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Abstract

Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale

cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus

experiments, and enable more accurate predictions. A growing number of examples illustrate the

value of this approach in providing quantitative insight on the initiation, progression, and

treatment of cancer. In this review, we introduce the most recent and important multiscale cancer

modeling works that have successfully established a mechanistic link between different biological

scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We

also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale

cancer modeling toward clinical application. Furthermore, because the development of multiscale

cancer models requires a new level of collaboration among scientists from a variety of fields such

as biology, medicine, physics, mathematics, engineering, and computer science, an innovative

Web-based infrastructure is needed to support this growing community.
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1. INTRODUCTION

Cancer is a class of diseases characterized by out-of-control cell growth and tissue invasion.

Because cancer initiation seems to depend on a series of genetic mutations affecting intrinsic

cellular programs, to date, the vast majority of cancer research has focused on the

identification and characterization of these genetic and molecular properties of cancer cells

themselves (1). However, tumors are also heterogeneous cellular entities whose growth is

dependent upon dynamical interactions among the cancer cells themselves, and between

cells and the constantly changing microenvironment (2). For example, such interactions

include signaling through cell adhesion molecules such as cadherins and integrins (3) and

differential cell responses to growth factors and other external signals (4). All of these
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interactive processes act together to control cell phenotypic behaviors such as proliferation,

apoptosis, and migration. There is increasing consensus that these dynamic interactions

cannot be investigated purely by using biological experiments, since experimental

complexity usually restricts the accessible spatial and temporal scales of observations.

Consequently, as of late, there is a transition within the cancer research community to treat

and study cancer as a systems disease.

Cancer systems biology is a newly emerging field that uses an interdisciplinary approach to

provide the systemic understanding of cancer initiation and progression by investigating

how individual components interact to give rise to the function and behavior of the

cancerous system as a whole (5). It seeks to decipher emergent behavior rather than to focus

only on the system’s constituents’ properties. In addition to conventional biological and

medical experiments, a systems approach often involves mathematical and computational

modeling to interpret and integrate the massive amount of data that experimentalists are

currently uncovering, especially in molecular and cell biology (6). In silico cancer models

are necessarily simplified, yet we argue can provide adequate representations of a particular

cancer phenomenon to be investigated. In fact, such a theoretical approach has been

increasingly recognized as having the capability 1) to simulate experimental procedures and

to optimize and predict clinical therapies and outcome, and 2) to test and refine medical

hypotheses (7). The development of a successful in silico cancer model is a long-term

process, expected to be iteratively conducted, with available experimental data used to guide

the model design, and to verify and validate model results.

Most current computational cancer models focus on cancer behaviors that occur at a single

biological scale (7), and the decades of dedicated efforts by cancer modelers have made

scale-specific models not only possible, but advanced enough to be practical for applications

in oncology (8). However, because cancer growth and invasion indeed span multiple scales,

using a scale-specific model is insufficient to uncover cross-scale mechanisms let alone to

render predictions about the clinical outcome of the disease system as a whole (9). Modeling

cancer across different biological scales has recently begun to play a more important role in

moving the field of cancer systems biology towards clinical implementation. In the context

of biology and physiology at large, a model is considered to be “multiscale” if it spans two

or more different spatial scales and/or includes processes that occur at two or more temporal

scales. Because a multiscale cancer model has to quantify parameters on, and relationships

between biological processes that occur at different scales, the complexity of model

development is significantly increased.

In this review, we present representative works that have investigated key questions on

cancer progression, invasion, angiogenesis and metastasis using a multiscale modeling

approach. Systems approaches emphasize the integration and coordination between

computational modeling and experimental efforts. Hence, attention will be given to the

evaluation of the models’ capacity to account for in vitro, in vivo, or clinical data, and more

importantly, an analysis of how the computational findings drive new hypotheses for further

experimental investigation.

2. MULTISCALE CANCER MODELING

Multiscale cancer modelers already have a wealth of useful, mostly scale-specific resources

to refer to or base their innovative work on, but they also face the enormous challenge of

developing more realistic and more accurate predictive models. The fundamental reason is

that, when considering the increasing number of components at multiple scales (whether in

time or space), more model parameters and the relationships between them will have to be

defined, quantified, and frequently adjusted according to data from the literature, from

Deisboeck et al. Page 2

Annu Rev Biomed Eng. Author manuscript; available in PMC 2014 January 07.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



experiments or clinics. Additionally, defining the linkage between different scales poses a

significant barrier to model development; in many cases, the link is bidirectional, meaning

that higher-and lower-level variables, parameters, and functions characterizing the model are

influenced by each other. Furthermore, it has proven challenging to adaptively interface

discrete (individual-based) and continuum (population-based) models while 1) ensuring

mathematical consistency between the models, and 2) adequately conserving mass and

momentum when switching between the models; indeed, these are continuing challenges in

cutting-edge scientific computing (10-11). Generally, when developing a multiscale cancer

model, particularly if with a clinical application in mind, it is imperative to maximize the

accuracy and predictive power of the model while at the same time constraining the size of

the model as much as possible in order to produce tractable results within a reasonable time

frame.

2.1. Concept: Integration of multiple hierarchies (in space and time)

Various definitions of biological scales have been created in different life sciences fields

(see (12) for an excellent review). We focus our discussion of multiscale on four main

biological spatial scales: atomic, molecular, microscopic, and macroscopic (Figure 1). While

each of these spatial scales may have multiple temporal scales, biological processes that take

place at a lower-scale generally happen much faster than those at a higher-scale, i.e., spatial

and temporal scales tend to vary together, with slower to faster at the temporal scale

corresponding to smaller to larger at the spatial scale. In the following, we briefly explain

what processes occur at each of these four spatial scales and the main methods employed to

simulate these processes, all from the cancer modeling perspective and practice. We note

here that, as also commented in (12), model design and development should take into

account the nature of the system being modeled rather than simply follow an invariable

hierarchical structure. That is, depending on modeling purpose, it is no violation to merge

two of the levels discussed here or to split one or more of them into distinct sub-levels.

Atomic scale—This scale is used to study the structure and dynamic properties of

proteins, peptides, and lipids, as well as their dependence on the features of the environment

or on ligand binding (13). The most common modeling method used at this scale is

molecular dynamics (MD) simulation, where atoms and molecules are allowed to interact

for a period of time. Atomic-scale models deal with length scales in the order of nm and

time scales of ns.

Molecular scale—Models at this scale do not represent the molecular dynamics of

individual proteins, but represent an average of the properties of a population of proteins.

Cell signaling mechanisms, the natural regulators of biological systems, are usually

investigated at this scale (14). Analysis of this scale constitutes an intensely active field of

biomedical research and has the potential to provide new therapeutic targets to combat

disease. Signal transduction starts with the binding of extracellular molecules (ligands) to

cell-surface receptors, and ends with a change in cell function. Most of the current modeling

efforts focus on this scale, adding insights into quantifying signal-response relationships and

signaling events that control cellular responses (15). Ordinary differential equations (ODEs)

are often used to represent biochemical reactions contained in a signaling pathway.

Molecular-scale models deal with length scales in the order of nm~μm and time scales of

μs~s.

Microscopic scale—This scale is also referred to as the tissue or multicellular scale, and

in our definition, it also includes the cellular scale (i.e., single cell behaviors and properties).

Individual cells are contained in a selectively permeable cell membrane (16). Models at this

scale must suitably describe the malignant transformation of normal cells, associated
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alterations of cell–cell and cell-matrix interactions, the heterogeneous tumor environment

and the element of tumor heterogeneity. These models usually use partial differential

equations (PDEs) or agent-based modeling (ABM) rather than ODEs to simulate these

factors and processes. The simulation run time can increase substantially if individual cell

behaviors are investigated in fine detail. Tissue-scale models deal with length scales in the

order of μm~mm and time scales of min~hour.

Macroscopic scale—Models at this scale focus on the dynamics of the gross tumor

behavior including morphology, shape, extent of vascularization, and invasion, under

different environmental conditions (17). Microscopic details of tissue structure are averaged

over short spatial scales to produce a description of the macroscopic-level tissue properties.

At this scale, because the number of cells in the model is sufficiently large, it becomes

possible and sometimes necessary to treat some or all of the cells as a single continuum.

This in turn allows for cell and substrate transport to be modeled with conservation laws for

spatiotemporally-varying densities (i.e., PDEs), rather than keeping track of individual cell

activities. Models generally consider cell responses to gradient fields of diverse origins, such

as concentration gradients of diffusible or non-diffusible molecules as well as strain and

stress gradients generated by the growing tumor mass. Macroscopic-scale models deal with

length scales on the order of mm~cm and time scales of day~ear.

Since lower-level processes are much faster, it is reasonable to assume that they are in quasi-

equilibrium with the slower, higher-level processes, i.e., lower-level processes can be

included at the higher level via e.g. constitutive equations or force fields (18). For example,

if a reaction occurs on a very fast time scale, then we can assume that the chemicals in that

reaction are in equilibrium. This assumption eliminates one of the differential equations

from the integrated system, making its solution more straightforward and less

computationally intensive, while still maintaining the accuracy of the model. This type of

multiscale modeling, where lower-level processes (small spatial scales, fast dynamics) are

coupled to higher-level processes (large spatial scales, slow dynamics), has received the

most attention in the current quantitative cancer research field, and is particularly useful

when developing multiscale models because the system of governing equations is generally

large.

2.2. Modeling Techniques: discrete, continuum, hybrid [Summary box]

Modeling cancer behaviors can involve techniques that are discrete, continuum, or hybrid,
i.e. the integration of both [see Summary box]. Continuum models are capable of capturing

larger-scale volumetric tumor growth dynamics (which are also accessible to conventional

clinical imaging modalities) at a comparatively lesser computational cost (19). Continuum

descriptions of tumor growth are also to some degree supported by fundamental physical

principles, and thus benefit from the knowledge gained in this field (20). Despite these

advantages, the averaging over space realized in continuum formalisms often cannot fully

account for the diversity of cellular and sub-cellular dynamical features as well as genetic or

epigenetic regulatory mechanisms exhibited at the individual cell level. In other words, a

continuum technique is often a lesser choice when exploring tumor heterogeneity when the

cell properties vary over small spatiotemporal scales, which is an inherent feature of cancer

cells (21). Moreover, continuum models cannot easily describe processes where individual

cell effects are important or dominate, such as the epithelial–mesenchymal transition (EMT)

process (22). Alternatively, discrete models are suitable to address these shortcomings, since

they operate at the scale of individual cells or cell clusters. Discrete models can easily

incorporate biological rules (based on biomedical data or data-driven assumptions), such as

those defining cell-cell and cell-matrix interactions involved in both chemotaxis and

haptotaxis. However, discrete techniques also have drawbacks. The most serious one is the
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large computational demand when modeling each cell in fine detail, which limits the model

to a relatively small number of cells. As a result, a typical discrete model is usually designed

with a sub-millimeter or lower domain size (23). Furthermore, some effects (e.g., tissue

biomechanics) are best described at the macroscopic scale with continuum techniques (11).

For these reasons, cancer modelers are increasingly turning to hybrid techniques that

combine the benefits of both continuum and discrete descriptions. In fact, in current

discrete-based cancer models, extracellular factors are often modeled as continuous

quantities, thereby rendering the models hybrid in nature (9, 23).

2.3. Case Studies

Regardless of which techniques are used to develop a cancer model, all of them are

abstractions of reality. All hypotheses on which the models are based will eventually prove

to be incomplete in one way or another (27). However, models have the advantage of being

quantitative and interactive rather than solely descriptive. Thus, modeling and

experimentation in cancer research can and should work cooperatively, supplement, and

promote each other. In the following, we highlight some of the most recent and

representative multiscale modeling works that demonstrate the importance and necessity of

this approach in current cancer research.

2.3.1. Atomic – Molecular—Signaling pathways induced by growth factors and mediated

by receptors are responsible for transmitting information into the cell to regulate a diverse

array of cellular processes including proliferation, migration, differentiation, and apoptosis.

Molecular alterations (mutation, overexpression, or underexpression of genes or proteins) of

these pathways contribute to cancer initiation and progression. It has been found that

differential phosphorylation rates are associated with different phosphorylation docking sites

in receptors, resulting in differing downstream signaling response. Therefore, understanding

the effects of a receptor’s different docking sites on preferential signaling will help

differentiate signaling characteristics of mutant cell lines derived from cancer patients. In

this section, we introduce such a modeling approach linking atomic and molecular scales

that can be used to investigate the effects of point mutations on preferential downstream

signaling response.

Transcribing the effects of molecular alterations in receptors to differing signaling
response: Epidermal growth factor receptor (EGFR) is frequently overexpressed and

mutated in a variety of cancers, and as a result, small molecule tyrosine kinase inhibitors for

EGFR are of significant interest as anti-cancer drugs (28). It has been reported that cytosolic

signaling proteins bind to different phospho-tyrosine docking sites of EGFR, which may

cause differential patterns of EGFR downstream signaling (29). Hence, quantifying the

difference in wild-type and mutant EGFR signaling and accounting for differential signaling

through different phospho-tyrosines docking sites of EGFR is useful in identifying the role

and significance of drug sensitizing mutations of EGFR in cancers.

Radhakrishnan and co-workers have been developing multiscale models across atomic and

molecular scales to understand the mechanisms of how altered signaling induced by point-

mutations in EGFR leads to the onset of oncogenic transformations. In models presented in

(30-31), they mathematically implemented a wild-type and a mutant EGFR activation

mechanism, which differ in that the wild-type receptor tyrosine kinase (RTK) initiates

phosphorylation of C-terminal tail substrate tyrosines only as a dimer, whereas the mutants

can initiate phosphorylation as a monomer and as a dimer. In order to translate these

context-specific phospho-tyrosine mechanisms into differences in the downstream response,

they introduced a branched signaling approach through EGFR. As shown in Figure 2, two

parallel phosphorylation pathways are implemented, corresponding to tyrosine 1068
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(Y1068) and tyrosine 1173 (Y1173), where phosphorylated Y1068 (pY1068) binds only to

Gab-1 and Grb2, while phosphorylated Y1173 (pY1173) binds only to Shc. Accordingly,

phosphorylation events at the Y1068 and Y1173 sites transduce signals through different

signaling routes. This approach allows for transcribing the effects of somatic mutations

(L834R and Del) in the EGFR to different downstream responses in phosphorylated ERK

(ERK-p) and Akt (Akt-p) in the EGF-induced signaling pathway (31-32). Using these

models, the authors predicted that the ratio of Akt-p/ERK-p increases in mutants compared

to wild-type (33), and found that the perturbation of the phosphotyrosine kinetics of Y1068

and Y1173 through mutations is directly responsible for the differential signaling leading to

preferential Akt activation. They also investigated the inhibitory effects of small molecule

tyrosine kinase inhibitors on EGFR phosphorylation and downstream ERK and Akt

activation.

Another major finding of their models is that the clinically identified mutations of EGFR

kinase induce network fragility in the stabilizing interactions of the inactive kinase

conformation. This in turn provides a persistent stimulus for kinase activation even in the

absence of any growth factor. Moreover, parameters that drive network hypersensitivity

through the enhancement of phosphorylated ERK and Akt levels show a striking correlation

with observed mutations of specific proteins in oncogenic cell lines as well as the observed

mechanisms of drug resistance to EGFR inhibition. Therefore, the authors suggested that

cascading mechanisms of network hypersensitivity and fragility may enable molecular-level

perturbations (clinical mutations) to induce oncogenic transformations and mechanisms of

drug resistance (31-32). As a specific example, they described a possible mechanism for

preferential Akt activation in non-small cell lung cancer (NSCLC) harboring EGFR

activating mutations. This preferential Akt activation makes these mutant cell lines

conducive to oncogenic addiction, and this pathway addiction mechanism also results in a

remarkable sensitivity to EGFR kinase inhibition. These structural studies on kinase

activation can be used to forecast the mutation landscape associated with other ErbB family

members that may have not yet been reported (34).

2.3.2. Molecular – Microscopic—Cancer models across molecular and microscopic

scales are important and necessary due to (at least) two characteristics of cancer. One is that

cancer is widely viewed as a disease involving irreversible genomic changes affecting

intrinsic cellular programs (1), and thus it is difficult for wet-lab cancer researchers to trust a

cancer model which misses correlations of molecular-level alterations with cancer cell

properties. The other is that cancer is a context-dependent disease (35): depending on

different microenvironments, cancer cells and the emergent tumor exhibit different

phenotypes and behaviors. Cancer models introduced in this section are discrete-based

models because they need to function on a single cell level, and most of them use ABM

technique. ABM is of particular interest to cancer modelers because it helps to address the

role of diversity in cell populations and also within each individual cell, which in turn

enables us to explore how cancer growth and invasion patterns (due to cell proliferation and

migration) emerge as a result of individual dynamics, including cell-cell and cell-

environment interactions and intracellular signaling of individual cells. In the following, we

introduce the development of some of the most recent molecular-microscopic cancer

models.

Signaling dynamics of individual cells influencing microscopic tumor outcome:
Deisboeck and coworkers have been working extensively on the development of molecular-

microscopic ABMs to simulate tumor properties within both brain tumors and NSCLC.

Their models aim to quantify the relationship between extracellular stimuli, intracellular

signaling dynamics, and multicellular tumor growth and expansion. At the molecular level

are signaling pathways induced by growth factors and mediated by growth factor receptors.
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Similar to general pathway analysis studies, the pathway models are implemented using

ODEs. At the microscopic level is a biochemical microenvironment constructed to represent

a virtual tissue in a two dimensional (2D) or three dimensional (3D) domain. Heterogeneous

environments are attained by distributing external diffusive chemical cues (such as growth

factors, glucose, and oxygen tension) throughout the microenvironment. Throughout the

simulation, the concentrations of the chemical cues are continuously diffused and updated at

a fixed rate based on PDEs. Each cell carries a self-maintained signaling pathway or

networked pathway combination, meaning that cells will differ in signaling profiles and thus

will exhibit different phenotypic behaviors as the simulation progresses.

A molecular-level module, i.e., an EGFR signaling pathway, was first incorporated into a

2D brain tumor model to study and describe how context-dependent single-cell activities

potentially affect the dynamics of the entire tumor system (36). In this model, an

experimentally-supported molecularly-driven cellular phenotypic decision algorithm was

established to link molecular changes to cell phenotype determinations. It is noteworthy that,

for processing phenotype transitions, a series of subsequent modeling works all adopt this

algorithm directly, or a variety of it. We briefly demonstrate how this algorithm determines

the cell’s migration fate. Experimental studies have shown that the transient acceleration of

accumulating phospholipase Cγ (PLCγ) levels leads to cell migration (37), and thus the rate

of change of PLCγ can be used to determine the cellular migration decision. In this

algorithm, the potential for any individual tumor cell to migrate was assessed by evaluating

Mn[(PLCγ)]=[d(PLCγ)/dt]n, where d(PLCγ)/dt is the change in concentration of PLCγ over

time, t, for a cell with an ID, n; if Mn exceeds a pre-specified threshold, then the cell

becomes eligible to migrate; otherwise it can proliferate or become quiescent (i.e. it neither

proliferates nor migrates yet remains viable). Note that a cell additionally has to meet other

microenvironmental requirements, such as sufficient local nutrient conditions and available

adjacent space, in order to proliferate or migrate successfully. In a follow-up study (38),

increasing the EGFR density per cell was found to lead to an acceleration of the entire tumor

system’s spatiotemporal expansion dynamics in accordance with experimental data (39). To

simulate brain tumor growth in a more realistic microenvironment, a 3D model was

developed (40), where a simplified cell-cycle description based on (41) and a more

complicated extracellular matrix representation were implemented. Simulation results

indicated that over time, proliferative and migratory cell populations oscillate and have a

direct effect on the entire spatiotemporal tumor expansion pattern. Using the 3D model (40),

an element of genetic instability was added, to investigate how heterogeneity impacts brain

tumor progression patterns (42). The extended model found that cell clones with higher

EGFR density are comprised of a larger migratory fraction and smaller proliferative and

quiescent fractions, a result that agrees well with reported experimental data (43).

EGFR signaling also plays a vital role in the pathogenesis and progression of NSCLC (44).

Deisboeck, Wang and colleagues attempted to look into how the methods applied to

modeling brain tumors could be applied to the case of NSCLC. They also explored the

possibility of using a cross-scale approach to determine critical molecular parameters that

have a significant impact on tumor outcome at the microscopic level (45). A multiscale

NSCLC model was first developed, with a revised EGF-induced EGFR-mediated signaling

pathway implemented at the molecular level and a 2D heterogeneous biochemical tumor

growth environment implemented at the microscopic level (46). This model revised the

previous cellular phenotypic decision algorithm used in the brain tumor models by adding

another decision molecule, ERK, in determining the cell’s proliferation fate. This was also

based on an experimental study which reported that the transient acceleration of

accumulating ERK concentration levels triggers cell replication (47). Figure 3a
demonstrates this essential algorithm. With this 2D NSCLC model, they found that a

minimal increase in EGF concentration can temporarily abolish the proliferative phenotype
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in the cancer cell closest to the nutrient source. More recently, Wang et al. (48) presented a

3D model in which both EGF and transforming growth factor beta (TGFβ) as well as their

interplay were taken into account. This model was used to investigate how the effects of

individual and combined changes in EGF and TGFβ concentrations at the molecular level

alter tumor growth dynamics on the multicellular level, i.e., tumor volume and expansion

rate. As shown in Figure 3b, when EGF and TGFβ concentrations were jointly varied

asynchronously, a particular region of tumor system stability, generated by unique pairs of

EGF and TGFβ concentration variations, was discovered. The simulated tumor system

became sensitive to external variations in EGF and/or TGFβ when they occurred outside this

robust region. The expansion rate for the standard simulation (with all kinetic parameters set

to their reference values) was 2.07 μm/hr, which is in very good agreement with both

computational modeling (49) and experimental studies (50).

Tumor microenvironment and genotype-to-phenotype mapping: The importance of the

tumor microenvironment is currently of great interest to both the biological and the

modeling communities (51). To investigate the impact of the microenvironment on the

tumor growth dynamics, a series of hybrid ABMs were developed by Gerlee and Anderson.

Each cell in their models was equipped with a microenvironment response network modeled

using a feed-forward artificial neural network. In the neural network, microenvironmental

variables such as local oxygen concentration, glucose concentration and extracellular matrix

(ECM) gradient were represented as the input layer, regulatory genes as the hidden layer,

and the response for cell phenotypes as the output nodes. This way, a genotype-to-phenotype

mapping with the use of a neural network approach was established, in order to determine

the actions of the cell based on its genotype, the microenvironment in which it resides, and

their interactions. Furthermore, the neural network is subject to mutations when the cells

divide. This means that the behavior of cancer cells can change from one generation to the

next, implying that the models have the capability to capture the evolutionary dynamics of

tumor growth. In (52), it was revealed that tumors grown in low oxygen concentrations

exhibited branched morphologies, and the oxygen concentration influenced the evolutionary

dynamics. A subsequent extension of the model involving the effect of the ECM and

anaerobic metabolism was used to examine the emergence of a glycolytic phenotype and the

influence of the tissue oxygen concentration and ECM density on the dynamics of the model

(53). Simulation results showed that this glycolytic phenotype was most likely to occur in

low oxygen concentrations and within a dense ECM. Moreover, it was observed that, while

a low oxygen concentration results in branched tumor morphology, increased ECM density

gave rise to more compact tumors with less fingering morphology. Figure 4 shows a series

of simulation results with this model. More recently, these authors investigated the impact of

the microenvironment on the emergence of a motile invasive phenotype in an evolving

tumor population using the same approach (54). The model focused on haptotaxis, i.e.,

directed cell movement along ECM gradients in the tissue, which is known to be the

dominant mechanisms in tumor invasion (55). Results showed that in identical simulation

conditions, the tumor’s evolutionary dynamics converge to a proliferating or migratory

phenotype, which suggests that the introduction of cell motility into the model changes the

shape of the fitness landscape on which the cancer cell population evolves.

Linking cell signaling to cell-cell and cell-matrix interactions: E-cadherin mediates cell-

cell adhesion and plays a critical role in the formation and maintenance of cell contact, and

loss of E-cadherin-mediated adhesion is a key feature of the EMT. Only recently, cancer

modelers began to explore linking the intracellular signaling dynamics-related cell-cell

adhesion and the extracellular consequences in invasive tumors. A molecular-microscopic

multiscale agent-based lattice-free model was first developed for this purpose by taking into

account the intracellular dynamics of the E-cadherin and β-catenin interactions and the
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physical forces on the cells (56). The model focused on a simplified β-catenin pathway

which captures the key features of the cell adhesion process. Simulation results showed that

down-regulation of β-catenin can be mainly driven by cell-cell contacts, and EMT can be

achieved and reversed depending on the regulation of soluble β-catenin by local contacts.

The intra- and intercellular protein interactions that govern cell–cell adhesion combined with

cellular physical properties are also the driving forces of an essential mechanism that a

cancer cell uses to attach to the endothelial wall, i.e., transendothelial migration (TEM) (57).

Thus, with necessary extensions and modifications to the previous model (e.g., the addition

of the Src pathway, which plays a principal role in TEM), the same modeling group

examined the influence of different protein pathways in the achievement of TEM (58). Four

cancer cell genotypes that differ in the adhesion protein pathways were considered. The

genotypes were characterized by their capacity of creating N-cadherin-mediated bonds with

the tunica intima and by their capacity of inducing a detachment of the endothelial–

endothelial bonds by Src activity. Their results indicate that the slowest migration was found

in the case when both N-cadherin and Scr were knocked out, while the fastest case occurred

when both N-cadherin and Scr remained active.

2.3.3. Microscopic – Macroscopic—Molecular-microscopic modeling has enjoyed

good success in predicting the local behavior of cancer on scales of hundreds of microns to

millimeters, and has proved a valuable tool for investigating the links between our current

wealth of experimental molecular and cellular biology data and complex, emergent behavior

of large multicellular systems. However, this approach is too computationally intense to

simulate full tumors and their surrounding tissues. Furthermore, some important aspects of

tumor biology, such as mechanical stresses, are best characterized by macroscopic,

continuum models (10-11). Hence, there is need to dynamically combine microscopic

models to describe important cell-scale phenomena (e.g., EMT) with the efficiencies of

continuum models.

Current microscopic-macroscopic models can be roughly categorized (with increasing levels

of multiscalarity) as 1) composite hybrid models, where a microscopic model of one

phenomenon is coupled with a macroscopic model of another, 2) continuum models with
functional parameters, where continuum models express microscopic effects through

heterogeneous, time-dependent parameters, and 3) adaptive hybrid models, where one or

more phenomenon is represented using both microscopic and macroscopic descriptions, with

a physically-motivated means of adaptively choosing the appropriate characterization. We

focus here on representative examples of these three approaches; interested readers may also

consider recent reviews (10) and books (11, 59).

Composite hybrid models: To date, most hybrid microscopic-macroscopic models have

been composite, where a discrete cell-scale representation of one phenomenon is combined

with a continuum tissue-scale model of another. Some of the most important examples have

been coupled models of tumor growth (using a continuum model) with angiogenesis (using a

discrete model) (60-65). Zheng et al. (60) used a sharp interface continuum model of tumor

growth, where the moving tumor boundary is modeled as the boundary between two

incompressible fluids, with a discrete cellular automaton model of angiogenic sprout tip

motion first introduced by McDougall, Chaplain, and Anderson (66-70). In the viable rim of

the tumor region (where substrate—oxygen, glucose, and growth factors—levels were

higher than a threshold value), the tumor volume increased with a proliferation rate

proportional to the substrate level. In the necrotic core (where the substrate level fell below

the threshold), volume was lost due to cell lysis and subsequent fluid flux. Cell mechanics

were modeled by introducing a mechanical pressure P that was related to the local tissue

velocity v by Darcy’s law (v = −μ▽P), and cell-cell adhesion was modeled as a surface

tension along the tumor boundary. The boundary of the necrotic region released
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angiogenesis-promoting factors that diffused out of the tumor, reached the sprout tips,

guided their chemotaxis and branching behavior, and ultimately determined the vascular

topology. Simultaneously, the authors solved for the local substrate concentration

throughout the tumor and surrounding tissue using a quasi-static reaction-diffusion equation.

The models were further coupled by releasing substrate from the neovasculature and by

restricting this nutrient source whenever the tumor pressure exceeded a threshold value. This

model was able to reproduce tumor morphological instability caused by substrate

heterogeneity, as well as biased tumor growth along the neovasculature (Figure 5a).

More recently (64), Macklin et al. coupled a refined sharp interface model by Macklin and

Lowengrub (71-74) with a more advanced discrete model of angiogenesis, i.e., dynamic

adaptive tumour-induced angiogenesis (DATIA), by McDougall, Chaplain, and Anderson

(70). In the DATIA model, blood flow (including the effect of hematocrit) is solved

throughout the vasculature as a coupled system of Poiseuille flow equations in individual

segments of the neovasculature. The vessel segment radii vary according to the balance of

wall shear stresses, vessel fluid pressure, and vessel elasticity—this, in turn, affects transport

throughout the vasculature. The refined tumor model introduced a hypoxic region, where

substrate levels were too low to promote cell proliferation but not so low as to induce

necrosis. This region, rather than the necrotic core, released angiogenesis-promoting factors

that drove chemotaxis in the angiogenesis model. The proliferating rim released matrix

metalloproteinases (MMPs) that degraded the ECM in and near the tumor; this, in turn,

affected the development of the vasculature due to haptotaxis of the sprout tips, as well as

the evolution of the tumor by altering the distribution of the mechanical pressure. As an

advance over the work by Zheng et al. (60), oxygen was released by the neovasculature at a

rate proportional to the hematocrit level (to model oxygen transport by red blood cells).

Furthermore, the vessel radius was determined by the balance of vessel pressure, wall shear

stress, vessel elasticity, and the mechanical tumor pressure, leading to tumor vessel collapse

as an emergent phenomenon (Figure 5b). This work was able to capture the complex

dynamics of 1) hypoxia-induced angiogenesis, 2) increased oxygen supply by the

vasculature following anastomosis of the vessels, 3) rapid subsequent tumor growth leading

to increased proliferation-induced mechanical pressure, followed by 4) new regions of

hypoxia due to vessel collapse (64). The results led the authors to hypothesize repeated

hypoxia-angiogenesis-growth cycles due to the combined effects of tumor shape

instabilities, mechanical collapse of the neovasculature, and heterogeneous oxygen

distributions. Similar recent work by Cristini, Frieboes, Lowengrub, Wise and co-workers

combined a more general, multiphase model of tumor growth with a “free-swimming”, off-

lattice angiogenesis model, and observed continued hypoxia and angiogenesis (61-63, 65).

Continuum models with functional parameters: In this approach, a continuum model is

endowed with spatiotemporally-varying parameters that encapsulate smaller-scale

biophysics, effectively including these as constitutive relations. Early notable examples

include nonlinear oxygen consumption and proliferation terms in various tumor growth

models. Ward and King used nonlinear, Michaelis-Menten-type uptake and proliferation

terms to model the relationship between oxygen availability, proliferation, and observations

that cell growth tends to saturate due to independent limiting factors even when supplied

unlimited growth substrates (75-76). Gatenby, Smallbone, and other colleagues more

recently included similar such relationships between proliferation and substrate (oxygen and

glucose) uptake, based upon the analysis of molecular-scale metabolism modeling (77-79).

Macklin et al. recently observed Michaelis-Menten population dynamics as an emergent
phenomenon from an ABM that varied the quiescent-to-proliferative phenotypic transition

probability with oxygen, and validated the result by comparing against breast cancer patient

data (Figure 6) (80-81).
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Based in part upon earlier parameter studies (60, 73, 82-83), Macklin and co-workers

formulated a phenomenological relationship between the local ECM density E and a tumor’s

mechanical response to pressure gradients by varying the mobility coefficient in Darcy’s law

as μ = μ0/(1 + bE), where b is constant (10, 61, 64). Thus, the tumor tissue’s mechanical

response (μ) decreases as the ECM density increases, modeling 1) the increased mechanical

resistance of a denser ECM, and 2) the greater number of cell-ECM integrin bonds that must

be broken for cell motion (73). This functional relationship can be derived through a careful

upscaling analysis (e.g., as in (10) and later expanded in (84)) of the adhesive, repulsive, and

frictional forces in mechanistic, force-based agent models (e.g., (49, 56, 58, 80, 85)). Similar

models have been used by Macklin et al. in nonlinear chemotaxis and haptotaxis coefficient

functions (10, 64), and other groups have used a nonlocal, integral term to model cell-scale

adhesion effects in continuum tumor invasion models (86-88). Indeed, such functional

relationships between microenvironmental quantities and averaged cell phenotypic behavior

could be incorporated in functional, spatiotemporally varying model parameters by

analyzing or numerically sampling appropriate molecular-microscopic models.

This approach has been applied to multiscale chemotherapy modeling. Sinek, Frieboes,

Cristini and coworkers developed a cell-scale compartmental model of chemotherapeutic

drug (doxorubicin) transport within a cell’s cytoplasm and nucleus, which they combined

with a mechanistic model of DNA-drug adduct formation, repair, and apoptosis (89-91).

Their model accounted for cell cycling effects by varying the probability of apoptosis with

the substrate level via a Hill-type function. This model, in turn, informed a spatiotemporally-

varying apoptosis parameter in a continuum model of tumor growth, which, when combined

with reaction-diffusion equations for substrate and drug transport, was very successful in

predicting 3D, whole-tumor response to doxorubicin administered via the (neo)vasculature.

As shown in Figure 7, cell monolayer drug response data was used to calibrate the model,

and subsequently used to predict 3D tumor response. As in our previous examples, the

functional parameters are informed by upscaling mechanistic microscale models. Indeed, the

Hill-type substrate dependence (which was imposed a priori in (89-91)) can be predicted as

the emergent behavior of an ABM of Macklin et al (see Figure 6) (80-81, 85).

Adaptive hybrid models: In the fullest realization of the “multiple hierarchies” paradigm

discussed earlier, discrete and continuum representations of the same phenomenon are

applied dynamically and simultaneously, along with a biophysical rule to appropriately

select the correct representation throughout the spatiotemporal modeling domain. This fully

hybrid approach is a ongoing, cutting-edge topic in the scientific computing community;

until recently, this approach has largely been computationally infeasible, and only recently

have tools begun to emerge that can enforce mathematical and biophysical consistency

between such simultaneous representations (10).

In recent work, Kim, Stolarska, and Othmer coupled a viscoelastic model of a tumor’s

quiescent and necrotic regions with an ABM of tumor cells in the outer proliferative rim (of

thickness ~100-200 μm), allowing for more detailed treatment of molecular and cellular

biology within the viable rim while making use of the computational efficiency of a

continuum model for the majority of the millimeter-sized tumor (Figure 8a) (92-93). The

discrete cellular model, which updated earlier work by Dallon and Othmer to include

apoptosis and proliferation (94), described the cells as deformable, viscoelastic ellipsoids

subject to adhesive, repulsive, and drag forces, as well as growth-induced stresses. The

model included a careful transfer of forces from the discrete cells onto the continuum model

in the quiescent region by interpolation of the discrete cells’ forces onto the nearest nodes of

a triangular mesh; mass could be transferred between the discrete and continuum models as

cells changed between the quiescent and proliferative states using a least-squares projection
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algorithm. This work is characteristic of one main approach to hybrid modeling, where the

discrete and continuum representations are applied in pre-specified regions.

More recently, Wise, Lowengrub, Cristini and colleagues combined a 3-D multiphase

continuum model (where each “voxel” of tissue is modeled as a mixture of fluid, ECM, and

various cell populations, and a Cahn-Hilliard type equation to regulates the mechanics of the

mixture) with a lattice-free, discrete model of migrating tumor cells (10, 62-63, 65). As in

previous hybrid models, the discrete and continuum representations exchange forces with

one another. As an advance over earlier hybrid modeling, their approach could dynamically

convert between the discrete and continuum representations while conserving mass and

momentum, using criteria such as cell density and hypoxia to trigger the conversion.

Mutation dynamics were modeled as transfers between the multiphase mixture cell

components. The group investigated the epithelial-mesenchymal transition in hypoxic

glioma (brain tumor) cells, and observed such behavior as single-file like strands of motile,

palisading cells moving from the hypoxic regions towards high-oxygen environments—an

effect observed in clinical histopathology (Figure 8b-c). The model was also able to treat the

formation of satellite tumors in regions where discrete cells aggregated sufficiently to satisfy

the continuum hypothesis (e.g., in normoxic regions) (Figure 8d).

3. CONCLUSIONS: CHALLENGES AND FUTURE DIRECTIONS

We outlined the different ways that recent models link lower-scale modules with those at

higher-scale, in the interest of developing more realistic and predictive models of cancer.

We emphasize the viewpoint that mathematical and computational cancer models, whether

scale-specific or multiscale, are most efficient when they are as complex as necessary, yet as

simple as possible (95). The integration of an ever growing body of experimental and

clinical data will demand even broader ranges of expertise and knowledge thus will require

the formation of cross-disciplinary and multi-institutional groups focusing on particular fine-

grained building blocks or functional modules (96). In the following, we discuss several of

these daunting challenges and conclude with future directions of multiscale cancer

modeling.

3.1. Parameter estimation

It is widely accepted that the more quantitative experimental data are available to build and

constrain the parameter values, the more likely models are to accurately describe observed

behaviors (97). Parameters of scale-specific cancer models are already difficult to quantify,

not to mention those for multiscale cancer models for which parameters have to be defined

at different scales. Not all of these parameters are experimentally available or even

measurable with current techniques hence some have to be estimated by comparing model

results to experiments. There are two classes of parameter estimation techniques that are

frequently used in systems biology: local optimization (e.g., direct-search, and gradient-

based methods) and global optimization (e.g., simulated annealing, branch and bound, and

evolutionary algorithm). Each method has its advantages and disadvantages, and interested

readers should refer to (98-100) for a comprehensive survey of parameter estimation

methods.

Due to the complexity of cancer models and the quality of the data, over-fitting is a common

problem in parameter estimation (101). When a model has many estimated parameters and

the corresponding data are insufficient, over-fitting can lead to some unwarranted

conclusions. To narrow the range of the parameter space, constraint-based modeling, which

involves a multi-step procedure and accounts for both quantitative and qualitative data at the

same time, may be an alternative choice (102). However, cancer modelers should be aware

that, given the current underlying difficulty in estimating parameter values, many models
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may remain limited in the mechanistic insight they provide and in their capability to predict

system dynamics in unforeseen conditions. To constrain these models and thereby improve

predictive power, modelers must integrate insights from numerical parameter studies, direct

experimental data from collaborators, and any information that can be gleaned from the

experimental and theoretical biology literature (which itself may require reinterpretation

with a mathematical point of view) (81). The hybrid modeling approach may also be useful

for integrating patient data across a variety of spatial scales, where calibration to each datum

occurs at the appropriate scale, and the information is subsequently allowed to propagate

throughout the multiscale framework (11, 81).

3.2. Computational demand

Significant efforts have been made to seek mathematical approaches and computational

resources that will enable cancer models to be run in a reasonable period of time (103). It is

generally accepted that if a model works on higher spatial and temporal resolution, it will

need higher compute power and thus longer run time to accomplish computing tasks.

Discrete or discrete-based hybrid models are more seriously affected by the compute

intensity constraints because they are generally too detailed to simulate over a long period of

time, particularly in large, 3D domains. One solution is to take advantage of very powerful,

massively parallel supercomputers and develop numerical algorithms that can run on these

machines. However, doing so may not resolve all the difficulties in handling the enormous

amount of experimental and clinical data; it is also not practical in many current clinical

settings thus would have limited usage.

As discussed, adaptive hybrid modeling has the potential to save computational time while

maintaining the predictive power of the model (see Section 2.2). Other methods for solving

the compute intensity issue are also available, but are all at an experimental stage. For

instance, the equation-free approach developed by Kevrekidis and co-workers (104-106)

leverages the spatiotemporal scale separation to allow for significant gains in computational

efficiency by alternating short bursts of appropriately initialized microscopic simulations

with accelerated result processing at the macroscopic, continuum scale. Furthermore,

methods from other modeling communities, such as the Heterogeneous Multiscale Method

(HMM, e.g., (107-108)), can provide useful insight into efficient numerical methods that

may be incorporated into the development of multiscale cancer models as well. By drawing

on the strengths of these potentially very useful methods and integrating them into the next

generation of multiscale cancer modeling, we may be able to produce more comprehensive

and computationally efficient models to simulate tumor progression and predict treatment

impact.

3.3. Data sharing and model reusability

Data sharing is an active topic in the field of systems biology (95). We also advocate that, in

order to avoid duplication of effort and thus waste of resources, achievements of publicly

funded work including data and models should be made accessible to the community in a

form where others can review and reproduce the modeling results, and then reuse and revise

these resources in future works. In the following, we focus on two aspects of data sharing

and model reuse.

First, the data and models should be presented in standardized formats with clearly stated

dependencies and problems. This will improve the reusability of models and clarify their

limitations. In systems biology at large, there have been a few standards established, such as

SBML for biochemical pathways, CellML for biophysical models, and FieldML for spatial

fields (109). These standards define how models are structured, how the mathematical

equations are encoded, and how units are defined. Establishing these standards has been a
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significant step towards achieving a robust foundation for the modeling community; such

standardization efforts, including amending existing or creating new ontologies, can

facilitate translation of multiscale models into and eventual adoption of these in silico tools

in clinics.

Second, to store and exchange modeling tools, the cancer modeling community needs digital
repositories of models provided by researchers from academic, governmental and corporate

laboratories. Web services are needed to connect and integrate these currently often

incompatible models and tools for data acquisition, storage, analysis and presentation in

order to bridge the integration gap (18). In brief, cancer modelers need to efficiently share

data, information and knowledge across geographic and organizational boundaries within

the context of distributed, multi-disciplinary and multi-organizational collaborative teams,

while at the same time effectively protecting data ownership and data security.

Many web-based systems biology communities or databases have been created over the past

years, and some of them are developed based on semantic technology (see (110) for a

review). Among them, the Center for the Development of a Virtual Tumor (CViT) (111) is

building an ever-growing community of researchers around the world dedicated to cancer

modeling. It currently provides cancer researchers a community-driven web platform with

functions including wikis, blogs, forums, member profiles, and RSS-based news updates

(112). It also develops NIH/NCI-caBIG® compliant infrastructure tools to facilitate

interaction among its contributing scientists. Members of CViT come together online on a

regular basis to discuss cutting-edge literature on CViT’s online forums which separates

CViT from other model repositories such as BioModels (113). Additionally, the social

networking aspect of the site allows research teams to collaborate from anywhere around the

world in a workflow designed specifically for the cancer modeling community. Recently,

CViT released the Digital Model Repository (DMR), an innovative web platform for the

exchange of cancer models (114). Cancer investigators can upload their models,

experimental data, and simulation results and publish them to other DMR users of their

choice who will then be able to access those files. The DMR also implements an innovative

elicensing workflow and is built using semantic web technologies through the Resource

Description Framework (RDF; a standard metadata model for describing the relationship

between two objects (115)). The newest feature of the DMR is the Computational Model

Execution Framework (CMEF). Its aim is to allow executable files to be uploaded as part of

a model. The owner of the model can indicate variable parameters which can be defined for

each run, and specify details of the model, including programming language and runtime

computing environment. Others can either download the model and run it on their own

computers, or simply execute the model using computing resources provided by the DMR.

Altogether, CViT and its semantic services help to advance the cancer modeling field in

facilitating web-based multidisciplinary cancer research.

3.4. Personalized medicine

Approaches provided by systems biology are beginning to impact medicine (116). In

treating cancers, the integration of computational and experimental techniques may improve

our abilities to design more efficient cancer therapies. Corresponding applications include

biomarker validation, development of more accurate diagnostic tests, and targeted drug

discovery - all geared towards the optimization of individualized cancer therapy.

The conventional population-based approach for therapeutic developments in clinics still

relies on a series of randomized clinical trials aimed at searching for favorable yet averaged

treatment outcome (117). However, patient responses to a particular drug or therapy are

known to fall into a more or less wide range that deviates from this averaged behavior.

Multiscale cancer modeling may eventually help to explain not only why some therapies fail
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while others prove to be effective in controlling tumor progression, but also why a particular

treatment works only in a fraction of patients. Models will have to incorporate patient-

specific experimental and clinical data at all biological levels, including, e.g., genomic,

proteomic, anatomical, physiological, and pathological data. Training the model on a

patient’s data will yield a more accurate description of the specific kinetics of disease

progression. Hence, this approach should provide a higher predictive power than that

achieved with pooled data only and thus should be able to guide personalized treatment

strategies more accurately to improve outcome (117). Moreover, multiscale cancer models

can be used to help characterize a patient’s specific biomarkers (ranging from critical

pathway proteins to phenotypic profiles and imaging patterns) and then compare these

‘cross-scale signatures’ with pooled data from conventional clinical practice or from a trial

with the candidate drug being applied, in an effort to simulate the specific response of the

patient. Introducing multiscale cancer modeling to medicine has the potential to facilitate the

breakthrough of personalized medicine, and eventually maximize advances in science and

technology for the benefit of cancer patients by helping select or optimize preventative and

therapeutic patient care.

In summary, multiscale cancer modeling is a most promising, innovative research area that

constitutes a critical driver for the field of integrative cancer systems biology. Challenges to

the success of this approach arise as a result of our still limited understanding of the

complex, dynamic nature of cancers, the often constrained access to appropriate

experimental and clinical data, the difficulties in validating models against these data, and

the challenges involved in communicating and sharing modeling methods amongst the

field’s multiple stakeholders. However, by drawing on the collaborative effort and expertise

of scientists from different disciplines and the continuing development of advanced,

innovative computational and mathematical methods, we believe that multiscale cancer

modeling will reach its full potential in guiding targeted experimental research, in enabling

patient-specific predictions and thus in accelerating personalized medicine.
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Acronyms list

ABM agent-based modeling or agent-based model

CViT Center for the Development of a Virtual Tumor

DATIA dynamic adaptive tumour-induced angiogenesis

DCIS ductal carcinoma in situ (of the breast)

ECM extracellular matrix

EGFR epidermal growth factor receptor

EMT epithelial–mesenchymal transition

MD molecular dynamics

MMP matrix metalloproteinase
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ODEs ordinary differential equations

PDEs partial differential equations

PLCγ phospholipase Cγ

RTK receptor tyrosine kinase
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Summary Box

Discrete modeling can explicitly represent individual cells in space and time, and track

and update their internal states according to a pre-defined set of biological and

biophysical rules. This approach is particularly useful for studying carcinogenesis,

genetic instability, natural selection and cell-cell and cell-matrix interaction mechanisms.

The dynamics of discrete cancer cells can be investigated with lattice-based or lattice-free

methods, where the former builds a grid with a finite number of dimensions in which

cells live, while the latter describes cell actions in arbitrary locations and their

interactions in arbitrary directions. Because discrete modeling is based on a series of

rules applied to each cell, it is possible to translate detailed biological findings into rules

for the model (24). However, the computational demand increases rapidly with the

number of cells modeled, limiting these models in the spatial and temporal scales they

can represent.

Continuum modeling describes tumor tissue as a continuum medium rather than working

at the resolution of individual cells, and thus is a good choice for modeling larger-scale

systems. This approach draws upon principles from continuum mechanics to describe

model variables as continuous fields mostly by means of partial differential or integro-

differential equations. Common continuum model variables (e.g., cell volume fractions,

density, and cell substrate concentrations, e.g. nutrient, oxygen, and growth factors) are

somewhat easier to obtain, analyze, and control, compared with those in the discrete case

(25). Although these models can characterize global properties of gross tumor growth

and invasion at the tissue or higher-scales, they cannot be used to examine individual cell

dynamics and discrete events, such as EMT, since in a process that small, changes to a

cell or a set of cells can move a nonlinear cancer system to a different state (26). This

may be important when studying the effects of genetic, cellular, and microenvironment

characteristics on overall tumor behavior.

Hybrid modeling attempts to integrate and draw on the strengths of both continuum and

discrete descriptions. Different definitions on hybrid modeling exist in the filed (9-10,

23), but in this article, hybrid models are roughly divided into two categories: composite
and adaptive hybrid modeling. In composite hybrid models, individual cells are treated

discretely but interact with other chemical and mechanical continuum fields. Under

appropriate formalisms, such models are able to couple different scales impacted by the

growth process with biophysical, biochemical, and biomechanical information passed

between scales. In adaptive hybrid models, both discrete and continuum representations

of cells are chosen dynamically and adaptively where appropriate, e.g., discrete modeling

for EMT and continuum modeling for the tumor bulk. Thus, the adaptive hybrid

modeling can achieve discretely high resolution wherever and whenever necessary, while

at the same time reducing the compute intensity as much as possible to support scalability

of the approach to clinically relevant levels. Together, although continuum and discrete

approaches have each provided important insights into cancer-related processes occurring

at particular spatial and temporal scales, the complexity of cancer and the interactions

among the cells and their complex tumor environment call for a multiscale continuum-

discrete (hybrid) approach (10). Hybrid models have the potential to couple biological

phenomena from the molecular and cellular scales to the tumor scale.
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Figure 1.
Schematic illustration of the biological scales of significant relevance for cancer modeling

including atomic, molecular, microscopic (tissue/multicellular), and macroscopic (organ)

scales. Different scales represent different spatial and temporal ranges; the methods for

modeling these distinct scales differ as well. Multiscale cancer modeling requires the

establishment of a linkage between these scales.
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Figure 2.
Mechanistically linking EGFR point-mutations to altered signaling characteristics leading to

the onset of oncogenic transformations. (a) Branched signaling model of the ErbB1, i.e.,

through two parallel phosphorylation pathways, corresponding to tyrosine 1068 (Y1068) and

tyrosine 1173 (Y1173). (b) Calculated ERK and Akt phosphorylation levels in units of nM

under serum starved (EGF−) and serum cultured (EGF+) conditions for cells with normal

ErbB1 (EGFR) expression and ErbB1 over expression. In each panel the Y1173-ErbB1

affinity (KM) is varied along the x-axis (log value relative to wild-type) and the Y1068-

ErbB1 affinity (KM) is varied along the y-axis. The blue circle denotes the wild-type, the

green denotes the L834R mutant and the yellow the Del L723-S728 ins S (or Del) mutant

cell lines. Reproduced with permission from (31).
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Figure 3.
(a) Experimentally-supported molecularly-driven cellular phenotypic decision algorithm.

Decisions are made dependent on the molecular dynamics of PLCγ and ERK, two

downstream signaling molecules of EGFR, for options (2)-(4). Beginning with a quiescent

cancer cell, its phenotype for the next step is determined as follows: (1) cell death, if the on-

site glucose level is insufficient; dependent on the molecular dynamics of PLCγ and ERK,

(2) the cell will remain quiescent if the rate of change of both PLCγ and ERK remain below

their corresponding thresholds; (3) the cell will proliferate (and a new cell will then occupy

an adjacent free location) if only the rate of change of ERK exceeds its threshold; (4-5) the

cell will migrate to the adjacent free location that has the greatest chemotactic cue weight if

the rate of change of PLCγ (regardless of ERK) exceeds its threshold. (b) The effects of

asynchronous combinatorial change in EGF and TGFβ concentrations on tumor volume

represented by cell number (left panel) and tumor expansion rate represented by the inverse

simulation step (right panel). In the tumor volume evaluation, the largest tumor volume is

reached under conditions of high TGFβ and low or standard (with a variation of 1.0-fold)

EGF concentrations. However, in the tumor expansion rate evaluation, the most aggressive

tumor expansion rate (fewest simulation steps) occurs under conditions of high EGF,

regardless of TGFβ concentrations. Adapted with permission from (48).
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Figure 4.
Background oxygen concentration and matrix density influence the growth rate and tumor

morphology. Oxygen concentration level is represented by c0 and matrix density by E. Low

oxygen concentration gives rise to branched tumor morphology, while the matrix density

tends to stabilize the morphology, giving rise to wider branches in a more dense matrix.

Proliferating cells are shown as red, quiescent cells as green, necrotic cells as yellow, dead

cells as blue; empty grid points are displayed in white. Adapted with permission from (53).
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Figure 5.
Early microscopic-macroscopic composite models of tumor-induced angiogenesis and

growth response. (a) A continuum tumor model (dark curve in top plot) is coupled with a

discrete angiogenesis model (thin curves in top plot), which releases oxygen (bottom plot)

that fuels tumor growth, shape instabilities such as fragmentation, and co-option of the

vasculature. Reproduced with permission from (60). (b) A continuum tumor model (top left:

red = proliferative rim, blue = hypoxic region, brown = necrotic core) is coupled with an

advanced discrete angiogenesis model (top left: brown transparent curves), whose topology

is determined by sprout tips (top left: green points) that respond chemotactically to growth

factors released by the blue hypoxic region, and haptotatically to the ECM density. The

proliferating tumor generates mechanical pressure (bottom left) that can collapse vessels,

thereby obstructing hematocrit transport (bottom right) and subsequently oxygen transport

delivery (top right). This, in turn, feeds back into the tumor growth pattern, the distribution

of oxygen and thereby the spatial distribution of angiogenesis-promoting factors, and

consequently the neovascular network topology. Reproduced with permission from (64).
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Figure 6.
Macroscopic-scale functional relationships as emergent phenomena from microscopic

models. The volume-averaged behavior of an agent-based model of ductal carcinal in situ

(DCIS)—a type of breast cancer where growth is constrained to a breast duct—was analyzed

to postulate a Michaelis-Menten type relationship between oxygen (σ) and proliferation (PI)

as an emergent phenomenon of the model (80)—see the solid curves above. This

hypothesized relationship was later validated by analyzing post-mastectomy Ki-67

immunohistochemical data for proliferation in two separate breast ducts (dashed curves),

with excellent qualitative and quantitative agreement (81).
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Figure 7.
Calibrated macroscopic behavior as mechanistic functional relationships. Sinek, Frieboes,

Cristini and co-workers (89-91) used a mechanistic, compartmental cell-scale model to

determine a calibrated relationship between the local substrate level, doxorubicin level, and

the spatiotemporally-varying tumor apoptotic response to chemotherapy. After calibrating to

experimental monolayer data (dark gray bars), the same tumor types were simulated in 3D,

with the model accurately predicting the tumor’s heterogeneous apoptotic response (light

gray bars) to the large substrate and doxorubicin substrates within the tumor. This work not

only demonstrates the capacity for a calibrated multiscale model to provide better

predictions of 3D tumor behavior than monolayer experiments alone, but also shows how

analysis and simulation of microscopic models can motivate improve constitutive laws in

continuum models that properly incorporate microscopic effects. Reproduced with

permission from (91).
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Figure 8.
Hybrid microscopic-macroscopic modeling. (a) Kim, Stolarska and Othmer (92-93) coupled

a discrete model of proliferating cells (red circles) with a viscoelastic continuum model of

the necrotic core (cyan solid), by coupling the triangular computational mesh through the

quiescent region (blue lines). The model could successfully transfer forces and masses

between the two representations. Reproduced by permission from (92). (b-d) Wise,

Lowengrub, Cristini, Frieboes and colleagues (10, 62-63, 65) used a discrete model of

motile glioma cells (blue dots in (b) and (c)) to model the EMT in glioma, and a continuum

mixture model (gray regions in (b) and (d)) to model regions of tumor cell aggregation. The

model was successful in dynamically choosing between discrete and continuum

representation according to localized biophysical criteria (in this case, a threshold density,

coupled with hypoxic considerations), while maintaining mathematical consistency between

the models and conserving mass and momentum during any switch. Palisading cells were

observed to move up oxygen gradients (blue dots; see (c)), and once cells aggregated in

normoxic regions in sufficient numbers, they were converted back to the continuum

representation, thus creating a satellite tumor (outer gray regions in (d)). Adapted with

permission from (63, 65).
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