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Abstract

The dissertation provides new multiscale methods for the analysis of heterogeneous
media.

The first part of the dissertation treats heterogeneous media using the theory of
linear elasticity. In this context, a methodology is presented for bounding the higher
LP norms, 2 < p < o0, of the local stress and strain fields inside random elastic
media. Optimal lower bounds that are given in terms of the applied loading and
the volume (area) fractions for random two-phase composites are presented. These
bounds provide a means to measure load transfer across length scales relating the
excursions of the local fields to applied loads.

The second part of the dissertation treats heterogeneous media using the peridy-
namic formulation of nonlocal continuum mechanics. In this context, a multiscale
analysis method is presented for capturing the dynamics inside fiber-reinforced
composites at both the structural scale and the microscopic scale. The method
provides a multiscale numerical method with a cost that is much less than solving

the full micro-scale model over the entire macroscopic domain.
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Introduction

This dissertation focuses on micromechanics, which is the analysis of multi-phase
materials for which the length scales of the individual phases are small relative to
characteristic length scales describing the greater body. The aim of micromechanics
is to relate the gross macroscopical behavior of heterogeneous media to the details
of their microscopical constitution!.

Many composite structures are hierarchical in nature and are made up of sub-
structures distributed across several length scales. Examples include fiber rein-
forced laminates as well as naturally occurring structures like bone. From the
perspective of failure initiation it is crucial to quantify the load transfer between
length scales. It is common knowledge that the load transfer can result in local fields
that are significantly greater than the applied macroscopic forces. The distribution
of local fields is of great fundamental and practical importance in understanding
many material properties?, such as breakdown phenomena [37] and the nonlinear
behavior of composites [36].

This work focuses on the behavior of local fields in composite media. The analysis
is carried out in the context of classical linear elasticity and in the context of
the peridynamic theory of nonlocal continuum mechanics, recently introduced by
Silling [62]. The goal in both cases is to compute the local field fluctuations about
average macroscopic fields inside heterogeneous media.

In the first part of this dissertation, Chapters 1-5 , composites made from two
linear isotropic elastic materials are considered. It is assumed that only the volume

(area) fraction and elastic properties of each elastic material are known. Quantities

IMarkov and Preziosi [45]
2Torquato [71]



useful for the study of load transfer include higher order moments of the stress and
strain fields inside the composite. The higher moments are sensitive to local field
concentrations generated by the interaction between the microstructure and the
macroscopic load. These quantities have seen extensive application in the theoret-
ical analysis of material failure, see [32]. In this work optimal lower bounds on the
higher moments of the local stress and strain fields are establish for several loading
conditions. These bounds provide the minimum amount of local field amplification
that can be expected from this class of composites.

The cases covered by this analysis do not yet provide the full story but they are
significant and necessary for further developments in this area. The cases covered

by this analysis include:

Optimal lower bounds on the higher order moments and the L* norm of
the local stress and strain fields when the applied macroscopic loading is

hydrostatic.

e Optimal lower bounds on the higher order moments and the L* norm of
the local stress and strain fields when the applied macroscopic loading is

deviatoric.

e Optimal lower bounds on the higher order moments of the hydrostatic com-
ponent of the local stress and strain fields for general applied macroscopic

loading when the bulk moduli of the two materials are the same.

e Optimal lower bounds on the higher order moments and the L*® norm of
the Von Mises equivalent stress and the deviatoric component of the strain
for general applied macroscopic loading when the shear moduli of the two

materials are the same.



e Optimal lower bounds on the higher order moments of the local stress and
strain fields for a subspace of mixed mode loading characterized by a special
dimensionless group of material parameters when the shear moduli of the

two materials are the same.

The microgeometries that attain these bounds depend upon the macroscopic load-
ing and material properties. Several distinguished parameter regimes are identi-
fied where the optimal configurations are given by layered materials, Hashin and
Shtrikman coated sphere (cylinder) assemblages [27], or coated confocal ellipsoid
(ellipse) assemblages [48, 68]. It is well-known that these microgeometries give ex-
treme effective properties, see for example [2]. In this analysis, it is shown that
these microgeometries give extreme field properties.

The second part of this dissertation, Chapters 6-11, aims at developing multi-
scale analysis method for heterogeneous media in the peridynamic formulation of
continuum mechanics. The peridynamic formulation is a nonlocal theory in which
particles in a continuum interact with each other across a finite distance, as in
molecular dynamics. The equation of motion in this theory is an integral equation,
which does not include the spatial derivatives of the displacement field, rather than
a partial differential equation as in the classical theory. These features allow for
the damage to be incorporated at the level of these particle-interactions, so local-
ization and fracture occur as a natural outgrowth of the equation of motion and
constitutive models?.

Some theoretical aspects of peridynamic theory such as the motion of phase
boundaries, nonlinear dispersion relations, and the dynamics of an infinite bar has

been described in [11, 67, 73, 75]. A description of a meshfree numerical imple-

3Silling and Askari [65]



mentation for the peridynamic formulation is given in [65], where bond failure is
related to the classical energy release rate in brittle fracture. The method is used
in [66] to simulate the tearing of nonlinear membranes and failure of nanofiber net-
works. The numerical solution of the peridynamic equation, has been also studied
in [13, 20]. Well-posedness of the linear peridynamic equation has been addressed
in [13, 14]. In [15], it has been shown that the integral operator in the linear peri-
dynamic equation of motion applied on a smooth function becomes in the limit of
vanishing non-locality just the differential operator of the Navier equation of linear
elasticity.

This work focuses on multiscale analysis of heterogeneous media using the peri-
dynamic formulation. The objective is to capture the dynamics in composites at
both the macroscopic scale and the microscopic scale with a cost that is much less
than the cost of full microscale solvers. Capturing load transfer in the peridynamic
context provides the ground work for understanding multiscale aspects of failure

propagation inside heterogeneous media.



Chapter 1

Optimal Lower Bounds on Local Stress
and Strain Fields in Random Media

1.1 Introduction

Over the last century major strides have been made in the characterization of ef-
fective constitutive laws relating average fluxes and gradients inside heterogeneous
media see for example [25, 46, 48, 50, 60, 70, 71]. However the knowledge of effective
properties alone are not sufficient for the quantitative description of load transfer
across length scales. Suitable mathematical quantities need to be invoked that are
sensitive to the presence of zones of high field values inside heterogeneous media.
Such quantities include the LP norms of the deviatoric and hydrostatic components
of the local stress and strain. In this work we develop new methods for bounding
the LP norms of the local stress and strain in terms of the applied loading for
2 < p < . The bounds provide a means to measure load transfer across length
scales relating the excursions of the local fields to the applied macroscopic loading.
Earlier work along these lines has been carried out for uniform applied hydrostatic
stress and strain and for uniform applied electric fields in random heterogeneous
media see, [41] and [42], and [40]. Those efforts deliver optimal lower bounds on
the LP norms for the hydrostatic components of local stress and strain fields as well
as the magnitude of the local electric field for all p in the range 2 < p < co. In this
treatment we build upon the earlier analysis and develop optimal lower bounds on
the hydrostatic and deviatoric components of the local stress and strain fields for
a ladder of progressively more complicated macroscopic load cases. In addition we
provide optimal bounds on the sum of the magnitudes of both hydrostatic and de-

viatoric parts of the local stress and strain. The analysis is carried out for random



two phase linearly elastic composites made from two isotropic elastic materials in
prescribed proportions. The bounds derived here quantify the minimum amount of
stress and strain amplification that can be expected from this class of composites.

In this work we focus on lower bounds for the basic reason that volume con-
straints alone do not preclude the existence of microstructures with rough inter-
faces for which the LP norms of local fields are divergent see [49], [17], and also
[35]. It is now well known that finite upper bounds on the integral norms of local
fields should be expected once one enforces a sufficient regularity of the interface
separating two elastic materials, see [7], [8], [39], and [38].

Higher L? norms of local fields are often used to describe phenomena related to
failure initiation inside heterogeneous media. In the applications the L* norm of
the local field is used to describe the strength domain for both elastic—perfectly
plastic, periodic fiber reinforced composites [23] and for random, rigid—perfectly
plastic composites and polycrystals see for example [69], [61], [54], [59], [58], [19]
22], [33], [51]. For p < oo the L? norm of the local Von Mises stress is used in the
description of failure probabilities see [3], [32], and [31].

We conclude noting that earlier work related to local field properties examines
the stress field around a single inclusion subjected to a remote constant stress at
infinity [74]. In that work an optimal lower bound is presented for the supremum
of the maximum principal stress for a simply connected stiff inclusion embedded
in an infinite elastic host. For a range of remote stresses it was shown that the
class of optimal inclusion shapes are given by the ellipsoids. The more recent
work presented in [24] provides an optimal lower bound on the supremum of the
maximum principal stress for two-dimensional periodic composites consisting of a
single simply connected stiff inclusion in the period cell. The bound is given in

terms of the area fraction of the included phase and the eigenvalues of the average



uniform stress applied to the composite. For an explicit range of prescribed average
stress the optimal inclusions are found to be given by the Vigdergauz [72] shapes.
Recently the work of [28] builds on the earlier work of [41, 42] and develops lower
bounds on the LP norm of the local fields for statistically isotropic two-phase
composites. However to date those bounds have been shown to be optimal only
for p = 2, their optimality for p > 2 remains to be seen. Optimal upper and lower
bounds on the L? norm of local gradient fields are given in [43].

The first part of the dissertation, Chapters 1-5, is organized as follows. In the
next section we present the boundary value problem for two-phase elasticity. Chap-
ters 2 and 3 provide lower bounds for a ladder of load cases of increasing generality.
These lower bounds are derived in Chapter 4. The optimal microstructures that
attain the lower bounds are introduced and discussed in Chapter 5.

In this part of the dissertation, we will adopt the notation of bold-face letters
for vectors consistent with convention used in the Mechanics literature. For com-
pleteness we also introduce the following notation. The rank one matrix formed
by taking the outer product of two unit vectors a and b is denoted by a® b with
elements (a®b);; = a;b;. The symmetric part of this matrix is denoted by a® b

with elements (a®b);; = (a;b; + a;b;)/2.

1.2 Elastic Boundary Value Problem for
Heterogeneous Media

In this section we present the canonical boundary value problem used to describe
elastic fields inside heterogeneous materials, [21], [30], [71], see also [48]. The het-
erogeneous medium occupies R?, d = 2,3 and is is composed of two elastically
isotropic materials with elasticity tensors denoted by C' and C?. The bulk and
shear moduli of material one and two are denoted by x; and pu;, and ko and

o respectively. The geometry inside the heterogeneous material is specified by



the indicator functions of phase one and two given by xi(x) and x»(x). Here
X1(x) takes the value 1 in phase one and zero outside and x»(x) = 1 — x1(x).
The elastic tensor associated with the two phase medium is denoted by C'(x) and
C(x) = x1(x)C* + xa(x)C?

The mean value of a field on R? is defined to be the limit of averages of the field
over progressively larger volumes [21], [30], [71]. We denote the cube of side length

r centered at a point x by Q(r,x). The mean value of a field f is given by

(Hx) = lim— fQ( Sy (L1)

r—00 Td

In what follows we will simply write (f) to denote the mean value of a field. The
medium is assumed statistically homogeneous in the sense that the mean values
{(x1), {x2) together with all higher order correlation functions are constants and
do not depend on the centers of the cubes over which the averages are taken [71].

The volume (area) fractions of phase one and two are defined to be

Ql = <X1> and 02 = <X2> (12)

and 91 + 92 = 1.
We impose a constant strain € on the heterogeneous material and we seek a local

elastic strain field €(x) of the form
€(x) = €+ é(x) (1.3)

where the fluctuation é(x) satisfies (¢) = 0. Hence (¢) is a constant function and
(€) = €. The fluctuation is given in terms of the displacement field @ with €;;(x) =
(0;1;(x) + 0;uj(x))/2 and we impose the condition (t)(0) = 0. The fluctuation u
satisfies {4(|af* 4 |€]*) dx < oo for any bounded subset S of R, d = 2, 3. The local

stress inside the composite is given by o(x) = C(x)e(x) and the equation of elastic



equilibrium inside each phase is given by
dive = 0. (1.4)

It is assumed that there is perfect contact across interfaces separating the two
materials. The traction at an interface with unit normal vector n is denoted by
the product on and is the vector with components given by [on]; = 0;;n;, where
summation is taken over repeated indices. Perfect contact implies that both the

displacement 1t and traction on are continuous across the two phase interface, i.e.,

~

u = lAl‘Q, (15)

1

O|1Il = 0|2Il‘ (16)

Here n is the unit normal to the interface pointing into material 2 and the subscripts
indicate the side of the interface that the displacement and traction fields are
evaluated on.

The existence of the solution 1 follows from the Lax-Milgram Lemma [21], [30].
The boundary value problem just described is known to hold for almost every
realization of a random two-phase medium associated with a stationary ergodic
random elasticity field see, [55], [21], [30] and also [48], [71].

For this case the macroscopic constitutive law is given by the constant effective

elasticity tensor C° relating the mean stress to the mean strain
<U>ij = Ciejk;lgkl? (1'7)

where repeated indices indicate summation. The effective elastic tensor is defined
in terms of the solutions of six basis problems for three dimensional elasticity and
three basis problems for two-dimensional elasticity. For three dimensional elastic

problems we fix an orthonormal basis e!, e?,e® For i < j and i = 1,2, 3 we choose



as our constant strains €7 = €' ® e’. The local strain fluctuation associated with

€7 is denoted by é¥(x) and the formula for the effective elasticity tensor is given

by
ikt = Comnop (€, + € Yem . (1.8)

The imposed strain € is regarded as a macroscopic quantity and is referred to as
the imposed macroscopic strain. The fields o(x), €(x) provide the local response to
the imposed macroscopic strain. The stress and strain fields o(x), €(x) also give the
local response to an imposed macroscopic stress @ = (o). This follows immediately
by fixing & and choosing € according to €; = (C’e);ﬂilﬁkl.

In what follows we consider all statistically homogeneous configurations of two
materials for which the volume fractions 6; and 65 are prescribed. The objective is
to provide explicit optimal lower bounds on the local stress and strain in terms of
the volume fractions, the elastic constants of the two materials, and the imposed
macroscopic stress and strain @ and €.

We describe the various components of stress and strain tensors used in the
bounds. Stress and strain tensor fields are represented by d x d symmetric matrix
valued fields with respect to a fixed coordinate system in R%, d = 2, 3. Let ¢(x) and
n(x) be two symmetric d x d matrix valued fields defined on R¢. Contractions of
two d x d matrix valued fields ¢ and 7 are given by ¢ : 7 = ¢ym;; and [[> = ¢ : .
Products of fourth order tensors C' and matrices v are written as C'Y and are
given by [C];; = Cijutm; and products of matrices n with vectors v are given
by [nv]; = mijv;. The fourth order identity map on the space of d x d matrices is
denoted by I and L = 1/2(6;x65 + 6419;x). The projection onto the hydrostatic
part of ¥(x) is denoted by ITH and is given explicitly by

1
d

5,6 and HHw(x)thZ(X)[. (1.9)

H _
IT; ) =
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The projection onto the deviatoric part of 1)(x) is denoted by IT” and T = TT# + 117,
When v(x) represents the local stress tensor, the well known Von Mises equivalent
stress is given by |[TIP(x)].

The isotropic elasticity tensor associated with each component material acts on

strain fields and is written as
C' = 2, 11" + dr,JI7 | for i = 1,2, (1.10)

where d = 2 for planar elastic problems and d = 3 for the three dimensional
problem.

In what follows we will display lower bounds on the LP norms of the local
hydrostatic components of stress and strain given by (x;(x)[IT#o(x)[P)'/P and
(xi (%) [T e(x)|PYMP | the LP norm of the local deviatoric components
O (X) TP o (x) [PYYP and (i (x)[TTP€(x) [PY1/P, and the LP norm of the full local
stress and strain (y;(x)|o(x)[PY/? and {x;(x)|e(x)[P)}/P. The L® norm of the mag-
nitude of a quantity ¢ taken over R? is denoted by [|¢||«. The bounds will be

derived for the full interval 2 < p < 0.
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Chapter 2

Optimal Lower Bounds on the Local
Stress Inside Random Composites

We present new optimal lower bounds on the local stress for a ladder of progres-
sively more general sets of imposed macroscopic stress. As we progress to more
general load cases we will apply additional hypotheses on the shear and bulk mod-
uli of the constituent materials. In this section we provide lower bounds for the
following applied macroscopic load cases: 1) lower bounds on the full local stress
for imposed hydrostatic stresses, 2) lower bounds on the full local stress inside
the material with larger shear modulus for elastic problems with imposed shear
stress, 3) lower bounds on the full local stress for p; = o, that are seen to be
optimal for a special class of imposed macroscopic stresses, 4) lower bounds on
the local Von Mises equivalent stress that are optimal for a similar special class
of imposed macroscopic stress fields, and 5) lower bounds on the hydrostatic and
deviatoric components of the local stress for the full set of imposed macroscopic
stresses subject to the hypotheses py = py and k1 = ko respectively.

In what follows will adopt the notation x, = max{ri, ko}, py = max{py, 2},

K_ = min{ky, Ko}, and p_ = min{uy, pa}.

2.1 Hydrostatic Applied Stress

In this section we consider imposed macroscopic stresses that are hydrostatic, i.e.,
of the form & = pI where p is a constant and [ is the d x d identity matrix. Here
it is assumed that the elastic materials inside the heterogeneous medium are well-
ordered i.e., (f1—p2) (k1 —K2) > 0. Without loss of generality we will suppose in this
section that p; > uo and k1 > Kko. We present lower bounds that are optimal for all

imposed hydrostatic stresses. The configurations that attain the bounds are given
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by the Hashin-Shtrikman coated sphere and (cylinder) assemblages. We describe
the construction of the coated sphere assemblage made from a core of material
one with a coating of material two. We note that the coated cylinder assemblage
is constructed similarly. One considers R? filled with a space-filling assemblage of
spheres with sizes ranging down to the infinitesimal. Inside each sphere one places
a smaller concentric sphere filled with “core” material one and the surrounding
annulus is filled with the coating material two. The volume fractions of material
one and two is taken to be the same for all of the coated spheres.

We begin by presenting optimal lower bounds on the moments of the local stress
inside material one.

2.1.1 Optimal Lower Bounds on the Local Stress Inside
Material One

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and s, then for an imposed hydrostatic macroscopic stress

o = pl the local stress inside material one satisfies

d—1
K1Ko + 27#2%1

r\1/r L/r
X o X 2 6 —
(xilo(x)]") ik + 29 iy (Byky + Oakin)

Ip|, for 2 <r < co. (2.1)

Moreover for d = 2(3) and for every r in 2 < r < oo the lower bound is attained by
the local stress inside the coated cylinder (sphere) assemblage with core of material
one and coating of material two.

A similar result holds for the local stress inside material two.

2.1.2 Optimal Lower Bounds on the Local Stress Inside
Material Two

Consider any heterogeneous medium with volume (area) fraction of materials one

and two given by 6; and 65, then for an imposed hydrostatic macroscopic stress

13



o = pl the local stress inside material two satisfies

Kiko + 2%1/@@
K1Ko + 2%#2 (91/’61 + (92:%2)

alo ()M = 6, Bl for2<r<ow.  (22)

Moreover for d = 2(3) and for every r in 2 < r < oo the lower bound is attained by
the local stress inside the coated cylinder (sphere) assemblage with core of material
two and coating of material one.

The optimal lower bound on the L* norm of the magnitude of the local stress

inside a random composite is given by the following result.

2.1.3 Optimal Lower Bounds on the L® Norm of the
Local Stress

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by 6; and 65, then for an imposed hydrostatic macroscopic stress

o = pl the stress field inside the composite satisfies

d—1
K1Ko + 27,&2/11

K1Ko + 2%#2 (01:‘11 + ‘gglig)

Il (2.3)

Moreover for d = 2(3) and for every r in 2 < r < oo the lower bound is attained by
the local stress inside the coated cylinder (sphere) assemblage with core of material

one and coating of material two.

2.2 Deviatoric Applied Stress

In this section we consider imposed macroscopic stresses that are purely devia-
toric, i.e., @ = a2, where II°’a? = . For two dimensional elastic problems any
deviatoric stress tensor can be expressed as the symmetric tensor product of two
orthogonal unit vectors a and b, i.e., 7 = s(a®b). Here s is an arbitrary scalar. In
three dimensions this type of stress tensor is referred to as a pure shear stress. For
two-dimensional elastic problems we present lower bounds on the local stress that

are optimal for all applied deviatoric stresses and for three dimensional problems
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we show that the lower bounds are optimal for any imposed pure shear stress. The
bounds are attained by simple laminates made by alternately layering material one
with material two in the proportions #; and 65 respectively. The direction normal
to the layers is denoted by n. The optimal choice of layer direction is given by
n=aorn=hb.

For a deviatoric macroscopic stress, we first present optimal lower bounds on
the local stress inside the component material with the larger shear modulus. Here
we denote the volume (area) fraction and indicator function of the material with

the larger shear modulus by 6, and x, respectively.

2.2.1 Optimal Lower Bounds on the Moments of the
Local Stress Inside the Phase with Higher Shear
Modulus

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by #; and 6, then for an imposed deviatoric macroscopic stress

P = s(a®b) the stress field inside the material with larger shear modulus satisfies

(xclox)M)Y = 0" [aP

, for 2 <r < oo, (2.4)

For d = 2,3 and for every 2 < r < oo the lower bound (2.4) is attained by a
simple laminate. The vector normal to the layer interface for the optimal laminate
is chosen according to n = a or n = b.

The optimal lower bound on the L® norm of the magnitude of the local stress

inside a random composite is given by the following result.

2.2.2 Optimal Lower Bounds on the L* Norm of the
Local Stress

Consider any heterogeneous medium with area (volume) fraction of materials one

and two given by #; and 6, then for an imposed deviatoric macroscopic stress
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" = s(a®b) the stress field inside the composite satisfies
lle@)lo = [77]- (2.5)

For d = 2,3 the lower bound (2.5) is attained by a simple laminate with n = a or

n=>b.

2.3 Lower Bounds on the Local Stress that are
Optimal for a Special Class of Imposed
Macroscopic Stress States

In this section we start by considering heterogeneous materials made from two elas-
tic materials sharing the same shear modulus, i.e., y; = pe = p. We present new
lower bounds on the full local stress field that hold for every imposed macroscopic
stress @. The lower bounds are shown to be optimal for special subsets Si, Sy of
imposed macroscopic stresses. The subsets &1, Sy are given by the set of imposed
constant stresses for which one can construct a confocal ellipsoid (ellipse) assem-
blage that has a constant and purely hydrostatic stress and strain field inside the
core phase of the confocal ellipsoid assemblage [24, 48].

We describe the construction of a confocal-ellipsoid assemblage with a core of ma-
terial one and a coating of material two noting that the confocal ellipse assemblage
is constructed in a similar way. Consider R3 filled with a space-filling assemblage
of ellipsoids. Here, all ellipsoids have the same shape and orientation of axes and
differ only in their size. Inside each ellipsoid, one places a smaller confocal-ellipsoid
filled with material one and the surrounding coating is filled with material two. We
call these coated ellipsoids. The part of R3 not covered by the coated ellipsoids has
zero measure. The volume fractions of materials one and two are the same for each
coated ellipsoid in the assemblage. The confocal ellipse assemblage is constructed

similarly.
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The set Sy of applied stresses is given explicitly by the parametric representation
[48]

g =

K1 — K3 d

2§d_12M _
_ </12(/£1 + 2725) N 20, p(d 1)) I+ 2u0(M — é]), (2.6)

where M ranges over the totality of positive semidefinite d x d matrices with unit
trace. For each @ in &; one can construct a confocal ellipsoid assemblage with a
core of material one and a coating of material two such that the local stress inside
the core is constant and hydrostatic. We note here that the set S; is convex. The
analogous parameterization of the set of imposed stresses for which the local stress
is constant and hydrostatic for confocal ellipsoids with a core of material two is
obtained by interchanging subscripts one and two in (2.6). This set of macroscopic
stresses is denoted by Ss.

The optimal lower bound on the moments of the local stress inside a random

composite is given by the following result.

2.3.1 Optimal Lower Bounds on the Local Stress Inside
Material One for u; = o

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic stress & the stress

field inside material one satisfies

d—1
R1ke + 255 kg

r\1/r > Hl/r
(x1(x)[o(x)[") 1 K1Ko + Qd%dlu(ﬁlm + O2k2)

ITI75|, for 2 <r < oco. (2.7)

Moreover for d = 2,3 and for every r in 2 < r < o0, when @ lies in the set &;
the lower bound (2.7) is attained by the local stress inside material one for the
confocal-ellipse (confocal-ellipsoid) assemblage associated with 7.

A similar result holds for local stress fields inside material two.
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2.3.2 Optimal Lower Bounds on the Local Stress Inside
Material Two for p; = s

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic stress field & the

stress field inside material two satisfies

Ki1Kg + Qd%dlp,mg

75|, for 2 <r <oo. (2.8
K1Ko + 2‘%1#(91&1 + 92/12) | | ( )

Oe®)|ex)|) = 6"

Moreover for d = 2,3 and for every r in 2 < r < o0, when @ lies in the set S, the
lower bound (2.8) is attained by the local stress field inside material two for the
confocal-ellipse (confocal-ellipsoid) assemblage with core of material two associated
with 7.

We conclude this subsection by considering the two trivial lower bounds on the
moments of the local Von Mises equivalent stress given by (1 (x)|II”0(x) |’”>1/ >0
and (xo(x)[TI” U(X)|’”>1/T > 0. In what follows we make no hypothesis on the bulk
and shear moduli of the component materials and point out that the trivial bounds
are optimal for two subsets of imposed stresses . The subsets are denoted by S
and S, and these sets correspond to the sets &7 and Sy with u = o and p =
respectively.

2.3.3 Optimal Lower Bounds on the Local Von Mises
Equivalent Stress Inside Material One

Consider any heterogeneous medium with volume (area) fraction of materials one

and two given by #; and 6y, then for any imposed macroscopic stress @ it is evident

that the stress field inside material one satisfies

Ca®)MPox))Y = 0, for 2 <r < . (2.9)
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Moreover for d = 2,3 and for every r in 2 < r < oo, when 7 lies in the set S the
lower bound (2.9) is attained by the local Von Mises stress inside material one for
the confocal-ellipse (confocal-ellipsoid) assemblage associated with .

A similar result holds for local stress fields inside material two.

2.3.4 Optimal Lower Bounds on the Local Von Mises
Equivalent Stress Inside Material Two

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 6y, then for any imposed macroscopic stress field 7 it is

evident that the stress field inside material two satisfies

OeE)MMPex)) = 0, for 2 <r < . (2.10)
Moreover for d = 2,3 and for every r in 2 < r < o0, when @ lies in the set S’g, the
lower bound (2.10) is attained by the local Von Mises stress field inside material
two for the confocal-ellipse (confocal-ellipsoid) assemblage with core of material

two associated with @.

2.4 Optimal Lower Bounds for General
Imposed Macroscopic Stresses and (11 = o

In this section we consider two-phase heterogeneous media subject to a general
imposed macroscopic stress . We suppose that the two materials share the same
shear modulus p = p; = ps, and we present optimal lower bounds on the hydro-
static part of the local stress.

The first result is a lower bound on all moments of the local hydrostatic stress

inside each material.
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2.4.1 Optimal Lower Bounds on the Local Hydrostatic
Stress with py; = puo for Media Subjected to a
General Imposed Stress

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 6s, then for any imposed macroscopic stress o the hydro-

static component of the local stress field inside the ¢-th material, ¢+ = 1,2, satisfy

1r Kiko + Q%Mfci

r\1/r
Xi HHO' X = ez -
< | (x)| > Kiko + 2%1/;(91/4:1 + O2k2)

ITI75|, for 2 <7 < oo
(2.11)

Moreover for d = 2,3, the lower bound (2.11) is attained for every r in 2 < r < o0
by the local hydrostatic stress field inside laminates made from layering the two
materials in the prescribed proportions #; and 6,. Here the layering can be made
along any direction n.

The next result provides a lower bound on the L™ norm of the local stress inside
the heterogeneous medium.
2.4.2 Optimal Lower Bounds on the L* Norm of the

Local Hydrostatic Stress with p; = s for Media
Subjected to a General Imposed Stress

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic stress o the hydro-

static component of the local stress field satisfies

d—1
K1Kg + 257k

Kikg + 2%/1(91/11 + O2k2)

[0 (x)]]0 = o3|, (2.12)

Moreover for d = 2,3, the lower bound (2.12) is attained by the local hydrostatic
stress field inside a simply layered material. Here the layering can be made along

any direction n.
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2.5 Optimal Lower Bounds for General
Imposed Macroscopic Stresses and k; = ks

In this section we consider two-phase heterogeneous media subject to any imposed
macroscopic stress . We suppose that the two materials share the same bulk
modulus, i.e., K = K1 = Ko, and we present optimal lower bounds on the local Von
Mises equivalent stress.

The first result is a lower bound on all moments of the local Von Mises equivalent
stress inside the material with greater shear stiffness. To expedite the presentation
we denote the indicator function of and proportion of the material with greater

shear modulus by x., and 6, respectively.

2.5.1 Optimal Lower Bounds on the Moments of the
Local Von Mises Equivalent Stress Inside the
Material with Greater Shear Modulus for ki = k9

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic stress & the local

Von Mises stress field inside the material with larger shear modulus satisfies

(:[MPo(x))!" = 0 077

, for 2<r < oo, (2.13)

For d = 2 let 1, 12 be an orthonormal system of eigenvectors for @. Then for
every r in 2 < r < oo, the lower bound (2.13) is attained by the local Von Mises
stress inside a simple laminate with layer normal n = %;\/;’2 Here the deviatoric
projection of the local stress inside this laminate is uniform and given by

M0 (x) = IIPF. For d = 3 the explicit solution for the stress field inside a simple
layered material shows that this is not the case see, Section 5.2.

The next result provides a lower bound on the L* norm of the local Von Mises

equivalent stress inside the heterogeneous material.
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2.5.2 Optimal Lower Bounds on the L* Norm of the Von
Mises Equivalent Stress for x; = ko

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic stress & the local

Von Mises equivalent stress inside the medium satisfies
o). > [ (2.14)

For d = 2, the lower bound (2.14) is attained by the local Von Mises stress inside

a simple laminate with layer normal n = %;ﬁw
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Chapter 3

Optimal Lower Bounds on the Local
Strain Inside Random Composites

We present optimal lower bounds for the local strain that are given in terms of
the applied loads, material properties, and volume fractions of the constituent
materials. As in the previous section we provide new optimal bounds for a ladder
of progressively more general sets of imposed macroscopic loads. As we progress to
more general imposed macroscopic strains we will apply additional hypotheses on
the shear and bulk moduli of the constituent materials. In this section we provide
lower bounds for the following applied macroscopic load cases: 1) lower bounds on
the full local strain for imposed hydrostatic macroscopic strains, 2) lower bounds
on the full local strain inside the material with larger shear modulus for elastic
problems with imposed macroscopic shear strains, 3) lower bounds on the full
local strain for p; = uo, that are seen to be optimal for a special class of applied
macroscopic strains, 4) lower bounds on the local deviatoric component of the
strain that are optimal for a special class of applied macroscopic strains, and 5)
lower bounds on the hydrostatic and deviatoric components of the local strain for
the full set of imposed macroscopic strains subject to the hypotheses p; = po and

K1 = kg respectively.

3.1 Imposed Hydrostatic Macroscopic Strain

In this section we consider imposed macroscopic strains that are hydrostatic, i.e.,
of the form € = pI where p is a constant and [ is the d x d identity matrix. Here
it is assumed that the elastic materials inside the heterogeneous medium are well-
ordered i.e., (pt1 — pt2) (K1 —k2) > 0 and without loss of generality we will suppose in

this section that uy > ps and k1 > ky. We present lower bounds that are optimal
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for all applied hydrostatic stresses. The configurations that attain the bounds are
given by the Hashin-Shtrikman coated sphere and (cylinder) assemblages.

We start by presenting optimal lower bounds on the moments of the local strain
inside material one.
3.1.1 Optimal Lower Bounds on the Moments of the

Local Strain in Material One

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 05, then for an imposed hydrostatic macroscopic strain
€ = pl the local strain field inside material one satisfies

Ko + 2%#2

r\1/r 1/r
x1(x)]e(x >0 =
B e

Ip|, for 2 < r < oo, (3.1)

Moreover for d = 2(3) and for every r in 2 < r < oo the lower bound is attained by
the local strain inside the coated cylinder (sphere) assemblage with core of material
one and coating of material two.
A similar result holds for the local strain field inside material two.
3.1.2 Optimal Lower Bounds on the Moments of the
Local Strain in Material Two

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for an imposed hydrostatic macroscopic strain

€ = pl the local strain field inside material two satisfies

K1+ 2%#1
91/‘%2 + Hgm + 2%/1,1

Da®)[ex)) = 0, Bl, for2<r<o,  (32)

Moreover for d = 2(3) and for every r in 2 < r < oo the lower bound is attained by
the local strain inside the coated cylinder (sphere) assemblage with core of material

two and coating of material one.
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The optimal lower bound on the L* norm of the magnitude of the local strain

inside a random composite is given by the following result.

3.1.3 Optimal Lower Bounds on the L® Norm of the
Local Strain

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for an imposed hydrostatic macroscopic strain

€ = pl the local strain field inside the composite satisfies

K1 + 2‘%1#1
911{2 + 02/11 + Qd%dlul

lleGIz=(@) = iz (3.3)

Moreover for d = 2 the lower bound is attained by the local strain inside the
coated cylinder assemblage with core of material two and coating of material one.
For d = 3 and if the elastic materials satisfy (k1 + k2) —9(k1 — K2) + 16, = 0, then
the lower bound is attained by the local strain inside the coated sphere assemblage

with core of material two and coating of material one.

3.2 Deviatoric Applied Strain

In this section the imposed macroscopic strains are taken to be purely deviatoric,
i.e., ITP€” = €P. For two dimensional elastic problems the deviatoric strain tensor
can be expressed as the symmetric tensor product of two orthogonal unit vectors
a and b, i.e., €® = e(a®b), where ¢ is an arbitrary scalar. In three dimensions
this type of strain tensor is referred to as a pure shear strain. For two-dimensional
elastic problems we present lower bounds on the local strain that are optimal for
all applied deviatoric strains and for three dimensional problems we show that
the lower bounds are optimal for any imposed pure shear strain. The bounds are
attained by simple laminates made by layering material one with material two
in the proportions #; and 6, respectively. The direction normal to the layers is

denoted by n. The optimal choice of layer direction is given by n = a or n = b.

25



We present optimal lower bounds on the local strain inside the component ma-
terial with the larger shear modulus. The volume fraction and indicator functions

associated with material having larger shear modulus are denoted by 6, and x..

3.2.1 Optimal Lower Bounds on the Moments of the
Local Strain Inside the Phase with Higher Shear
Modulus

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by #; and 65, then for an imposed deviatoric macroscopic strain

eP = e(a®b) the strain field inside the material with larger shear modulus satisfies

m1/r 1/r H— _D
x)|e(x >0/ ——— €
(Bl > 0 e |

, for 2 <r < . (3.4)

Moreover for d = 2,3, the lower bound (3.4) is attained by the strain field inside
a simple laminate for every r in 2 < r < oo. Here the layering direction in the

optimal laminate is given by n = a or n = b.

3.3 Lower Bounds on the Local Strain that are
Optimal for a Special Class of Imposed
Macroscopic Strain States

In this section we start by considering heterogeneous materials made from two
elastic materials sharing the same shear modulus, i.e., gy = ps = . We present new
lower bounds on the full local strain field that hold for every applied macroscopic
strain €. The lower bounds are shown to be optimal for special subsets &1, &y of
applied strains. The subsets &, & correspond the set of imposed constant strains
for which one can construct a confocal ellipsoid assemblage that has constant and
purely hydrostatic stress and strain fields inside the core phase of the confocal

ellipsoid assemblage [24, 48].
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The set & of applied strains is given explicitly by the parametric representation

developed in [48]

E:

<d/<;2 + &l

d?(k1 — Ka) ) o, 39

where M ranges over the totality of positive semidefinite d x d matrices with unit
trace. For each € in & one can construct a confocal ellipsoid assemblage with
core material one and coating material two such that the local strain inside the
core is constant and hydrostatic. We note here that the set & is convex. The
analogous parameterization of the set of imposed strains for which the local strain
is constant and hydrostatic for suitably constructed confocal ellipsoids with core
two is obtained by interchanging subscripts one and two in (3.5). The associated
set of macroscopic strains is denoted by &,.

We present optimal lower bounds on the local strain inside material one that

hold for all composites with p = p; = po.

3.3.1 Optimal Lower Bounds on the Local Strain Inside
Material One with pu; = o

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic strain € the strain

field inside material one satisfies

Ko + Qd%dl,u

T 1/1” > 01/’/’
L o r=

IT17e|, for 2 <r < 0. (3.6)
v

Moreover for d = 2(3) and for every r in 2 < r < oo if € lies in & the lower bound
is attained by the local strain inside the confocal ellipsoid (ellipse) assemblage.

A similar result holds for the strain fields inside materials two.
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3.3.2 Optimal Lower Bounds on the Local Strain Inside
Material Two with u; = s

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic strain € the strain

field inside material two satisfies

K1 + 2dd M
01k9 + Ok —|—2d71,u

(xa(x)|e(x) ") = 6,

€, for2<r < oo. (3.7)

Moreover for d = 2(3) and for every r in 2 < r < oo if € lies in &, the lower bound
is attained by the local strain inside the confocal ellipsoid (ellipse) assemblage.
We conclude this subsection by considering the two trivial lower bounds on the
moments of the deviatoric component of the local strain given by
{x1(x)|TIP¢( )|7">1/T > 0 and (xo2(x)[TI¢( )|7">1/T > 0. In what follows we make
no hypothesis on the bulk and shear moduli of the component materials and point
out that the trivial bounds are optimal for two subsets of imposed macroscopic
strains €. The subsets are denoted by f:'l and 52 and these sets correspond to &;
and & with pu = ps and p = py respectively.

3.3.3 Optimal Lower Bounds on the Deviatoric
Component of the Local Strain Inside Material One

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic strain € it is evident

that the strain field inside material one satisfies

{x1(x)[TT¢( )|T>1/r >0, for2<r<oo. (3.8)

Moreover for d = 2(3) and for every r in 2 < r < 0 if € lies in & the lower bound is
attained by the local strain inside the confocal ellipsoid (ellipse) assemblage with

a core of material one.
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A similar result holds for strain fields inside material two.

3.3.4 Optimal Lower Bounds on the Deviatoric
Component of the Local Strain Inside Material Two

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 65, then for any imposed macroscopic strain € it is evident

that the strain field inside material two satisfies
<X2(X)|HD€(X)|T>1/T >0, for2<r<oo. (3.9)

For d = 2(3) and for every r in 2 < r < o0 if € lies in &, the lower bound is attained
by the local strain inside the confocal ellipsoid (ellipse) assemblage with a core of

material two.

3.4 Optimal Lower Bounds for General
Imposed Macroscopic Strains and pu; = po

In this section we consider two-phase heterogenecous media subject to a general
imposed macroscopic strain €. We suppose that the two materials share the same
shear modulus p = p; = pe, and we present optimal lower bounds on the hydro-
static part of the local strain.

The first result is a lower bound on all moments of the local hydrostatic strain

inside each material.

3.4.1 Optimal Lower Bounds on the Local Hydrostatic
Strain Inside Material One with p; = ps for Media
Subjected to a General Imposed Strain

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 6, then for any imposed macroscopic strain € the hydro-
static component of the local strain field inside material one satisfies

d—
Ko + 2Tlﬂ
O1ko + Ook1 + Qd%dl

r\1/7 r
(a0 I e(x) ) = 6y

, for 2<r <oo. (3.10)

1€
0
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Moreover for d = 2(3) and for 2 < r < oo the lower bound (3.10) is attained by
any simple layering of the two materials along any direction n.

A similar result holds for strain fields inside material two.

3.4.2 Optimal Lower Bounds on the Local Hydrostatic
Strain Inside Material Two with u; = us for Media
Subjected to a General Imposed Strain

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and 6,, then for any imposed macroscopic strain € the hydro-

static component of the local strain field inside material two satisfies

yr  gyr_ K1+ 29500

)T e(x)|") " =6 cfor2<r<o. (3.11
(x2(x) T e(x)[") > Brrea + Oarr + 201 (3.11)

T1"7e
"

Moreover for d = 2(3), the lower bound (3.11) is attained by any simple layering
of the two materials along any direction n.
The next result provides an optimal result on the L® norm of the local strain

inside a heterogeneous medium.

3.4.3 Optimal Lower Bounds on the L® Norm of the
Local Hydrostatic Strain for Composites Subjected
to a General Imposed Strain and p; = s

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by #; and s, then for any imposed macroscopic strain € the hydro-

static component of the local strain field satisfies
ke 4250

T e(x >
el > 5ot

1. (3.12)
il

Moreover for d = 2(3), the lower bound (3.12) is attained by any simple layering

of the two materials along any direction n.
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3.5 Optimal Lower Bounds for General
Imposed Macroscopic Strains and k; = ko

In this section we consider two-phase heterogeneous media subjected to any im-
posed macroscopic strain €. We suppose that the two materials share the same
bulk moduli, i.e., kK = k1 = K. For this case we present optimal lower bounds on
the moments of the deviatoric component of the local strain inside the material

possessing the largest shear modulus.

3.5.1 Optimal Lower Bounds on the Moments of the
Deviatoric Component of the Local Strain for a
General Imposed Macroscopic Strain and k; = ks

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by 6; and 65, then for any imposed macroscopic strain € the deviatoric
component of the local strain inside the material with the largest shear stiffness
satisfies

x)|[TTPe(x)|" I/TZ Ql/r'u—* I1Pe
(e GOMPeol) " = 0 gt |

, for 2 <r < oo, (3.13)

For d = 2 let 1, 99 be the orthonormal system of eigenvectors for € then for

2 < r < oo the lower bound (3.13) is attained by the deviatoric component of the

P1+2 )

local strain inside a simple layered material with layer normal n = 7
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Chapter 4

Lower Bounds on Local Stress and
Strain Fields

In this chapter, we derive the lower bounds on the local stress and strain inside
the composite presented in Chapters 2 and 3.

The lower bounds on the local stress and strain are established with the aid of
two elementary inequalities that follow immediately from Jensen’s inequality. Let

¥(x) be a symmetric d x d matrix valued field defined on R?. Then

(G D00} > 5 (w6 (@)

and
($(x) 1 ¥(x) = [(Y(x)[ (4.2)

These inequalities are strict in that equality holds in (4.1) only if (x) is constant
on the set of points where x; = 1 and in (4.2) only if ¥(x) is constant everywhere.
Lower bounds on the local stress are derived in the first subsection and lower

bounds on the local strain are derived in the second subsection.

4.1 Lower Bounds on Local Stress Fields
4.1.1 Hydrostatic Applied Stress

In this section the imposed macroscopic stress is taken to be hydrostatic, i.e.,
o = pl and the two materials are well ordered. With out loss of generality we
make the choice p1 > ps and k1 > kg. For heterogeneous media with prescribed
volume (area) fractions of material one and two the lower bounds on the hydrostatic

component of the local stress are given by [42]
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< (%) |HH W >1/r U/ K1k2 +2d%d1,u2/<&1
1 Ki1ko + Qd%dl,ug (91%1 + 921'432)

Ip|, for 2 < r < o,

(4.3)

- 9d=1
< 2 (%) I o (x)[" >1/ ;/T Hlﬁj_j— g 2t Ip|, for 2 <r < 0.
K1k + 27/12 (91/431 + 92%2)
(4.4)
and
+ 241
I o) > ——— o2 = PR (4.5)

K1k + 2d 2 (91/11 + 921'432)

It is pointed out that one also has lower bounds on the hydrostatic component of
the local stress for the non-well ordered case [42].

The lower bounds (2.1), (2.2), (2.3) follow immediately noting that the full local
stress |o(x)] is given by |o(x)| = ([IT7o(x)]? + [T 0 (x)|?)/2 so |o(x)] = [T o(x)).
In Section 5.2 we establish the optimality of these lower bounds for the well ordered

case.

4.1.2 Deviatoric Applied Stress

In what follows we make no assumption on the relative magnitudes of the compo-
nent bulk moduli. We examine the local stress field inside the material with larger
shear modulus and without loss of generality we suppose that the shear modu-
lus of material one is greater than that of material two, i.e., p; > po. We derive
new lower bounds on the local stress inside material one that hold for any imposed
macroscopic deviatoric stress. In subsequent sections these lower bounds are shown
to be optimal for imposed macroscopic deviatoric stresses in two dimensions and
for imposed macroscopic stresses that are pure shear stresses in three dimensions.

The local stress inside material one satisfies the following estimate

(o) o) = 5 [bao (). (1.6

1
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which can be seen by taking ¢ = ¢ in Eq. (4.1). Because of orthogonality, we see

that
[ao(x)))? = [aTTPe(x))) + [ aIT?o(x)) [

Thus Eq. (4.6) becomes

(a0t 1009 = o [(uITPo(x) (4.7)

1

The average stress inside material one can be written as
ao(x)) = (alx)ex))
= O (e (45)

Averaging the local stress-strain relation o(x) = C(x)e(x) and applying the defi-

nition of the effective elastic tensor gives
=C% = (((C*+xa(C" = C?) e(x))

= C%+ (C' = C?%) (x1e(x)). (4.9)

Using Eq. (4.9) the deviatoric part of the average macroscopic stress can be written

as

175 = 20, T17e + 2(p1 — p2) (a1 IT7e(x)) (4.10)
We apply the deviatoric projection on both sides of equation Eq. (4.8) to find that
(xilTPo(x)) = 2p1 (1 IT7e(x)) (4.11)

Solving for (x1IT”¢(x)) in Eq. (4.10) and substituting in Eq. (4.11), one obtains

2411 o ( 1 D— D—)
MPo(x)) = ——— ( —TII"7 — I1"¢ 4.12
<X1 ( )> p1 — p2 \ 2/2 ( )
From Eq. (1.7) it follows that
MmPe = M°(C)'s (4.13)
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Up to this point we have assumed that the imposed macroscopic stress was given
by an arbitrary d x d matrix. From now on in this subsection we will assume that
the imposed macroscopic stress is taken to be deviatoric for both two and three

dimensional elastic problems, i.e.,
G =oP =1Ps" (4.14)

From Egs. (4.12) and (4.13), one obtains

201 pz ( 1 D— D - —>
I’ (x = = | —mPs -1~ 'a 4.15
Gall’o(®) = (5 (C°) (4.15)
2 1
e (—HD - HD(C"’)‘1> 1°7, (4.16)
pr — f2 \ 2p2

where in the second equality we used the assumption that 7 is deviatoric.

We apply Cauchy-Schwarz inequality to find that

2z, (5;1177 : 77 — ((C) '177 : 75)°

D 2
KXlH U(X)>‘ g (Nl — M2 |HDE|2

(4.17)

The effective elasticity tensor C° satisfies the following well known estimate, see
[56]

(C)Y T :7 < (01(CH T +0,(C*)y N7 : T (4.18)
From Eq. (4.18) one obtains

(CH'MIP7 : TG < (0,(CH ' + 0,(CH HITP7 : TP

61 02 ) D— 2
= | —+— ) |II"¢ 4.19
(Q/M 2419 ‘ ‘ ( )

after a straightforward calculation. It now easily follows from Eq. (4.19) that

1 1 0 0
— 1Pz : 1P7 — (C°)"'1P7 : 1’5 > (— - (—1 + —2)) s’
2142 219 2p1 0 2p
_ Ol =) oy (4.20)
2411 o
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Because 11 > po, and after some simplification, we obtain from Eqs. (4.44) and

(4.20) that
‘<X1HDO'(X)>‘2 > 07 ‘HDEF (4.21)
and it follows from Eq. (4.43) that
(7o (x)[f) =
(aPo(x):o(x)) = 6,075 (4.22)

An application of Holder’s inequality to the left hand side of (4.22) delivers

<X1|HDO(X)|T>1/T > ei/r‘HDE

,for2<r<ow (4.23)

From the orthogonality of the projections IT? and IT? it is evident that

o = o)) + o))
> [aIPo(x)|” (4.24)
and it follows that
Cale@INY = (allPo(x))", for 2 < r < o (4.25)

The bound (2.4) now follows immediately from Eqgs. (4.25) and (4.23). Substitution

of ¥(x) = o(x) into (4.2) and (4.24) gives
llo@)llee = /o x)?) = |17(7)] (4.26)

and (2.5) follows.

4.1.3 Lower Bounds on Stress Fields Subject to General
Imposed Macroscopic Stresses and (1 = s

In this section no constraints are placed on the imposed macroscopic stress. The

imposed macroscopic stress can be any constant d x d stress tensor, d = 2,3.
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In what follows we suppose the two component materials share the same shear
modulus, i.e., p = p; = pz. We will derive new lower bounds on the local stress
inside material one that hold for any imposed macroscopic stress. In subsequent
sections the lower bounds on the full local stress are shown to be optimal for special
sets §; and Sy and the lower bounds on the hydrostatic component of the local
stress is shown to be optimal for all imposed macroscopic stresses.

From Eqgs. (4.8) and (4.9) and since p; = p9, one obtains

(alfo(x)) = —— (1177 — di,T17%) (4.27)

R1 — Rg

The hydrostatic stress inside material one satisfies the following estimate

2

(xill"o(x) : o(x)) = Hll ‘<X1HHa(x)> , (4.28)

which can be seen by taking ¢ = I ¢ in Eq. (4.1).
For a composite consisting of two isotropic phases of equal shear moduli
(1 = pe = p), Hill’s relation [29] shows that the effective elasticity tensor C¢ is
given by
C¢ = 2ulT? + dx°TI", (4.29)

where
0192 (K)l — K,Q)z

K = (01Kk1 + Oak2) — 4.30
( i 2 2) 91/’112 + 92/431 + 2%# ( )

From Egs. (1.7) and (4.29), one obtains
e — 115 (4.31)

dk* '
Substituting in (4.27) one can write

Mo (x)) = —2—(1 — 2)T1"7 4.32
(aTlo(x) = (1 - )iy (1.32)

and from estimate (4.28), it follows that

/12 Ko 2

m"o(x) : > - 1— =) |1"s 4.33
<X1 U(X) U(X)> 01(/{1 . HQ)Q( I{E) ‘ 0-‘ ( )
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Using the formula for ¢ given (4.30) we rewrite (4.33) as

KiKg + Zd%dllml

(xill"o(x) : o(x)) = 6 < )> ‘HHE‘Q. (4.34)

K1Ko + Qd%‘ll,u(gllil + 62112
For p and ¢ such that p > 1 and 1/p + 1/q = 1, we apply Holder’s inequality to
find that

0, <Xl|1_IJLI<7(X)|210>1/17 > (Mo (x))) (4.35)
and hence the inequality

2
)

(4.36)

2
Kiky + 25 ik
<X1|HH0_(X)|2p>1/p > 6}/17 1 571 qa HF1 ‘HHE
K1Ko + 27,&(01%1 + leig)

for 1 < p < o0.

Similar arguments give the bound

2
K1k + 2u/1’/€2 2
M70(x): o(x)) =6 ¢ "z d
<X2 (x) : o( )> 2 </€1/§2 4 2%1“(9151 + Oak2) ‘ ‘ ( )

and it follows that

d—1 2
1/p 1/p K1kg + 257 [uky &2
o |ITH o (%)) = 6 = 7 198
< 2| ( )| > 2 k1Ko + Q%M(ﬁlml + 92@) ‘ ‘ ( )

The bound (2.11) follows from Eqgs. (4.36) and (4.38). The L* bound, Eq. (2.12),
follows from the bound (2.11) by taking = oo noting that
T 0(3) | > o T30 for i = 1,2

To establish the bounds (2.7) and (2.8), we observe that because of orthogonality

one obtains

o) = Mo x)]* + MPo(x)* > [T¥o(x) (4.39)

From Eq. (4.39) one can easily show that for i = 1,2
r\1/r r\ 1/
(a()|o(x)N" = (I o(x)[") (4.40)

The bounds (2.7) and (2.8) follow from Eqs. (2.11) and (4.40).
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4.1.4 Lower Bounds on Stress Fields Subject to General
Imposed Macroscopic Stresses and ki = ko

In this subsection no constraints are placed on the imposed macroscopic stress.
The imposed macroscopic stress can be any constant d x d stress tensor, d = 2, 3.
In what follows we suppose that the two component materials share the same bulk
modulus, i.e., Kk = kK1 = k9 and we derive new lower bounds on the local Von Mises
stress inside the material with greater shear stiffness. To fix ideas we suppose that
material one has the greater shear stiffness, i.e., u; > ps. We will establish the
lower bound Eq. (2.13) with the aid of the following observation whose proof is
provided in Section 4.1.5.

For k = k1 = kg, the effective elasticity tensor C° can be written as

c¢ = TPCIP + dwIl? (4.41)
and consequently
1
(coH™t = @mPeerP)y !t + d—HH. (4.42)
K

The Von Mises equivalent stress inside material one satisfies the following esti-

mate

2

(xilTPo(x): o(x)) > 0—11 ‘<X1HDa(x)> , (4.43)

which can be seen by taking ¢ = II”¢ in Eq. (4.1).

We notice from Eq. (4.41) that C¢ commutes with TI®” which implies that (C¢)~!

commutes with TI”. Thus from Eq. (1.7) it follows that

IMPe = I°(C*'s

_ (Ce)_l]:[DE
Thus Eq. (4.12) becomes
(IPo(x)) = 2F1b <LHD5— (C€)1HD5> (4.44)
p1— f2 \ 2pt2
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We apply Cauchy-Schwarz inequality to find that

2M1M2 ( 1 ]._.[ o : ]._.[D ((Ce)ill_.[DE:HDE)Q

(CalPo(x))|* > —) TIT (4.45)
With (4.45) in hand we proceed as in Section 5.1.2 to discover
((aTPo(x))[* = 6% [P35 (4.46)
and it follows from Eq. (4.43) that
(aIPo(x) s o(x)) = 6, I3[ (4.47)

The bounds (2.13) and (2.14) now follow from Holder’s inequality and arguments
identical to those of Section (4.1.3).

The bound (2.14) follows directly from

Mo x)|le = +/IIP0(x) : 0(x)) > [T177], (4.48)

where the last inequality is a consequence of Eq. (4.2).

4.1.5 Form of C° for Mixtures of Two Elastically Isotropic
Materials with Common Bulk Modulus.

In this section, we show that when kK = k1 = Ko, the effective elasticity tensor C*

can be written as
cc = mPCcn” + dwla”.

Let € = (e). Then since the two materials are isotropic and k1 = kg = Kk one

obtains

C€ = (C(x)e(x))
— QU e(x)) + (AR TTe(x))

= II° 2u(x)e(x)) + dx TT"E. (4.49)
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Since TIZTIP = 0, one obtains from Eq. (4.49) that
nce = drll"e
For a deviatoric uniform field € = II”%, it follows from Eq. (4.49) that
CTIPe = TIP (2u(x)e(x))
Thus for any two uniform strain fields £ and n
CIIP¢ - 1y = MPCIIPE:n=0
and using this observation one finds that
C¢in = Co(MP¢ +Y¢) : (P + 11"y
= CTP¢:IPp+ Ccmie 1y
= TIPCIIP¢ : 4+ M1 ¢ : g
From Eq. (4.50) one obtains
m7Ce11i¢ . n = deIl¢:q
Thus Eq. (4.53) becomes
Ce¢p = (IPCI” + T) ¢
from which the result follows.

4.1.6 Proof of (4.18)

For completeness, we provide a proof for inequality (4.18) presented in

Section 4.1.2.

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

The complementary energy (C¢)~'7 : & satisfies the following variational prin-

ciple (see, for example [71])

(Ce)_lﬁ ;0 = inf <C_17' : 7'>

(4.56)



where 7 satisfies V-7 = 0, (7) = 7, and 7 = 7. Taking the trial field 7 in the

variational principle above, one obtains
(C)'T:a<(C 7T, (4.57)
Inequality (4.18) follows from this observation and the fact that
(C™H) =6,(CH~" +6,(C*)7 .
4.2 Lower Bounds on Local Strain Fields

4.2.1 Hydrostatic Applied Strain

In this section we suppose that the imposed macroscopic strain is hydrostatic, i.e.,
€ = pl. It is assumed that the elastic materials are well-ordered and we suppose
that py > po and k; > kKo. For this case the lower bounds on the hydrostatic
component of the local strain are given by [41]

Ko + 2%#2

r\1/r 1/r
Y1(x 17 e(x >0 —
QaGIEeCar) Y Oikg + Oory + 25 0y

p|, for 2<r <oo. (4.58)

and
K1 + Qd%dlul

O1ko + Ok + Qd%‘llul

G M X)) = 6} Pl for2<r<co. (459

K1+ 2‘%1#1
01:‘412 + 92/4,1 + Zd%dlul

[T e(x)| [0 = i (4.60)

It is pointed out that similar bounds hold for the non-well ordered case [41].
The lower bounds (3.1) and (3.2) and (3.3) follow immediately noting that the
norm of the local strain is given by
()] = (T7e(x)[? + [TIPe(x)*) 12 so [e(x)| = [IT"e(x)].
4.2.2 Deviatoric Applied Strain

In what follows we make no assumption on the magnitudes of the bulk modulus

of each component material. We examine the local strain field inside the material
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with larger shear modulus and without loss of generality we suppose that p; > po.
We derive new lower bounds on the local strain inside material one that hold
for any imposed macroscopic deviatoric strain. In subsequent sections these lower
bounds are shown to be optimal for imposed macroscopic deviatoric strains in two
dimensions and for imposed macroscopic strains that are pure shear strains in three
dimensions.

The local strain inside material one satisfies the following inequality

1

(x1€(x) 1 €(x)) = A (x1e(x))|?

1
= N ‘<X1HD€(X)> 2
1

: (4.61)

which can be seen by taking ¢ = € in Eq. (4.1) and noting that

[Oael = [0l ol + [KallPe .

We apply the deviatoric projection on both sides of equation Eq. (4.9) and solve
for (x1II”¢(x)) to obtain

(uITPe(x)) = mnl’(ce e (4.62)

Now we apply the hypothesis that € is deviatoric, i.e., € = €” = IT”€” and from
Eq. (4.62) one obtains

(ITPe(x)) = m(n%ez—%n%)

1
= —— (TIPC°T1Pe — 24, I17%). 4.63
2(,“1 _ ,u2)( M2 ) ( )

We apply the Cauchy-Schwarz inequality to find that

1 (C°IIP€ : TIP€ — 2, I1P€ : T17¢)?
(201 — 212)? TIDe? |

|uTIPe(x))[*

\

(4.64)
The effective elasticity tensor satisfies the following well known estimate [56]

CMPe:TIPe > (C~'(x))~'ITP%: I17e

2
S e By R (4.65)
B2 + Oapt1
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Using Eq. (4.65) one obtains

0 —
C°T1P% : TP — 2, T10% : TV > 2l —1a) 172

2
01112 + Oap01 ‘

(4.66)

Because p; > po, and after some simplification, we obtain from Egs. (4.82) and

(4.83) that
aIPe) > — 2 jpyog? (4.67)
X T (O1pz + Oy )? ‘
and it follows from Eq. (4.61) that
2
Ha D2
: =0 IT 4.
(x1€(x) : €(x)) 1(91M2  Gn)? ‘ 6‘ (4.68)

The lower bound (3.4) now easily follows from application of Holder’s inequality

to the left side of (4.68).

4.2.3 Lower Bounds on the Local Strain for General
Imposed Macroscopic Strains and u; = s

The dilatational strain inside material one satisfies the following estimate
1 2
(aIle(x) s e(x)) > % | e(x)) (4.69)

which can be seen by taking ¢ = II¥¢ in Eq. (4.1).

From Eq. (4.9) and since p = pg, one obtains
C€ = O + 2(k1 — ko) TTH (x1€(x)) (4.70)

Substitution of (4.29) into (4.70) and solving for TT¥ {x,e(x)) gives

K® — K
17 (ype(x)) = o RZ T17¢] (4.71)

It follows from Eqgs. (4.69) and (4.71) that

(aIe(x) re(x)) = - (”e — “2)2 e’ (4.72)
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Substitution of (4.30) into (4.72) gives

2
Ko 4251y 2
TT7e(x) : e(x >0 d 17" . 4.73
<X1 () : )> ! <01/€2+92m1+2d 1u> ‘ ‘ ( )

For p and ¢ such that p > 1 and 1/p + 1/q = 1, we apply Holder’s inequality to
find that

o Ol ) = Qu i e(o?) (474)

and hence the inequality

2
Ky + 241
<X1|HH€(X)|2p>1/p > ‘9}/17 < 2 a K > ‘HHEQ
1

4.75
91H2+¢921€1 +2dd1 ( )

for 1 < p < o0, and the bound Eq. (3.10) follows.

Similar arguments give the bound

(T e(x) : €(x)) = 6, < M2 ) e’ (4.76)

91/‘%2 + 9251 + 2dd M

and it follows that

2
+241
Ol T e(x) )77 > ol S s (4.77)
Ok + Ozk1 + 2%

from which the bound Eq. (3.11) follows. The L* bound, Eq. (3.12), follows from
the bounds (3.10) and (3.11) by taking = oo noting that
[P e(x)[lo = | TLP€(x)] oo for i =1, 2.

To establish the bounds (3.6) and (3.7), we observe that because of orthogonality

one obtains

e[ = M e(x)[* + TIPe(x)[* > [IT7e(x)* (4.78)

It easily follows from (4.78) that for i = 1,2

OGN = GuE) M ex))Y” (4.79)

The bounds (3.6) and (3.7) follow from Egs. (3.10), (3.11), and (4.79).
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4.2.4 Lower Bounds on the Local Von Mises Strain for
General Imposed Strains and x; = ko

In this section we consider a composite in which k1 = k3 = kK and assume without
loss of generality that p; > po. The Von Mises equivalent strain inside material

one satisfies the following estimate

<X1HD€(X) : e(x)> > 9% ‘<X1HD€(X)>‘2 , (4.80)

which can be seen by taking ¢ = IT”¢ in Eq. (4.1).
Since r; = Ky the effective elastic tensor is of the form given by (4.41) so ITP

commutes with C¢. Thus Eq. (4.62) becomes

(xiIT"e(x)) = m((ﬁ — 2u15)TTPE (4.81)

and we apply the Cauchy-Schwarz inequality to find that

1 (C°IIP€ : TIP€ — 2, I1P€ : T17€)?
Pe(x))|” > L (482
‘<X1 E(X)>‘ (2,U/1 _ 2M2)2 |HDE|2 ( )
Application of (4.65) to (4.82) gives.
0 _
C°TIPe : TP — 24, TT7% : T1Pe > br1ta(p — 12) Pe”. (4.83)
O1p2 + O2p1
We easily see from Eqs. (4.82) and (4.83) that
02112 2
Pe(x))|” = 2 ImPe 4.84
‘<X1 ( )>‘ (O1 13 + Oap11 )2 ‘ ‘ ( )
and it follows from Eq. (4.80) that
D M% D—|2
11 : >0 II7e| . 4.85
(aIPe(x) : e(x)) 1(91M2 L ‘ 6‘ (4.85)

The bound (3.13) follows immediately from Holder’s inequality applied to the

left hand side of (4.85).
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4.2.5 Proof of (4.65)
For completeness, we provide a proof for inequality (4.65) presented in
Section 4.2.2.

The effective elastic energy satisfies
C:e = (C(x)e(x) : €(x)) - (4.86)

Applying Legendre transform to the local elastic energy in the right-hand side of

Eq. (4.86) one obtains
C:e = (2e(x) : n(x) — C7H(x)n(x) : n(x)), (4.87)

for all Q-periodic symmetric d x d tensors n € L?(Q). Setting n equal a constant

deviator 77 = I1P7, inequality (4.87) becomes

C%:e > 2e:1775—(C7'(x)) 177 : 1177

0 0
= 2 : P75 — (—1 + —1) 177 : 177 (4.88)
21 2w
Optimizing over 7 gives
2
Ceie> U2 gp (4.89)

g 01112 + Oap1

from which inequality (4.65) follows by setting € = IT %.
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Chapter 5

Microstructures That Support Optimal
Local Fields

It is well known that the coated sphere, coated ellipsoid and laminated microstruc-
tures possess optimal effective elastic properties, for reviews of the literature see
[48] and [71]. In the following sections we show that these microstructures possess

optimal local field properties as well.

5.1 The Coated Sphere Construction and
Optimal Lower Bounds on Local Stress and
Strain Fields

In this section, it is shown that the lower bounds presented in Sections (2.1) and
(3.1) are attained by the stress and strain fields fields inside the Hashin-Shtrikman
26, 27] coated cylinder and sphere assemblages, see Figure 5.1. We introduce the
normalized LP norm of a field f over a domain S by (|S]~* {4 |f(x)[P dx)"/?. One
striking feature of the fields inside the coated sphere and cylinder assemblage is
that the normalized L” norm of the local stress or strain taken over a prototypical
coated cylinder or sphere is the same as the L” norm of the whole assemblage. Thus
the LP norms of local fields inside these assemblages are obtained by computing
the LP norm of a prototypical coated sphere or disk. Assuming that the applied
field @ is hydrostatic, the stress field inside a prototypical coated sphere (cylinder)
centered at the origin with core of material one and coating of material two in

Hashin-Shtrikman assemblage, is given by
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FIGURE 5.1. Hashin-Shtrikman coated cylinder assemblage.

where X = x/|x|, a and b are the inner and outer radii of the coated sphere

(cylinder), and the constants By, By, By are given by

Kiko + 2ﬂu2/<2
B, = 1 : (5.2)
K1Ko + QTMQ (‘91/431 + leig)

—2p19a% (K1 — ko)

By = , 2.3
2 d(lillig + Qd%.ll,ug (91%1 + 92/{2)) ( )

Kike + 291 1ok
By — 1 d271 a M2kt ' (5.4)
Ki1ke + 2TM2 ((91/41 + 92/‘62)

We notice from Eq. (5.1) that the stress field inside the core material (material

one) is hydrostatic, thus

(1 () o ()Y = ()T ()7 ) (5.5)

On the other hand, as reported by Lipton [42], the local hydrostatic stress inside
this microstructure attains the lower bound (4.3). Optimality of the lower bound
(2.1) follows from these observations. Similar arguments show the lower bound
(2.2) is attained by the stress field inside material two of a coated sphere (cylinder)
assemblage with core of material two and coating of material one.

Next we show that the L* bound (2.3) is attained by the stress field inside the

coated sphere (cylinder) assemblage. One uses equations (5.1)-(5.4) to compute
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the maximum stress inside each material. It is found that

d—1
K1Ko + 27[,&2/{1

K1Ko + Qd%dl,ug (91%1 + 82112)

Ixalellle o] (5.6)

V(1 + 285 a)2 o+ 2 (o — 1i))?

. _ T 5.7
HX2| |H00 K1Kg + 2‘%1#2 (91/44 + 92/‘€2) | | ( )

Let D = 2‘%1. Then a straightforward calculation shows that

1 2
[7]” >

2 2
ol — |xzlo =
||X1| |||oo HX2| |Hoo (5152 + DM2 (61/@1 + 92/12))2

2 2
(K1 — Ka) (u%((D2 + a)lig + (D2 — E)Iil) + 2D,u2/i1/£2> )

(5.8)
Since k; > Ky and D? — % > 0 for d = 2,3, it follows from Eq. (5.8) that

0113y > 11713 gy and hence

Kiko + 2‘%1/@/{1
Ki1Ko + 2%/12 (‘91:“&1 + 92l€2)

o] (5.9)

llolleo = Ixalollleo =

and it is evident that the local stress attains the bound (2.3).
Next we assume that the applied field € is hydrostatic, the strain field inside
a prototypical coated sphere (cylinder) with core of material two and coating of

material one in Hashin-Shtrikman assemblage, is given by

dx®@x — 1
Are— A, <X®—i> € a<|x|<b
¢ = x| (5.10)
Az, x| <a
and the constants A;, Ay, A3 are given by
d—1
A = e (5.11)
O1K9 + k1 + 2%,&1
Ay (k2 — 1) (5.12)
Qllig + leil + 2%#1 7
ry + 241
Ay = N M (5.13)

O1ko + Ook1 + QdT;l,ul '
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We see from Eq. (5.10) that the strain field inside the core material (material two)

is hydrostatic, thus

() e = ()T e(x)") " (5.14)

On the other hand this microstructure attains the lower bound (4.59) see [41].
Optimality of the lower bound (3.2) follows from these observations. Similar ar-
guments show the lower bound (3.1) is attained by the strain field inside material
one of a coated sphere (cylinder) assemblage with core of material one and coating
of material two.

To show that the strain field inside the coated sphere (cylinder) assemblage at-
tains the L* bound (3.3) we use equations (5.10)-(5.13) to compute the maximum

strain inside each material. It is found that

\/(/fg + 251 10)? + SRy — k)2 B
Ixlellw = 5 ) €] (5.15)
1R2 + leil + QTFLI

K1 + 2%#1
O1k9 + 0ok + Qd%‘ll,ul

Ix2lel]o0 €l (5.16)

A straightforward calculation shows that

d

1 2
€l 5.17
(91%2 + 02111 + 2%#1)2 |€| ( )

d d—1
Ixalell2 = Ixalell? = (k1 — k2) (('ﬁ + Kg) — §(F01 — Kp) + 4 Ml) X

It follows from Eq. (5.17) that if d = 3 and the elastic materials satisfy

(K1 + k2) — 3(k1 — K2) + Spn = 0 or if d = 2, then |x2|€||oo = |x1]€][|e and hence

K1+ QdT;l/Jq
01%2 + 92:‘411 + 2%#1

lelloo = Ixalellloo = el (5.18)

and it is evident that the bound (3.3) is attained by the local fields inside the

coated sphere (cylinder) assemblage.
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5.2 The Stress and Strain Fields Inside Simple
Laminates and Optimal Bounds on Local
Fields

For a two-phase simple laminate of two isotropic phases the local stress field is

piecewise constant under uniform applied stress . Thus

Q|
|

da(x)o(x) + xa(x)o(x))

= 6151 + 0252 (519)

where & is the (constant) field inside the i-th phase. Since the stress field inside
each phase satisfies the equation of elastic equilibrium Eq. (1.4) and from the
continuity of the displacement u and the traction on across the two phase interface

Egs. (1.5) and (1.6), it follows that

'n = &°n (5.20)

(CH T - (CHT'F = AOn (5.21)

where A is a vector to be determined and n is the layering direction of the laminate.
Solution of the system of equations (5.19)—(5.21 delivers the local stress field inside

each layer. The fields are given by

7o ((cl)—l + Z—;((ﬂ)—l)l (,\@ n+ 91(02)—1a> (5.22)

72 - ((02)1 i 9—1(01)1>_1 (—)\@ n+ 911(01)15) (5.23)
and

AOn=—-A@GnOn) + (B(En ‘n) + Ct?) non, (5.24)

where
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Ap
15y %)

. AM( (k) (1= 3) + () 2222 )

2 p2 (k) (1 — 3) + K1z ()

_ Ap (k) — Ax (p)
2 (k) (1= 3 + kyko () (5.25)

where (1) = 0110+ 02011, and (R) = O1ks + Osk1. Here Ap = py — po, Ak = K1 — Ko,
(,u) = 01,[!1 + 92#2, and <Ii> = 91%1 + 92/12.
The local piece wise constant strain field inside each layer can be found in a

similar way. For this case

(xa(x)e(x) + x2(x)e(x))

Y
Il

= 01%1 + 02%2 (526)

where € is the (constant) field inside the i-th phase. Rewriting equations (5.20)

and (5.21) in terms of the strain gives

(C'&")n = (C*)n (5.27)
e -2 = AOn (5.28)
where A is a vector to be determined and n is the layering direction of the laminate.

Solution of the system of equations (5.26) — (5.28) delivers the local strain field

inside each material. The strain fields are given by

€& = €4+6,A0n (5.29)
& = e—0,A0On (5.30)

and
AOn=—-A(En@®n) + (B(En-n)—i—C’%e)n@n (5.31)
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Here

PR
(1)
g _ ZAud(R) +(d—2) (@)
(1) ((2d —2) () + d (R))
o _ @A+ dAk) (532)

Bd—2) () + (%))’
where (1) = 019 + O2p11, and (K) = 01k9 + O251.
We recall that both deviatoric applied stress in two dimensions as well as pure
shear stresses in three dimensions can be expressed in the form @ = s(a®b) with
a-b=0,|a] =1and |b|] = 1. On choosing n = a or n = b in (5.24), one easily

sees that that
Ap
153

AOn=— 5.33
2411 o ( )

and it follows from Eqs. (5.22) and (5.23) that
Gl =0"=70 (5.34)

From this observation it is evident that the stress field inside this simple laminate
attains the bounds (2.4) and (2.5).

The deviatoric applied strain in two dimensions as well as pure shear strains in
three dimensions also are expressed in the form € = e(a@b) witha-b =0, |a| =1

and |b| = 1. On choosing n = a or n = b in (5.31) one easily finds that

AGOn = _2H; (5.35)

(i)

and it follows from Eq. (5.29) that

= L2e :
“ =5 (5.36)

From this observation it is evident that the strain field inside this simple laminate

attains the bound (3.4).
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When both materials share the same shear modulus we find that the local hy-
drostatic stress and strain fields inside simple laminates have extremal properties.
We demonstrate first that the lower bounds (2.11) and (2.12) are attained by the
hydrostatic stress fields inside any simple laminate. For a simple laminate the stress
field inside each material is constant hence both sides of inequality (4.28) are in
fact equal and

2
)

<X1HH0‘(X) : a(x)> = 9% ‘<X1HHU(X)>‘2 =0, ‘HHﬁl

(5.37)

where 7 is the constant field inside material one. On the other hand, since p; = py

one obtains from Eqs. (4.32) and (4.30) that

d—1
Ki1kg + QT/JJHl

| e e

Kikg + Qd%‘llu(Gl/fl + Oyko

Thus it follows from Egs. (5.37) and (5.38) that the local hydrostatic stress inside
a simply layered laminate attains the bound (2.11) when ¢ = 1. Given 3 = po
these arguments show that if the stress field is constant inside material one then
its hydrostatic part attains the lower bound (2.11). Similar arguments show the
optimality of the bound (2.11) when ¢ = 2. The fact that the hydrostatic stress
inside a rank-one laminate attains the bound (2.11) for ¢ = 1 and i = 2, implies
that it also attains the L* bound (2.12).

We demonstrate that the lower bounds (3.10), (3.11) and (3.12) are attained by
the hydrostatic strain fields inside any simple laminate. For a simple laminate the
strain field inside each material is constant hence both sides of inequality (4.69)

are in fact equal

2
)

(Tl e(x) : e(x)) = %KMHHE(X)W _ g, |II¥e (5.39)
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FIGURE 5.2. A rank-one layered material.

where €' is the constant field inside material one. On the other hand, since p; = js

one observes that(4.71) and (4.30) imply

2
1 " 2 _ ko + 295 H-2
o |Call e = 6, <9m AT e (5.40)

It easly follows from (5.39) and (5.40) that the hydrostatic component of the local
strain attains the lower bound (3.10). Given py = s these arguments show that if
the strain field is constant inside material one then its hydrostatic part attains the
lower bound (3.10). Similar arguments show the optimality of the bound (3.11).
The fact that the dilitational strain inside a rank-one laminate attains the two
bounds (3.10) and (3.11), implies that it also attains the L* bound (3.12).

We suppose that k1 = ko, d = 2 and we denote the orthonormal system of
eigenvectors for a prescribed 2 x 2 imposed macroscopic stress by 1, 1*. We show
that the lower bounds presented in Section (2.5) are attained by the stress fields
inside a rank-one laminate with layering direction n = \/Li(zbl + 1?), see Figure

5.2. Choosing k1 = kg and n = \/Li(z,bl + %) in (5.24) gives

A
AOn=-——r 1Pz (5.41)
2411 o
and it follows from Egs. (5.22) and (5.23)that
s = ?s* = s (5.42)
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From this observation it is evident that the stress field inside this rank-one laminate
attains the bounds (2.13) and (2.14).

A similar phenomena occurs for the local strain fields inside a simple laminate.
As before suppose k1 = ko, d = 2 and denote the eigenvectors for an imposed 2 x 2
macroscopic strain € by ! and €2. We set k; = Ky and n = \%(81 + €?) in Eq.
(5.31) to discover that

AGn = 2K oe (5.43)

)
It now follows from Eq. (5.29) that

mPe = K2 1P 5.44
0 (5:44)

From this observation it is evident that the Von Mises equivalent strain field inside

this rank-one laminate attains the bound (3.13).

5.3 The Confocal Ellipsoid Assemblage and
Optimal Lower Bounds on Local Stress and
Strain Fields for Subsets of Imposed
Macroscopic Loads

In this section, it is shown that the lower bounds (2.7), (2.8), (2.9), and (2.10)
are attained by the stress fields inside the confocal-ellipsoid and confocal-ellipse
assemblages. Assuming that the uniform stress lies in S; it follows that there is
a confocal-ellipse (confocal-ellipsoid) assemblage with core of material one and
coating of material two associated with @ such that the local stress inside the core
material is constant and hydrostatic. Since the stress field inside material one of

material two is constant, then it follows from earlier arguments that

d—1
Ki1kg + 27/151

Kikg + Qd%dlu(Gl/fl + Oyko

(Mo (x) : 0(x)) = 0 < )> 5" (5.45)

27



On the other hand, since the stress field in material one is hydrostatic one sees
that

(xiIT”o(x) : 0(x)) = 0 (5.46)
and it is also evident that the lower bounds (2.9) are attained. From Eqgs. (5.45)

and (5.46), and the fact that o(x) = II¥¢(x) + 1”0 (x) one obtains

(Xla(x):a(x)>=91< itz + 277 [ )> ingri (5.47)

Ki1kg + 2%#(91%1 + 921'12
from which optimality of the bound (2.7) follows.

Identical arguments show that the local stress field inside material two of a
confocal-ellipse (confocal-ellipsoid) assemblage with core of material two and coat-
ing of material one saturates the bounds (2.8) and (2.10).

A similar phenomena occurs for the local strain inside the confocal ellipse and
confocal ellipsoid assemblage. Here we show that the lower bounds (3.6), (3.7),
(3.8), and (3.9) are attained by the strain fields inside the confocal-ellipsoid and
confocal-ellipse assemblages. Assuming that the uniform strain lies in &; it follows
that there is a confocal-ellipse (confocal-ellipsoid) assemblage with core of material
one and coating of material two associated with € such that the local stress inside
the core material is constant and hydrostatic. Since the strain field in material one

of is constant, then it follows from earlier arguments that

d—
Ko + ZTl,u
(91/%2 + 9251 + 2%

(ol e(x) - e(x)) = 6, < u) e (5.48)

On the other hand, since the strain field in material one is hydrostatic one obtains
(xiIT”e(x) : e(x)) = 0 (5.49)

and it is also evident that the lower bounds (3.8) are attained. From Egs. (5.48)

and (5.49), and the fact that e(x) = IT7¢(x) + IT¢(x) one obtains

(Xle(x):e(x)):¢91< fa + 20 b ) 1z
I

2
)

(5.50)

(91:‘4,2 + 9251 + 2%
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from which optimality of the bound (3.6) follows.
Similar arguments show that the strain field in material two of a confocal-ellipse
(confocal-ellipsoid) assemblage with core of material two and coating of material

one attains the bounds (3.7) and (3.9).

29



Chapter 0

Multiscale Analysis of Heterogeneous
Media in the Peridynamic Formulation

6.1 Introduction

The peridynamic formulation is a nonlocal continuum theory for deformable bodies
that does not use the spatial derivatives of the displacement field. Interactions
between material particles are characterized by a pairwise force field that acts
across a finite horizon, see Section 6.2. The same equations of motion are applicable
over the entire body and no special treatment is required near or at defects. These
properties make it a potentially powerful tool to model problems that involve
cracks, interfaces, and other defects, see [4, 5, 20, 63, 64, 65]. This work focuses on
the multiscale analysis of heterogeneous media using the peridynamic formulation.
The objective is to capture the dynamics inside composites at both the structural
scale and the microscopic scale with a cost far below that of direct numerical
simulation.

We consider particle or fiber reinforced composites. Here the characteristic length
scale of the particle or fiber reinforced geometry is assumed to be very small relative
to the length scale of the applied loads. The length scale of the microstructure is
denoted by . We study three peridynamic models of fiber-reinforced materials.
In the first model, which we call “the short-range bond model”, the peridynamic
horizon is of the same length scale as that of the microstructure and the horizon
approaches zero as ¢ goes to zero. In the second model, a long-range e-independent
pairwise force is added to the short-range pairwise force of the first model. Here
the long-range pairwise force depends only on the relative position of the two

particles and the associated peridynamic horizon is fixed and independent of the
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microstructure length scale €. We will refer to the second model as “the short-
range and long-range bond model”. In the third model, we consider a long-range
pairwise force that fluctuates with the microstructure. The peridynamic horizon in
this model is fixed and independent of . This model will be called “the fluctuating
long-range bond model”.

In all of these models, the peridynamic initial value problem is a partial integro-
differential equation with rapidly-oscillating coefficients supplemented with initial
conditions.

A multiscale analysis method is developed for the first two models. The concept
of two-scale convergence, introduced by Nguetseng [53] and Allaire [1], is used
as a tool to identify both the macroscopic and microscopic dynamics inside the
composite. A downscaling method obtained through the use of Semigroup theory
provides a strong convergence result which captures the mirco-level fluctuations
about the macroscopic displacement field. The downscaling step in the first model
is complemented with error estimates for sufficiently regular initial data. This
multiscale analysis is shown to provide the theoretical framework for an inexpensive
multiscale numerical method for computing the deformation of fiber-reinforced
composites in the presence of residual forces.

A multiscale analysis method is developed for the third model. The Semigroup
theory of linear operators [16, 18] is utilized to identify both the macroscopic
and microscopic dynamics of the composite. Downscaling and error estimates are
provided for this model. Finally, an inexpensive multiscale numerical method is
presented.

The second part of the dissertation, Chapters 6-11, is organized as follows. Sec-
tion 6.2 provides an overview of the peridynamic formulation of continuum me-

chanics. In Section 6.3, we introduce three peridynamic models of fiber-reinforced
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FIGURE 6.1. Fiber-reinforced composite.

composites. The results for the first two models are discussed and derived in Chap-
ters 7-10. In Chapter 7, we present a multiscale analysis method for these two
models. Chapter 8 provides uniqueness and existence results for the linear peri-
dynamic initial-value problem (6.10)-(6.12). In Chapter 9, we review two-scale
convergence and then use it to identify the two-scale asymptotic limit of (6.10)-
(6.12). In Chapter 10, we build on the analysis provided in Chapter 9 to justify
the results of Chapter 7. Chapter 11 is devoted to the third peridynamic model of
fiber-reinforced composites. A multiscale analysis method is presented and justified

for this model.

6.2 The Peridynamic Formulation of
Continuum Mechanics

In the peridynamic theory, the time evolution of the displacement vector field w,

in a heterogeneous medium, is given by the partial integro-differential equation

p(x) SPu(w,t) = fu(z,t) —u(z,t), 2 —x,x2)de + b(x,t), (z,t)eQx(0,7T)
" (6.1)
where H, is a neighborhood of x, p is the mass density, b is a prescribed loading
force density field, and €2 is a bounded set in R3. Here f denotes the pairwise force
field whose value is the force vector (per unit volume squared) that the particle

at = exerts on the particle at . For a homogeneous medium f is of the form

f(u(z,t) — u(z,t), & — x), i.e., it depends only on the relative position of the two
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FIGURE 6.2. New and old bond and displacements within the peridynamic horizon.

particles. We will often refer to f as a bond force. Equation (6.1) is supplemented
with initial conditions for u(x, 0) and d;u(z, 0). For the sake of simplicity, we assume
constant mass density given by p(z) = 1. However, the removal of this hypothesis
presents no barrier to the subsequent analysis. For the purposes of discussion it

will be convenient to set

which represents the relative position of these two particles in the reference con-

figuration, and

n=u(z,t) —u(z,t),

which represents their relative displacement (see Figure 6.2). In the peridynamic
formulation, it is assumed that for a given material there is a positive number ¢,

called the horizon, such that

f(n, & x) =0, for [£] > 4.

The pairwise force field f is required to satisfy the following properties:

f(—777 —f,l’ + 5) = _f(na 57 iIZ’) (62)
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which assures conservation of linear momentum, and

E+mn) x f(n,&z) =0

which assures conservation of angular momentum.
A material is said to be microelastic if the pairwise force is derivable from a

scalar micropotential w
Oow
f(77> ga .Z') - a_n(na 57 .CE)
It can be shown that for a microelastic material the pairwise force is of the form
(see [62])

fm, &) =H(|E+n],&x)(§+n),

where H is a real-valued function. Finally, a material is linear if the associated
bond force f(n, €, x) is linear in 7.

In this treatment, all materials will be taken to be microelastic and linear.

6.3 Three Peridynamic Models of
Fiber-Reinforced Materials

To fix ideas, we consider a periodic medium of unidirectional fiber-reinforced ma-
terial. Here the pairwise force is given by the linearized version of the bond-stretch

model proposed in [65]

f(n,&x) =a(x,z+¢§) ﬂifn, for £ € H,.

Here « is a real-valued function satisfying «a(z, &) = «(z, ). We will study three
different peridynamic models for this composite. These models are distinct in the
way the coefficient v and the neighborhood set H, are defined. We start by pro-
viding the mathematical description of the periodic microgeometry.

Let Y < R3 be a unit cube and the local coordinates inside Y are denoted by y

with the origin at the center of the unit cube. The unit cube is composed of a fiber
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(a) (o)

FIGURE 6.3. (a) Composite cube Y. (b) Cross-section of Y along the fiber direction.

which is surrounded by a second material called the matrix material, see Figure 6.3.

Let ¢ denote the indicator function of the set occupied by the fiber material and

Xm denote the the indicator function of the set occupied by the matrix material.

Here x; is given by

1, yisin the fiber phase,
Xe(y) =
0, otherwise,

and yn, is given by

Xm(y) =1 = xt(y)

We extend the functions yf and x,, to R? by periodicity. For future reference, we

denote by 6¢ and 6, the volume fractions of the fiber material and the matrix

material, respectively. Here 6y = {,, x¢(y)dy and 6, = 1 — ;. Also, we let n denote

a unit vector parallel to the fiber direction.

In the first model, the short-range pairwise force is given by

aly,y + fy)gy O

3
fshort (nyp £y7 y) = |§7J|
0, otherwise.

Ny |§y| <0

where ye Y, &, =9 —y, n, = u(y,t) —u(y,t), and « is given by

a(y,9) = Cr xe(¥)Xt(¥) + Cum X (¥)Xm(7) + Ci (Xe(¥) X (§) + Xm (V) X£(T)) -
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We note that (6.3)-(6.4) give the pairwise force on R? associated with a unit peri-

odic geometry. In summary, the function « in (6.4) is given by

Ct, if y and ¢ are in the fiber phase
a(y,9) = { C,, ify and ¢ are in the matrix phase

Cy, otherwise.
In equation (6.3), the peridynamic horizon § is chosen to be smaller than the fiber
thickness in the unit cell. The material parameters C; and C, are intrinsic to each
phase and can be determined through experiments. Bonds connecting particles
in the different materials are characterized by Cj, which can be chosen such that
Cy > C; > Cp, > 0, see [65].

The microgeometry associated with the length scale € is obtained by rescaling

the bond force fqort as follows. For x € €0,

1@({ x+§> €®§n €] < 26

. 2 ’ 3
short(nang) = c c c |£|
0, otherwise.
We see from (6.4) that «(2,2) is given by
T I ~ e e /A € e (A £ E( A
@ (£.2) = GO + G xa (G + G GONED) + a1 @),

(6.5)

where x§(z) 1= x¢(£) and x5, () 1= Xm(%)

The peridynamic equation of motion for this model is given by

P (2, 1) = f L (f f) E=0) Q@ =) e (i )i () i (:13

Hey(x) €2 el e |z — x|?

o8

)

—~
Q
D

~

supplemented with initial conditions

u (r,0) = u° (x,

s (z,0) = 2° (9:,
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< 2¢d

FIGURE 6.4. Long-range bonds (horizon ) and short-range bonds (horizon &4).

In what follows, we will denote by s a real number such that % < s < oo. In
(6.6)-(6.8), b(x,y,t) is in C([0,T]; L*(Q x Y)3) and Y-periodic in y and u°(x,y)
and v°(z,y) are in L*(Q2 x Y)? and Y-periodic in y.

In the second model, the following long-range pairwise force is added to the

short-range pairwise force of the first model (see Figure 6.4)

E®E
A(§) n,
flong(nag) = |5|3

0, otherwise,

€] <y

where v is a prescribed peridynamic horizon. Here X is a real-valued function

defined by

s
OfM7 143 < = 9f7
A(E) = 2 (6.9)

M .
C), otherwise,

where v¢ denotes the angle between ¢ and a line parallel to the fiber direction, with
0 < v¢ < 5. The constants CM and C} are macroscopic parameters determined

through experiments, see [65, 14].
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Now the peridynamic equation of motion associated with the total pairwise force

is given by
2l (1) = f i —p)E =)@ E =)

H(x) & — xf?

(uf(z,t) —u(x,t)) dz

+L55< L (E E) (Z-2)® -1 (u¥(2, 1) — v (z, 1)) d

z)e_Q ele |z — x|?

+5b (:L‘, E, t) ,
€
(6.10)
supplemented with initial conditions

uf(z,0) = u° <x, E) : (6.11)

€
ot (z,0) = o’ (x, E) ) (6.12)

€

Remark 6.3. The first model follows from the second model on setting A = 0.
Thus in Chapters 7-10, we will often present our results and analysis for the second

model only.

In the third model, the pairwise force is given by

aL(y,y + gy)%nw |£y| <9

f(n?ﬁ gyv y) =

0, otherwise,

where y € Y and 0 is a prescribed peridynamic horizon, and «y, is given by
Ct|&y] 0n(&y), if y and y + &, are in the fiber phase,
ar(y,y + &) = and &, is parallel to n,

Cm &yl otherwise.

Here 0,, is the Dirac delta distribution concentrated at a line parallel to n. The

function oy, can be written in terms of y¢ as follows

ar(y,y + &) = Cr [§]0n(&y) xe(W) Xty + &) + Cm [§y] (1 = n(&y) xe(y)xe(y + &) -
(6.13)
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We note that in equation (6.13), x¢(y) = xt(y + &,) because y and y + &, both lie

on a line parallel to the fiber direction n.

The the pairwise force defined on 2 is given by

os (o016 28 e <6

fem, & x) = €1

0, otherwise,

where a7 is defined by

ap(z,x +&) = Cr [€]0n(€) X (2) + & Cm [§] (1 = 0, (E) XxF(2)) -

The peridynamic equation of motion for this model is given by

e I

Hy(z) |2 — |3
supplemented with initial data
u(2,0) = u’(2),

ows(z,0) = 1% (z).

(u®(z,t) —us(x,t)) dz

(6.14)

(6.15)

(6.16)

(6.17)

Here the initial data «” and 0" are in L?(Q)? with 1 < p < 0 and the loading force

in equation (6.15) is zero.
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Chapter 7

Multiscale Analysis Method for the
Short-Range and Long-Range Bond
Model

In this chapter, we present the multiscale analysis method for computing the de-
formation of fiber-reinforced composites modeled by the peridynamic formulation.
This is done for the Short-Range and Long-Range Bond model described in Sec-
tion 6.3. The method delivers a computationally inexpensive multiscale numerical
method for analysis of these peridynamic models of fiber-reinforced materials. It

consists of the following three steps.

(i) Macroscopic Equation
Compute the macroscopic or average displacement field by solving a peridy-

namic macroscopic equation.

(ii) Cell-Problem
Compute the micro-level mechanical responses by solving a peridynamic cell-

problem.

(iii) Downscaling
The displacement field of the oscillatory peridynamic equation is given ap-
proximately by superimposing the rescaled micro-level mechanical responses
over the average displacement field. The error in this approximation is shown

to converge in norm to zero.

In the following sections, we consider four cases of initial and loading conditions.
For each case, we present the macroscopic equation, the cell-problem, and the

downscaling step. The results provided in this chapter are justified in Chapter 10.
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For convenience, we introduce the following notation for the average of a periodic
function. Let a function of the form p(y), p(x,y), or p(z,y,t) be Y-periodic in the

variable y. Its average over Y is denoted by

p = Lp(y)dy,
plz) = fyp@,y)dy, or
Pl t) = [/p@,y,t)dy,

respectively. For future reference, we let

K= ANz — ) - dz . (7.1)

H.(z) |2 — |3
By the change of variables £ = & — x, it is easy to see that K is a constant matrix,
which depends on the macroscopic parameters v, CM  and CM

matrix’ fiber*

For future reference, we will adopt the notation L?_ (V") for the space of Lebesgue
p-integrable functions which are Y-periodic. Similarly, Cy.,(Y) denotes the space
of continuous Y -periodic functions. Also we denote by C%#(2) the space of Holder

continuous functions with exponent (3, where 0 < g < 1.

7.1 First Case

In this section, the loading force and initial data are given by
x
l(a,t) + R (—) , (7.2a)

b (a:, g’ t) €
u’ (x, E) = wuo(z) +wy (g) : (7.2b)

X

v° (x, g) = v(x) + 1y (—) , (7.2¢)

3

where [ € C([0,T]; L*(Q)?), Ris in L, (Y)? with R = 0, uy and vy are in L*(Q)?,

per

3 S
and u; and vy are in Lj,,

(Y)? with uy = vy = 0. Here, R(2) can be interpreted as
a residual force. For example, such forces can arise from the differences in thermal

expansion between the two materials.
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7.1.1 The Macroscopic Equation

The macroscopic or homogenized peridynamic equation is given by

(u(2,t) — u (2,1)) di + I(z,1),

. r—12)® (T — )
o2t x,t =j Mz —x (@ CEA)
R B

(7.3)

supplemented with initial data
ul (2,0) = up(x), o (x,0) = vo(x). (7.4)

Here the macroscopic displacement v is the weak limit of the sequence of dis-

placements u°. This is described by the following theorem.

Theorem 7.1. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.2). Then as e — 0
uf (z,t) — u (x,t) weakly in L*(Q x (0,T))>?,

where u € C2([0,T]; L*(Q)%) is the unique solution of (7.3)-(7.4).

Moreover, assume that 1 € C([0,T]; C(Q)?), and uo and vy are in C(Q)3. Then
u'l s in C2([0,T]; C(Q)%).
7.1.2 The Cell-Problem

The cell-problem or the micro-level peridynamic equation is given by

—y)® G —y)

Fr(y,t) = fH( 0.9 (@) — r(y.8)) dg

(5 —y)I?
supplemented with initial conditions
r(y,0) = ui(y), 0r(y,0) = vi(y). (7.6)

The matrix K is given by (7.1).
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7.1.3 Downscaling
The macroscopic displacement u” together with the rescaled solution of the cell
problem provide an approximation to the actual solution w°. This is expressed in

the following theorem.

Theorem 7.2. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.2). Assume that | € C([0,T]; C(R2)?), and uy and vy are in C(Q)>.

Then for almost every t € (0,7),

s = (7.7)

lim

e—0

u(x,t) — (uH(x,t) +r (g,t))

where 1€ C*([0,T]; L;,,.(Y)?) is the unique solution of (7.5)-(7.6).

Moreover, assume that A\ = 0 in equation (6.10). Then, fort e (0,T) and uy, vy,

and 1(-,t) in C%5(Q)3, the error in (7.7) is estimated by

< M, (t)e”, (7.8)

u(x,t) — (uH(x,t) +r (g,t))

where M (t) is independent of . The function M, (t) is given explicitly in

Section 10.2.1.

7.2 Second Case

In this section, the loading force and initial data are given by

b (. ;t) _ F (g t) h(z), (7.92)
u’ (x, g) = 0, (7.9b)
v° (x, g) = 0, (7.9¢)

where F e C([0,T]; L2, (V)?*®) and h e L*(Q)°.

per
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7.2.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

(u(2,t) — u? (2,1)) di + F(t)h(x),

R T—2)R (1 —=x
8t2uH(x,f) — JH ( ))\(l‘ —a:)( |£)_x(|3 )

(7.10)

supplemented with initial data
u(2,0) =0, ' (x,0) =0. (7.11)
Here the macroscopic displacement v is the weak limit of the sequence of dis-
placements u°. This is described by the following theorem.
Theorem 7.3. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are
given by (7.9). Then as e — 0
uf(z,t) — u (x,t) weakly in L*(Q x (0,T))>?,

where ufl € C?([0,T]; L*(2)3) is the unique solution of (7.10)-(7.11).

Moreover, assume that h e C(Q)3. Then uf! is in C%([0,T]; C(Q)?).

7.2.2 The Cell-Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

G=9D®W=Y) (is ) i )
|(y_y)|3 (T (y7t) (y7t)) dy

iy, 1) = f a(y,9)
Hs(y)

—K i (y,t) + (F(y, 1) — F'(t)), (7.12)
supplemented with initial conditions
(y,0) =0, ar7(y,0) = 0. (7.13)

In (7.12), Fi(y,t) and F’(t) denote the j* columns of the matrices F(y,t) and

F(t), respectively. The matrix K is given by (7.1).
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7.2.3 Downscaling
The macroscopic displacement u” together with the rescaled solution of the cell
problem provide an approximation to the actual solution w°. This is expressed in

the following theorem.

Theorem 7.4. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.9). Assume that h € C(Q). Then for almost every t € (0,T),
3
€ . H J E .
us(x,t) <u (x,t)—i-]z:l?“ <€,t) hj(x)>

where i € C*([0,T]; L, (Y)?) is the unique solution of (7.12)-(7.13).

per

—0, (7.14)

lim
e—0

Moreover, assume that A = 0 in equation (6.10). Then, for t e (0,T) and

h e C%3(Q)3, the error in (7.14) is estimated by

u(x,t) — (uH(a:,t) + Zil 7 <§,t) hj(a:)>

where My(t) is independent of €. The function Ms(t) is given explicitly in

< My (t)eP, (7.15)
LS(Q)S

Section 10.2.2.

7.3 Third Case

In this section, the loading force and initial data are given by

b(x,g,t) _ 0, (7.16a)
u° (xg) _ F(g) h(z), (7.16b)
v° (x,g) = 0, (7.16¢)

where F' € L5, (V)33 and h e L*(Q)3.

per
7.3.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

O2utt (x,1) :f )\(i,_x)(i‘—x)(@(i—x)

o G —ap (u(2,t) —u(x,t))dz, (7.17)
YT
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supplemented with initial data
u(z,0) = Fh(z), o™ (2,0)=0. (7.18)
Here the macroscopic displacement u is the weak limit of the sequence of dis-
placements u®. This is described by the following theorem.
Theorem 7.5. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are
giwen by (7.16). Then as € — 0
uf(z,t) — u (z,t) weakly in L*(2 x (0,T))?,

where u™ € C*([0,T]; L*(Q)?) is the unique solution of (7.17)-(7.18).

Moreover, assume that h e C(Q)3. Then uf! is in C%([0,T]; C(Q)?).

7.3.2 The Cell-Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

2,3 _ a NCEIIVEE)) PG 1) — g N
o' (y,t) = Lﬁ@ (y,9) G- )P (r'(g,t) (y,1)) di
—K 1 (y,t), (7.19)

supplemented with initial conditions
(y,0) = F/(y) = FV, i (y,0) = 0. (7.20)
In (7.20), F7(y) and F’ denote the j* columns of the matrices F(y) and F, re-

spectively. The matrix K is given by (7.1).

7.3.3 Downscaling
The macroscopic displacement v together with the rescaled solution of the cell
problem provide an approximation to the actual solution u®. This is expressed in

the following theorem.
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Theorem 7.6. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.16). Assume that h € C(Q)*. Then for almost every t € (0,T),
~0, (7.21)

u(x,t) — <uH(x, t) + 23] 7 (g,t) hj(x)>
Jj=1 L3(Q)3

where v € C*([0,T]; Ls,,.(Y)?) is the unique solution of (7.19)-(7.20).

per

lim

e—0

Moreover, assume that A\ = 0 in equation (6.10). Then, fort € (0,T) and h €

COB(Q)3, the error in (7.21) is estimated by

u(x,t) — <uH(:C,t) + i 7 (g,t) hj(a;)>

where M;(t) is independent of €. The function Ms(t) is given explicitly in

< Ms(t)e”, (7.22)
LS(Q)S

Section 10.2.3.

7.4 Fourth Case

In this section, the loading force and initial data are given by

b(x,g,t) — 0, (7.23a)
u® (xg) _ 0, (7.23b)
v° (m,g) = F(g) h(x), (7.23c)

where F' € L3, (V)33 and h e L*(Q)3.

per
7.4.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

(W (2,t) —u(2,t))d2, (7.24)

du (z,1) =f A(:f:—x)(j:_x)@?(f—r)

Ho(x) & — xf?

supplemented with initial data
uf(2,0) =0, S (x,0) = Fh(x). (7.25)

Here the macroscopic displacement u'? is the weak limit of the sequence of dis-

placements u®. This is described by the following theorem.
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Theorem 7.7. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.23). Then as e — 0
uf(z,t) — u (z,t) weakly in L*(Q2 x (0,T))?,

where ufl € C?([0,T]; L*(2)3) is the unique solution of (7.24)-(7.25).
Moreover, assume that h e C(Q)3. Then uf! is in C%([0,T]; C(Q)?).
7.4.2 The Cell-Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

o;rl (y,t) = L( )Oé(%yf) ~Y) (P (9,t) = 17 (y,1)) dg

—K 1 (y,1), (7.26)

supplemented with initial conditions

r(y,0) =0, 0 (y,0) = F(y) — F. (7.27)

In (7.27), F7(y) and F? denote the j* columns of the matrices F(y) and F, re-
spectively. The matrix K is given by (7.1).

7.4.3 Downscaling

The macroscopic displacement v together with the rescaled solution of the cell

problem provide an approximation to the actual solution u°. This is expressed in

the following theorem.

Theorem 7.8. Let u® be the solution of (6.10)-(6.12), where b, u°, and v° are

given by (7.23). Assume that h € C(Q)3. Then for almost every t € (0,T),
3
€ o H J E .
u®(x, 1) <u (x,t)—i—j;?" (g,t) hj(x)>

where v € C*([0,T]; Ls.,.(Y)3) is the unique solution of (7.26)-(7.27).

per

lim

e—0

~0, (1)
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Moreover, assume that X\ = 0 in equation (6.10). Then, for t € (0,T) and h €

COB(Q)3, the error in (7.28) is estimated by

u(z,t) — <uH(Jc,t) + i 7 <§,t) hj(a:)>

< My(t)e”, (7.29)
Ls(Q)3

where My(t) is independent of €. The function My(t) is given explicitly in
Section 10.2.3.
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Chapter 8

Existence and Uniqueness Results for
the Peridynamic Equation

In this chapter, we make use of semigroup theory of operators to study the existence
and uniqueness of (6.10)-(6.12). We begin by introducing the following operators.
For v e L*(Q)?, with 3 < s < o0, let

[ (T —2)® (& — )

Apqv(z) = ANz —x - - v(T)dz, 8.1
L1 ( ) i) ( ) |$ _ ZL’|3 ( ) ( )
r - 5
Apso(z) = A — ) EZDOE=D) 4oy, (8.2)
JH,(x) |.73' l’|
[ 1 r 2\ @T-2)®@T—2) . .
AS = —al—-,= d 8.3
wie) = [ Se(LD) RS a6y
([ 1 r 2\ (@T-2)®@@—1x) .
AS = — -, = d . 8.4
Also we set
Ap = Api—Aps, (8.5)
Ay = Asi — Agp, (8.6)
A® = AL+ A% (8.7)

Then by making the identifications u®(t) = u(-,t) and b°(t) = b(-, Z,t), we can
write (6.10)-(6.12) as an operator equation in L*(2)3
us(t) = A%u(t) +b°(t), tel0,T]
w(0) = ug, (8.8)
w(0) = .
or equivalently, as an inhomogeneous Abstract Cauchy Problem in
L(Q)3 x L5(Q)3
Us(t) = A°US(t)+ B(t), tel0,T]

(8.9)
Us(0) = Ug.
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Here I denotes the identity map in L*(£2)3.

Proposition 8.1. Let 3 < s < oo and assume that b° € C([0,T]; L*(Q)%). Then

(a) The operators A® and A® are linear and bounded on L*(2)3 and

L5(Q2)3 x L*()3, respectively. Moreover, the bounds are uniform in e.

(b) Equation (8.9) has a unique classical solution U in

CH[0,T]; L5(Q)% x L*(Q2)3) which is given by
¢
U=(t) = e UF + f =7 BE(7) dr, te 0,77, (8.10)

where

_ i i— (8.11)

Moreover, equation (8.8) has a unique classical solution u® € C*([0,T]; L*(Q)?)

which is given by

u(t)

cosh (t\/E) ugy + VAs " sinh (t@) UG
VAT L sinh (t\/ﬁ) b (1) dr (8.12a)

with the notation

© t?n

cosh (t\/E) = Z o (A% (8.12b)
VA sinh (t\/ﬁ) i 2227:1 ) (8.12¢)

(¢c) The sequences (uf)e~q, (U°)es0, and (if)e=o are bounded

in L®([0,T]; L*(Q)?).
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Proof. Part (a). It is clear that the operators A5, Ag,, AL, and Ay, are linear.
So we begin the proof by showing that Ag, and Ag, are uniformly bounded on
L#(2)? for 2 < s < c0. Let v € L*(Q)*. Then by the change of variables & = z + ez

in (8.3) we obtain

T x 2Rz
Su(x) = al—,—+z2 v(x +ez2)dz. 8.13
o) = | (S Ie) T e (813)

Let apayx = max a(y,y'). Then by taking the Euclidean norm in (8.13), we see
yy'e

that

1
A5 0(@)] < Oémaxj — |v(z +€2)|dz

H;(0) 2|

1 1/s 1/s
< Omax (J T dz) <J lv(z +e2)|° dz) , (8.14)
Hy(0) 12| H;(0)

where Holder’s inequality was used in the second inequality, with 1/s +1/¢' =1
and 1 < ¢’ < 3. By changing the variable of integration back to # in the second

integral, and then taking the limit as ¢ — 0, we see that

1
f vz +ex)’dz = — lv(z)]® dz
H;(0) € JHs ()
— |Hs(z)||v(x)]*, ae. x, (8.15)

where we have used Lebesgue’s Differentiation Theorem to evaluate this limit. On
the other hand, we observe that the first integral in (8.14) is finite because s’ < 3.

Therefore, it follows from (8.14) and (8.15) that
[Asav(@)] < Mifo(z),
for some real number M; > 0 which is independent of ¢. It follows that

||A§,1U

s < Mi|v]Ls)p,

which shows that the operator Ag; is uniformly bounded. Similarly, A5, can be

written as

T T Z2Q z
—i—z)@

N

Agov(r) = f dz v(z). (8.16)

NEx:
Hs(0) £ €
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Thus
. 1

|AS20(z)] < amax T dz fu(z)],

H;(0) 2|

from which the boundedness of A%, immediately follows. Combining these results
shows that Ag, which is given by A5, — Ag,, is a uniformly bounded operator on
L3 (Q)3.

Next we show that the linear operator A;, = A;; — A5 is bounded on L5 (Q)3.

Let Apax = 51%&%{) A(€). Then by taking the Euclidean norm in (8.1), we see that
€EH~(0

1
Ap0(@)] < Ao j
Hy

1 1/s' 1/s
< e J R f W@ di |, (8.17)
H.,(z) & — x| H(z)

where Holder’s inequality was used in the second inequality, with 1/s +1/¢' =1

[o(2)] di

and 1 < s’ < 3. By the change of variables £ = & — x, it is easy to see that the
first integral in (8.17) is independent of = and finite because s’ < 3. Therefore from

(8.17) we obtain

1/s'
1
HALJ’UHLS(Q)S < )\max J 7 dz HU”Ls(Q)S.
H-,(0) ||
This shows that Ay ; is bounded on L*(Q2)3. The boundedness of Ay, which is
given by (8.2), is clear. Therefore Ay is bounded on L#(9)3.

Since A® = Ap, + A%, we conclude that
||A€UHLS(Q)3 <M ||U||LS(Q)37 (818)

for some real number M > 0 which is independent of ¢.
The operator A® is clearly linear, thus it remains to show that this operator is
uniformly bounded on L*(€2)3 x L*(Q2)3. To see this, we let (v, w) € L¥(Q)3 x L*(2)3.

The norm in this Banach space is given by

||(v,w) Ls(Q)3xLs(Q)3 = ||U Ls(Q)3 T+ ||w Ls(Q)3-
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We note that

f v\ 0 I v _ w
#(0)-(a o) (0)-(a)
Thus by taking the norm, we obtain

|4 (v, w)

Ls (Q)3 + HAEU

Ls(Q)B3xLs(Q)3 = ||w Ls(Q)3

< wles@p + 1A% o]z (8.19)
From (8.19) and since we may assume that M > 1 in (8.18), it follows that

|A%(v, w)

L5(Q)3x L3 (Q)3 < MH (U, w) L5(Q)3x L3 ()3 (820)

completing the argument.

Part (b). We have seen from Part (a) that A® is a bounded linear operator on the
Banach space L*(2)3 x L*(Q)3. Also, since b is in C'([0, T]; L*(Q)?) by assumption,
it follows that B = (0,0°) is in C([0,T]; L*(Q)? x L*(Q)?). From these facts, it

follows from the theory of semigroups that!

(i) The operator A® generates a uniformly continuous semigroup {e'*"};,~o on

L5(Q2)3 x L5(Q2)3, where e is given by (8.11).

(ii) The inhomogeneous Abstract Cauchy Problem (8.9) has a unique classical

solution U¢ € C1([0,T]; L*(Q)3 x L*(Q)?) which is given by (8.10).

It immediately follows from (ii) that the second order inhomogeneous Abstract
Cauchy Problem (8.8) has a unique classical solution u® € C?([0,T]; L*(Q2)?). It
remains to show that u® is given explicitly by (8.12). To see this, we begin by
the following observations which can be easily shown using induction. For n =
0,1,2,..., we have

Isee for example [57, 16].
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(. é)% - (U o) (8:21)

(f(l)g é> - ((Af)’m (Aé)n) (8.22)

From (8.11) and by using these two equations we see that

n 0 t?n 0 t2’n+1
A" eyn
we _atm [0 1) ;0 (2n)! (A9 ;0 (2n +1)! (4%
- Z E A 0 - © t2n+1 +1 © t2n
o v € e\n e\n
S 3

(8.23)

Equation (8.12) follows from equations (8.10) and (8.23), and the fact that

u
U* =
,&/E
Part (c). We recall that
ui(e) = (2
E T
@) = D)

Also by assumption u%(z, y), v°(z,y) are in L*(Q; L, (Y)3). Therefore we see that

per

1/s

Lo(L5,,(Y)) *= (J f Iuo(l‘,y)lsdydm> ,
QJY

1/s

LS(Q§L§er(Y)3) = <J J |UO(ZE,y)|S dyd(L’) .
QJy

Thus u§ and v§ are uniformly bounded in L*(€2)3, which implies that U¢ is uniformly

lug|reyp < [u’

|05 < [0°

bounded in L*(2)* x L*(2)*. Similarly we can show that for ¢ € [0,T], b°(t) is
uniformly bounded in L#()®. Since b°(¢) is continuous in ¢, it follows that b°
is uniformly bounded in C(|0,T]; L*(2)*), which implies that B¢ is uniformly

bounded in C([0,T]; L*(Q)3 x L*(Q)3).
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Next we note that

||etA5 H < etlAs]

< ™M, (8.24)

where in the last inequality we have used the fact that A® is uniformly bounded.
Taking the norm in both sides of (8.10) and by using (8.24), we obtain
t

rscixrecs < Mie™M 4+ | &ML dr, 8.25
()3 xL*(Q) .

|U=(®)

for some positive numbers M;, My, and M. This implies that U® is uniformly
bounded in L*([0, T]; L*(Q)3x L*(Q)3). Therefore the sequences (u).~o and ().~
are bounded in L®([0,T]; L*(2)?). Finally, it follows from equation (8.8) that the

sequence (ii)q=o is bounded in L®([0,T]; L*(2)*), completing the proof. O
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Chapter 9

Two-Scale Convergence and the
Two-Scale Limit Equation

The aim of this chapter is to identify the two-scale limit of the peridynamic initial-

value problem (6.10)-(6.12).

9.1 Two-Scale Convergence
We begin by defining two-scale convergence and recalling some results from two-
scale convergence. In the subsequent discussion, we will often refer to the following

function spaces

= {pe OP(R* xY), ¥(x,y) is Y-periodic in y},
J = {veCPR*xY xR"Y), ¢(x,y,t) is Y-periodic in y},

Q = {weC*[0,T]; L*(Q x Y)?), w(z,y,t) is Y-periodic in y, and 3/2 < s < o0}.

Let p and p’ be two real numbers such that 1 < p < oo and 1/p+ 1/p' = 1.

Definition 9.1 (Two-scale convergence [53, 1]). A sequence (v°) of functions in

LP(QY), is said to two-scale converge to a limit ve LP(Q2 x Y) if, ase — 0

JQ v (z) (a:, z) dx — v(x,y)Y(z,y) dedy (9.1)

€ QxY

for all v € L' (Q; Cper(Y)). We will often use v° 2 v to denote that (v°) two-scale

converges to v.

If the sequence (v°) is bounded in LP(2) then L¥ (Q; C,,(Y)) can be replaced
by K in Definition (9.1) (see [44]).
The following are well-known results on two-scale convergence, which can be

found in [44].
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Proposition 9.2. If (v°) converges to v in LP(Q) then (v°) two-scale converges to
v(x,y) = v(x).
Proposition 9.3. If ¢ € K then ¢ (z,2) two-scale converges to Y(z,y).

Proposition 9.4. Let (v°) be a sequence in LP(S) which two-scale converges to

ve LP(QxY). Then

L v (x) (1’, E) dx — v(x,y)Y(x,y) dedy,

€ Qxy
for every of the form ¢z, y) = ¥ (x)ta(y), where vy € L' (Q) and by € LiE (Y),

with 1 <r <o and 1/r +1/r" =1.

Proposition 9.5. Let (v°) be a sequence in LP(S)) which two-scale converges to

ve LP(Q2 xY). Then as e — 0
V¢ — J v(x,y)dy weakly in LP(Q).
Y
Definition 9.1 is motivated by the following compactness result of Nguetseng,
see [53].

Theorem 9.6. Let (v°) be a bounded sequence in LP(Q2). Then there exists a subse-
quence and a function v € LP(QxY') such that the subsequence two-scale converges

to v.

For the time-dependent problems studied in this work, we slightly modify the
above two-scale convergence definition and results to allow for homogenization

with a parameter, see [9, 12]. Here the parameter is denoted by t.

Definition 9.7. A sequence (v°) of functions in LP(2x (0,T)), is said to two-scale

converge to a limit ve LP(Q xY x (0,7)) if, ase — 0

J v (z, ) (a:, g, t) dxdt — v(x,y, )(z,y,t)dedydt  (9.2)
Qx(0,T) € QxY x(0,T)

forall e J.
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Theorem 9.8. Let (v°) be a bounded sequence in LP(2x (0,T")). Then there exists
a subsequence and a function v € LP(Q x Y x (0,T)) such that the subsequence

two-scale converges to v.

The proof of this result is essentially the same as the proof of Theorem 9.6. A
slight variation of Theorem 9.8 can be found in [12] and [9)].
The following is a direct consequence of Definition 9.7 and the definition of weak

convergence.

Proposition 9.9. Let (v°) be a bounded sequence in LP(2 x (0,T")) that two-scale

converges tov e LP(Q x Y x (0,T)). Then as ¢ — 0
V" — J v(x,y,t)dy  weakly in LP(Q x (0,T)).
Y

Finally, we state the following well-known result on the weak limit of oscillatory

periodic functions, which can be found in [10].

Proposition 9.10. Let h € LY(2) be a Y -periodic function, where 1 < ¢ < 00. Set

he(x) = h(%) for x € Q. Then as ¢ — 0,
hf — h = J h(y)dy weakly in L(2), (9.3)
Y

if 1 < q< oo, and

h® — h  weakly-+ in L*(Q), (9.4)
if ¢ = o0.

9.2 The Two-Scale Limit Equation

In this section, we use two-scale convergence to identify the limit of (6.10)-(6.12).

We observe that the loading force and initial data given by equations (7.2), (7.9),
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(7.16), or (7.23), satisfy the following

X 2
b x,;,t) b(x,y,t) (9.5a)
0 Ty 2 o
W (2.2) 2 (), (9.5b)
0 TN 2 9
O (02) 2 ) (9.5)

We note that from Proposition 8.1(c) and Theorem 9.8 it follows that, up to some
subsequences, u® 2 u, u° N u*, and u° 2 u**, where u, u*, and u** are in
L5([0,TT; L*(Q x Y)3). We shall see later that u(z,y,t) is uniquely determined by
an initial value problem. Therefore u is independent of the subsequence, and the
whole sequence (u®) two-scale converges to u.

In order to identify the two-scale limit of (6.10), we multiply both sides by a
test function ¥ (z, Z,t), where ¥(x,y,t) is Y-periodic in y and is such that

e CP(R3 x Y x R)?, and integrate on 2 x R*

(o 1) 0 ("
fmw o;us(x,t) -y (a:, 8,t) dxdt

o (e 0 E) v 2) i
xR+

After integrating by parts twice, we obtain

JQXR+ u(,t) - 531/1 (95, g,t> drdt — JQ o (z,0) -1 (:1:, f’ O) dx

€

+ | u(x,0)-onp (m, g,()) dx

Q

= wa ((AL + A u(z,t) + b (x, g,t)) <) (ZL‘, g, t) dxdt
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By letting ¢ — 0 we obtain

OxY xR+

QxY

+J uo(xﬂy) atl/)(%%o) d.ﬁEdy
QxY

— lim (Ap + A (2, 1) - (w g t) ddt

e—0 QxR+

bl M) vt dedyde (9.6)
QOxY xR+
For i =1, 2, 3, we extend u;(z,y,t) by periodicity from Q x Y x (0,7T) to
Q x R3 x (0,T). We will use the following lemma to compute the limit on the right

hand side of (9.6).

Lemma 9.11. Let w be in L*(2; Ls, (Y)?) and define

per

Bruw(t,y) = L JRICEE) (- I? ?;; —7) (L w(z,y) dy — w(z, y)> iz,
7 (1 —y)®H—y)

Bsw(z,y) = L()a@,g) (w(z. §) — w(z,y)) dj.

g —yl?

Then as € — 0,

(a) Aput(z,t) > Bru(z,y,t).

Moreover, the operator By, is linear and bounded on L*(Q; LS., (Y)3).

per

(b) Aus(z,t) = Bsu(z,y,t).

Moreover, the operator Bg is linear and bounded on L*(Q; L5, (Y)?).

The proof of this lemma is provided at the end of this section.
Using Lemma (9.11) and Lebesgue’s dominated convergence theorem, it follows

that
- Nt (2
llir(l) - (AL + Au (z,t) - (x, g,t) dxdt

= J (Br + Bs)u(x,y,t) - ¥(x,y,t) dedydt.
OxY xR+
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Thus (9.6) becomes

| ety Bt dedydi— | ) 0w, dody
QOxY xR+ QxY
b [ ) 0(e.0) dody

QOxY

_ L . ((Br + Bs)u(z,y,t) + b(z,y,t)) - (x,y,t) dedydt ©.7)

We shall see from Lemma 9.13, provided before the end of this section, that u has
two classical partial derivatives with respect to ¢, for almost every t, and the initial

conditions supplementing (9.7) are given by

u(z,y,0) = u’(z,y), dwu(z,y,0)=1"x,y). (9.8)

Thus by integrating by parts twice, equation (9.7) becomes

J OPulx, y,t) - (x, y,t) dedydt
OxY xR+

- JQ Y xR+ ((BL + Bs)U(a}, Y, t) + b(‘ra Y t)) ’ @b(x, Y, t) dxdydt (9.9)

Since this is true for any function ¢ € CP(R?® x Y x R)? for which ¢(x,y,t) is

Y -periodic in y, we obtain that for almost every z,y, and ¢
O?u(w,y,t) = Bu(z,y,t) + b(x,y,1), (9.10)

where B = B + Bg. It follows from Lemma 9.11 that B is a bounded linear

operator on L*(Q; L,.(Y)?). Therefore, the initial value problem given by (9.10)

per

and (9.8), interpreted as a second-order inhomogeneous abstract Cauchy problem

defined on L*(Q; L5, (Y)?), has a unique solution u € Q.

per

The following summarizes the results of this chapter.
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Theorem 9.12. Let (u®) be the sequence of solutions of (6.10)-(6.12). Then

2 . : ‘
u® = u where u € Q is the unique solution of

Rul,y,f) = Lu(j)@ _ _Eﬁ)f@ajﬁ_ 2) (L @,y t) dy —u(x,y,t)) di

G-y @ -y ) )
’ JHa(y) W) Ty g —ulm e, 6)

+ b(l’, Y, t)?
(9.11)
supplemented with initial conditions
u(z,y,0) = u’(x,y), (9.12)
owu(z,y,0) = °(z,v). (9.13)
Lemma 9.13. Let t € [0,T] and define
g(x,y,t) J J (x,y,1)dldr + tu*(z,y,0) + u(z,y,0). (9.14)

Then g is in L*(2 x Y x (0,T))3, twice differentiable with respect to t almost

everywhere, and satisfies

(a) For almost every x,y, and t, g(x,y,t) = u(x,y,t), dg(z,y,t) = u*(x,y,t),

and d2g(xz,y,t) = u**(z,y,1).
(b) For almost every x and y

9(z,9,0) = u(z,y,0) = u’(z,y),

atg(x7ya 0) = U*(QZ?J:O) = UO(I7y)'

Proof. Part (a). Let ¢ (z,y) be in C®(Q x Y)? and Y-periodic in y, and let ¢ be

in C°(R*). Then by using integration by parts, we see that

LXR+ opus (z,t) - 1y (x, g) o(t) dedt = — wa u(x,t) -y (x, g) o(t) dadt.
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Sending € to 0 and using the fact that, up to a subsequence, d,u® 2 u*, we obtain
J u*(x,y,t) -1 (z,y) o(t) dedydt
QXY xR+

= — J w(z,y,t) -y (x,y) o(t) dedydt.
QxY xR+

Since this holds for every v; we conclude that

fw 0,y ) 6(t) dt = — fw w(w,y, ) d(t) dt, (9.15)

for almost every x and y and for every ¢ € C*(R™). Similarly, by using the fact

that, up to a subsequence, 0?u° EN u**, we see that

fw u™ (@, y, H)e(t) dt = J u(z, y,1)o(t) dt, (9.16)

R+

for almost every = and y and for every ¢ € C*(R*). We note that from (9.14) it

is easy to see that ¢ is twice differentiable in ¢ almost everywhere and satisfies

¢
og(x,y,t) = f u*(z,y, 7)dr + u*(x,y,0), (9.17)

0
Bglr.y.t) = uw(a,y0). (9.18)

We will use these facts together with (9.15) and (9.16) to show that 6, = u*
almost everywhere and g = u almost everywhere.

For ¢ € C*(R™"), we have

r

| as@unima = | oo

= — | u™(x,y,t)o(t)dt
JRF
P ..

= — u(z,y,t)p(t) dt

JRTF

= J}w u*(x, vy, t)qb(t) dt

where (9.18) and (9.16) were used in the second and third steps, respectively. Thus

we obtain

fw (Grg(,y,t) — u*(x,y,t)) G(t) dt = 0, (9.19)
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for every ¢ € CP(R™). Since dig(z,y,0) = u*(z,y,0), we conclude from (9.19) that
org(z,y,t) = u*(x,y,t) almost everywhere.

We also have

JR+ g(:r, ¥ t)¢(t) dt = — L{Jr atg(J?, Yy, t)¢(t) dt
- JRJr u (m, Y, t)¢(t) dt

_ fw w(w, v, )o(t) dt

where the fact that d,g(x,y,t) = u*(x,y,t) almost everywhere was used in the

second step and (9.15) was used in the third step. Thus we see that

| Gty =ty ey =, (9:20

for every ¢ € C*(R™). Since g(x,y,0) = u(x,y,0), we conclude from (9.20) that
g(x,y,t) = u(x,y,t) almost everywhere, completing the proof of Part (a).
Part (b). Let ¢(x,y,t) be in C*(22x Y x R)? and Y-periodic in y. Then by using

integration by parts, we see that

wa ot (z, 1) - 1 (xft) dedt = — wa (1) - Byt (Igt) dndt
- L uf(z,0) - (x §,0> dz.

Sending ¢ to 0, we obtain

QxY xR+ QxY xR+

QxY

(9.21)
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On the other hand, using Part (a), we see that

J u(x,y,t) - (z,y,t) dedydt = J og(x,y,t) - (v,y,t) dedydt
QxY xR+ QxY xR+

-
= - 9(@,y,t) - o) (w,y,t) dedydt
JOXY xR+
"
JOXY
f‘
= — u(z,y,t) - o (x,y,t) dedydt
JOXY xR+
- ( u(r,y,0) -9 (z,y,0) dedy.
JOxY
(9.22)
From (9.21) and (9.22) we obtain that
J (uo(xay) —U(LC,y,O)) w(:E?yaO) d.fl?dy = 07
QxY
for every 1. Therefore
u(z,y,0) = u’(z,y),
almost everywhere. Similarly we can show that
@u(x, Y, 0) = Uo(xa y)7
almost everywhere, completing the proof of Part (b). ]

Proof of Lemma 9.11. Part (a). Since A, = A1 — Ar 2, we will compute the two-

scale limits of Az u® and Ay ou®, then combine them to show that as € — 0,
Apuf(z,t) 2 Bpu(z,y,t). (9.23)

Let ¢ € CP(R® x Y)? such that ¢(z,y) is Y-periodic in y, and ¢ € C(R¥). Then

from the definition of Ay 1, equation (8.1), we see that

JQXR+ Apu®(x,t) -1 (x, g) o(t) dadt

_ :%_x(:@—x)(@(:f:—x) e (2 )
_wa .[HW(;,;)/\( ) (#,1)d ¢< ,€)¢(t)d dt,

| — xf?

(9.24)
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Since u®(z,t) EN u(z,y,t), we obtain using Proposition 9.9 that, as ¢ — 0,
u® — J u(z,y,t) dy weakly in L*(Q x (0,T))>. (9.25)
1%

It follows from (9.25) that, for fixed z,

: ) @-—2)®@—12) . . A
lim fw JHM G — ) (3, 1) (1) didt

=0 |z — x|?

= po g EZDOE D) (e ay i

- JR+ va(x) A ) & — 3 (J;/ (@, ¥, 1) dy) o(t) dzdt.
(9.26)

We note that by replacing v(x) with u®(z,t) in (8.17), we obtain

L M=) E-D®@=2) e 1yas

x) |.i'—.CE|3

1 1/s 1/s
< Amax (J P di‘) <J |U6(i’, t) |S d.ﬁ%)
Hy(z) |2 — x| Hy(z)

1 ) 1/s
O ([ FE®) Wloneen 020
H x|

From Proposition 8.1, [u®|| 1= ([0, L+(0)3) is bounded. Thus from (9.26), and (9.27)
and by using Lebesgue’s dominated convergence theorem, we conclude that the
convergence of the sequence of functions in (9.26) is not only point-wise in x
convergence but also strong in L*(Q2)?. Therefore we can use Proposition 9.2 and

(9.26) to evaluate the limit of (9.24) as ¢ — 0. We find that

lim Apqus(x,t) - (x, g) o(t) dxdt

e—0 QxR+

o Lo 2B (L) v (o 2) oy
' (9.28)

Next we evaluate the two-scale limit of Ay ou®. We recall from (8.2) that

Apouf(x,t) = J AE — z) (T—2)® (T — )

e 7 —af? dz u®(x,t), (9.29)
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from which immediately follows that as ¢ — 0,

Apou® AT — ) (# = xA) ®(&—2) dz u(z,y,t). (9.30)
’ H () |2 — 3
Combining equations (9.28) and (9.30), the result (9.23) follows.
The fact that the two operators B; and Bg are linear and bounded on the
Banach space L*(€2; L;,,.(Y)) can be shown by arguments similar to those used in
the proof of Proposition 8.1.

Part (b). Since Ay = A5, — AS,, we will compute the two-scale limits of A%, u*

and A%,u®, then combine them to show that as € — 0,
Asuf(z,t) > Bgu(x,y,t). (9.31)

Let w(% y7t) = ¢2($)1/11(3/)¢(t)a where 1/}2 € CEO(R3)7 wl € Og;r(y)?)a and
¢ € CP(RT). Then by using (8.13), replacing v(x) with u®(z,t), we see that

Y : r
JQXRJr Agus(z,t) -3 (x, 8,75) dxdt

= f J a(g,z%—z) Z®3Z u“(x + €z,t) dz-w(x,f,t) dxdt.
axrt JH;0) VE € || £

(9.32)

We recall that « (f, 4+ z) is defined by equation (6.5). Without loss of generality,

we may assume that « (f, 4+ Z) is given by

r T T i
(B0 (OlEe)
g € 9 9

Thus after a change in the order of integration in the right hand side of equation

(9.32), we see that
x
J A us (x,t) - (;1:, —,t) dxdt
QxR+ 7 €

o V)t (2t

(9.33)
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Now we focus on evaluating the limit as € — 0 of the inner integral in (9.33). By

the change of variables r = x 4+ £z we obtain

wa Xt (g) Xt (E + z) u (x4 ez,t)-z Yy (f) -2 Py () (1) dadt

S S
r r

= JRSXW Xa(r —ez) x¢ (g — z) Xt (g) us(ryt)-z iy (g — Z) 2 o (r — e2)p(t) drdt
(9.34)

= a”(2),

where xq denotes the indicator function of Q2. We will show that for z € H;(0),

e—0

lima®(2) = JQ . Xt (Y — 2) xe (y) ul(r,y,t)-z 1 (y — 2)-2 Yo (r)o(t) drdydt.

(9.35)

To see this, we approximate yqo by smooth functions (, such that as n — oo,

Ca(r) — xa(r) almost everywhere and ¢, — xq in Lj (Q), with 1/s + 1/s' = 1.

Then by adding and subtracting (,(r — €z) to and from xqo(r —€z) in (9.34), we

obtain that

af(2) = aP(2) + ay<(2), (9.36)
where,
@) = [ (alr—e) = Gl —e2) x

s (g - Z) Xt (g) W, t)-2 ¥y (g - z) 2 o (r — £2)p(t) drdt, (9.37)
G = [ Gr-e)x

i (g _ z) v (g) W (r,t)-2 (g . z) 2 ao(r — £2) () drdt. (9.38)
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From (9.37) and by using Hélder’s inequality, we see that

, 1/¢
la7(2)] < <JR3 Ixa(r —ez) — Gu(r —e2)|’° dr) X

[ (=) )",

¢(t) dt. (9.39)

r

ut(r,t)-z (— — z) 2 Po(r —ez)

3

We note that the second term on the right hand side of (9.39) is bounded above
uniformly in . This follows from Holder’s inequality applied to the inner integral
and the fact that (uf).~o is bounded in L. (R*; L*(2)?). On the other hand, by

loc

the change of variables r' = r — ez, the first term on the right hand side of (9.39)

(J Xa(r") =Gl dr') "

which goes to zero as n — oco. From these two facts and (9.39), we conclude that

becomes

for all e > 0 and z € Hs(0),

lim ay"*(z) = 0. (9.40)

n—aoo

Now for fixed n, since (,, and 1y are smooth functions, we see that as ¢ — 0,

Cu(r — e2)ho(r — €2) — G, (7)1h2(r) uniformly. Therefore, we see from (9.38) that

lim a5 (2)

e—0
= ll—r}(l] . gn(r) Xt (g - Z) Xt (g) ua(r, t)z @Zfl (g — Z> .z w2(7)¢(t) drdt
_ JRS o Calr)xe (Y — 2) xe () u(r, y, ) -2 1y (y — 2)-2 Yo (1) (t) drdydt,

(9.41)

where in the last step the fact that (u®).-o two-scale converges to u(r,y,t) was

used. By taking the limit as n — oo in (9.41), we obtain

lim lim a5 (2)

n—o0 e—0

= JQ Xt (Y — 2) xe (v) w(r,y,t)-z 1 (y — 2)-2 o (r)o(t) drdydt.  (9.42)

xY xR+
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From (9.40) and (9.42) and since

lim a®(2) = lim lim (a]°(2) + ay*(2)),

e—0 n—o0 e—0

equation (9.35) follows.

From (9.33) and (9.35), and by using Lebesgue’s dominated convergence theo-

rem, we obtain

lim A ut(x,t) - (x gt) drdt
eV JOxR+
1
- L o 121° L G (y —2) xe (y) ulr,y, t)-2 1 (y — 2)-2 a(r)B(t) drdydtdz
L - JH o 2P f Xt (Y — 2) Xt (W) u(r,y, t)-2 Py (y — 2)-2 dydz o (r)p(t)drdt,

(9.43)

where we have changed the order of integration in the last step. After shifting the

domain of integration in the inner integral of the right hand side of equation (9.43),

we obtain
L xe(y— 2) xe (W) u(r,y,t) -z ¥y (y — 2) -2 dy
- szf(y) Xe(y+2)u(ry + 2,t) 2 ¢ (y) -2 dy
- L Xe (W) xe (Y + 2) ulr,y + z,8) -2 1y (y)-2 dy, (9.44)

where in the last step the fact that the integrand is Y-periodic in y was used.
Substituting (9.44) in equation (9.43), then by changing the order of integration

we obtain

lim v (1) - ( g ) dxdt

e—0 QxR+

= L R+f L ) Xt (y) xe (y + 2) Zﬁg u(r,y + z,t)dz - 1 (y)dy Yo (r)o(t)drdt

_l’_

N o
S R G=DNOW=Y) . 5 iy (e, y. 1) drdyat.

QxY xR+ JHs(y) 1)~y
(9.45)
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In the last equality the change of variables y = y + z was used.
Next we evaluate the two-scale limit of Ag,u®. Let ¢ be a test function in J.

Then by using (8.16), replacing v(z) with u®(z,t), we obtain
x
J AGut(z,t) - (33, —,t) dxdt
QxR+ €

T o 2 Q2 .
= — — + = dz uf(x,t) - 2 t) dadt.
JQXR+ fHé(o)OZ(s £ Z) EE z u(z,t) ¢<$ 5 ) x

(9.46)

The right hand side of (9.46), after changing the order of integration, is equal to

1
f e « (z, d + z) u(z,t)-z ¢ (a:, E, t) -z dxdtdz. (9.47)
Hs(0) 12* Joxr+ € € €

Using the fact that (u®).~¢ two-scale converges to u(z,y,t), we see that for
S H(s(O),

lim a(z,f—k,z) u%:c,t)-zzb(a:,z,t)-zdxdt
>0 Jougs \E € €

= f a(y,y+ 2)u(x,y,t)-z Y (x,y,t) -z dedydt. (9.48)
OxY xR+

From (9.46), (9.47) and (9.48), and by using Lebesgue’s dominated convergence

theorem, we obtain

lim AGgus(z,t) -9 (x, E,t) dxdt
=0 Joxr+ €
1
= J B f a(y,y+ 2)u(z,y, t)-z ¢ (x,y,t) 2 dedydtdz
Hs(0) |Z| QOxY xR+

(9.49)

By changing the order of integration and then using the change of variables

9y =y + 2z, we conclude that

: 13 g . z
lli% o Agqut(z,t) - (x, €,t> dxdt
Oy ® (Y- .
= f J a(y,9) g yA) (Z;, y) dy u(z,y,t) - (z,y,t) dedydt.
QxY xR+ JHs(y) 1)~y

(9.50)
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Equation (9.31) follows from combining (9.45) and (9.50), completing the proof.
O
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Chapter 10

The Macroscopic Equation and
Downscaling

The aim of this chapter is to justify the main results of Chapter 7.

10.1 Derivation of the Macroscopic Equation
We begin this section with the following observation. Let ¢ be a function in

L:,.(Y)3. Then

per

A=Y W—y) - o
fy Lé(y) (y:9) = )P (0(9) = o(y)) dydy = 0. (10.1)

To see this, we note that using Fubini’s theorem and the assumption that ¢ is

Y -periodic, the double integral in (10.1) can be written as

L JH ) ov.9) Ol (9(9) — o(y)) dydy

__ oW =9 @ —9) e )
N JY ng(@) (:9) (y —9)] (9(y) — o(9)) dydy,  (10.2)

where in the last equality we have used the fact a(y, ) = a(y,y). Comparing the
double integral in (10.1) with (10.2) the result follows.

Now let

uH(x, t) = JY u(z,y,t)dy.

Then from Proposition 9.9, we have that u(z,t) is the weak limit of u®(z,¢) in

LP(Q2 x (0,T))3. To identify the equation that uf solves, we integrate (9.11) over
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Y to obtain
Bull(z,1) = J A — ) E =D OE )
Hy(z)

| — af?

(u(2,t) — u(2,1)) di

"=y @G-y X A
! L Lé(y) Al §) g (W, t) = (e, 1) didy

—i—f b(z,y,t)dy.
' (10.3)

Using (10.1), the second integral on right hand side of (10.3) is equal to zero for

all z € Q and ¢ € (0,7). Thus uf solves

e = [ M- T EEZD -t ) di+ [ 0o 1)
H.(z) T — x| Y
(10.4)
supplemented with initial data
W0 = | g dy o(@0) = | Pepdy (109
Y Y

The initial value problem (10.4)-(10.5) can be written as the following operator

equation in L*(Q)?

W (0) = @, (10.6)

where

.
b(z,t) = b(z,y,t)dy,
Jy

("
u’(r) = u’(x,y) dy, and
JY

f‘

Px) = | ey dy.
JY

We have seen from the proof of Proposition 8.1 that A, is a bounded linear operator

on L*(Q)3, thus uff € C?([0,T]; L*(2)?) is the unique solution of 10.6.

105



To complete the proof of Theorems 7.1, 7.3, 7.5, and 7.7, we show that v/ is in

C*([0,T]; C(2)?), when the initial data @ and v° are in C(Q)?, and the loading

force b is in C([0,T]; C(€2)%). In fact, it suffices to show that the linear operator

Ay, is bounded on the Banach space of continuous functions C'(2)® equipped with

the uniform norm. So we let v € C'(Q)? and denote the uniform norm on C'(Q2)? by
| - Hc(Q)S. Then, we recall from (8.5) that Ay = Ay, + Ay, where Ay and Ay -

can be written as

£®E

Apo(z) = LW(O)A@) o vla+ € de (10.7)
= £©¢ v(x
Apo(z) = jHW(O)A(o o dcu(o) (10.5)

respectively. Taking the norm in (10.7) we see that

f A28 a1 6)de
H,(0) €]

||AL,1U||C(Q)3 = max
e

1
< <£g{3€%))\(5)) max JHW(O) 6] [v(z + &)[ d€

1
max A —d€ ||v]| o
(ﬁeHv(O) (€)> JHW(O) I3 <l HC(SW

Thus Ay ; is bounded on C(Q)?. It is clear that Ay, is also bounded on C'(Q)?,

N

and therefore Aj, is bounded completing the argument.

10.2 Justifying the Downscaling Step
In this section we prove Theorems 7.2, 7.4, 7.6, and 7.8. We begin by showing that

for fixed t € (0,7),

=0.
LS(Q)B

lim

e—0

x
: 7t - ( 7_7t)
u®(z,t) —u(x 8
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By shifting the domains of integration, equation (9.11) can be written as follows

Fule,y,t) = L Ao 8L

o &P (L u(z + &y 1) dy' —u(z.y, t)) de

—i—f a(y,erz)@ (u(z,y + 2,t) —u(z,y,t)) dz (10.9)
H5(0) 2]

+b(x,y,t).

Since u(x,y,t) is in Q and solves (10.9) with initial conditions (9.12) and (9.13),

then u(z, £,t) is in C*([0,T]; L*(€2)?) and solves

2u (m,g,t) = J‘HW(O))\(ﬁ)i?f (JY w(x + &,y ) dy —u (x,g,t)) d¢
+JH5(0)04 (g,g + z) % (u (I’g + z,t) —u (x,%,t)) dz
—i—b(m,g,t),

(10.10)
supplemented with initial conditions
u(z,y,0) = u° (:(:, f) , (10.11)
€
owu(z,y,0) = o° (x, g) . (10.12)

We let e*(z,t) = u(x,t) — u(x, Z,t). Then by subtracting (10.10) from (6.10), we

find that e € C%([0,T]; L*(Q)?) solves

0%ef(z,t) = A% (x,t) + d°(m,t), (10.13)
e“(x,0) = 0, (10.14)
o (z,0) = 0. (10.15)
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where A® is given by (8.7) and d°(x,t) is given by

d*(z,t) = di(z,t)+dg(z,t), (10.16)
i = [ a5 (u(ere ) - [uterernay) ac
JH,(0) [3 € Y
(10.17)
. _ T Q2 z _ r
dy(x,t) = JL(O) o (6, 5 + z) FE (u (x + ez, 8 + z,t) u <x, 5 + z,t)) dz.
(10.18)

Since A® is bounded, the solution of (10.13)-(10.15) is explicitly given by

2n+1

(x,t) J Z on + (A%)"d*(x, ) dr.

Thus

le=(-,2)

t_ T 2n+1 e\n €
f AV 1)

2n+1

sinh (m(t - T)) I (-, 7)

scyz dr o (10.19
Vi oy dr (1049

where in the second inequality we have used the fact that A® is bounded above by
an M > 0 independent of ¢.

In the following sections we will show that for t € (0,7),

lim (-, 1)

L@y =0, (10.20)

for each of the four cases of initial and loading conditions that has been introduced
in Chapter 7. On the other hand, from (10.16)-(10.18) and the fact that u is
continuous on [0, T, it follows that d®(-, 7) is continuous on [0, t] for ¢ < T'. Thus,
from equations (10.19) and (10.20), and Lebesgue’s convergence theorem, we see

that

ll_l)r(l) ||66('7t) Ls(Q)3 = 0,

from which the result follows.
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In order to prove (10.20), we will make use of the following observation:
The solution of each cell-problem of Chapter 7 has zero average over the unit cell.

To see this, we integrate equation (7.5) over Y to obtain

) g I= YOG =) oy e K
T(t)—fyLa(y) (v, 9) @ —o)F (r(9,t) — r(y, 1)) djdy — K 7(t)(10.21)

supplemented with initial conditions
7(0) =0, 7(0) = 0. (10.22)
Using (10.1), the integral on the right hand side of (10.21) is equal to zero for all
t e (0,7). Thus 7 solves
r(t) = —K 7(t), (10.23)
supplemented with zero initial conditions. Obviously the solution of (10.23) is given
by
| rwtyay =0 = (10.24)
Y

for all ¢ € (0,7"). Similarly we can show that

J i (y,t)dy = i (t) = 0, (10.25)
y
for all ¢t € (0,T), where 77 is the solution of (7.12), (7.19), or (7.26).

10.2.1 First Case

In this section we complete the proof of Theorem 7.2 by showing that equation
(10.20) holds true when b, u°; and v° are given by (7.2). We also prove the error
estimate (7.8).

Using the fact that r(y,t), the solution of the cell problem (7.5)-(7.6), has zero
average over Y, and by linearity, it is easy to check that uf(x,t) + r(y,t) solves
(9.11)-(9.13), where u'? is the solution of (7.3)-(7.4). Thus by uniqueness we con-
clude that

u(z,y,t) = u(2,t) + r(y,t). (10.26)
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Using this representation of u(x,y,t) and from equations (10.17) and (10.18), we

see that dj (z,t) and d%(z,t) are now given by

. _ £RE (x+¢

dL(x’ t) - JH,Y(O) )‘(é) |§|3 T ( c 7t) dgu (1027)
e ®

dg(z,t) = JHB(O) a <§, g + Z) % (u(z + ez, t) — u (x,1)) dz,(10.28)

respectively.

Changing variables of integration, equation (10.27) becomes

& (1) = J Mi—pEZ0®E=D) <§t> di. (10.29)

H.(z) |z —x]?

Since r(y,t) is Y-periodic in y and from Proposition 9.10, we see that for fixed ¢,

ase — 0
r (gt) — J r(y,t)dt = 0 weakly in L*()®.
2 Y

Thus from (10.29) we obtain that
lin% di(xz,t) =0,
for x € Q and t € (0,7). It follows from Lebesgue’s convergence theorem that

lim |5 (-1

Ls(Q)S - 0, (1030)

for t € (0,7). On the other hand, by taking the Euclidean norm of d%(z,t) in

(10.28), we obtain

1
— |[uf(z + ez, 1) — v (z,1)] dz, (10.31)

1452, )] < Ol j
H;(0) 2|

where oupax = max a(y,y'). Since uf € C2([0,T]; C(Q)?) (see Section 10.1), it
y.y'e

follows that for x € Q2 and t € (0, 7))

lin% |d5(z,t)| = 0. (10.32)
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Thus using Lebesgue’s convergence theorem, we obtain

lim 5, 1)

Ls(Q)S - O, (1033)

for t € (0,7). Equation (10.20) follows from equations (10.30) and (10.33).
Now we prove the error estimate (7.8). By setting A = 0 in equation (7.3), we

see that its solution u!! is given explicitly by

uf (2,t) = uo(w) +t vo(z) + L (t —71)l(x,7)dr. (10.34)

By assumption ug, v, and I(-,t) are in C%?(Q). Thus for z € Hs(0), we see from
(10.34) that
t
ju(z +ez,t) —uf(z,t)] < Clez|’ +t Clez|’ + J (t —7)Clez|’ dr
0
t2
- C <1 +t+ 5) |z|P€P, (10.35)

for some C' > 0. We use this bound in inequality (10.31) to obtain

2

t
|d5(z,t)| < C (1 +t+ —) amaxf 2|7 dz P (10.36)
2 H;(0)

Since A = 0 we see from (10.16)-(10.18) that d® = dg. Therefore from (10.36), after

a simple calculation, we obtain

5ﬁ+2 t2
[d (1) | Loy < 4w0amax|9|1/sm <1 it 5) el (10.37)

By using (10.37) to bound |[d(-, 7) | s()s in (10.19), the error estimate (7.8) follows.
10.2.2 Second Case

In this section we complete the proof of Theorem 7.4 by showing that equation
(10.20) holds true when b, u’, and v° are given by (7.9). We also prove the error
estimate (7.15).

Using the fact that r(y, t), the solution of the cell problem (7.12)-(7.13), has zero

average over Y, and by linearity, it is easy to check that u (. t) —i—Z?:l i (y, t)h;(z)
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solves (9.11)-(9.13), where u!! is the solution of (7.10)-(7.11). Thus by uniqueness

we conclude that

3
u(z,y,t) = u(z,1) + Z I (y,t)h;(z). (10.38)
j=1
Using this representation of u(x,y,t) and from equations (10.17) and (10.18), we

see that dj (z,t) is now given by

' EQE (a: +€ )
d = A , J .t h; dg, 10.39
(1) Lﬁ(o) (€) BE ;_1:7“ —ot) byl &) dg (10.39)
and dg(z,t) can be written as
052, 1) = 5y (2,8) + 5 (2, ), (10.40)

where,

dg,(z,t) = L 0" (E S z) ek (u (x +ez,t) —u(2,t)) dz,  (10.41)
5

|2[?

Gt = [ a(fles)
x,t) = al—,—+=%
5?2 H;(0) € € 2]

i r/ (E + 2, t) (hj(x + e2) — hj(x)) dz.

(10.42)

Applying the methods developed in Section 10.2.1 for (10.30) and (10.33), we

can show that for ¢ € (0,7),

111% ||di(,t) Ls(Q)3 = O, (1043)
and

lim 5, (- )o@y = 0. (10.44)
It remains to show that for ¢t € (0,7),

lim 5, (- )|+ = 0. (10.45)

From equation (10.42), we see that

105(2,8)] < e f

1 S/
Do (E )|y +e2) byl dz, (1046
H5<o>|z|§1‘ (Z+21)| Ihse +22) = ()l dz, (10.46)
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where . = max a(y,y'). Since % < s < o0, we can choose s’, with % < s < oo,
Y,y ey

and s”, with 1 < s” < 3, such that 1/s + 1/s' + 1/s” = 1. By Hoélder’s inequality
we obtain
1 1/5” 3 s s 1/8/
|d€S’2(x,t)| < Omax (J jd2‘> Z <J ‘TJ <— + z,t) dz)
Hy(0) 2| 21 \JH;5(0) €

. ( Lé(o) Ihy(z + £2) — hy(2)]* dz) " (10.47)

It is easy to see that

o /x s
(J ‘7"] (— + z,t)
Hjs(0) &

Thus from (10.47) and (10.48), and by using the triangle inequality in L*, we obtain

1 1/s" 3
a0l < o ([ ) I Olor
3

(0) 2|

(J JHa (z +e2) — hj(x)|° dz d.:z:) 1/8. (10.49)

Since h; is continuous on {2, we obtain from Lebesgue’s convergence theorem that

/ 1/s
d'z) < ||T]('7t)||LS'(Q)3- (10.48)

lir%f f (x +ez) — hj(z)|° dzdx = 0. (10.50)
e— H;(0

Equation (10.45) follows from (10.49) and (10.50). This shows that (10.20) holds
true for this case.

Now we prove the error estimate (7.15). By setting A = 0 in equation (7.10), we
see that its solution u!? is given explicitly by

ul (z,t) = f (t — 7)F () dr h(z). (10.51)

0

By assumption A is in C%%(Q). Thus for z € Hs(0), we see from (10.51) that

W (x +e2,t) —u(z,t)] < Clez|’ L (t —7)F(7)dr, (10.52)
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for some C' > 0. Taking the Euclidean norm in both sides of (10.41) and using the
bound (10.52), we see that

t

1d51 (2, )] < Ctman j

(=) ar j 2P dz e, (10.53)

Hs(0)
and it follows that

§8+2 t B
Loy < ATC | ——— < J (t —7)F(r) d7> & (10.54)

5.1+ 1) T

On the other hand from (10.49), after a straight forward calculation, we obtain

§3—5" 1/s" geB+3 N\ 3 5
pog@e < Ctmax (47T3 — S”) (4W|Q| sp + 3) Z ¢ )l s €7

j=1

lds2(- 1)

(10.55)

Since A = 0 we see that d° = dg, + d5,. Therefore by combining (10.54) and

(10.55) to bound | d*(-, 7)1+ in (10.19), the error estimate (7.15) follows.

10.2.3 Third and Fourth Cases

Arguments similar to those presented in Section 10.2.2 show that equation (10.20)
holds true when the loading and initial conditions are given by (7.16) or (7.23).
Also, the proofs of the error estimates (7.22) and (7.29) are similar to the proof
of (7.15) provided in Section 10.2.2. For completeness, we explicitly provide the
functions Mj(t) and My(t) of Theorems 7.6 and 7.6, respectively. The function

Ms(t) is given by

Ms(t) = Lt \/1M sinh (\/M(t — 7')) f5(T)dr

where

. §0+2 535"\ 5e+3 \ s 3
f3(t) = CamaX|Q|1/ (47T|F| + (471-@) <4ﬂ-sﬂ + 3) Z [77 (o 8) | Q)3

and 17 solves (7.19)-(7.20).
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The function My(t) is given by

where

§8+2

. _ 53" 1/s" §s8+3 1/s 3 _
fa(t) = Cumax| QY 47T|F|ﬁ 5 t+ (47rm) (47‘(‘86 n 3) Z |77 (-, 1)
j=1

and 77 solves (7.26)-(7.27).

This completes the proofs of Theorems 7.6 and 7.8.
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Chapter 11
Fluctuating Long-Range Bond Model

In this chapter, we present a new multiscale analysis method for computing the de-
formation of fiber-reinforced composites modeled by the peridynamic formulation.
This is done for the Fluctuating Long-Range Bond model described in Section 6.3.
The method provides a computationally inexpensive multiscale numerical method.
This is described by Theorem 11.1. A homogenization result for this model is
expressed in Theorem 11.2.

We begin by recalling the peridynamic equation of motion for this model. By

expanding o5 in equation (6.15), then collecting the xf terms, we obtain

2u(e,t) = vi(x) L (GG (&= f’j?éﬁ =) (w2, 1) — (2, 1)) dls
4 J cC EZDOE D) e iy e (a1) di, (11.1)
Hs(x) |2 — x|?

where the first integral in (11.1) is a line integral over the set
I§ () = {& € Hs(z) such that & — x is parallel to n}.
The initial conditions supplementing this equation are given by
u(z,0) = u’ (), (11.2)
o (2,0) = 0% (z). (11.3)

The well-posedness of equation (11.1)-(11.3) is provided in Section 11.1 (Proposi-

tion 11.4).

Theorem 11.1 (Downscaling). Let u® € C?([0,T]; LP(2)3) be the solution

of (11.1)-(11.8), where 1 < p < o0. Then for t e [0,T],

lig(l) |uf (. 1) — (XF(@)w(z, 1) + u’(z) + t°(2)) HLP(Q)S =0, (11.4)
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where w € C*([0,T]; LP(Q)3) is the solution of
T—2)® (T —x)

& — ]

Fw(x,t) = Jln( )Cf( (w(z,t) —w(x,t))dl;

+ f]”( )Cf(j —7)® (2 — ) (uo(iz) + tvo(:i’) _ (uo(x) n tvo(:(;))) dl,

7 — ap
(11.5)
supplemented with the initial conditions
w(z,0) = 0, (11.6)
ow(z,0) = 0. (11.7)
Moreover, fort € [0,T] the error in (11.4) is estimated by
|uf (2, t) — (X5 (@)w(z, t) + u’(z) + 1°(x)) HLP(Q)3 < e Ms(t), (11.8)

where
1

VM

Ms(t) = (”uO”Lp(Q)?: cosh VMt + [0°) 1oy sinh v/ Mt) ,

and where M is a positive constant.

Theorem 11.1 is proved in Section 11.2.

The macroscopic peridynamic equation for this model is given by

oput(z,t) = Ln( ) &8 E 1) (T (2,t) —u (2, 1)) dl;

| — xf?

L o0-1) L( ¢ (& = g?;; =) (W0(@) + 10(3) — () + 1 (2))) dia,
5 (11.9)
supplemented with initial conditions
u(2,0) = u°(z), (11.10)
ot (2,0) = °(2). (11.11)

Here the macroscopic displacement u!? is the weak limit of the sequence of dis-

placements u®. This is described by the following theorem.
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Theorem 11.2 (Homogenization). Let u® € C?*([0,T]; LP(2)3) be the solution

of (11.1)-(11.3), where 1 < p < o0. Then forte€ [0,T], ase — 0,
ut (-, 1) — u? (1) weakly in LP(Q)?,

where ufl € C*([0,T]; LP(2)3) is the solution of (11.9)-(11.11). Equivalently, u®

can be computed as follows
u(z,t) = Opw(z,t) + u'(x) + t°(2), (11.12)

where w solves (11.5)-(11.7).

Theorem 11.2 is proved in Section 11.2.

Remark 11.0. We observe that the macroscopic peridynamic equation (11.9) has
a nonzero loading force, although the original peridynamic equation (11.1) has
no loading force. The physical interpretation for this phenomenon is not well-

understood up to this point.

11.1 Existence and Uniqueness Results

Without loss of generality, we may choose the fiber direction to be parallel to the
x1-axis. So let n = (1,0,0). We note that the matrix multiplying (u®(z,t) —u®(x,t))
in the first integral of (11.1) is now given by

(T—2)® (T — )

| — x]?

1 00
=1 000
0 00

for @7 # x1. Thus equation (11.1), after shifting the domain of integration in the

first integral, becomes

2uf(x,t) = (Cr—eCh) x5 (2) J_a(ui(x +(1,0,0),t) — ui(x,t))dl

+ J 0 BZDOE =) (i iy e (e, 0)) di. (1113)
Hy(z) |2 — x|?
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Let v = (v1,v9,v3) € LP()? with 1 < p < co. Then we define the following

operators
Aw(z) — cffﬁ(vl(m +(1,0,0)) — vy (a)) dl, (11.14)
Afv(z) = xi(x) Ap(x), (11.15)
Apo(z) = L O (= E}?ﬁ; =2 (w() — v(z))di,  (11.16)
A = A (Am _ %A5> (11.17)

The initial value problem (11.1)-(11.3) can be written as the following operator
equation in LP(Q)?
us(t) = Au(t), te[0,T]

ut(0) = P, (11.18)

Existence and uniqueness of solution of (11.18) is given by the following proposi-

tion.

Proposition 11.4. Let 1 < p < oo. Then
(a) The operator A® is linear and uniformly bounded on LP(2)3.

(b) Equation (11.18) has a unique classical solution u¢ € C*([0,T]; LP(Q)?)
which s given by

2n

2t
T;)(Qn

00 t2n+1 0
"0 (1119
Z:] gy A (LI9)

Proof. Part (a). First, we show that the linear operator A,, is bounded on L?()3.

Let v € LP(2)3. Then from (11.16), A,, can be written as
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where

Amiv(z) = J E=0)@E=2) o i (11.20)
Hy(z) |2 — z|?

Apov(z) = J E=0)@E=2) 1o, (11.21)
Hy(x) |2 — x|

From equation (11.20) we see that

p
[ Am 1]y < f(f |v(:e)|d:e> dx
o \JH, (@)

<19/ [0l 0y (11.22)

where the fact that |[v]|;1)s < |v]Lr(@)s Was used in the last step. This shows that
Ay is bounded on LP(Q)3. The boundedness of Ay, is clear. Therefore A, is
bounded on LP()3.

Next we note that Ag is bounded on LP(£2)3, which is a consequence of Lemma
11.5 given at the end of this section. Thus it follows from (11.15) that Af is uni-
formly bounded on LP(Q)3.

Combining these results with equation (11.17), it follows that A° is uniformly
bounded on L*(€)3, completing the proof of Part (a).

The proof of Part (b) is similar to the proof of Part (b) of Proposition 8.1.

[
Lemma 11.5. Let v be in LP(Q)3, where 1 < p < oo, and define
5
o(z) = J o( + (1,0,0)) dL.
—5
Then © is in LP(2)? and
19 eys < 2 [v]Lo(oys. (11.23)

Proof. From the definition of ¢ it is easy to see that

5 P
J |o(z)|Pdx < J (J |v(z1 + l,xg,x3)|dl> dridredrs.  (11.24)
Q o \J=s
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Using Hélder’s inequality in the inner integral with v € LP(Q)3 and 1 € L” (Q)?,

where 1/p+ 1/p’ =1, we obtain
5
J @)Pdr < (20) f J (@r + L, 29, )| dl dardeaders
0 aJ-s
5
= (25)p/p'f J |U(I’1 + l,$2,$3)|p dl’ld{EQde‘gdl, (1125)
-5 Jo

by Fubini’s theorem. We extend v to R? by setting v = 0 outside 2. Then by the

change of variables &1 = x; + [ in the inner integral of (11.25), we obtain

J |v(xq + [, 9, 23)|P dy < J |v(xy, x9, x3)|P d;.
Q Q

Using this estimate in (11.25), we conclude that

L 0(z)[Pde < (20)P/7(26) L |v(x)]P dz, (11.26)

and (11.23) follows, completing the proof. [

11.2 Multiscale Analysis Using the Semigroups
Approach
The aim of this section is to prove Theorems 11.1 and 11.2. Our approach is

summarized by the following steps:

(i) Compute the two-scale limit u(x,y,t) of the sequence (u®) using the explicit
representation of u°, equation (11.19). We show that for fixed ¢t € [0,T], as

e — 0,
u (2, t) = (e, y, t), (11.27)

where u is given by

ulw,y.t) = (@) +1°@) + xly) Y

+xe(y) D ETE— (A" (). (11.28)
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(i) Compute d?u in (11.28) then use it to identify the two-scale limit equation.

We find that u € C*([0,T]; LP(Q)?) uniquely solves

GPule,y.t) = Awlr,y,1) + b(x,y,1),
u(z,y,0) = u(x), (11.29)
ou(z,y,0) = %),
where b is given by
b(z,y,t) = (xe(y) — DA(u’ + 10" ().
Here the operator Ay is defined as follows. For ¥ € LP (QxY)3

Az, y) = Cr f(s (@ + (1,0,0), 4) — % (2, 1)) dL. (11.30)

(iii) The macroscopic equation is found by integrating (11.29) over Y. We find

that the macroscopic displacement u* solves

Pufl(x,t) = Al (2,t) + b(x, 1),
u(z,0) = u'(z), (11.31)

oul (z,0) = %),

where b is given by
b(z,t) = (0 — 1) Ag(u® + t%)(z).
Here for fixed t € [0,T1], as € — 0,

uf (-, 1) — u(-,t) weakly in LP(Q)*. (11.32)

(iv) The two-scale limit u can also be computed by the following method. This

method is numerically inexpensive.

u(z,y,t) = xi(y)w(z,t) + u’(x) + t°(z), (11.33)
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where w € C%([0,T]; LP(Q)?) solves

Pw(x,t) = Apw(z,t) + A(u® + t0°)(z),
w(x,0) = 0, (11.34)
ow(xz,0) = 0.

It follows from integrating (11.33) over Y that u' can also be computed by
u(z,t) = Opw(x,t) + u’(z) + (). (11.35)

(v) Extend u by periodicity from Q x Y x (0,7) to Q x R* x (0,7). Then we
use the explicit representations of u® and u, equations (11.19) and (11.28),

respectively, to show that for fixed ¢ € [0, 7],

lim
e—0

x
: 7t - (7_7t)
u(z,t) —u(x 5

iy = (11.36)

Now we justify steps (i)-(v).

Proof of (i). Let v € LP(Q2)?, where 1 < p < co. Then we first show that
(Af)"v(z) = x5 (x)(Ap)"v(z) for all n e N. (11.37)

The proof is by induction on n. The formula (11.37) holds for n = 1 by the

definition of Af. Assume that it holds for n = k. Then for n =k + 1,
5
(A) ™ v(2) = X?(l’)cfj ) ((AD)*va(x + (1,0,0)) = (A) vy (2)) di

= @ | (i 0.0.0)(A) (e + (1,0.0)

— X5 (2)(Ap) o1 (z)) dl. (11.38)

Note that since z lies in a fiber if and only if x + (/,0,0) lies in the same fiber,

then x§(z + (1,0,0)) = x{(x). On the other hand (x$)* = x{, thus (11.38) becomes

() = i) (0 [ ((APute + 0.0.0) = (AP ) )

= Xi(@)(A) " u(2).
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Therefore (11.37) follows. Since (Af)"v € LP(S2), it follows from Propositions 9.3

and 9.4 of Section 9.1 that

XE (@) (A)"0(x) = xi(y) (A)"v(@). (11.39)

Next we show that

(A%)"0(x) = xily) (Ap) "o (@). (11.40)

To see this, we note that from (11.17), the operator (A%)" , n € N, can be written

in the following form
(A%)" = (AD)" + eDs,, (11.41)
where the operator D¢ is bounded on LP(Q2)? and satisfies
1Dy < M™ (11.42)
for some M > 0 independent of . It follows that for fixed n € N,
limeDiv =0, in LP(Q)?, (11.43)

and thus by Proposition 9.2, the sequence (¢D:v).~o two-scale converges to 0.
Therefore the result follows by combining (11.41), (11.39), and (11.37).

Now we recall from (11.19) that u®(z,t) is given by

2n t2n+1

u (z,t) = ul(z) + to’( 2 (A)"u(x) + ) i A%)0(x).

n=1 n:l
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Using (11.40), we will show in Section 11.2.1 that for ¢ € IC,
1 < e\n,,0 . z
iy [ 30 (40 (. 2)
tQTL
J J Z y)(A)"u’(z) - (2,y) dydz,  (11.45)
1 S t2n+1 e\n,,0 x
lﬁ%f ;m(fl) v (z) - 10(:6 g) dx

J J 27;”:1 P Xe() (A" (2) - ¢ (,y) dyd. (11.46)

It follows from (11.45) and (11.46) that for fixed t € [0,T], as € — 0,
uf (z,t) > u(z,y,t), where u is given by (11.28).
Proof of (ii). We can see from (11.28) that u € C?*([0,T]; LP(Q x Y)?). Then by

taking the second time derivative of both sides (11.28), we obtain

otu(z,y,t) = xi(v) Z ;;)' (Ap)" T’ (x) + xe(y) Z (2271—:1)' (A" (x)
= xe(y)Ar(u” + t0")(2)
+Xf(y)AfZ (;:)l (Ap)"u’(z) + xe(y Z 227: A" ()

(11.47)

~ o tQTL
Awu(z,y,t) — A(u® + %) (z) = Xf(y)Afz o)l (Ap)"u’(z)
n=1 '
DAY Ao (Ag0e) (1148)
+ xe(y) As 0)"v” (x 11.48
~ (2n+1)!
Thus from (11.47) and (11.48) we obtain that

Pu(z,y,t) = Al y,t) + (xe(y) — 1) Ap(u® + t0°)(2), (11.49)

and hence (11.29) follows. The linear operator A¢ is bounded on LP(€2 x Y)3. Thus

u is the unique solution of (11.29).
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Proof of (iii). From (11.27) and Proposition 9.9, we obtain that for fixed

€ [0,T], as € — 0,
u(-,t) — J u(-,y,t) dy weakly in LP()*.
Y

By definition uf = {, u(x,y,t) dy, thus (11.32) follows. It is clear that (11.31)
follows from integrating (11.29) over Y.

Proof of (iv). Define

t2n

=2, (2n)! (4

n=1

752n-‘r1

+ Y T T Ag)"(z). (11.50)

n:l

Combining this equation with (11.28) gives (11.33). On the other hand, equa-
tion (11.50) implies that w € C?([0,T]; LP(Q)?). Thus by taking the second time

derivative of both sides of (11.50) gives

2n t2n+1

An+10 An-‘rlO
0 +Z 2n+1)(f) Vi)

Pw(x,t) = Z

o0 t2n+1
= Ap(u® + 10°) (z) + Ay +2 G (Ap)"0° | ()

= Ag(u® + ") (2) + Apw(z, ). (11.51)

Note that from (11.50) it is easy to see that w(z,0) = 0 and dw(x,0) = 0.
Combining this fact with (11.51), equation (11.34) follows. The fact that Ay is

linear and bounded on LP(£2)3 implies that w is the unique solution of (11.34).
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Proof of (v). Extend x; from Y to R?® by periodicity. Then by making the sub-

stitution y = £ in (11.28), we obtain

u<x§t) = WO(z) + t°(2) + xi(x i (Ap)"u ()
i) Y, G (400
)+ () +ni éj;! (45)"0(z)
-] gy () (1152

where in the last equality we have used equation (11.37).
Now we compute the difference u®(z,t) — u(z, ,t) using equations (11.19) and

(11.52). We see that

e —u(n ) = g () - @
+,;1(22t1>! (A" = (AD)") v ()
o] th e t2n+1 .
- ;1(2”). (eD:)u 7;1 s (0 (@),

(11.53)

where in the last equality we have used equation (11.41). By taking the LP norm

in (11.53) and by using (11.42), we see that

u(z,t) —u (a: j )

o 2n

LP(Q)3 Z

M"Hu0||m(9)3

2n+1

- 23 Gy M

=¢ (uoLp(Q)3 cosh v Mt + HUOHLp(Q 3

1
: sinh v Mt
M )

thus (11.36) follows, completing the proof.
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11.2.1 Proof of (11.45) and (11.46)

In this section we prove (11.45). Equation (11.46) can be derived similarly.

We begin by the following observation

t2n

u’(x) -9 (.73, g)‘ dx < o0. (11.54)

To see this, we use Cauchy-Schwarz inequality to obtain

JQ @) (2| de < (4" oo [ (2 2)

From Part (a) of Proposition 11.4, the operator A¢ is uniformly bounded on L*()3.

11.55
iy (159

Also, it is easy to see that

()

We use these two facts in (11.55) to obtain

1/2
< Wlc.om = ( [ swlepPar)
ye

L2(Q)3

f (A (@) - (2.2) | o < M ] gy W@y, (1156)

for some M > 0. Therefore

th th

e¢]
HUOHLQ(Q)B ||77Z)HL2 Qcper Z )'
n=1

) ()

from which (11.54) follows.
Now from (11.54) and by using Lebesgue’s dominated convergence theorem, it

is straightforward to show that
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Then using (11.40) we see that

N
t2n

lim Sye = ) @2n)! nyxf(y)(Af)”uo(x) ) (2,y) dady, (11.58)

n=1

and hence

o0
th

lim lim Sy, = Z 2n)] Jﬂxyxf(y)(/lf)"uo(x) < (x,y) dedy. (11.59)

N—ow e—0
n=1

Below we will show that the order of the limits in (11.59) can be interchanged, i.e.,

lim lim Sy, = lim lim Sy.. (11.60)

e—>0 N> N—o0 e—0

Combining this with (11.57) we obtain

t2n

-2 2n)! L YXf(y)(Af)"uo(x) - (x,y) dedy. (11.61)

Applying arguments similar to those used in obtaining (11.57), we can show that

Z L % (;7:)' Xi(y) (A"’ (@) - ¢ (2,y) ddy

n=1

- L . 2 (;:)! Xe(y) (An)"u’(z) o) (2, y) dudy. (11.62)

From (11.61) and (11.62), the result (11.45) follows.
To complete the proof, it remains to justify (11.60). It is sufficient to show the

double sequence (Sy,) is Cauchy. So assume that NV, L € N such that N > L. Then

- t2n e\n,,0 z
|SN,{-: SL,E| = n_ZL;'_l (271)' JQ(A ) u (J}) . Q/} <Z‘, 5) dx
< i e f ‘(Aa)”uo(x) Y (m x)‘ dx
h n=L+1 (QTL)' Q e
N t?n
< H“OHLQ(Q)g 19 220 (vy9) Z WMn’ (11.63)
n=L+1
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t2n

where (11.56) was used in the last step. We note that the term ZnN=L+1 M
in (11.63) can be made arbitrarily small by choosing large values of N and L. We
conclude that for given ¢ > 0, there exists a positive integer K (¢) such that for

N,L > K(¢) and all ¢ > 0,

Sye— Spl <. (11.64)
From (11.58) and (11.64), and by using Lemma 11.6 below, it follows that the
double sequence (Sy ) is Cauchy.
Lemma 11.6. Let (a,x) be a double sequence in R?, d € N, such that

(a) For each n € N,

lim a1, = Gp.
k—o0

(b) Given ¢ > 0, there exists a positive integer N = N(() such that for n,l > N

and all k e N,
|0Jn7k — CLl7k| < C (1165)

Then the double sequence (ay, ) is Cauchy, and hence convergent.

Proof. Let ¢ > 0 and assume that N € N satisfies Part (b). Then consider the
sequence (ay g)ken- 1t follows from Part (a) that this sequence is convergent, and
hence Cauchy. Thus there exists a positive integer K = K(N,() such that for
k,m > K,
lank — anm| < C. (11.66)

Let J = max{N, K}. Then from (11.65) and (11.66) we obtain that for
n,l,k,m > J,

lank — m| < |k —ang| + lanke — anm| + |aNm — aim

< 3¢,

and therefore the double sequence (a, ) is Cauchy. O
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