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Abstract—Network inference algorithms can assist life scientists in unraveling gene-regulatory systems on a molecular level. In recent

years, great attention has been drawn to the reconstruction of Boolean networks from time series. These need to be binarized, as such

networks model genes as binary variables (either “expressed” or “not expressed”). Common binarization methods often cluster

measurements or separate them according to statistical or information theoretic characteristics and may require many data points to

determine a robust threshold. Yet, time series measurements frequently comprise only a small number of samples. To overcome this

limitation, we propose a binarization that incorporates measurements at multiple resolutions. We introduce two such binarization

approaches which determine thresholds based on limited numbers of samples and additionally provide a measure of threshold validity.

Thus, network reconstruction and further analysis can be restricted to genes with meaningful thresholds. This reduces the complexity

of network inference. The performance of our binarization algorithms was evaluated in network reconstruction experiments using

artificial data as well as real-world yeast expression time series. The new approaches yield considerably improved correct network

identification rates compared to other binarization techniques by effectively reducing the amount of candidate networks.

Index Terms—Binarization, gene-regulatory networks, Boolean networks, reconstruction.

Ç

1 INTRODUCTION

ON a molecular level, homeostasis of adult organisms
and organs as well as embryonic development of

multicellular organisms is often poorly understood. Model-
ing and simulation contribute to a deeper understanding of
these biological systems, particularly if dynamic aspects are
essential [1]. Handcrafted models, often based on series of
wet-lab experiments and exhaustive literature research,
have been successfully applied to the study of complex
biological systems [2], [3].

The increasing use of real-time PCR or high-throughput

microarray techniques facilitates time series measurements

of thousands of genes in parallel. To infer models from such

large-scale data, an automation of the model construction

process is required. Static methods, including Bayesian

networks [4] and Boolean logic [5], [6], [7], have been

applied to express general relations of a system [8]. In case

of time-critical events like embryonic development or cell

cycle processes, however, a dynamic system description is

often indispensable to obtain a comprehensive understand-

ing of biological systems. Such dynamic processes are

frequently described by systems of ordinary differential
equations [9], [10]. Another possibility to describe depen-
dencies between consecutive gene expression measure-
ments is dynamic Bayesian networks [11], [12]. They
account for the stochastic nature that is inherent to
biological systems. In addition to these approaches, special
attention has been drawn to Boolean networks. These were
pioneered by the work of Kauffman [13], [14] on gene-
regulatory systems in the context of evolutionary issues.
Boolean networks require the assignment of a label
“expressed” or “not expressed” to an individual gene. Just
as Boolean networks, the intricate internal dynamics of
cellular circuits can exhibit a simple “on/off” behavior [15].
Many cellular systems have been successfully modeled with
Boolean logic, such as the segment polarity gene network of
Drosophila melanogaster [2], or the cell cycle control in yeast
[16]. Saez-Rodriguez et al. describe the behavior of T-cell
receptor signaling with a quasi-dynamic Boolean model
that differentiates between an early and a late phase in the
description of the dynamics [17].

In recent years, inference methods for Boolean networks
became popular due to their simplicity and the fact that
qualitative predictions of large complicated networks are
more manageable. Liang et al. [18] developed the REVEAL
algorithm, which uses the mutual information between input
and output states (e.g., two subsequent measurements of a
time series) to infer Boolean dependencies between them.
Akutsu et al. [19] presented a simple algorithm that can deal
with noisy data to infer such networks. Lähdesmäki et al. [20]
and Nam et al. [21] devised a method that reduces the time
complexity of this search (by a factor of 22k compared to
Akutsu et al. [19], where k is the number of input genes of a
single Boolean function). Kim et al. [22] proposed an
inference algorithm that determines associated genes based
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on the chi-square test. Compared to the previously men-
tioned exhaustive reconstruction algorithms, this heuristic
method considerably reduces runtime.

A general problem in reconstructing networks from time
series data is the large number of gene expression values
compared to a relatively low number of temporal measure-
ment points. This is particularly true for microarray data
and quantitative real-time PCR data. Serial experiments are
time consuming and expensive, and hence, only few
measurements from limited numbers of time points are
usually available. As a result, the available data are often
consistent with multiple network configurations [23], [24].
To address this problem, Martin et al. [23] developed a
method that combines similarly regulated genes, infers
possible network candidates, and then evaluates their
dynamic behavior to draw further conclusions on the
gene-regulatory system.

In addition to a lack of measurements, the redundancy
inherent in many biological systems often makes it hard to
identify the underlying network: when multiple genes are
coexpressed, it is difficult to determine which of these genes
are truly involved in the network [23].

A further challenge must be met when reconstructing
Boolean networks based on real data: the noisiness of gene
expression data and the low number of temporal measure-
ment points often yield several plausible binarizations. This
makes it hard to determine a “true” binarization threshold.
Differences in the binarization results can have strong
effects on the architecture of the resulting Boolean networks
because a state change for a single gene can lead to many
differences in “downstream” functions and gene depen-
dencies. In this paper, we propose a new binarization
algorithm which can overcome these problems, particularly
if the expression measurements are noisy and the number
of candidate functions is high, while at the same time
allowing to assess the reliability of the binarization and thus
the correctness of the reconstructed functions.

The methods presented here were specifically devel-
oped to binarize gene expression data. These binarization
algorithms incorporate the data at different scales to
produce suitable and robust thresholds even for small
numbers of data points. They additionally provide a
measure of validity for the found thresholds. Incorporat-
ing this knowledge into a network reconstruction method
allows for restricting the input of reconstruction algo-
rithms to genes with meaningful thresholds. This is
important since the computational cost associated with
processing high numbers of genes is a limiting factor in
many analyses [22]. Furthermore, constructing networks
of fewer, but more reliable candidate genes reduces the
workload required for validation of the results, including
wet-lab experiments to verify new hypotheses on gene-
regulatory systems.

2 MATERIALS AND METHODS

2.1 Binarization across Multiple Scales (BASC)

It is often useful to describe a signal at different resolutions
simultaneously: at a fine scale, small details of structure are
revealed, while at a coarse scale, slow variation can be made

visible. However, at a level of representation that is too
detailed, it might be difficult to identify relevant features for
the task at hand. At a too coarse level, relevant features might
be missing. Here, we utilize the binarizations obtained at
different scales for a reliability assessment of the found
threshold. This also means that we can reject measurement
sequences if they do not yield a reliable binarization. A link
between the different scales is determined by the number
and location of discontinuities that are used for the
approximation of the original step function. We developed
two multiscale approaches (denoted by BASC A and BASC
B), each based on three computational stages:

1. Compute a series of step functions. An initial step
function is obtained by rearranging the original time
series measurements in increasing order. Then, step
functions with fewer discontinuities are calculated.
BASC A calculates these step functions in such a way
that each minimizes the euclidean distance to the
initial step function. BASC B obtains step functions
from smoothened versions of the input function in a
scale-space manner (Fig. 1).

2. Find strongest discontinuity in each step function. A
strong discontinuity is a high jump size (derivative)
in combination with a low approximation error.

488 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 2, MARCH/APRIL 2012

Fig. 1. A family of 1D time series obtained by approximating the original
ordered time series (at the bottom of each plot) with step functions
whose number of discontinuities decrease from bottom to top. Panel A
shows an approximation minimizing the euclidean distance (BASC A);
Panel B shows a scale space approximation (BASC B). The original time
series is a sorted list of 10 measurements.



3. Estimate location and variation of the strongest disconti-
nuities. Based on these estimates, time series mea-
surements of gene expression values can be
excluded from network reconstruction.

The input data of the algorithm are a vector of time series
measurements of a single gene uu ¼ ðu1; . . . ; uNÞ 2 IRN . The
elements of the vector uu are sorted in ascending order.
Based on this sorted vector, we define a discrete, mono-
tonically increasing step function f with N steps, N � 1
discontinuities di 2 f1; . . . ; N � 1g, and function values ui
with i 2 f1; . . . ; Ng

f xð Þ ¼
XN
i¼1

uiIAi
xð Þ ð1Þ

where

Ai ¼
0; dið �; if i ¼ 1
di�1; Nð �; if i ¼ N
di�1; dið �; otherwise;

8<
: ð2Þ

are intervals, and IA is the indicator function of A defined
as follows:

IAi
xð Þ ¼ 1; if x 2 A

0; otherwise:

�
ð3Þ

Note that in the following stages of the algorithms, a
binarization of the data is not possible if all ui in uu are
identical.

2.1.1 Compute a Series of Step Functions

A step function f can be approximated by another step
function with fewer discontinuities at certain di 2 f1; . . . ;
N � 1g. We here present different ways of approximating
step functions, which constitute the main difference
between our two BASC approaches.

BASC A. This approach calculates optimal step functions
with fewer discontinuities n ðn < N � 1Þ by determining the
step function with n discontinuities that minimizes the
euclidean distance to the initial step function f . The euclidean
distance of two step functions f1 and f2 is defined as

kf1 � f2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

x¼1ðf1ðxÞ � f2ðxÞ
� �2

r
: ð4Þ

Let Sv be the set of all step functions with at most v
discontinuities at certain di 2 f1; . . . ; N � 1g. An optimal
quantization of f 2 SN�1 with respect to Sn, 1 � n < N � 1,
is defined by

s�n ¼ argmin
sn2Sn

kf � snk with 1 � n < N � 1: ð5Þ

The distance f � snk k is the approximation error of a step
function sn with n steps regarding the original function f .
This concept of quantization tends to assign break points
where the “variation” of f is large [25]. A large variation
within one step of the function induces a high approxima-
tion error, which means that the strategy of assigning break
points to regions of large variation minimizes the approx-
imation error.

Finding the optimal step functions with n steps by
enumerating all solutions requires calculating the distances

of all possible ðNnÞ step functions to the original step function
f . Here, the overall complexity to determine the optimal step
functions for all n 2 f1; . . . ; N � 2g is

PN�2
n¼1 ðNnÞ � ðN � 2Þ. A

lower complexity can be achieved by a divide-and-conquer
strategy, which is detailed in the following.

A step function with n steps can be created by inserting a
new step into a step function with n� 1 steps. In this way,
we can determine an optimal step function recursively from
partial solutions with fewer steps. Similar to Kämpke and
Kober [25], this can be formulated as a Dynamic Program-
ming problem, which allows for identifying all optimal step
functions for n ¼ 1; . . . ; N � 2 simultaneously with a com-
plexity of OðN3Þ (with N being the number of data points).

This algorithm iteratively calculates optimal partial
solutions and stores the indices of their break points in a
matrix Ind. Solutions are rated according to a cost function,
which is stored in a second matrix C. Here, CiðjÞ contains
the cost of a function having exactly j intermediate
discontinuities between data points i and N . The cost of a
function is the sum of the costs cab of all steps in the function

cab ¼
Xb
i¼a

fðiÞ � yða; bÞð Þ2; ð6Þ

with

yða; bÞ ¼
Xb
i¼a

fðiÞ
b� aþ 1

:

The value cab is the quadratic distance of the values of f
between the start point a and the end point b (a � b) of the
step to the mean of these values, yða; bÞ. Algorithm 1 shows
the corresponding Dynamic Programming algorithm.

Algorithm 1. Calculate optimal step functions (dynamic

programming)

Initialization:

Cið0Þ ¼ ciN ; i ¼ 1; . . . ; N

Iteration:

for j ¼ 1 to N � 2 do

for i ¼ 1 to N � j do

CiðjÞ ¼ mind¼i;...;N�jðcid þ Cdþ1ðj� 1ÞÞ
IndiðjÞ ¼ argmind¼i;...;N�jðcid þ Cdþ1ðj� 1ÞÞ

The initialization computes the cost ciN from step i to
step N with no intermediate break points (discontinuities).
During each iteration, the minimal costs of additional
intermediate break points are computed. IndiðjÞ denotes
the position of the first break point (out of j in total) with
minimal costs from step i to N .

Based on Ind, we are able to reconstruct the break points
of all optimal step functions s�n (Algorithm 2). The position
of the ith break point for an optimal step function with j
discontinuities is denoted by PiðjÞ with i � j and
PiðjÞ 2 f1; . . . ; N � 1g.

Algorithm 2. Compute the break points of all optimal step
functions

for j ¼ 1 to N � 2 do

z ¼ j
P1ðjÞ ¼ Ind1ðzÞ
if j > 1 then
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z ¼ z� 1

for i ¼ 2 to j do

PiðjÞ ¼ IndPi�1ðjÞþ1ðzÞ
z ¼ z� 1

BASC B. The second algorithm uses discrete scale space
representations of the first derivatives of the original step
function fðxÞ to determine a sequence of step functions. We
consider the slopes �ðxÞ ¼ f 0ðxÞ � fðxþ 1Þ � fðxÞ; x 2 IN,
and successively apply discrete convolutions with a number
of smoothing parameters � ¼ �1; . . . ; �S . For each of these
smoothing parameters, the smoothed slopes are calculated as

��ðxÞ ¼
X1
k¼�1

�ðxÞ � T�ðx� kÞ;

with the kernel

T�ðnÞ ¼ e�2�Inð2�Þ:

Here, In is the modified Bessel function of order n

InðxÞ ¼
1

2
x

� �nX1
k¼0

1

k! �ðnþ kþ 1Þ
1

4
x2

� �k
;

which determines the discrete analogue of the Gaussian
kernel [26], [27], [28], [29]. The complexity of one such
convolution is OðN2Þ, where N is the number of data points.

We now search for the local maxima

M� ¼ x j ��ðx� 1Þ < ��ðxÞ ^��ðxþ 1Þ < ��ðxÞf g;

of each smoothed slope function ��. Each of these M�

represents a candidate step function sM�
, where each

maximum x in the set is the location of a discontinuity.
We traverse the M� beginning at the smallest �, taking the
unique set of such candidate functions over the � until a
function with a single remaining discontinuity is found.

2.1.2 Find Strongest Discontinuity in Each Step

Function

For each of the identified step functions, we now identify a
single strongest discontinuity. These strongest discontinu-
ities are later accumulated to determine a robust binariza-
tion threshold. In the following, we describe the procedure
for BASC A.

We rate the strength of a discontinuity according to two
criteria: first, we assume a large difference in height between
the start point PiðjÞ and the end point PiðjÞ þ 1 of the
discontinuity. This means that the points to the left and to the
right of the discontinuity form separate groups. The jump size
(or contrast) of the ith discontinuity is defined as

h ¼

yðPiðjÞ þ 1; Piþ1ðjÞÞ
�yð1; PiðjÞÞ; i ¼ 1 ^ j > 1
yðPiðjÞ þ 1; NÞ
�yðPi�1ðjÞ þ 1; PiðjÞÞ; i ¼ j > 1
yðPiðjÞ þ 1; NÞ
�yð1; PiðjÞÞ; i ¼ j ¼ 1
yðPiðjÞ þ 1; Piþ1ðjÞÞ
�yðPi�1ðjÞ þ 1; PiðjÞÞ; otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

That is, we consider the mean value y of the points
between the ði� 1Þth discontinuity (or the first point) and

the ith discontinuity, and the mean value of the points
between the ith discontinuity and the ðiþ 1Þth discontinu-
ity (or the last point). The jump size is the difference of these
two mean values.

The second criterion is the approximation error of a
threshold at the discontinuity with respect to the original
function f . The approximation error is defined as

e ¼
XN
d¼1

fðdÞ � zð Þ2; ð8Þ

with

z ¼ fðPiðjÞÞ þ fðPiðjÞ þ 1Þ
2

:

In other words, we calculate the sum of the quadratic
distances of all data points to the threshold z defined by the
ith discontinuity.

The two criteria in (7) and (8) are combined into a scoring
function

q ¼ h
e
: ð9Þ

A maximal q is achieved by a high jump size in
combination with a low approximation error. This defini-
tion of q ensures a robust binarization with respect to
outliers, since a break point at an outlier would induce a
high error and thus a small value of q.

The strongest discontinuities of the optimal step functions
with j ¼ 1; . . . ; N � 2 steps are identified by calculating

vj :¼ PiðjÞ : i ¼ argmax1;...;jq
� 	

:

BASC B employs the same procedure as BASC A with a
slight modification: instead of calculating the quality of a
step function based on the initial step function fðxÞ, the
smoothened versions of the functions

f�ðxÞ ¼ u1 þ
Xdxe�1

n¼1

��ðnÞ;

for the corresponding � are considered. This applies to the
calculation of y, e, and z.

2.1.3 Estimate Location and Variation of the Strongest

Discontinuities

In this last step of binarization, a single threshold is
determined. Additionally, the variability of the found
thresholds is assessed. Each entry in v is a candidate for the
location of a possible binarization threshold.

This step is the same for both approaches BASC A and
BASC B. Based on v, we define the single binarization
threshold t as follows:

t ¼ fðb~vc þ 1Þ þ fðb~vcÞ
2

;

where ~v is the median of the values in v. A binarized vector
uu0 ¼ ðu01; . . . ; u0NÞ 2 IBN can now be calculated

u0i ¼
0 ui � t
1 ui > t

�
for i 2 1; . . . ; Nf g:
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In a further step called noisy gene elimination, we assess
the validity of the binarization by examining the varia-
bility of the strongest discontinuities v. The idea of this
approach is to check if the proposed locations of possible
binarization thresholds (optimal break points) for the
chosen step functions with different j stay within a small
range (in the best case, they are identical). A small range
means that the values of v vary only little around the
location that is chosen for calculating the binarization
threshold. This characteristic is illustrated in Fig. 2 for
BASC A: if, for instance, the vector of positions of the
strongest discontinuities v ¼ ð6; 5; 6; 5; 6; 6; 6; 6Þ (Scenario
A), only the fifth and the sixth value in the input vector
u are threshold candidates. Hence, only the sixth value of
u is binarized ambiguously by the N � 2 reduced step
functions, which means that the binarization is compara-
tively stable. By contrast, if v ¼ ð2; 6; 6; 2; 2; 6; 2; 2Þ (Scenario
B), the two possible thresholds are determined by the
second and the sixth value of u, i.e., the thresholds are far
apart. In this case, four values are binarized ambiguously.
The corresponding example for BASC B is provided in
Figure S10 of the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2011.62.

To make the variability of the thresholds comparable, the
values of v are divided by N � 1, resulting in the normal-
ized vector v0. For the random variable V from which v0 was
sampled, we expect the mean deviation from its median ~V

to be smaller than a predefined value � 2 ð0; 1�. The
hypotheses of the corresponding test are

H0 : EðjV � ~V jÞ � � and H1 : EðjV � ~V jÞ < �:

For a sample x with N elements, the average deviation
from the median ~x can be calculated as follows:

ADðxÞ ¼ 1

N

XN
j¼1

jxj � ~xj: ð10Þ

Since the data in v0 are correlated, a moving-blocks
Bootstrap test [30], [31] based on the distribution of the test
statistic t0 ¼ � �ADðv0Þ under the null hypothesis is used.
For the moving-blocks bootstrap test, blocks of length l are
drawn with replacement from v01; . . . ; v0N�2 and concate-
nated to form a bootstrap sample v�1; . . . ; v�N�2. The
theoretically optimal block length l for one-sided tests is
of the order ðN � 2Þ1=4[31], [32]. Typically, the bootstrap-
based one-sided distribution function is a consistent
estimator for a wide range of values of the block length l
[31], [32]. We use a block length l of ðN � 2Þ1=4 þ 1, since
ðN � 2Þ1=4 þ 1 � 28N � 3. We call the number of blocks b,
so that ðN � 2Þ ¼ b � l. If ðN � 2Þ is not a multiple of l, the
last selected block is shorter to obtain a bootstrap sample of
size ðN � 2Þ. For each bootstrap sample, the test statistic

tðv�Þ ¼ ADðv0Þ �ADðv�Þ ð11Þ
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Fig. 2. Examples of the binarization of two sorted input sequences using BASC A (the corresponding figure for BASC B can be found in the
supplementary material, Figure S10, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2011.62,). For input vector (A), the consecutive step functions suggest two adjacent input vector indices 5 and 6 for the threshold calculation.
A meaningful threshold is determined. For vector (B), the threshold indices are far apart (2 and 6). This indicates an unreliable binarization.



is calculated. The tðv�Þ calculated from B samples then
represent the distribution of the test statistic, and a p-value
is calculated as follows:

p ¼ #ftðv�Þ � t0g=B: ð12Þ

This p-value is an estimate of the probability that the
average deviation of the thresholds from their respective
median is greater or equal to � .
� 2 ð0; 1� is set to balance experimental specificity and

sensitivity. Decreasing � can reduce the number of false
binarization thresholds accepted as significant, but may also
reduce the number of true binarization thresholds that are
significant. Since v0 is independent of N , the same � can
be used for experiments with different N and results in the
same experimental specificity and sensitivity. In our
experiments, we set the significance level � to 0.05. In the
subsequent network reconstruction, this makes a reduction
of candidate genes possible.

3 EXPERIMENTS

To assess the performance of our binarization algorithms,
we designed three experimental setups. In two settings, we
evaluated the influence of the binarization on the recon-
struction of Boolean networks

. In the first setting, artificial real-valued time series
were obtained from randomly created Boolean
networks. After applying our binarization algo-
rithms (BASC), we measured the performance of a
subsequent network reconstruction. Furthermore,
we compare the performance to other binarization
approaches (see Section 3.1).

. In the second setting, we binarized real time series
from the yeast cell cycle [33], [34] using BASC A,
BASC B, and several other binarization approaches.
We then compared the reconstructed functions to
known biological dependencies (see Section 3.2).

Moreover, we evaluated the robustness of our algorithm
to noise. We generated artificial microarray data on the
basis of a noise model and measured the difference between
binarizations of the data before and after the addition of
noise. Again, the results were compared to other binariza-
tion techniques. The experimental setup and the results of
these experiments are described in the supplementary
material, which can be found on the Computer Society
Digital Library.

3.1 Reconstruction of Random Boolean Networks

To test the utility of our binarization algorithm for the
reconstruction of regulatory networks from time series
measurements, we generated artificial time series data
based on random Boolean networks [13], [14], reconstructed
possible Boolean functions after adding noise, and analyzed
the reconstruction process. A Boolean network consists of a
set of genes represented by Boolean variables X ¼
fX1; . . . ; Xng and a set of transition functions F ¼ ff1; . . . ;
fng, one for each variable. These transition functions map
an input of the Boolean variables in X to a Boolean value.
They usually only depend on a subset of k variables in X. A
transition function with k inputs can be represented by a

truth table with 2k entries. We call a Boolean vector xðtÞ ¼
ðx1ðtÞ; . . . ; xnðtÞÞ the state of the network at time t. Then, the
next state of the network xðtþ 1Þ is calculated by applying
all transition functions fiðxðtÞÞ synchronously. When
reconstructing networks from time series, successive states
of the reconstructed network should match successive time
series measurements.

According to Kauffman [13], [14], random Boolean
networks with n genes were generated. A time series was
created by first selecting an initial network state, i.e., an n-
dimensional vector with the entries chosen randomly and
uniformly from f0; 1g. Starting with the initial state, the
successor states were determined by synchronously updat-
ing the values of the genes using the former states as inputs.
With this procedure, we generated a time series of length m.
We simulated noisy data by adding a noise term with
normal distribution and different standard deviations: with
a probability q, we added noise with a standard deviation of
0.8 (high noise) to all time values of a certain gene.
Otherwise, we used a standard deviation of 0.1. To
reconstruct a Boolean network from the time series data,
we used the best fit extension algorithm [20]. This approach
finds the best predictor for each gene by computing the
least possible error w (defined in [20]) that can be achieved
by a Boolean function on the input data for each possible
combination of k input variables in comparison to other
approaches that always require zero error.

3.1.1 Experimental Setup

For the time series data without noise, we determined all
consistent functions Fi for each gene i by using a simple
consistency algorithm [20]. A function f is consistent with
the time series for the ith gene if f could have produced
these measurements (i.e., it predicts the time series with
w ¼ 0). Fi is called the set of true solutions and contains all
consistent functions for the ith gene. The time series do not
necessarily determine the underlying original function
unambiguously, and thus more than one function per gene
can be consistent with the given data. However, since time
series were generated from a Boolean network, Fi contains
at least one true solution representing the original function
of the gene in this network. In the case of noisy time series
data, these real-valued measurements need to be binarized
before reconstructing the Boolean network. For each gene,
we binarized the given m noisy values using our algorithms
that additionally predict the quality of the binarization
(expressed by the p-value). We denote the p-value for a gene
i by pi. If pi � 0:05, the binarization is recommended. For
the binarized noisy time series, we determined the set ~Fi of
all consistent functions for a gene i by applying the best fit
extension procedure. Clearly, ~Fi can be different from Fi
due to a wrong binarization. We distinguished the
reconstructed Boolean functions ~fi 2 ~Fi as follows:

~fi 2

~Ft
i if pi � 0:05 ^ pj � 0:05

8j : jis an input gene of ~fi
recommended by our algorithm

~Ff
i otherwise

rejected by our algorithm:

8>>>><
>>>>:

ð13Þ
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That is, a function is recommended if the corresponding
gene as well as all its input genes pass the quality criteria of
the binarization algorithm. Hence, functions in ~Ft

i are more
likely to be reconstructed accurately. To finally analyze the
benefit of our binarization algorithms, we performed two
experiments A and B.

In the first experiment A, we performed multiple
simulations with randomly created networks and deter-
mined the number of reconstructed functions ~fi that were
recommended by the algorithms ( ~fi 2 ~Ft

i ) and not recom-
mended by the algorithms ( ~fi 2 ~Ff

i ), respectively. Both
possibilities were further distinguished depending on
whether the functions were included in the set of true
solutions before the addition of noise or not, that is, if ~fi 2
Fi or ~fi 62 Fi. Using the above criteria, we can divide the
reconstructed functions into four categories:

. True positives (TP). Recommended by BASC
(p � 0:05) and in the set of true solutions ( ~fi 2 Fi).

. False negatives (FN). Not recommended by BASC
(p > 0:05), but in the set of true solutions ( ~fi 2 Fi).

. False positives (FP). Recommended by BASC
(p � 0:05), but not in the set of true solutions
( ~fi 62 Fi).

. True negatives (TN). Not recommended by BASC
(p > 0:05) and not in the set of true solutions
( ~fi 62 Fi).

To determine whether a function is in the set of true
solutions, we define two Boolean functions to be equal if
they have the same input genes and if the truth tables are
not inconsistent. Two truth tables are inconsistent if for any
input setting, one table has a 0 entry and the other one has a
1 entry, or vice versa. Note that the reconstructed Boolean
functions are not necessarily fully defined, but can have
undefined entries (don’t cares). Thus, we do not claim a
complete concordance of the truth tables.

For the experiment, we generated 1,000 time series from
random networks with n ¼ 10 genes using a fraction of genes
with high noise of q ¼ 0:6, k ¼ 3 input genes per function,
and a time series withm ¼ 20 states. We varied � in the range
of ½0:001; 1� and counted true positives, false negatives, false
positives, and true negatives for each value of � . From these
values, sensitivity and specificity can be calculated as Sens ¼
TP=ðTP þ FNÞ and Spec ¼ TN=ðTN þ FP Þ. By comparing
sensitivity and specificity at different values of � , we can
analyze how � controls the trade-off of the two rates.

In experiment B, we additionally compared our novel
binarization algorithms to other binarization methods. The
StepMiner algorithm [35] fits one-step and two-step func-
tions to the real-valued expression curve of the time series,
which amounts to considering OðN2Þ step functions. It then
assesses how well these functions fit the data in a statistical
test. Details on the approach can be found in the discussion
of existing binarization approaches below. The significance
level for StepMiner’s testing procedure was also set to
� ¼ 0:05. We also employ the mean of the time series data
as the binarization threshold, which can be calculated in
OðNÞ. A further binarization approach is the k-means
cluster algorithm [36] with k ¼ 2. k-means has a complexity
of OðI �NÞ, where I is the number of iterations. In addition,
we included two baseline methods: the random threshold
method chooses a random data point as a threshold and

binarizes all values less than or equal to this value to 0 and
all greater values to 1. The random prototype method is a k-
means algorithm with only one iteration: two data points
are chosen randomly, and the other data points are assigned
to the nearest of these points. The group with the smaller
values is binarized to 0, and the group with the higher
values is binarized to 1.

We also used two variants of our algorithms: the first
variant eliminates noisy genes according to condition (15),
the second one does not.

The calculation of sensitivity and specificity as in
experiment A requires all algorithms to include a testing
procedure which rejects irrelevant genes. As experiment B
involves several methods without such a testing procedure,
we compared them by calculating the positive predictive
value PPV ¼ TP=ðTP þ FP Þ, i.e., the fraction of recon-
structed functions that were found in the set of true
solutions Fi over all genes i.

For each fraction of genes with high noise q 2 f0:0; 0:1;
0:2; . . . ; 0:8; 0:9g, we performed 1,000 tests with n ¼ 10
genes, k ¼ 3 input genes per function, and a time series
with m ¼ 20 states. We set � ¼ 0:001, since we wanted to
reject as much noisy time series data (characterized by
ambiguous binarization thresholds) as possible. The proce-
dure is illustrated in Figure S1 in the supplementary
material, which can be found on the Computer Society
Digital Library.

3.1.2 Results

The results of experiment A can be visualized in a ROC
curve, plotting 1� Sens against Spec for the different levels
of � (see Fig. 3). Here, the diagonal denotes the baseline for
randomly recommending or rejecting functions.

Both approaches stay significantly above the random
baseline. Varying the � parameter is an effective way of
setting the trade-off of sensitivity and specificity: for the
lowest level of � ¼ 0:001, the algorithms achieve a
sensitivity of 73 percent (BASC A)/61 percent (BASC B)
in combination with a specificity of 87 percent (BASC A)/
99 percent (BASC B). Above a certain level of � (around
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Fig. 3. Sensitivity and specificity of BASC A (red cross) and BASC B
(green circle) for different levels of � (printed next to the points).



0.5), the sensitivity approaches 100 percent, and the
specificity approaches 0 percent, which means that nearly
all solutions are recommended by the algorithms. A
sensitivity of 100 percent is finally reached for � ¼ 0:6
(BASC A) and � ¼ 0:8 (BASC B).

Fig. 4 depicts the results of experiment B. These results
again demonstrate the great improvement of the positive
predictive value which can be achieved using noisy gene
elimination: when the fraction of genes with high noise is
increased, a reconstruction on the basis of k-means, the
mean-based binarization, and our binarization algorithms
without noisy gene elimination mostly retrieves irrelevant
functions (e.g., less than 40 percent of the reconstructed
functions are in the set of true solutions when 90 percent of
the genes were highly noisy). BASC A performs better than
BASC B without elimination of noisy genes. StepMiner
performs worse than the other algorithms for lower levels
of noise, but outperforms the algorithms without noisy gene
elimination for higher levels of noise. This is due to the
statistical testing procedure employed by StepMiner which
is similar to our noisy gene elimination. The corresponding
BASC approaches with noisy gene elimination outperform
all other approaches—including StepMiner—by rejecting
most of the irrelevant solutions. For BASC A, the fraction of
relevant functions always stays above 85 percent. The scale
space approach (BASC B) even achieves an accuracy of at
least 98 percent. However, this is achieved at the cost of
rejecting many relevant solutions: in comparison to BASC
A, the fraction of rejected solutions is higher. As seen in
experiment A, the strictness of BASC can be configured
appropriately using the parameter � . In experiment B, we
use a very strict setting of � ¼ 0:001.

The baseline method Random Threshold yields the worst
performance with no more than 18 percent of true solutions.
The other baseline approach, Random Prototype, some-
times outperforms the mean-based binarization and Step-
Miner, in particular for low levels of noise. The k-means
approach always stays above this baseline which is
equivalent to the initialization of k-means.

The number of overall reconstructed functions decreases
with increasing noise for all algorithms, which means that
only few functions with k ¼ 3 inputs that match the highly
noisy time series can be found (see Table S1 in the
supplementary material, which can be found on the
Computer Society Digital Library, for details). This is
independent of the question whether the solutions are true
solutions or not. For all approaches, the number of
reconstructed functions varies strongly in the 1,000 runs.
This is due to the high amount of randomness in the process:
first, the structure and dynamics of the original network is
generated at random. Second, the start point of the time
series—which determines the amount of information in the
series—is chosen randomly. Third, random noise is added
to the data. However, the variation of the positive predictive
value across these different networks is reduced consider-
ably by noisy gene elimination: the BASC approaches with
noisy gene elimination yield the smallest variance in the
fraction of true solutions.

3.2 Reconstruction from Yeast Gene Expression
Data

To test the performance of our binarization algorithm on
real data, we used the yeast gene expression data of Cho
et al. [34], which is included in the Spellman et al. data [33]
available at http://cellcycle-www.stanford.edu. This data
were derived from microarray analysis of yeast cultures
and synchronized in late G1 (cdc28 cells). It contains
17 measurements. In this data set, the function and identity
of many genes as well as their transcriptional regulators are
known (see [37]). The measurements were taken at fixed
intervals and cover two complete cell cycles. These proper-
ties ensure that there is some redundancy in the data, which
can help to stabilize a network reconstruction process. The
data set was preprocessed as described in the supplemen-
tary material, which can be found on the Computer Society
Digital Library.

We considered a well-studied subset of cell cycle genes
described by Simon et al. [37]. This list comprises eight
transcriptional regulators and 92 genes. Two of the regula-
tors are complexes of multiple genes: MBF (a complex of
Mbp1 and Swi6) and SBF (a complex of Swi4 and Swi6). As
the time series only contains single genes, we replaced them
by Mbp1 and Swi4, respectively. Six of the listed 92 genes
showed more than 20 percent missing values and were
excluded. Hence, we employed the remaining 86 genes in the
experiment.

3.2.1 Experimental Setup

We binarized the data using our algorithm with and
without noisy gene elimination according to condition
(13). Furthermore, we performed binarizations using the
mean value as a threshold, on the basis of the k-means
algorithm with k ¼ 2, with the StepMiner algorithm and
with the two random baseline algorithms, Random Proto-
type and Random Threshold. Based on the resulting binary
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Fig. 4. Average positive predictive value in 1,000 runs for various

fractions of genes with high noise q. The reconstruction was performed

on the basis of our two multiscale binarization approaches with and

without noisy gene elimination, the mean-based binarization, 2-means-

based binarization, StepMiner, and two random baselines. Details on

the positive predictive values and their standard deviations are supplied

in Table S1 of the supplementary material, which can be found on the

Computer Society Digital Library.



data, we reconstructed possible Boolean functions using the
best fit extension algorithm [20]. For the binarization of the
data with BASC, we set � ¼ 0:2. This setting allows a slight
variance of the threshold locations.

To verify the biological relevance of the reconstructed
Boolean functions, we compared them to known interac-
tions between the eight transcription factors and the 86 cell
cycle genes. We extracted these dependencies from the
YEASTRACT database, which comprises regulatory asso-
ciations of budding yeast based on more than 1,200
publications [38], and from the TRANSFAC database [39].
Our gold standard consists of all documented regulations
between the transcription factors and the genes in these
databases.

For StepMiner and BASC, only functions which exhibited
a p-value smaller than or equal to 0.05 for both the
corresponding gene itself and the input genes of the
function were recommended (see condition (13)).

For each method, we counted the number of consis-
tencies between the reconstructed Boolean functions and
the known biological functions (i.e., the instances where all
input genes of a gene from a Boolean solution were
identical to the transcriptional regulators extracted from
the databases).

In a second setting, we measured sensitivity and
specificity of BASC for various levels of � 2 ½0:01; 1�.

3.2.2 Results

The results of these experiments are illustrated in Fig. 5.
Panel A shows that our algorithms are able to reduce the set
of candidate solutions returned by the reconstruction
algorithm significantly. At the same time, the number of
solutions among the candidate solutions that match
biologically known functions exactly is comparable to the
other algorithms (Panel B). BASC algorithms successfully
eliminate false solutions, while being able to retain most of
the biologically meaningful ones. Without noisy gene
elimination, BASC A retrieves much more true solutions
than any of the other algorithm, but also yields a greater
number of false positives. StepMiner yields only few overall
solutions, but also few true solutions. One reason for this is
that the solutions returned by the reconstruction algorithm
on a time series binarized by StepMiner are mostly constant

or have only one input gene, which means that there are
drastically fewer alternatives than for functions with more
inputs (data not shown).

Panel C shows the ROC curve of BASC on the yeast data
for various levels of � . For higher levels of � , BASC B
quickly achieves a sensitivity of close to 100 percent, with a
specificity of up to 60 percent. For very strict settings of � ,
BASC B rejects all solutions, yielding a sensitivity of 0
percent and a specificity of 100 percent. BASC A mostly has
a lower sensitivity than BASC B in this setting. This
corresponds to the observation in Panel B that BASC A
retrieves a higher number of true solutions than the other
approaches, but rejects about half of them in the process of
noisy gene elimination.

4 COMPARISON OF BASC TO OTHER BINARIZATION

METHODS

BASC is a general binarization technique that utilizes a
multiscale view of the complete data to determine robust
thresholds. Analyzing the data at multiple scales also
allows for assessing the reliability of the binarization in a
statistical testing procedure. It is nonparametric in the sense
that it does not assume specific distributions in the data.

Another approach that provides a measure of reliability
for the binarized results is the StepMiner method already
introduced in the experimental section [35]. The main focus
of this method is to find the point of time at which the
expression level changes in a time series of measurements.
It is, therefore, dependent on the temporal order of the
measurements. In contrast to most common binarization
approaches, StepMiner does not use a global binarization
threshold. Instead, it tries to approximate the time course of
expression levels by binary one-step or two-step functions.
That is, StepMiner expects the expression level not to
change more than twice in the time course. In a statistical
test, it then assesses whether these models are suitable to
explain the data. The test hypotheses do not make a
statement on how well the data can be binarized in general.
Although BASC fits step functions to the data as well, the
two approaches are different: The original StepMiner
approach strongly focuses on fitting step functions to
temporally ordered measurements. In another context,
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Fig. 5. Panel A: total number of solutions returned by mean-based binarization, 2-means binarization, StepMiner, the multiscale binarization
approaches with and without noisy gene elimination, and two random baselines on the yeast time series. Panel B: percentage of known biological
functions identified by the algorithms. The total number of known biological dependencies is 86. Panel C: ROC curve for BASC A (red) and BASC B
(green) for various levels of � .



StepMiner was also applied to sorted input data to produce
a ternary quantization, but this means that the testing
procedure is no longer applicable [7]. BASC aims at
separating groups of similar values independent of the
original order of the measurements. In the context of the
original order of the data, such a grouping can lead to an
arbitrary number of discontinuities and is not restricted to
one or two steps. By analyzing the data at multiple scales,
BASC assesses whether it is possible to divide the data into
two stable groups.

Some other binarization and quantization approaches
have also been specifically designed for biological data.
Dimitrova et al. [40] determine the optimal number of
discretization states using a modified single-linkage cluster-
ing approach. They state that this method is particularly
suitable for short time series.

Many techniques for biological data make use of prior
knowledge. Hakamada et al. [41] and Hirose et al. [42] use
known gene interactions to determine a single binarization
threshold for all genes. Pe’er et al. [43] make use of
additional biological data from repeated wild-type experi-
ments to estimate the distribution of expression levels.
Similarly, Camillo et al. [44] employ experimental replicates
to determine deviations of the expression level from a
baseline distribution. The integration of additional knowl-
edge and data possibly yields more accurate results than
more general approaches, but restricts the use of the
algorithms to specific applications. Furthermore, this
requires the availability of such data.

Taking the mean value as a threshold is probably one of
the simplest binarization methods. Although this approach
is highly sensitive to data with unbalanced distributions of
high and low values, it has also been employed as a
preprocessing step for reverse engineering of Boolean
networks [22].

Zhou et al. [5] suggest a mixture model for binarization.
This approach fits two overlaid log-normal distributions to
gene expression measurements to determine a threshold.
The edge detection binarization approach by Shmulevich
and Zhang [6] chooses the binarization threshold according
to the first location in the sorted input values that exhibits a
difference between two successive values greater than a
predefined value. This threshold criterion is similar to the
way the strongest discontinuities are chosen in BASC.
However, BASC additionally takes into account the approx-
imation error of the threshold.

Binarization is also an issue in many other research areas.
In the context of image segmentation, histogram-based and
entropy-based methods are commonly employed. Such
thresholding techniques are often associated with a sig-
nificant loss of information [45]. Other approaches, in
particular algorithms used for clustering of gene expression
data, are nondeterministic and can produce different results
with different initialization settings [46].

5 DISCUSSION AND CONCLUSION

A general problem of reconstruction algorithms is the large
number of genes that can be measured in parallel compared
to the relative low number of temporal measurement points
[24]. Contemporary microarray technologies allow for
routinely analyzing expression levels of hundreds of
thousands of genes simultaneously [47], [48], [49]. However,

these experiments are laborious and costly, so that time
series experiments will currently only cover a very limited
number of typically no more than 10 to 20 time points.

Together with the inherent noisiness of gene expression
data [50], this often results in ambiguous thresholds when
binarization of the data is performed. This poses serious
problems for the reconstruction of Boolean networks, as
differences in the binarization results can have strong
effects on the resulting Boolean models. A state change
from 0 to 1, or vice versa, for a single gene can cause
different functions and gene dependencies in many “down-
stream” elements of the network. Therefore, binarization
has to be considered a crucial step in the network
construction process.

For this reason, we propose a binarization across multi-
ple scales to yield adequate and robust thresholds even for
data sets with small numbers of data points. The two
approaches BASC A and BASC B differ in the way of
scaling: BASC B is a true scale space approach and defines
coarse and fine scales by the amount of smoothing that is
applied to the function. This means that the “level of detail”
is decreasing from a fine scale to a coarse scale. By contrast,
BASC A ensures the minimal quantization error for each
scale. Hence, traversing the scales from a fine scale to a
coarse scale implies a monotonically increasing quantiza-
tion error in this case. A more detailed discussion on this
can be found in the supplementary material, which can be
found on the Computer Society Digital Library.

By applying an additional validity measure to the
binarization results, our method further allows to filter
out the most suitable solutions for a given reconstruction
problem. As a result, the algorithms produce drastically
fewer and at the same time more reliable network models,
which allows researchers to formulate new hypotheses on
gene-regulatory networks with a much higher confidence.
Although our method cannot completely eliminate the
problem of low temporal resolution and more exhaustive
measurements will always be desirable, it can serve to
considerably reduce the effort (including “wet lab” experi-
ments) required to validate newly developed hypotheses.

The BASC method is, thus, ideally suited for analyses
involving Boolean network reconstruction, especially if
conventional methods would result in a multiplicity of
solutions. The algorithms can also be helpful in the
reconstruction of probabilistic Boolean networks when
reconstruction is based on binarized data [51].

Moreover, other areas of data analysis may benefit from
our approach as well. In microarray gene expression data
analysis, for example, promising results have recently been
achieved with clustering and classification methods work-
ing entirely in the binary domain [5], [6], [52]. Although we
demonstrated the use of the BASC algorithms in a biological
context, BASC can be applied to binarize any type of real-
valued data. In particular, it is not restricted to time series.
Furthermore, it does not depend on external knowledge or
data. BASC can be applied to spatial samplings even in
multiple dimensions, since it derives its decisions from the
signal data and its statistics in a parameter-free fashion.
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