τ ν
j i

∂u j

∂xi

+ u′
i u

′
j

∂u j

∂xi

. (12)

However, there is also turbulent kinetic energy k R = 1
2
u′

i u
′
i (where u′

i = ui − ui ), which should be

added to KR to obtain total kinetic energy K = K R + k R that can be compared to the total kinetic

energy considered in Sec. III.

The transport equation for turbulent kinetic energy k R = 1
2
u′

i u
′
i reads

∂k R

∂t
+

∂

∂xi

(ui k
R) = −

∂

∂xi

(
1

ρ
u′

j p′δi j − τ ′ν
j i u

′
j +

1

2
u′

j
2
u′

i

)
− u′

i u
′
j

∂u j

∂xi

− ε + τ ν
j i

∂u j

∂xi

. (13)
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FIG. 4. Sketch of turbulent region bounded by iso-kinetic energy surface at various scales. (a) Original scale, resolving

viscous stresses, (b) filtered at intermediate scale �, (c) ensemble averaged (RANS) based on mean flow.

The transport equation for the total kinetic energy can be obtained by adding both equations,

i.e.,

∂K

∂t
+ ui

∂K

∂xi

= −
∂

∂xi

(
1

ρ

[
(u j − U j )p + u′

j p′

]
δi j + (u j − U j )u

′
i u

′
j +

1

2
u′

j
2
u′

i

)
− ε, (14)

where viscous fluxes have been neglected since at high Reynolds numbers away from the wall they

are expected to be small.

The interface associated with the mean flow is now defined as where the total energy K = K0,

using the same threshold as in Secs. II and III. The unit vector is defined as n ≡ −(∇K/|∇K |)K=K0
,

which differs from taking the average of the instantaneous ni due to nonlinearities in the definitions

of kinetic energy and the division by the absolute value of the gradient. This definition can be

naturally generalized to other scales later on and has a clear physical interpretation in terms of the

kinetic energy in the flow. For example, see Appendix B (Figure 12) for a comparison of different

methods to identify the interface with the same threshold value. The threshold K0 to be employed

will be quite small and thus it will define the “outer skin” of the turbulent region. Such a surface can

be considered a “RANS-level interface” separating turbulence from non-turbulence, even though

the interface region is expected to be quite “thick,” on the order of the outer integral scale δ. Thus,

one has to consider the “RANS-level interface” at large scales to be able to interpret it as a “sharp”

interface.

Following similar steps as in Sec. III, we define inner and outer control volumes, separated

by a (smooth) interface. For the outer control volume (denoted as VRo), the total energy KVRo
=∫∫∫

VRo
K dV , obeys:

dKVRo

dt
+ U1 K0

dδ

dx
Axy =

∫∫

SRo

(
K +

p

ρ

)
(ui − Ui )ni d S + �A − DR, (15)

where,

�A =

∫∫

SRint

[
(u j − U j )u

′
i u

′
j +

1

2
u′

j
2
u′

i +
1

ρ
u′

i p′

]
ni d S, (16)

is the flux of kinetic energy across the interface due to turbulent motions (including advection by

turbulent fluctuations and pressure fluctuations), affecting the budget of kinetic energy in the mean
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defect flow, and

DR =

∫∫∫

VRo

εdV . (17)

A “Bernoulli”-like argument, in which we assume that K + p/ρ ≈ p∞/ρ (for RANS a steady

Bernoulli framework is assumed to be appropriate in the irrotational region) will lead to∫∫
SRo

(
K +

p

ρ

)
(ui − Ui )ni d S ≈ 0. Hence,

dKVRo

dt
+ U1 K0

dδ

dx
Axy = �A − DR . (18)

The flux �A can be considered to be a definition of the “entrainment-rate” by the large scales

since the Reynolds stress tensor and turbulent transport is dominated by the large scales. We shall

also identify this term as corresponding to “large-scale engulfment” since it is associated with the

Reynolds stresses that depend mostly on the energy-containing eddies.

And, since the left-hand side of (18) is the same as that in (10) for the total energy in the

instantaneous description, and the dissipation terms are also the same, it follows that the fine-grained

and coarse-grained fluxes should be equal, i.e., �A = �ν , at least in the averaged sense.

At low Reynolds numbers, the viscous fluxes from the mean flow should be added to �A.

Considering Figure 4(a), the corresponding interface is shown with the thick dashed line, assuming

it to be almost linear, i.e., with an angle θbl ≈ tan −1(dδ/dx).

B. Filtered flow: LES formulation

Next, we consider turbulence at various scales, using “coarse-grained” filtered velocities as

is usually applied in Large Eddy Simulations (LES). Consider the kinetic energy in turbulence at

scales equal to and larger than some scale �: K � = 1
2
ũi ũi . The “tilde” refers to, for example, a box

filtering, i.e., a convolution of the velocity components with a top-hat filter function G�, namely

ũi ≡ G� ∗ ui . This defines a kinetic energy field that is smoother than the original. The evolution

equation for K�(x, t) is obtained by starting from the filtered momentum equation,42, 43 written here

as before for the (filtered) velocity defect:

∂(ũi − Ui )

∂t
+ ũk

∂(ũi − Ui )

∂xk

= −
1

ρ

∂ p̃

∂xi

+
∂τ̃ ν

i j

∂x j

−
∂τ�

i j

∂x j

, (19)

where τ�
i j = ũi u j − ũi ũ j is the “subgrid-scale” (SGS) or “subfilter-scale” stress tensor. Instanta-

neous fields of SGS stress tensor in 2D planes can be obtained from PIV data simply by box-filtering

the product uiuj (e.g., i, j = 1, 3, in vertical wall-normal planes in boundary layers) and at each point

subtracting the product of the filtered velocities.44–46 Thus in the present case, one obtains three

spatial fields for τ�
11(x, z, t0), τ�

33(x, z, t0), and τ�
13(x, z, t0).

Multiplying (19) by (ũi − Ui ) leads to the equation for K �(x, t) = 1
2
(ũi − Ui )

2, the kinetic

energy in the large-scale field of the velocity defect:

∂K �

∂t
+

∂

∂xi

(ũi K �) = −
∂

∂xi

(
1

ρ
(ũ j − U j ) p̃δi j − (ũ j − U j )̃τ

ν
i j + (ũ j − U j )τ

�
i j

)
− τ̃ ν

i j S̃i j + τ�
i j S̃i j .

(20)

There is also kinetic energy contained in the SGS motions, k� = 1
2

(ũi ui − ũi ũi ), and its

transport equation is given by

[
∂

∂t
+ ũ j

∂

∂x j

]
k� = −

∂

∂x j

(
1

ρ
( p̃ui − p̃ũi )δi j + (−ũiτ

ν
i j + ũi τ̃

ν
i j ) − ũiτ

�
i j +

1

2
(ũ j ui ui − ũ j ũi ui )

)
− τ̃ ν

i j Si j + τ̃ ν
i j S̃i j − τ�

i j S̃i j . (21)
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The total kinetic energy in the defect field, when viewed at scale � is given by K̃ = K � + k�

and its transport equation at that scale is obtained by adding the equations for K � and k�, resulting

in
[

∂

∂t
+ ũ j

∂

∂x j

]
(K � + k�) = −

∂

∂x j

(
1

ρ
( p̃ui − Ui p̃)δi j − (ũiτ

ν
i j − Ui τ̃

ν
i j )

+ (ũ j ui ui − ũ j ũi ui )/2 − Uiτ
�
i j

)
− τ̃ ν

i j Si j . (22)

We define the interface as the iso-level of K̃ = K � + k� at K0 = c0
1
2
U 2

∞ as before, and

the unit normal is denoted according to ñ = −(∇ K̃/|∇ K̃ |)K̃=K0
. Notice that, (22) reduces to (4)

in the limit � → 0, corresponding to the unfiltered field. In the limit of large � with � exceeding the

turbulence integral scale and to the degree that spatial and ensemble averaging yield similar results

(this does not hold in flows with strong spatial mean inhomogeneities), the formulation tends to that

of RANS, where (22) reduces to (14) (assuming as in (14) that the viscous stress gradient terms are

small). Also, we recall that the notion of a “sharp interface” can be applied to the LES-level interface

only when viewed at scales larger than �, whereas, at scales smaller than � the interface is smeared

out by construction.

We now apply the control volume argument to the total kinetic energy in the outer control

volume bounded below by the filtered interface at scale � (see Figure 4(b) for the filtered control

volume and Figures 4(a) and 4(c) for comparison with no filtering and RANS case). Defining,

K̃V�o
=

∫∫∫
V�o

K̃ dV and χ�
j ≡ p̃u j − p̃ũ j , we obtain

dK̃V�o

dt
+ U1 K0

dδ

dx
Axy =

∫∫

S�o

(
K +

p̃

ρ

)
(ũ j − U j )ñ j d S + �A� + �ν� − D�, (23)

where

�A� =

∫∫

S�int

[
1

2
(ũ j ui ui − ũ j ũi ui ) − Uiτ

�
i j +

1

ρ
χ�

j

]
ñ j d S (24)

is the flux of kinetic energy across the interface due to turbulent motions at the scale �, whereas,

�ν� = −2ν

∫∫

S�int

[
(ũi Si j − Ui S̃i j )

]
ñ j d S (25)

is the contribution of viscous fluxes to the kinetic energy transport across the interface, and,

D� =

∫∫∫

V�o

ε̃dV . (26)

Resorting again to the Bernoulli equation as before, wherein, (K + p̃/ρ) ≈ p∞/ρ is assumed, leads

to,

dK̃V�o

dt
+ U1 K0

dδ

dx
Axy = �A� + �ν� − D�. (27)

Note that in the definition of D�, the integration and the filtering commute. Hence, if the control

volume V�o is sufficiently large, it is quite reasonable to assume that all of these total rates of

dissipation are essentially the same: D ≈ DA ≈ D�, if not exactly for instantaneous fields, at least

after ensemble averaging. Since the left-hand side of Eqs. (10), (18) and (27) should also be the

same (neglecting fluctuations in the definitions of δ), it follows that the averaged

�ν ≈ �A ≈ �A� + �ν�, (28)

regardless of �. If only planar experimental data are available, 2D surrogates �2D
A� and �2D

ν� can

be defined by restricting i, j = 1, 3. Such 2D surrogate quantities, however, will involve missing

information from “surface folds” and components in the directions normal to the data plane especially

at smaller scales. At larger scales, when the flow approaches the mean which is two-dimensional, the

2D surrogate definitions are expected to be correct, but at small scales, where the flow structure is
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highly 3D, important contributions would be missing. The concept of local isotropy may be invoked

at scales below some threshold, i.e., for � < �iso. However, the experimental data show that very

small scales would be needed to approach such local isotropy (cf., Sec. V A and Appendix C). Such

inherent limitations of 2D surrogates will need to be kept in mind when interpreting measurement

results.

The above analysis is carried out for a control volume Vo(x, t = t0) that is fixed at an instant in

time, t0. A similar analysis can be performed based on a deforming control volume which changes

with time, Vdo(t). The control volume Vdo is attached to the evolving interface which moves at

velocity uint. See Appendix D for the details. The approach leads to the definition of the local

entrainment velocity v = u − uint (e.g., Ref. 47). At any scale �, it is shown (see Appendix D) that

the total flux, (�A� + �ν�) can be used to define a surface averaged net entrainment velocity at

that scale, v�
s , such that, v�

s S(�) = (�A� + �ν�)/K0, where S(�) is the surface area at a particular

scale �. Since the total flux at any scale has to be a constant, it implies that v�
s S(�) is also a constant.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Velocity fields from the PIV databases are employed to calculate the various energy fluxes across

the interface. Accordingly, the surface integrals over the interface are replaced by line integrals along

the wrinkled line over the contour corresponding to the interface on the 2D vector field. Fluxes are

calculated in a reference frame moving with the free stream velocity, i.e., U = 0. Energy fluxes

for the three cases will be presented sequentially, beginning with the unfiltered case, the RANS

case, and finally the filtered/LES case. Gradients are calculated using the method of least squares.41

Specifically, we employ a 2D Savitzky-Golay least square scheme with a stencil of 5 × 5 and a third

order polynomial fitting.

Before presenting results, we note that the data analysis to obtain viscous flux �2D
ν for the

unfiltered case is expected to lead to under-predictions of the flux since the spacing between the data

points (of ≈10η to 4η, from the mean interface location to the outer edge of the boundary layer)

does not extend to scales at or below the Kolmogorov length scale (η). Therefore, the measured

�2D
ν is denoted by including a hat, �̂2D

ν , to represent the resolution effect inherent in the data. For

the same reason, experimentally measured �2D
ν� is denoted by �̂2D

ν�. Furthermore, in the case of the

subgrid flux �2D
A� as function of filter scale �, the lack of data on the pressure field prevents us from

measuring the subgrid pressure contribution χ�
j (although some estimates shall be provided). As a

result of these limitations, the focus of the analysis will be on the general trends of measured terms,

rather than their precise numerical values.

A. Kinetic energy fluxes at small scales: Viscous effects

For the unfiltered field, Eq. (10) shows that the rate of change of kinetic energy is due to viscous

flux (�ν) across the interface and the dissipation in Vo. Figure 5 shows �̂2D
ν , the 2D surrogate of �ν

given by (11) at the resolution afforded by the experimental data for different images (in symbols).

These results are for the Reτ = 14 500 data. Also shown (solid line) is the running average, showing

the robust convergence of �̂2D
ν to its mean value with an increasing number of data sets. The value

is positive, which implies that at the smallest scales the viscous fluxes are driving the entrainment.

This conversion of non-turbulent fluid into turbulent fluid by viscosity can thus be interpreted as

the “nibbling” process. As captured with the present measurement resolution, the mean value is

�̂2D
ν ≈ 6.6 × 10−3 m4 s−3. This numerical value will have be compared with the fluxes arising at

other scales in Secs. V B–V D.

The positivity of �̂2D
ν is robust because it not only holds for the mean but also for the individual

images. To understand this further, we select a single image/field, say the first one corresponding to

Figure 5 (which is the same shown in Figure 2). The viscous flux is written as:

�̂2D
ν =

∫ s f

s=0

Bi ni ds, (29)
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FIG. 5. Symbols: measured viscous flux of kinetic energy at the TNTI, �̂2D
ν (as resolved with the present spatial accuracy),

for each of the 1250 vector fields at Reτ = 14500. The solid (red) line shows the running average of �̂2D
ν with increasing

number of images Ni. The units of the viscous flux shown are m4s−3.

where, i, j = 1, 3 and Bi ≡ −2νSijuj is the viscous flux vector across the interface at the measurement

resolution. Figure 6(a) shows the instantaneous normals, n (blue arrows) as well as B (black arrows)

along the interface (depicted for only a part of the image for clarity). The vector B is almost always

pointing outwards, showing that Bini is almost always positive. It is consistent with the view that the

viscous stresses are “nibbling” the boundary, in turn entraining the irrotational fluid. As an interesting

aside we note that, if instead of the correct dissipation ε = 2νsijsij, we use the “pseudo-dissipation”

ǫ* = ν(∂ui/∂xi)
2 in (10), we would obtain a modified viscous flux, �∗

ν = −ν
∫

(∇i K )ni d S. This in

turn shows that the vector B∗ is now equal to − ∇K and B∗ will be exactly parallel to the interface

normal, unlike in Figure 6(a) where B is not exactly parallel to n. For our analysis we retain the

physically more correct definition based on the true work and dissipation done by viscous forces.

It is of interest to understand the dominant terms that contribute to the “nibbling” process. To

this end, notice that in the 2D (x, z) co-ordinate system, Bini has four components when expanded

(S11u1n1, S13u3n1, S31u1n3, and S33u3n3), and it has been observed (not shown here) that all these

terms are approximately of similar magnitude. However, it seems more reasonable to transform

these components along the tangential (t or xt) and the normal (n or xn) directions, which leads to:

Bi ni = Bn = −2ν(Stnut + Snnun) = −2ν

(
1

2

∂un

∂xt

ut +
1

2

∂ut

∂xn

ut +
∂un

∂xn

un

)
, (30)

with no summation over t, n. The subscripts t, n denote the tangential and normal components of the

tensor and vectors. Evaluations from the data show that the first term on the rightmost side of (30) is

about two orders of magnitude smaller than the other two which are of the same order of magnitude.

This is not surprising because variations along the tangential direction are known to be negligible,21

unlike those along the normal direction where the mean velocity has a sharp variation (also called the
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FIG. 6. Instantaneous viscous flux �̂2D
ν along the interface. (a) Portion of the interface (black solid line) along with normals

(n) blue arrows, and the viscous flux vector (B, with Bi ≡ −2νSijuj), black arrows, with contours of kinetic energy the same

as shown in Figure 2. (b) Top panel: (0.5 ∂ut/∂xn) [s−1], dashed (red) line; (300ut) [ms−1], dashed-dotted (black) line; and

(0.5 ∂ut/∂xn ut) [ms−2] solid (green) line. Bottom panel: (∂un/∂xn) [s−1], dashed (red) line; (300un) [ms−1], dashed-dotted

(black) line; and (∂un/∂xn un) [ms−2], solid (green) line. Note that the velocities are multiplied by a factor of 300 in (b) for

clarity.
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velocity jump). Figure 6(b) shows on the top panel (0.5 ∂ut/∂xn), (ut) and their product along the in-

terface shown in Figure 6(a), and the bottom panel shows similar contributions of (∂un/∂xn) and (un).

They are calculated by first evaluating Sij and ui in the (x, z) co-ordinate system and then transforming

them to the (t, n) system; for example, Stn = litljnSij and ut = litui, where, lij is the usual cosine matrix.

It is observed from Figure 6(b) that (0.5 ∂ut/∂xn) and (ut), as well as (∂un/∂xn) and (un) are negatively

correlated (for this particular image the correlation coefficient is ≈−0.7 for both top and bottom pan-

els, and similar values are observed for other realisations, too), which in turn make Bn negative. The

negative correlation between the velocity and its gradient across the interface is a manifestation of the

fact that, whether ut (or un) is positive or negative, the magnitude of ut (or un) is mostly smaller in the

non-turbulent region compared to the turbulent region. And this higher magnitude of kinetic energy

in the turbulent region is the cause for driving or diffusing the interface outwards (i.e., along n).

B. Kinetic energy fluxes at large scales (RANS): Advective effects

The RANS kinetic energy evolution given by (18) is the other extreme of the unfiltered case,

wherein the fluxes are almost independent of viscosity and governed by large-scale fluctuations

obtained from the ensemble average. The growth of Vo is due to the advective flux (16), which for

our 2D data (and ignoring the pressure velocity terms) is given by

�2D
A =

∫ s f

s=0

(Pi + Qi )ni ds, (31)

where, i, j = 1, 3, and

Pi ≡ u j u
′
i u

′
j and, Qi ≡ u′

j u
′
j u

′
i (32)

are the flux vectors corresponding to the advection of kinetic energy by the mean and fluctuations,

respectively.

Figure 7(a) shows the ensemble averaged kinetic energy field along with the interface detected

on the mean field with the same threshold of K0 = 0.1% as before. Note that even though the overall

field looks smooth (1250 fields are employed for averaging), there are still very small undulations

that are noticeable on the interface, due to lack of complete statistical convergence. Figure 7(b) is

a zoomed in view of the interface which also shows vectors P (black) and Q (red), and the normal

vector n is upwards. Small “bumps” are still visible at very small scales in the discretely marked

interface although n is predominantly in the wall-normal direction (except for the small growth of the

boundary layer). Calculations show that the terms P3n3 and Q3n3 contribute about equally to �2D
A ,

and the other terms are about an order of magnitude smaller than these. Q3 = u′
j u

′
j u

′
3 implies that

the wall-normal fluctuations carry the turbulent kinetic energy more efficiently than the streamwise

fluctuation, not surprisingly because n3 is much greater than n1. Out of the two terms contributing
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FIG. 7. Components of RANS advective flux �2D
A along the interface. (a) Ensemble averaged kinetic energy (RANS) field

along with the interface at a threshold value of K0 = 0.1%, with contours of kinetic energy the same as shown in Figure 2.

(b) Portion of the interface zoomed in from (a) along with vectors (skipping every four vectors for clarity); the mean advection

flux vector (P, with Pi ≡ u j u
′
i u

′
j ), black arrows; and the turbulent advection flux vector (Q, with Qi ≡ u′

j u
′
j u

′
i ), red thin

arrows.
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to P3n3, u1u′
1u′

3n3 dominates, implying that mean streamwise velocity in conjunction with the

Reynolds stress at the interface also contribute significantly to the entrainment. It is interesting to

note that the inviscid analysis of Reynolds21 shows that there is a “jump” across the interface in

the Reynolds stress which is equal to the product of the mean normal velocity across the interface

and the “jump” in the mean tangential velocity. This shows that P3 can in turn be related to the

mean effect. However, we show that fluctuations also have an equally important role to play in the

large-scale entrainment via the term Q3.

C. Kinetic energy fluxes at intermediate (filtered) scales: Viscous/advective effects

For a multi-scale analysis of the entrainment, the PIV database is coarse-grained using spatial

filtering and contributions from viscous and advective fluxes are quantified. The velocity field and

nonlinear terms are filtered with a kernel G�(x), such that, e.g., ũi =
∫

ui (x − x′)G�(x′)d2x′. In

the present case, we employ a 2D box-filter G�(x, z) = 1/�2 if |x|, |z| < �/2 and G�(x, z) = 0

otherwise.

For the PIV data, 2D surrogates of LES advective (24) and viscous (25) fluxes are defined

respectively as

�2D
A� =

∫ s f

s=0

Ãi ñi ds and, �̂2D
ν� =

∫ s f

s=0

B̃i ñi ds, (33)

where, the LES advective flux vector Ã j ≡ (1/2)(ũ j ui ui − ũ j ũi ui ), and the corresponding viscous

flux vector B̃ j ≡ −2νũi Si j . Figures 8(a) and 8(b) show two examples of filtering at filter sizes of

�+ = 150 and 2250, respectively. We recall that the spacing between the vectors is about 50 viscous

units. The effect of filtering is clearly visible in the top panel, with small scale features smoothed out

for higher filter size. The viscous flux vector has essentially the same characteristics for both filter

sizes (as noticed in connection with the unfiltered case); B̃ is mostly facing outwards in the direction

of ñ, even though the magnitudes have dropped drastically with filtering. On the other hand, the

advective flux vectors Ã have much higher magnitudes than B̃, and are generally directed in the

negative x-direction. For smaller filter sizes (cf., Figure 8(a), middle panel) Ã has no preferential

alignment with ñ; for larger filter sizes (cf., Figure 8(b), middle panel) Ã is more uniform and still

not aligned with ñ; however, now Ã might seem better correlated with ñ simply because the interface

is smoother. In fact, (1/ ls)
∫

(̂̃A · ñ) ds (where, ˆ denotes the unit vector) increases from 0.01 to 0.03

for �+ increasing from 150 to 2250 for the data in Figure 8, whereas, (1/ ls)
∫

(̂̃B · ñ) ds ≈ 0.9 for

both filter sizes.

Consequently, advective and “resolved” viscous fluxes contribute differently to the entrainment

(or in this case, to the outward growth of the interface) at various scales. Advective fluxes are

dictated by the large-scale features of the flow, and not by the local interface, and rely on their

large magnitudes (rather than alignment with local normal) to drive the interface outwards. On the

other hand, viscous flux vectors are largely aligned with the local interface normally and drive the

interface, notwithstanding the fact that their magnitudes decrease with increasing filter size, thus

becoming less effective at higher �+.

Calculations of �2D
A� and �̂2D

ν� for individual fields for the Reτ = 14 500 data are shown in

Figures 9(a) and 9(b), respectively, for �+ = 150 and 2250. The convergence with Ni to their

respective mean values occurs relatively quickly for both �2D
A� and �̂2D

ν�. Note that the first data

points in Figure 9 correspond to the fields shown in Figure 8.

D. Comparison of unfiltered and RANS with multi-scale (LES) fluxes

Figure 10 shows the viscous (unfiltered) flux �̂2D
ν , the advective RANS flux �2D

A , and the

individual LES fluxes �̂2D
ν� and �2D

A�, as well as their sum as function of filter scale, for the

Reτ = 14 500 data in dark symbols. (The lighter symbols are for different threshold levels to be

discussed below.) The dashed line represents the value of �2D
A . The data points for the unfiltered and

multi-scale fluxes are first calculated for individual images and subsequently averaged over all
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FIG. 8. Components of LES fluxes along the interfaces. (a) Filter size �+ = 150. (b) Filter size �+ = 2250. Top panel:

Filtered kinetic energy field along with the interface at a threshold value of 0.1%, with contours of kinetic energy using

the same contour colours as shown in Figure 2. Middle panel: Portion of the interface zoomed in from the top panel along

with vectors (skipping every other vector); normal to the interface (n), blue arrows; the LES advection flux vector (Ã, with

Ã j ≡ (1/2)(ũ j ui ui − ũ j ũi ui )), red arrows; and the LES viscous flux vector (B̃, with B̃ j ≡ −2νũi Si j ), short black arrows.

Bottom panel: Magnitude of advective (solid lines) and viscous (dashed lines) flux vectors [m3s−3] normal to the interface

( Ãn, B̃n) for the zoomed view in the middle panel. Note that in both the middle and the bottom panels, the viscous flux

vectors are multiplied by a factor 10 in (a) and 100 in (b) for visual clarity.

FIG. 9. Variation of (a) �2D
A�(�) [m4s−3] and (b) �̂2D

ν�(�) [m4s−3] across the 1250 filtered vector fields at �+ ≈ 150 (filled

symbols - left ordinate) and �+ ≈ 2250 (empty symbols - right ordinate), solid lines (—–) show the convergence of the

corresponding mean values with increasing number of images Ni.
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FIG. 10. Comparison of unfiltered, RANS, and LES fluxes [m4s−3] for the data set at Reτ = 14 500 (in dark symbols). �̂2D
ν

and �2D
A are indicated in the figure (+ symbols); the dashed (black) line is �2D

A (independent of scale because it is RANS);

�2D
A�, �; �̂2D

ν�, • ; and �2D
A� + �̂2D

ν�, △. The “error” bars on the symbols represent one standard deviation, and are plotted on

only the top-side. Note that we also show the case of two other threshold levels for detecting the interface, c0 = 0.5 × 10−3

and 1.5 × 10−3 (where K0 = c0
1
2

U 2
∞) in light (grey and rose) symbols. The values for c0 = 0.5 × 10−3 are the lowest of the

three thresholds.

available images. Also, one standard deviation is presented as “error” bars on one side of the

symbols. As expected, at the smallest scale, the filtered viscous flux �̂2D
ν� coincides with the unfiltered

case at the measurement resolution, while �2D
A� is zero since no subgrid-scale fluctuations occur

when filtering at the measurement resolution. With increasing filter size �, the viscous resolved

flux �̂2D
ν� decreases while �2D

A� increases. At the largest filter size the latter approaches the purely

advective flux in the RANS formulation. Furthermore, all the fluxes are positive and the analysis and

the experimental results concomitantly show that the boundary of the turbulent region is growing

outward into the non-turbulent region, at all scales in the various representations (unfiltered, filtered,

and RANS).

Ideally, as mentioned in Sec. IV B, we would have expected the fluxes from the unfiltered

case, RANS, and total multi-scale LES filtered cases to be about the same, independent of the scale

�. Specifically, at large �, the combined multi-scale (LES) flux should have been the same as

the advective RANS flux, which it does seem to approach at large scales. The slight difference is

attributed to the largest filter size that could be used, which is about 0.5δ, and the trends in the graph

show that a larger filter (with an even larger field) might make the total LES fluxes even closer to

the RANS value.

On the other end of the scale, for small �, even though the viscous (unfiltered) flux �̂2D
ν

matches the viscous resolved (LES) flux �2D
ν�, their magnitudes are significantly below those of

the RANS case. This is due to several reasons. First, �̂2D
ν is the 2D surrogate of the 3D �ν value.

Note that even though �2D
A is also 2D, the difference with 3D is expected to be zero because the

RANS interface is 2D in the presently considered flow due to the 2D nature of the mean boundary

layer flow (specifically, fluxes involving the x2 direction vanish). However, at the smallest scales

in instantaneous fields, 3D effects are important. Statistically speaking, small-scale isotropy could

be invoked to deduce the 3D statistical values from those in 2D. As shown in Appendix C, when

assuming local isotropy for the small scales, one can show that 3D fluxes should be about twice

the 2D fluxes. Even though this would make �̂2D
ν closer to the RANS flux, it is still almost an

order of magnitude smaller. Second, the experimental velocity field is obtained at �x+ ≈ 50, which

is about 4-10 times larger than the Kolmogorov length scales for z-locations between the outer to

mean interface location. It is not unusual for PIV to under-predict quantities such as dissipation by

an order of magnitude for such �x/η values.48, 49 As cautioned before, we believe lack of spatial

resolution may explain the low value of �̂ν compared to the RANS-level flux. We also note that

in calculating �2D
A , the pressure-velocity correlation term could not be included. An estimate of

the neglected term
∫

(1/ρ)u′
3 p′n3ds (assuming that

∫
(1/ρ)u′

1 p′n1ds is negligible due to small n1
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compared to n3) made from the DNS kinetic energy balance for a turbulent boundary layer at Reτ

= 1272 by Schlatter and Örlü50 is ≈10% of the calculated �2D
A with an opposite sign.51

The effect of the threshold level on the variations in the calculated fluxes are exhibited in

Figure 10 by plotting the un-averaged, filtered and RANS fluxes for c0 = 0.5 × 10−3 and 1.5 ×

10−3 (recall that K0 = c0
1
2
U 2

∞) in lighter symbols. Even though there is slight shift in the measured

distributions, the overall trend is the same.

E. Scaling of fluxes and the entrainment velocity

To understand the scaling of the fluxes the calculations similar to Sec. V D are repeated for the

database at Reτ = 7870 (using the same threshold value of 0.1%). The PIV velocity fields of Adrian,

Meinhart, and Tomkins29 at Reτ = 2790 are also used to calculate the fluxes (even though there are

only 50 realisations available and we have to employ a threshold value of 0.15%). Results for the

measured fluxes shown in Sec. V D were in dimensional units, i.e., they were not normalised. In order

to compare results at different Reτ , it useful to define fluxes per unit interface length, accordingly,

�̂2D
ν ≡

1

ls

�̂2D
ν , (34)

where ls is the total interface length of the individual fields, i.e., �̂2D
ν is the viscous flux per unit

length. It is made non-dimensional by uτ , i.e., �̂2D+
ν = �̂2D

ν /u3
τ , and a similar definition is also

used for the advective flux. Normalised fluxes for Reτ = 14500, 7870, and 2790 are plotted in

Figures 11(a)–11(c) with the abscissa normalised by inner, outer, and Taylor microscale (at the mean

interface location of ≈0.67δ), respectively. A reasonable collapse of �̂2D+
ν at the ordinate for the

three Reτ data (even though � differ by more than an order of magnitude between the different

Reynolds numbers) seems to suggest that the flux per unit length does scale with u3
τ . This might not

be surprising, considering the fact that u′ (the turbulent velocity fluctuations) scale almost linearly

with uτ even as far from the wall as the interface location. The role of local fluctuating velocity in

the propagation of the interface has also been observed by Holzner et al.52 in their experiments and

DNS with oscillating-grids.

Note that the inner and outer normalisation (see Figures 11(a) and 11(b), respectively) tend

to collapse the small and the large �s differently. The viscous scaling is less satisfactory at all �,

whereas a better collapse of large scales with outer scaling is simply because large eddies scale

with the boundary layer thickness δ. On the other hand, λT seems to collapse the data well for the

lower/mid range of �. This is likely because length scales which dictate the entrainment at small

scales are of the order of Taylor microscale (e.g., da Silva and Taveira27 have shown that the radius

of the vortices which reside along the interface are comparable to the large vorticity structures and

are of the order of Taylor microscale in shear-flows). The significance of λT at smaller scales and that

of δ at largest scales is also exemplified in the “mass-entrainment spectrum” presented by Chauhan

et al.25 which characterizes the length scales at which the local and the total mass are entrained into

the boundary layer. As an aside, we note that the Kolmogorov length scale η+ is relatively invariant

with Reτ in the outer region of the boundary layer, and the variation in Taylor micro-scale λ+
T is

moderate.53

Finally, some observations regarding entrainment velocities are made. Recalling the requirement

(from the fact that total flux is constant at any scale, see Eqs. (28) and (D7)), that v�
s S(�) is a constant,

if the surface area S(�) follows fractal like scaling S(�) ∼ �2−D f with a fractal dimension of

approximately Df = 7/3 (e.g., see, Ref. 19), then S(�) ∼ �−1/3. This should hold within a range

of scales between an inner and outer cutoff scale. This leads to the conclusion that the average

entrainment velocity at scale � follows,

v�
s (�) ∼ �1/3, (35)

consistent with inertial-range Kolmogorov scaling of transport velocities. We cannot, however, verify

this prediction since even though the surface area scales as S(�) ∼ �−1/3, the total flux (�A� + �ν�)

is not observed to be independent of scale (see Figure 10) due to possibly scale-dependent effects

from 3D to 2D corrections and resolution issues at the smallest scales. Due to 2D measurement
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FIG. 11. The normalised fluxes per unit interface length �2D ≡ (1/ ls )�2D , (�2D+
A� + �̂2D+

ν� ) at Reτ = 14 500 (black △), Reτ

= 7870 (blue �), and Reτ = 2790 of Adrian, Meinhart, and Tomkins (red ★). Normalisation of abscissa with (a) viscous units

�+ = �/(ν/uτ ), (b) outer units �/δ, and (c) Taylor microscale �/λT. (a), (b), and (c) also show �̂2D+
ν and �2D+

A denoted by

+, ×, and ◦ for Reτ = 14 500, 7870, and 2790, respectively. The horizontal dashed, solid, and dashed-dotted lines correspond

to �2D+
A for Reτ = 14 500, 7870, and 2790, respectively. Note that “entrainment velocity” is v� 2D

s = (�2D
ν� + �2D

A�)/K0,

and therefore the figures also present scaling of the v� 2D
s . Scaling of v� 2D

s ∼ �1/3 is observed when the fluxes at all scales

are equal.

planes, we are measuring the length and not the surface area, and the entrainment velocity is in a 2D

plane. For the sake of present discussion, let us denote the 2D surrogate as v� 2D
s . As it turns out,

the scaling in 3D holds for the 2D case also, v� 2D
s ∼ �1/3 because the total length ls at any scale

� is now ls(�) ∼ �1 − d, with d = 4/3 due to the additivity rules of fractal dimensions in planar

intersections. Furthermore, v�
s = (�ν� + �A�)/K0, and similarly v� 2D

s = (�2D
ν� + �2D

A�)/K0. To

illustrate such a scaling, v� 2D
s ∼ �1/3 is indicated in Figure 11(c) with a line of slope 1/3. Not

surprisingly, the data show a larger slope at small �, because the fluxes are underestimated. Some

indication that the slope of the data may tend towards 1/3 can be seen at increasing �.

VI. SUMMARY AND CONCLUSIONS

Properties of various transport mechanisms across the turbulent/non-turbulent interface are

examined via a multi-scale analysis of the kinetic energy equation and experimental data obtained in

high Reynolds number turbulent boundary layers. Operationally, the TNTI is identified with a kinetic

energy (K) threshold applied to the experimental PIV data. Our analysis shows that it is the viscous

stresses that transport K across the interface (referred to here as the “nibbling” process), whereas if the

same analysis is carried out for an “averaged flow” (ensemble - or Reynolds averaged formulation),

the transport is dominated by the advective fluxes (considered in this paper as representative of
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the “engulfment” process) with negligible viscous contributions. In between, a multi-scale analysis

by filtering the fields at particular length scales shows that except at the smallest and largest

scales, both viscous (nibbling) and advective (engulfing) processes are active. Furthermore, the

analysis suggests that independent of the scale, the total flux should be approximately the same.

Consequently, the results are consistent with “engulfment” and “nibbling” being viewed as describing

the same entrainment process, however, at the largest and smallest scales, respectively. At in-between

length scales both advective and nibbling contribute to the overall entrainment. We stress again that

the equivalency between the concept of “large-scale engulfment” and the more precisely defined

“advective flux” at various scales that we have assumed here may not correspond precisely to prior

interpretations or definitions of “large-scale engulfment” and this should be kept in mind.

Two-dimensional experimental data from PIV in turbulent boundary layers at Reτ of 14 500

and 7870 (along with a relatively smaller data-set of Adrian, Meinhart, and Tomkins29 at Reτ =

2790) are analysed to understand the specific nature of the viscous and advective fluxes operative

at the interface. At the smallest scale (describing the nibbling process), the viscous fluxes drive

the growth of the boundary layer by the work done by the viscous stresses. This is confirmed

by the strong negative correlation of the normal/tangential velocities and their gradients along the

interface. Qualitatively the process of entrainment by viscous fluxes wherein the viscous flux vector

is aligned with the local interface normal remains the same at increasing scales even though the

flux magnitudes decrease rapidly as the filtering scale is increased. Advective fluxes on the other

hand drive entrainment primarily due to their large magnitudes, rather than any particular alignment

with the local interface. At large scales, the interface flattens and the local normals to the interface

become less random, making the alignment between the advective flux vector and local normal

slightly higher. At the largest scales, where the entire entrainment is driven by advective fluxes

(describing the engulfment process), two specific contributions occur equally: the mean flow and

shear-stress interaction, and the advection of K due to turbulent fluctuations. The former is related

entirely to the mean flow (due to the relation given by Reynolds,21 between shear-stress and mean

tangential velocity jump) and has been the one studied mostly in the literature. However, it is shown

that for entrainment the advection by turbulent fluctuations is also equally important. The multi-scale

flux calculations based on the LES filtering formalism show that with increasing scale the advective

flux contribution becomes dominant over the (resolved) viscous contribution. As a result, for most

intermediate scales (except for the smallest), advective fluxes prevail over nibbling.

While the present PIV data provide us with sufficient information at high Reynolds numbers

to describe the overall trends of each of the processes correctly, lack of spatial resolution deep into

the viscous range yields viscous nibbling fluxes that are smaller than the advective ones that operate

at the large scales. Nonetheless, the transport equation clearly shows that viscous nibbling must

rise sufficiently to balance the overall entrainment flux that determines the growth of the turbulent

boundary layer.

Viscous and advective fluxes are analysed at multi-scales for three different Reynolds numbers

from two different laboratories, and collapse well when the fluxes are converted to fluxes per unit

interface length and normalised with u3
τ . This shows that uτ or the local fluctuating velocity (since

the local fluctuating velocity in the outer region scales with uτ ) in the laboratory frame (rather

than attached to the interface) is the appropriate velocity scale (in general agreement with Holzner

et al.52). When length-scales are normalized with the Taylor scale, reasonable collapse is observed

in the small/mid length scales, highlighting the importance of the Taylor scale. This may be expected

since we recognize that the definition of the nibbling flux (Eq. (7)) involves the product of the viscous

shear stress, a small-scale quantity, with the local velocity, a large-scale one. On the other hand, fluxes

at larger � seem to scale with δ similar to the largest eddies in the outer region of the boundary layer.

Furthermore, scaling of the entrainment velocity v�
s ∼ �1/3 derived by considering a multiscale

(fractal) interface and constant flux across scales could not be verified due to under-estimation of

viscous fluxes at smaller �, however, approaches such a scaling at larger scales.

These results provide evidence at higher Reynolds numbers that interfaces in turbulence are

accompanied by transport processes that depend on scale. The results suggest that the overall rate

of entrainment is determined by the large-scales but that the actual entrainment occurs physically

at the small diffusive scales along the interface. Nevertheless, lack of sufficient spatial resolution at
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the smallest scales prevented us from capturing the full magnitude of the viscous fluxes and hence

the data do not yet fully prove whether once viscous fluxes are fully resolved they match the ones

from the large scales. Nevertheless, the theoretical analysis of the energy budget and overall growth

of the interface indicates that this must be the case.
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APPENDIX A: EFFECTS FROM IRROTATIONAL KINETIC ENERGY WITHIN

THE CONTROL VOLUME Vo

Here we consider terms that appear in (8). We begin with the closed-surface integral∫∫
So

(
K +

p

ρ

)
(ui − Ui )ni d S containing the inertial terms. If we now assume that the flow out-

side the interface is mostly irrotational, we may apply the unsteady Bernoulli equation between any

point on the boundary and the far-field, K + p/ρ = p∞/ρ − ∂φ/∂t (where φ is the velocity potential),

and obtain
∫∫

So

(
K +

p

ρ

)
(ui − Ui )ni d S ≈ −

∫∫

So

(
∂φ

∂t

)
(ui − Ui )ni d S, (A1)

since
∫∫

So
(p∞/ρ)(ui − Ui )ni d S = 0 from mass conservation (

∫∫
So

(ui − Ui )ni d S = 0). The closed

surface integral on the right hand side of (A1) can be written (recalling that n points inwards into

Vo) as

−

∫∫

So

(
∂φ

∂t

)
(ui − Ui )ni d S =

∫∫∫

Vo

∂

∂xi

(
∂φ

∂t

∂φ

∂xi

)
dV =

∫∫∫

Vo

(
∂

∂t

∂φ

∂xi

) (
∂φ

∂xi

)
dV,

(A2)

where we have assumed that ui − Ui = ∂φ/∂xi and used ∇2φ = 0. This leads to

−

∫∫

So

(
∂φ

∂t

)
(ui − Ui )ni d S =

∫∫∫

Vo

∂

∂xi

(
∂φ

∂t

∂φ

∂xi

)
dV =

dK
pot

Vo

dt
, (A3)

where K
pot

Vo
=

∫∫∫
Vo

(1/2) (∂φ/∂xi )
2 dV is the kinetic energy in the potential-flow portion of the

fluctuations outside of the interface.

The other term in (8) that needs to be considered is the surface integration
∫∫

So
KUi ni d S =

K0

∫∫
Sint

U1n1d S + U1

∫∫
SL

K n1d S +
∫∫

SU
KU1n1d S. The integral over the interface Sint was al-

ready considered in the main text, while the integral over SU vanishes since n1 = 0 there. Along SL,

the inward pointing normal has n1 = 1. Along this surface K < K0 and is likely small. Consistent

with the previous reasoning we assume the fluctuations at most contain irrotational contributions.

Let 〈Kpot〉L be the average value of these fluctuations along SL. Typically one expects 〈Kpot〉L ≪ K0,

especially if Kpot decays rapidly away from the interface. Combined with the arguments in the main

text leading to (10), the surface integral can be written as
∫∫

So

KUi ni d S = −U1 K0

dδ

dx
Axy + U1〈K pot〉L

dδ

dx
Axy . (A4)

Finally, if one includes explicit consideration of the irrotational portion of the kinetic energy in Vo,

(10) can instead be written according to

d

dt

(
KVo

− K
pot

Vo

)
+

(
K0 − 〈K pot〉L

)
U1

dδ

dx
Axy = �ν − D. (A5)
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In other words, it can be seen that the flux �ν affects the portion of the outer kinetic energy that

is assumed to be rotational. It will have no effect on the irrotational portions, which instead can be

affected by pressure work at the interface. We note that in the analysis of the experimental database

we always consider a frame of reference moving with the free-stream velocity (i.e., U1 = 0), and

the second term in (A5) is identically zero.

At this point, it might be interesting to have an estimate of the term d/dt(K
pot

V0
). To this end,

we employ the expression of Phillips2 for the decay of kinetic energy in the potential region due

to random fluctuations at the interface, according to which the kinetic energy ∼h−4, where h is the

distance from the interface. It is experimentally validated by Bradshaw54 for the case of a turbulent

boundary layer and the expression seems to hold even inside the intermittent region of the boundary

layer. Therefore, we consider the (potential) kinetic energy of the irrotational fluid in the control

volume V0, which is assumed to vary like Kpot = K0(z/δ)−4, where z is the wall-normal distance.

Note that at z = δ, we have the usual Kpot = K0. Hence, the total potential kinetic energy in the

control volume V0 per unit spanwise width (with δ = δ0 + xc, where the constant c = dδ/dx) is

K
pot

V0
= K0

∫ L x

x=0

∫ h

z=δ(x)

( z

δ

)−4

dzdx =
K0

3

∫ L x

x=0

(
δ −

δ4

h3

)
dx

=
K0

3

[
δ0L x +

cL2
x

2
−

1

5h3c

{
(δ0 + cL x )5 − δ5

0

}]
, (A6)

where, Lx is the length of the streamwise domain under consideration, and we have taken the control

volume to extend up to a constant height h in the z-direction. Now, δ0 is a function of time (such that

in a frame of reference moving with the free-stream velocity the boundary layer moves outwards),

and dδ0/dt = U∞dδ/dx |δ0
= U∞c. This suggests that (with K0 = c0( 1

2
U 2

∞), c0 = 10−3),

�2Dpot+ ≡
1

L x u3
τ

dK
pot

V0

dt
=

c0U+3
∞ c

6

[
1 −

(
cL x

h

)3
{(

δ0

cL x

+ 1

)4

−

(
δ0

cL x

)4
}]

. (A7)

In the present experiments for the case of Reτ = 14 500, we have c = 0.012 and U+
∞ = 31.75. An

upper bound of �2Dpot+ results when we extend the volume to ∞, or in the limit h/� → ∞, and

this results in �2Dpot+ ≈ 6.4 × 10−2. However, for a realistic and finite h, say h = 2δ, �2Dpot+ ≈ 3.2

× 10−2. These values of �2Dpot+ should be compared to the distribution of �2D+ in Figure 11, and

shows that maximum of �2Dpot+ is about 5%-10% of the RANS case �2D+
A . Note that, we expect

�2Dpot+ to be relatively invariant with the filter size �, since the average RANS interface and the

un-averaged interface are nominally at the same z-location.

APPENDIX B: INTERFACE FOR MULTI-SCALE ANALYSIS

The interface is defined with the same threshold of K = 10−3
(

1
2
U 2

∞

)
for each formalism, based

on unfiltered fields, RANS, and filtered (LES) fields. Specifically, K̃ ≡ (1/2)(ũ2 + w̃2) for the LES

case and K ≡ (1/2)(u2 + w2) for the RANS case, in a co-ordinate system which moves with the free

stream velocity (i.e., U = 0). Due to the nonlinear nature of the definition of K it is not obvious if

using the same threshold would yield an interface which (at least visually) could be considered as the

same interface expressed at various resolutions. In this appendix, we provide empirical evidence that

indeed the basic definition and the same threshold enable us to roughly identify the same interface

at various resolutions.

By taking a single field as an example, Figure 12 shows various ways in which K could be

defined. It shows the original interface along with three definitions of K̃ at �+ ≈ 950: (i) K̃bin

obtained by filtering the binary (T/NT) image (with the turbulent region assigned a value unity and

zero otherwise, and obtaining an interface at the value of 0.5 after filtering), (ii) calculating K and

then filtering, i.e., (1/2)( ˜u2 + w2), and (iii) first filtering and then calculating K, i.e., (1/2)(ũ2 + w̃2).

Out of the three, the third is the most logical definition which is extendable to any scale, and the

one used in the main text. Figure 12 shows that visually they all appear similar and not far from the
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FIG. 12. A snapshot of the velocity field relative to the free-stream at Reτ = 14 500 from planar PIV. The solid black

line indicates the location of the TNTI computed as an iso-kinetic energy surface using a threshold of K = 10−3
(
0.5U 2

∞

)
.

The same TNTI is computed using different filtering techniques to compute K̃ at a scale �+ ≈ 950, where the dotted,

dash-dotted, and dashed lines represent K̃bin (for definition see text), (1/2)(ũ2 + v2) and (1/2)(ũ2 + ṽ2), respectively. TNTI

location averaged across 1250 fields for the RANS case is indicated by the dashed (blue) line. Colour contours are the same

as presented in Figure 2.

unfiltered interface. With K̃ as the definition, Figure 12 also shows the RANS interface (i.e., first

ensemble averaging the fields and then using the threshold of 0.1%) in a (blue) dashed line.

APPENDIX C: ON THE ISOTROPY OF VISCOUS FLUXES ALONG THE INTERFACE

Viscous fluxes engage in enlarging the turbulent region at the smallest scales and it might be

interesting to ascertain to what extent these fluxes at the small scales exhibit local isotropy. If local

isotropy holds true, then we can use the 2D data to deduce the 3D flux, and help fill the current

measurement gap.

To consider the isotropic relation for the viscous flux 〈2νSijujni〉s (where 〈〉s denotes average

along the interface as well as over ensembles), we begin with the general fourth order tensor, which

under the assumption of isotropy is given by

〈Si j u pnq〉s = αδi jδpq + βδi pδ jq + γ δiqδpj , (C1)

where, i, j, p, q = 1, 2, 3, and α, β, and γ are constants to be determined. Conditions of incompress-

ibility (Sii = 0) and the symmetry of viscous stress tensor (or Sij = Sji) lead to

3α + β + γ = 0;

β − γ = 0.

}
. (C2)

Equation (C2) yields α = −(2/3)β and γ = β, which when replaced in (C1) furnishes the

expressions for the contractions needed for the 3D and 2D cases:

〈2νSi j u j ni 〉s = 20νβ;

〈2νSi j u j ni 〉s |2D =
28

3
νβ,

⎫
⎬
⎭ , (C3)

where, for 〈2νSijujni〉s|2D, we use i, j = 1, 3. This shows that the 2D expression will under-predict

the viscous flux by a factor of 15/7, i.e., about 2.

The validity of isotropy can be checked with the measured data, for which the following

individual expressions are useful:

〈S11u1n1〉s = 〈S22u2n2〉s = 〈S33u3n3〉s =
4

3
β;

〈S12u1n2〉s = 〈S21u2n1〉s = 〈S31u3n1〉s = · · · = β;

〈S12u1n1〉s = 〈S21u1n1〉s = 〈S31u1n1〉s = · · · = 0.

⎫
⎪⎪⎬
⎪⎪⎭

. (C4)

The mean values of 〈S11u1n1〉s and 〈S22u2n2〉s in [ms−2] are −21.4 and −11.4, whereas those

of 〈S12u1n2〉s and 〈S21u2n1〉s are −14.4 and −5.7. To the degree that the average of the latter two

(−10.1) is smaller in magnitude than the average of the first two (−16.4), and with a ratio of
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FIG. 13. Density distribution of measured components of the tensor Sijupnq [ms−2] along the interface for the case of Reτ

= 14 500 across all images. (a) Components for which the mean 〈Sijupnq〉s �= 0 under isotropy. (b) Components for which

the mean 〈Sijupnq〉s = 0 under isotropy.

16.4/10.1 of the same order of magnitude as 4/3, the trends agree with small-scale isotropy. The

mean values of 〈S11u1n2〉s, 〈S11u2n1〉s, 〈S21u2n2〉s, 〈S21u1n1〉s, and 〈S22u2n1〉s are 0.7, −2.6, −0.9,

−0.2, and 0.2, respectively. These should be equal to zero according to isotropy, and the fact that

they are at most about 10% of the other terms is consistent with isotropy. However, clearly there are

significant deviations (factors ∼ 2) from predictions of isotropy.

To also obtain an impression of the distribution functions of these quantities, Figure 13 shows

histograms of the components of Sijupnq calculated from the 2D database at Reτ = 14 500. The

distributions shown in Figure 13(a) compared to those in (b) show that non-zero values arise from

non-symmetric distributions in (a) versus symmetric ones in (b).

It is known from Sec. V A that B is predominantly in the direction of n, and in our case the

interface is preferentially growing in an upward direction (i.e., a preferential rather than a uniform

density distribution of the angles between n and i). This is a probable cause of the lack of strong

isotropy of the viscous fluxes in the present experiments. In the case of “internal interfaces”14 where

there is no overall preferred growth direction of the interface, isotropy of viscous fluxes might be

better satisfied.

APPENDIX D: ENTRAINMENT VELOCITY AT MULTI-SCALES

The purpose here is to carry out an analysis similar to Secs. III, IV A, and IV B; however,

with an outer control volume which is deforming with its lower bounding surface attached to the

TNTI rather than being fixed. As usual, based on the Reynolds transport theorem, all final physical

variables and net fluxes will be equivalent. However, in a formulation with a deforming control

surface attached to the TNTI it is more natural to define an entrainment velocity.

Starting with the transport equation for the defect kinetic energy, integrating over the deforming

outer control volume, Vdo(x, t), and denoting uI as the local velocity of the surface or the interface

we obtain,

dKVdo

dt
=

∫∫

S(x,t)

K (ui − u I i )ni dS +

∫∫

S(x,t)

(
(u j − U j )

p

ρ
δi j − (u j − U j )τ

ν
j i

)
ni dS − D, (D1)

where KVdo
≡

∫∫∫
Vdo(x,t)

K dV and D is the dissipation inside Vdo(x, t). Now, the local entrainment

velocity is the difference of the interface velocity and the material velocity v = uI − u (see, e.g.,

Ref. 47). The kinetic energy inside Vdo is approximately zero at all times, therefore, even though Vdo

changes with time, dKVdo
/dt ≈ 0. Moreover, following Sec. III, i.e., using the Bernoulli equation
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K0 + p/ρ = p∞/ρ and noting that uI is non-zero only at the interface (SI) results in

K0

∫∫

SI (x,t)

v · ndS ≈ �ν − D. (D2)

It is natural to define the surface averaged entrainment velocity (vs) as

vs S =

∫∫

SI (x,t)

v · ndS, (D3)

where, S is the total interface surface area, S ≡
∫∫

SI (x,t)
dS. And in terms of these definitions and

assuming that D ≈ 0 in the V , (D2) becomes

K0vs S ≈ �ν . (D4)

This relates the entrainment rate at the smallest scales by viscous fluxes with an average entrainment

speed at the smallest scales, vs , see also Sec. III.

Continuing in the same vein, for the RANS case (cf., Sec. IV A), we have

K0v
A
s S A ≈ �A, (D5)

where, vA
s and SA are defined in a manner similar to (D3) however with the RANS interface

coordinate.

Similarly, for the LES case (cf., Sec. IV B):

K0v
�
s S(�) ≈ �A� + �ν�, (D6)

and similar definitions for v�
s and S(�). And since the total entrainment should be the same at small,

large, and intermediate scales, again

vs S ≈ vA
s S A ≈ v�

s S(�), (D7)

in accordance with (28).
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