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Abstract— Psychophysical studies [9], [17] show that we

can recognize objects using fragments of outline contour

alone. This paper proposes a new automatic visual recogni-

tion system based only on local contour features, capable of

localizing objects in space and scale. The system first builds

a class-specific codebook of local fragments of contour

using a novel formulation of chamfer matching. These

local fragments allow recognition that is robust to within-

class variation, pose changes, and articulation. Boosting

combines these fragments into a cascaded sliding-window

classifier, and mean shift is used to select strong responses

as a final set of detections. We show how learning can

be performed iteratively on both training and test sets

to boot-strap an improved classifier. We compare with

other methods based on contour and local descriptors in

our detailed evaluation over 17 challenging categories, and

obtain highly competitive results. The results confirm that

contour is indeed a powerful cue for multi-scale and multi-

class visual object recognition.

Index Terms— Edge and feature detection, feature rep-

resentation, size and shape, object recognition, computer

vision, machine learning.

I. INTRODUCTION

Consider the images in Figure 1, and try to

identify the objects present. The object identities are

hopefully readily apparent. This simple demonstra-

tion confirms the intuition that fragments of contour

can be used to successfully recognize objects in

images, and detailed psychophysical studies such as

[9], [17] bear this out. With this inspiration, we set

out to build an automatic object recognition system

that uses only the cue of contour. The most signifi-

cant contribution of this work is the demonstration

that such a system can accurately recognize objects

from challenging and varied object categories at

multiple scales.

Our system aims to learn, from a small set of

training images, a class-specific model for classi-

fication and detection in unseen test images. The

task of classification is to determine the presence or

absence of objects of a particular class (category)

within an image, answering the question “does this

Fig. 1. Object recognition using contour fragments. Our innate

biological vision system is able to interpret spatially arranged local

fragments of contour to recognize the objects present. In this work we

show that an automatic computer vision system can also successfully

exploit the cue of contour for object recognition.

image contain at least one X?”, while detection aims

to localize any such objects in space and scale, an-

swering “how many Xs are in this image, and where

are they?”. Systems that can answer these questions

are rapidly becoming central to applications such as

image search, robotics, vehicle safety systems, and

image editing, to name but a few.

We define contour as the outline (silhouette)

together with the internal edges of the object. Con-

tour has several advantages over other cues: it is

largely invariant to lighting conditions (even silhou-

etting) and variations in object color and texture,

it can efficiently represent image structures with

large spatial extents, and it varies smoothly with

object pose change (up to genus changes). It can

be matched accurately along the object boundary,

where image patches and local descriptor vectors

tend to match unreliably due to interaction with

the varying background. Note that for the didactic

purposes of this work we are deliberately ignoring

other useful visual cues, such as color and texture.

The evident power of contour as a recognition cue

is somewhat mitigated by practical realities. Contour

must be matched against some form of edge map,

but reliable edge detection and figure-ground seg-

mentation are still areas of active research [11], [18],

[38], [44]. Indeed the problems of edge detection,

object detection, and segmentation are intimately

bound together: an accurate segmentation mask is

useful for recognition, while an object localization
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gives an excellent initialization for bottom-up seg-

mentation.

The most significant challenges, therefore, are

noisy edge maps and background clutter. Whole ob-

ject contours are fairly robust to this clutter, but have

poor generalization qualities, and for deformable

objects therefore require many exemplars that are

often arranged hierarchically [28]. Improved mod-

els, where whole object templates are divided into

parts, have recently become prominent in Computer

Vision, e.g. [22], [23], [53]. Parts are individually

less discriminative, but in ensemble prove robust

to clutter and occlusion, and are able to generalize

across both rigid and articulated object classes. In

this paper, we present a system that learns parts

based on contour fragments that in combination

robustly match both the object outline and repeat-

able internal edges. Some existing systems, e.g.

[23], are computationally limited to a small number

of parts, but our technique efficiently copes with

larger numbers, of the order of 100. The resulting

over-complete model has built-in redundancy with

tolerance to within-class variation, different imaging

conditions such as lighting, occlusion, clutter, and

small pose changes.

The spatial layout of parts is clearly informa-

tive, although the degree to which it is modeled

varies enormously. The remarkably successful bag-

of-words model [15], [47], [48] throws away all

spatial information and exploits only the repeatable

co-occurrence of features to recognize objects or

scenes. Alternatively, for a small number of parts, a

full joint spatial layout distribution can be learned

[23]. Our approach will take a middle ground be-

tween these two extremes.

Our preliminary work [46] proved that automatic

object recognition was indeed achievable using only

contour information. This paper strengthens and

extends that thesis with the following contribu-

tions: (i) a codebook of scale-normalized contour

exemplars, learned automatically from the training

images without requiring figure-ground segmenta-

tions, (ii) efficient recognition at multiple scales,

(iii) a new multi-scale oriented chamfer distance

for matching contour fragments, and (iv) a boot-

strapping technique that augments the sparse set

of training examples used to learn the classifier.

The evaluation of classification and detection per-

formance is extended to 17 categories. We intro-

duce a new challenging multi-scale horse dataset,

and compare performance with methods based on

contours [25], [43] and local descriptors [55].
After the related work immediately below, we

begin by defining our object model in Section II,

and then our contour fragments in Section III. Sec-

tion IV presents the object detector, and Section V

describes the method for learning the parameters

thereof. We present our evaluation in Section VI,

and conclude the paper with Section VII.

A. Related Work

We focus this review on techniques that also use

contour for recognition. Marr’s Primal Sketch [37]

already considered contour a powerful cue. Contour

was first used for particular objects, matched as

complete, rigid templates [30], but later for ar-

ticulated objects e.g. people in [20], [29], [51],

and hands in [49]. Leibe et al. [35] used cham-

fer matched pedestrian outlines in a verification

stage. These techniques match whole contours and

therefore depend on a large set of templates to

represent all joint object configurations. The Gen-

eralized Hough Transform [5] is an alternative

matching scheme to chamfer or Hausdorff matching.

Carmichael and Hebert recognized wiry objects

based on edges in [13].
Alternative approaches use fragments of contour.

Nelson and Selinger’s influential work [40] grouped

contour fragments in a multi-level system for rec-

ognizing simple 3D objects. Fergus et al. [24]

augmented the constellation model with contour

fragment features, but only exploited fairly clean,

planar curves with at least two points of inflection.

In [31], contour fragments were arranged in Layered

Pictorial Structures and used for detection of artic-

ulated objects; good results were obtained although

tracked video sequences or manually labeled parts

were required for learning. Borenstein & Ullman

[10] used image and contour fragments for segmen-

tation, though did not address recognition.
Other methods use local descriptors of contour.

Rigid objects were addressed effectively in [39].

Shape contexts [7] describe sampled edge points in

a log-polar histogram. The geometric blur descrip-

tor was used in [8] to match deformable objects

between pairs of images. More recently, Ferrari et

al. [25] combined groups of adjacent segments of

contour [26] into invariant descriptors, and sliding

windows of localized histograms enabled object

detection.
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Most similar to our work is that of Opelt et al.

[42], [43]. Their ‘boundary fragment model’ (BFM)

shares much with our earlier work [46]: it uses many

fragments of contour arranged in a star constellation

learned by boosting and matched with a chamfer

distance. Our new work incorporates its advantages

of scale invariance, robust detection using mean

shift, and reduced supervision (bounding boxes

rather than segmentations), but there are important

differences. We employ a new chamfer distance that

treats orientation in a continuous manner, and show

in Section VI-C.1 how this leads to improved recog-

nition accuracy. Contour fragments are matched in

local windows relative to the object centroid, rather

than across the whole image. The BFM combines

several fragments in each weak learner, while our

fragments proved sufficiently discriminative indi-

vidually, reducing training expense. Training from

a sparse set of image locations (Figure 7) results

in further efficiency. We model scale as an extra

dimension in the mean shift mode detection, rather

than combining object detections from individual

scales post-hoc. Subsequent work [43] showed how

to share contour fragments between classes, similar

to [50]. We compare against these techniques in

Section VI-C.9.

II. OBJECT MODEL

As motivated in the introduction, we use a parts-

based object model, shown in Figure 2. We employ

a star constellation in which the parts are arranged

spatially about a single fiducial point, the object

centroid. Each training image contains a number of

objects, each of which is labeled with a bounding

box b = (btl,bbr) that implicitly defines this cen-

troid x = 1
2
(btl + bbr) and also the object scale

s =
√

area(b). The object model is defined at

scale s = 1, and parts derived from objects in

images are scale-normalized to this canonical scale.

Each scale-normalized part F = (T̄ , x̄f , σ) is a

contour fragment T̄ with expected offset x̄f from

the centroid, and spatial uncertainty σ.

III. CONTOUR FRAGMENTS

This section defines our novel formulation of

chamfer matching, before showing how a class-

specific codebook of contour fragments is learned.

Fig. 2. Object model. Contour fragments T̄ (black outlines) are

arranged about the object centroid (green cross) within the bounding

box b (green). Blue arrows show the expected offsets x̄f from the

centroid, and red circles the spatial uncertainty σ. For clarity, only

four parts are drawn; in practice, about 100 parts are used.

A. Chamfer Matching

The chamfer distance function, originally pro-

posed in [6], measures the similarity of two con-

tours. It is a smooth measure with considerable tol-

erance to noise and misalignment in position, scale

and rotation, and hence very suitable for matching

our locally rigid contour fragments to noisy edge

maps. It has already proven capable of and efficient

at recognizing whole object outlines (e.g. [28], [35],

[49]), and here we extend it for use in a multi-scale

parts-based categorical recognition model.

In its most basic form, chamfer distance takes two

sets of edgels (edge points), a template T and an

edge map E, and evaluates the asymmetric distance

for 2D relative translation x as:

d
(T,E)
cham (x) =

1

|T |

∑

xt∈T

min
xe∈E

‖(xt + x) − xe‖2 , (1)

where |T | denotes the number of edgels in template

T , and ‖ · ‖2 the l2 norm. The chamfer distance

thus gives the mean distance of edgels in T to their

closest edgels in E. For clarity, we will omit the

superscript (T, E) below where possible.

The distance is efficiently computed via the dis-

tance transform (DT) which gives the distances of

the closest points in E:

DTE(x) = min
xe∈E

‖x − xe‖2 , (2)

and hence the min operation in (1) becomes a

simple look-up:

dcham(x) =
1

|T |

∑

xt∈T

DTE(xt + x) . (3)
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We also compute the argument distance transform

(ADT) which gives the locations of the closest points

in E:

ADTE(x) = arg min
xe∈E

‖x − xe‖2 . (4)

The exact Euclidean DT and ADT can be computed

simultaneously in linear time [21].

It is standard practice to truncate the distance

transform to a value τ :

DT
τ
E(x) = min(DTE(x), τ) . (5)

so that missing edgels due to noisy edge detection

do not have too severe an effect. Additionally it

allows normalization to a standard range [0, 1]:

dcham,τ (x) =
1

τ |T |

∑

xt∈T

DT
τ
E(xt + x) . (6)

1) Edge orientation: Additional robustness is

obtained by exploiting edge orientation informa-

tion. This cue alleviates problems caused by clutter

edgels which are unlikely to align in both orienta-

tion and position. One popular extension to basic

chamfer matching is to divide the edge map and

template into discrete orientation channels and sum

the individual chamfer scores [49]. However, it is

not clear how many channels to use, nor how to

avoid artifacts at the channel boundaries.

Building on [41], we instead augment the robust

chamfer distance (6) with a continuous and explicit

cost for orientation mismatch, given by the mean

difference in orientation between edgels in template

T and the nearest edgels in edge map E:

dorient(x) =
2

π|T |

∑

xt∈T

|φ(xt) − φ(ADTE(xt + x))| .

(7)

The function φ(x) gives the orientation of edgel x

modulo π, and |φ(x1) − φ(x2)| gives the smallest

circular difference between φ(x1) and φ(x2). Edgels

are taken modulo π because, for edgels on the

outline of an object, the sign of the edgel gradient

is not a reliable signal as it depends on the intensity

of the background. The normalization by π
2

ensures

that dorient(x) ∈ [0, 1].
Our improved matching scheme, called oriented

chamfer matching (OCM), uses a simple linear inter-

polation between the distance and orientation terms

dλ(x) = (1 − λ) · dcham,τ (x) + λ · dorient(x) , (8)

Fig. 3. Oriented chamfer matching. For edgel x1 in template T ,

the contribution to the OCM distance is determined by the distance d

from x1 to the nearest edgel x2 in edge map E, and the difference

between the edgel gradients at these points, |φ(x1) − φ(x2)|.

with orientation specificity parameter λ. As we shall

see below, λ is learned for each contour fragment

separately, giving improved discrimination power

compared with a shared, constant λ. The terms in

(8) are illustrated in Figure 3. Note that OCM is con-

siderably more storage efficient than using discrete

orientation channels. In Section VI-C.1, we show

that the continuous use of orientation information

in OCM gives considerably improved performance

compared with 8-channel chamfer matching and

Hausdorff matching [30] (essentially (1) with the

summation replaced by a maximization).

2) Matching at multiple scales: We extend OCM

to multiple scales by simply rescaling the templates

T . Treating T as now a set of scale-normalized

edgels, to perform OCM at scale s between T and

the original unscaled edge map E, we use the scaled

edgel set sT = {sxt s.t. xt ∈ T} and calculate:

d
(T,E)
λ (x, s) = d

(sT,E)
λ (x) , (9)

rounding scaled edgel positions to the nearest inte-

ger.

3) Approximate chamfer matching: For effi-

ciency, one does not need to perform the complete

sums over template edgels in (6) and (7). Each

sum represents an empirical average, and so one

can sum over only a fraction of the edgels, adjust-

ing the normalization accordingly. This provides a

good approximation to the true chamfer distance

function in considerably reduced time. In practice,

even matching only 20% of edgels gave no decrease

in detection performance, as demonstrated in Sec-

tion VI-C.3.
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B. Building a Codebook of Contour Fragments

We need now a ‘codebook’, a set of represen-

tative contour fragments, and there is a choice in

their class-specificity. One could use completely

generic fragments such as lines, corners, and T-

junctions and hope that in combination they can

be made discriminative [25]. Instead, we create a

class-specific codebook so that, for instance, the

class horse results in, among others, ‘head’, ‘back’,

and ‘forelegs’ fragments, as illustrated in Figure 6.

Even individually, these fragments can be indicative

of object presence in an image, and in combination

will prove very powerful for object detection.

The outline of our codebook learning algorithm

is as follows. We start with a large initial set of

fragments, randomly chosen from edge maps. These

are then clustered based on appearance. Finally,

each cluster is subdivided to find fragments that

agree in centroid position. The resulting sub-clusters

form the codebook.

The initial set of fragments is generated thus. A

rectangle r = (rtl, rbr) enclosed within bounding

box b of a random object is chosen, uniformly at

random. We define vector xf = 1
s
(rcen − x) as the

scale-normalized vector from the object centroid x

to the rectangle center rcen = 1
2
(rtl +rbr). Let Er =

{xr} denote the set of absolute image positions of

edgels within rectangle r. The template T used in

OCM is then:

T =

{

1

s
(xr − rcen) s.t. xr ∈ Er

}

. (10)

To remove overly generic fragments such as small

straight lines, fragments with edgel density
|Er|

area(r)

below a threshold η1 are immediately discarded.

Fragments with edgel density above a threshold η2

are also discarded, since these are likely to contain

many background clutter edgels and even if not, will

be expensive to match. Edgel sets Er are computed

as Er = {x ∈ C s.t. x ∈ r and ‖∇I‖
x

> t}.

This equation uses the image gradient ‖∇I‖ at the

set of edge points C, given by the Canny non-

maximal suppression algorithm. Rather than fix an

arbitrary threshold t, we choose a random t for each

fragment (uniformly, within the central 50% of the

range [min
x
‖∇I‖

x
, max

x
‖∇I‖

x
]), so that at least

some initial fragments are relatively clutter-free. As

we shall see shortly, the clustering step then picks

out these cleaner fragments to use as exemplars.

Fig. 4. Initial set of contour fragments. Examples of contour

fragments extracted at random from the edge maps of horse images.

The +s represent the fragment origins, i.e. vectors (0, 0)T in (10).

Many fragments are noisy, and so we apply a clustering step to find

the cleaner fragments.

Finally, to ensure the initial set of contour frag-

ments covers the possible appearances of an object,

a small random transformation is applied to each

fragment.1 Several differently perturbed but other-

wise similar fragments are likely to result, given

the large number of fragments extracted.

1) Fragment clustering: Figure 4 shows example

fragments extracted at random. While many frag-

ments are quite noisy, some fragments are unclut-

tered, due to particular clean training images and

the use of random edge thresholds. A clustering

step is therefore employed with the intuition that

these uncluttered fragments should lie at the cluster

centers.

To this end, all pairs Ti and Tj of fragments in

the initial set are compared in a symmetric fashion

as follows:

di,j = d
(sjTi,sjTj)
λ (0) + d

(siTj ,siTi)
λ (0) , (11)

scaling the fragments (first both to sj , then both to

si) and comparing at zero relative offset. Clustering

is performed on distances di,j using the k-medoids

algorithm, the analogue of k-means for non-metric

spaces. For the experiments in this paper, a constant

λ = 0.4 was used for clustering, chosen to maxi-

mize the difference between histograms of distances

1The following transformations are chosen uniformly at random:

a scaling log s ∈ [− log sr, log sr] and rotation θ ∈ [−θr, θr] about

the fragment center is applied to the edgels, and the vector xf is

translated (by x ∈ [−xr, xr] and y ∈ [−xr, xr]) and rotated (by

φ ∈ [−φr, φr]) about the object centroid. As we showed in [46],

these transformations are crucial to ensure good performance, due to

the limited training data and the use of rigid templates.
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Fig. 5. Clustering on appearance only. Four example clusters

that have low mutual chamfer distances (11), with (left) the cluster

exemplar and (right) the votes (small Xs) of all members for vector

xf from the object centroid (+). Observe (top left) a ‘legs’ cluster

has resulted in two modes (front and hind) in the voting space. On

the bottom row, we see that (left) a very class specific ‘head’ cluster

has highly consistent votes, whereas (right) a background cluster has

uniformly scattered votes. To produce a unique centroid vote and

remove background fragments, a sub-clustering step is performed.

di,j for within-cluster and between-cluster fragment

pairs.

Example fragment clusters are shown in Figure 5.

Clusters contain relatively uncluttered contour frag-

ments of similar appearance. However, this purely

appearance-based clustering does not take the vec-

tors xf from the object centroid into account. We

desire each fragment to give a unique estimate of the

object centroid, and so split each cluster into sub-

clusters which agree on xf . Each fragment casts a

vote for the object centroid, and modes in the voting

space are found using mean shift mode estimation

[14]. Each mode defines a sub-cluster, containing all

fragments within a certain radius. To ensure high

quality sub-clusters, only those with a sufficient

number of fragments are kept (for our experiments,

five fragments were required). Mode detection is

iterated for unassigned fragments until no new sub-

clusters are generated.

Contour fragments within each sub-cluster now

agree both in appearance (11) and location xf rel-

ative to the object centroid, shown in Figure 6.

From noisy edge maps, our algorithm has selected

uncluttered and class specific fragments, since ran-

dom background fragments are highly unlikely to

agree in position as well as appearance. Within

each sub-cluster, the central fragment T̄ with lowest

average distance to the other fragments is used as

an exemplar, together with the mean x̄f and radial

variance σ of the centroid votes xf (cf. Figure 2).

We show below how boosting selects particular sub-

Fig. 6. Clustering on appearance and centroid location. Example

sub-clusters that have low mutual chamfer distances (11) and agree

on centroid location. From top to bottom: ‘front legs’, ‘back’, ‘neck’,

and ‘head’. (a) Example members of the sub-cluster. (b) Exemplar

contour fragments (centers of the sub-clusters). (c) Votes (Xs) from

the centroid (+), with their mean x̄f (+) and radial uncertainty σ (red

circle). Note that we obtain uncluttered, class-specific exemplars, with

an accurate estimate of location and uncertainty relative to the object

centroid.

clusters to use as the parts F = (T̄ , x̄f , σ) in the

model.

The clustering step is somewhat similar to that

used in [33], except that we cluster contour frag-

ments rather than image patches, and each resulting

sub-cluster has only one particular location rela-

tive to the centroid. Also observe that we have

taken a rather unconstrained approach to choosing

contour fragments. Research from psychology [17]

analyzed theories of how to split outline contours

into fragments for optimal recognition by humans,

for example at points of extremal curvature. It would

be interesting future work to investigate such ideas

applied in a computer-based system.

IV. OBJECT DETECTION

In this section, we describe how contour exem-

plars are combined in a boosted sliding window

classifier. Parts are matched to an edge map us-

ing OCM with priors on their spatial layout. The

classifier is evaluated across the scale-space of the

image, and mean shift produces a final set of

confidence-valued object detections. The only image

information used by the detector is the edge map E,

computed using the Canny edge detector [12].
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For an object centroid hypothesis with location

x and scale s, part F is expected to match the

edge map E at position x̂ = x + sx̄f , with spatial

uncertainty sσ. The chamfer distance is weighted

with a cost that increases away from the expected

position, and minimizing this weighted distance

gives a degree of spatial flexibility, allowing parts

to ‘snap’ into place. The location of the minimum

is given by

x
⋆ = arg min

x
′

(

d
(T̄ ,E)
λ (x′, s) + wsσ(‖x′ − x̂‖2)

)

,

(12)

where wσ(x) is the radially symmetric spatial

weighting function2 for which we use the quadratic

wσ(x) =

{

x2

σ2 if |x| ≤ σ

∞ otherwise.
(13)

The part response v at centroid hypothesis (x, s) is

defined as the chamfer distance at the best match

x
⋆

v[F,λ](x, s) = d
(T̄ ,E)
λ (x⋆, s) , (14)

and this is used in the classifier, described next.

A. Detecting Objects

Sliding window classification [4], [25], [52] is

a simple, effective technique for object detection.

A probability P (obj(x,s)) of object presence at lo-

cation (x, s) is calculated across scale-space using

a boosted classifier which combines multiple part

responses v (14). These probabilities are far from in-

dependent: for example, the presence of two distinct

neighboring detections is highly unlikely. Hence a

mode detection step selects local maxima as the

final set of detections.

One must choose a set X of centroid scale-space

location hypotheses, sampled frequently enough to

allow detection of all objects present. We use a

fixed number of test scales, equally spaced log-

arithmically to cover the range of scales in the

training data. Space is sampled over a regular grid

with spacing s∆grid for constant ∆grid (optimized

by holdout validation). Increasing the spacing with

scale is possible since the search window in (12) is

proportionally enlarged.

2The hard cut-off at σ limits the search range and thus improves

efficiency. In practice, increasing the cut-off radius did not appear to

improve performance.

1) Classifier: We employ a boosted classifier to

compute probabilities P (obj(x,s)). This combines

part responses v (14) for parts F1, . . . , FM as

H(x, s) =
M

∑

m=1

am[v[Fm,λm](x, s) > θm]+bm , (15)

where [·] is the zero-one indicator, and (λ, a, b, θ)
are learned parameters (see ahead to Section V).

Each term in the sum corresponds to a part in the

model, and is a decision stump which assigns a

weak confidence value according to the comparison

of part response v[Fm,λm] to threshold θm. The weak

decision stump confidences are summed to produce

a strong confidence H , which is then interpreted as

a probability using the logistic transformation [27]:

P (obj(x,s)) = [1 + exp(−H(x, s))]−1
. (16)

2) Mode detection: We employ the powerful

technique of mean shift mode estimation [14] on

the hypothesized locations (x, s) ∈ X , weighted

by their scaled posterior probabilities s2P (obj(x,s)),
similarly to [34]. Multiplying by s2 compensates for

the proportionally less dense hypotheses at larger

scales. The algorithm models the non-parametric

distribution over the hypothesis space with the ker-

nel density estimator

P (x, s) ∝
∑

(xi,si)∈X

s2
i P (obj(xi,si)

)

K

(

xx − xx
i

hx

,
xy − x

y
i

hy

,
log s − log si

hs

)

, (17)

where Gaussian kernel K uses bandwidths hx, hy

and hs for the x, y, and scale dimensions respec-

tively (the scale dimension is linearized by taking

logarithms). Mean shift efficiently locates modes

(local maxima) of the distribution which are used

as the final set of detections. The density estimate

at each mode is used as a confidence value for the

detection.

V. LEARNING

We describe in this section how the classifier H

(15) is learned using the Gentle AdaBoost algorithm

[27]. This takes as input a set of training examples i,

each consisting of feature vector fi paired with target

value zi = ±1, and iteratively builds the classifier.

For our purposes, training example i represents

location (xi, si) in one of the training images. The
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target value zi specifies the presence (zi = +1) or

absence (zi = −1) of the object class. The feature

vector fi contains the responses v[F,λ](xi, si) (14)

for all codebook entries F , and all OCM orientation

specificities λ from a fixed set Λ. A given dimension

d in the feature vector therefore encodes a pair

(F, λ). The decision stump parameters a, b, and θ

are learned as described in [50].

We are free to choose the number, locations, and

target values of the training examples. One could

densely sample each training image, computing

feature vectors for examples at every point on a

grid in scale-space. This is however unnecessarily

inefficient because the minimization in (12) means

that neighboring locations often have near identical

feature vectors.

Instead, we use the sparse pattern of examples

shown in Figure 7. For a training object at location

(x, s), positive examples are taken at the 3x3x3

scaled grid locations x
′ = x + (zxs

′δ1, zys
′δ1)

T for

scales s′ = sγzs

1 , where (zx, zy, zs) ∈ {−1, 0, +1}3.

The grid is spaced by δ1 (scale-normalized) and

scaled by γ1. The positive examples ensure a strong

classification response near the true centroid, wide

enough that the sliding window classifier need not

be evaluated at every pixel. To ensure the response

is localized, negative examples are taken at positions

x
′ = x+(zxs

′δ2, zys
′δ2)

T for scales s′ = sγzs

2 , with a

larger spacing δ2 > δ1 and scaling γ2 > γ1, and the

same (zx, zy, zs) but now excluding (0, 0, 0). This

particular pattern results in a total of 53 examples

for each object, which is vastly less than the total

number of scale-space locations in the image. For

training images not containing an object, we create

all negative examples in the same pattern, at a

number of random scale-space locations.

Feature vectors are pre-computed for all exam-

ples, usually taking less than an hour on a modern

machine. Boosting itself is then very quick, taking

typically less than a minute to converge, since the

weak learners are individually quite powerful. A

cascade [52] is also learned, which resulted in a five-

fold reduction in the average number of response

calculations at test time.

A. Retraining on Training Data

It is unclear how to place the sparse negative

training examples optimally throughout the train-

ing images, and hence they are initially placed

Fig. 7. Training examples. (a) A pattern of positive (⊕) and

negative (⊖) examples are arranged about the true object centroid

(the central, larger ⊕). The positive and negative examples are spaced

on grids of size δ1 and δ2 respectively, scaled by the ground-truth

object scale s. The boosting algorithm trains from feature vectors of

part responses (14) computed at these examples. (b) For images with

no objects present, all negative copies of the same pattern are placed

at a number of random scale-space locations. For clarity, only one

scale zs = 0 is shown (see text).

at random. However, once a detector is learned

from these examples, a retraining step is used to

boot-strap the set of training examples [54]. We

evaluate the detector on the training images, and

record any false positives or negatives (see ahead

to Section VI-A). The classifier is then retrained

on the original example set, augmented with new

negative examples at the locations of false positives

[16], and duplicate positive examples to correct the

false negatives. We demonstrate in Section VI-C.2

that this procedure allows more parts to be learned

without over-fitting.

B. Retraining on Test Data

The same idea can be put to work on the test data,

if one assigns a degree of trust to the output of the

classifier. One can take a fixed proportion ξ (e.g.

ξ = 10%) of detections with strongest confidence

and assume these are correct, positive detections,

and the same proportion of detections with weakest

confidence and assume there are no objects present

at those locations. The boosted classifier is retrained

with the new positive and negative training exam-

ples further augmenting the training set.

VI. EVALUATION

We present a thorough evaluation of the clas-

sification and detection performance of our tech-

nique on several challenging datasets, investigating

different aspects of our system individually, and

comparing against other state-of-the-art methods.

The standard experimental procedure is detailed in

Section VI-A, the description of the datasets in

Section VI-B, and the results in Section VI-C.



IEEE TRANSACTIONS OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

A. Procedure

The image datasets are split into training and test

sets. Each model is learned from the training set

with only ground-truth bounding boxes provided.

At test time, the bounding boxes are used only for

evaluating accuracy.

Mode detection results in a set of centroid hy-

potheses and confidences of object presence at these

points. We assign a scaled bounding box centered

on each detection, with aspect-ratio proportional

to that of the average training bounding box. For

a detection to be marked as correct, its inferred

bounding box binf must agree with the ground truth

bounding box bgt based on an overlap criterion as
area(binf∩bgt)

area(binf∪bgt)
> 0.5 (from [2]). Each bgt can match

to only one binf , and so spurious detections of the

same object count as false positives. For image

classification, we use the confidence of the single

most confident detection within each image.

The receiver operating characteristic (ROC) curve

is used to measure classification accuracy. This plots

the trade-off between false positives and false nega-

tives as a global confidence threshold is varied. The

equal error rate (EER) gives an easily interpretable

accuracy measure, while the area under the curve

(AUC) takes the whole curve into account and so

gives a better measure for comparison purposes.

For detection we use two closely related mea-

sures. The first, the recall-precision (RP) curve,

plots the trade-off between recall and precision as

one varies the global threshold. For comparison

with previous work we quote the EER measure

on the RP curve, but for new results we report

the more representative AUC measure. The second

measure plots recall against the average number of

false positives per image (RFPPI) as the detection

threshold is varied [25]. The RFPPI curve seems

more natural than RP for human interpretation since

it is monotonic and stabilizes as more negative im-

ages are tested (the RP curve can only deteriorate).

However it gives no overall quantitative score, and

so the legends in Figures 8 and 11 contain RP AUC

figures even though the graphs show RFPPI.

B. Datasets

1) Weizmann Horses [10]: This is a challenging

set of side-on horse images, containing different

breeds, colors, and textures, with varied articula-

tions, lighting conditions, and scales. While nom-

inally viewed side-on, considerable out-of-plane ro-

tation is evident. We paired this with the difficult

Caltech 101 background set [3], [19]. While these

images have different textural characteristics, they

contain many clutter edges that pose a hard chal-

lenge to our contour-only detector. Images were

down-sampled to a maximum dimension of 320

pixels where necessary. The resulting objects have a

scale range of roughly 2.5x from smallest to largest.

The first 50 horse and background images were

used for training, the next 50 for holdout validation,

and the final 228 as the test set. We also compare

against our earlier work [46] using a single-scale

horse database. The datasets are available at [1].

2) Graz 17: We compare against [43] on their 17

class database (listed in Table II). As closely as pos-

sible, we use the same training and test sets. Images

are down-sampled to a maximum dimension of 320

pixels. For some classes, the resulting scale range is

more than 5x. We test each class individually, paired

with an equal number of background test images.

C. Results

1) Matching measures: First, we compare the

performance of the object detector using several dif-

ferent matching measures: our proposed OCM with

learned λ and with constant λ ∈ {0, 0.5, 1}, stan-

dard 8-channel chamfer matching, and Hausdorff

matching. The experiment was performed against

100 images in the Weizmann test set using 100

parts without retraining (other parameter settings are

specified below).

Figure 8 superimposes the RFPPI curves for

each matching measure, and the legend reports the

corresponding RP AUC statistics. Observe that with

no orientation information (λ = 0, identical to 1-

channel, non-oriented chamfer matching), perfor-

mance is very poor. The Hausdorff distance also

fails to work well, since it too does not use orienta-

tion information. The 8-channel chamfer matching

performs fairly well, but by modeling orientation

continuously, our OCM (for λ > 0) performs as

well or better, even if λ is kept constant. The

RFPPI curve for λ = 1 appears almost as good

as the learned λ curve, although the AUC numbers

confirm that learning λ per part is noticeably better.

However, the extra expense of learning per-part λ

values may mitigate its quantitative advantages in

some applications.
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Fig. 8. Detection performance of different contour matching

measures. Recall is plotted as a function of the number of false

positives per image averaged over the Weizmann test subset. The

best performance is obtained by our OCM technique with learned λ

parameter, although fixed λ = 1 also performs well.

2) Retraining: As described in Sections V-A

and V-B, one can boot-strap the detector by retrain-

ing. For this experiment on the Weizmann validation

set, we recorded the RP AUC against the number

of parts: (i) without retraining, (ii) retraining only

on the training data (‘retrained training’ in Figures 9

and 11), and (iii) retraining both on the training and

test data (‘retrained test’). The confidence parameter

was set to ξ = 10%.

We can draw several conclusions from the results

in Figure 9. Adding more parts helps performance

on the test data up to a point, but eventually the

detector starts to over-fit to the training data and

generalization decreases. By providing more train-

ing examples by retraining on the training data, we

can use more parts without over-fitting. Retraining

on the test data maintains the additional accuracy,

and gives a further improvement on the full test set,

as described below. With only 40 parts, retraining

on the test data decreases performance, since the

strongest and weakest detections are not sufficiently

reliable. Note that retraining does entail significant

extra effort for a relatively modest performance

gain.

3) Approximate chamfer matching: All results in

our evaluation make use of the approximation of

Section III-A.3, whereby only a subset of fragment

edgels are used for chamfer matching. We used only
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Fig. 9. Effect of retraining. Detection performance is graphed as a

function of number of parts (rounds of boosting). The initial detector

starts to over-fit as the number of parts is increased above 100.

Retraining prevents this over-fitting allowing an overall performance

improvement at the expense of more parts.

every fifth edgel (scan-line order) in each fragment,

which gave a commensurate speed improvement.

We compared detection performance with and with-

out the approximation on the Weizmann validation

set, using 100 features. With the approximation,

0.9547 RP AUC was achieved, whereas without the

approximation (matching every edgel) only 0.9417

was obtained. We conclude that the approximation

can improve speed without degrading detection per-

formance. The slight improvement in performance

may even be significant, since the variance of the

training part responses is increased slightly, which

may prevent over-fitting.

4) Multi-scale Weizmann horses: We now evalu-

ate on the full Weizmann dataset, showing example

detections in Figure 10 and quantitative results in

Figure 11.

We draw several conclusions. Firstly, we have

shown that retraining on both the training and

test sets not only helps generalization, but actu-

ally considerably improves performance. Turning

to Figure 10, we observe that the detector works

very well on the challenging horse images, de-

spite wide within-class variation, considerable back-

ground clutter and even silhouetting. Missed detec-

tions (false negatives) tend to occur when there is

significant pose change or out-of-plane rotation be-

yond the range for which we would expect our side-

on detector to work. Training explicitly for these

poses or rotations, perhaps sharing features between

views [50], would allow detection of these objects.

False positives occur when the pattern of clutter

edgels is sufficiently similar to our model, as for
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Fig. 11. Performance on the Weizmann test set. (a) ROC curves showing classification performance, with the curve for the SVM

benchmark included (Section VI-C.7). (b) RFPPI curves showing detection performance. Note how both stages of retraining improve both

classification and detection performance.

Fig. 10. Example detections for the Weizmann test set. Bounding

boxes around objects indicate detections: green represents correct

detections, red false positives, and yellow the ground-truth for false

negatives. The final column visualizes the contour fragments for

the neighboring detections. Note accurate scale-space localization

in the presence of variable object appearance, background clutter,

silhouetting, articulation, and pose changes.

example the case (third column, last row) of the man

standing at the front of the horse, where in terms of

image edges the man’s legs look sufficiently similar

to a horse’s front legs. An investigation in [45]

shows how cues based on texture and color can be

combined with contour fragments to remove such

false positives and improve overall performance.

Our C# implementation on a 2.2 GHz machine

takes approximately 2 hours to train and 10 seconds

per image to test. For these and all experiments,

unless stated otherwise, the following parameters

were used. The distance transform truncation was

τ = 30, and fragments were randomly chosen with

the following transformation parameters: scaling

sr = 1.2, rotation about the fragment center θr =
π
8
, (scale-normalized) translation xr = 0.05, and

rotation about the centroid φr = π
16

. To learn the

dictionary, 10000 raw fragments, with edgel density

bounded as (η1, η2) = (1%, 5%), were clustered

to produce 500 exemplars. To learn the classifier,

examples were taken with grid spacings (δ1, δ2) =
(0.03, 0.25) and scalings (γ1, γ2) = (1.1, 1.4). Three

patterns of negative examples were used for back-

ground images, and λ was allowed values in Λ =
{0, 0.2, . . . , 1}. Evaluation used a grid spacing of

∆grid = 0.07 scaled by each of 6 test scales over

M = 100 rounds. The top and bottom ξ = 10% of

detections were used for retraining on the test set.

5) Training from segmented data: To investi-

gate the ability of the codebook learning algorithm

to extract clean exemplars from unsegmented im-

ages, we repeated the detection experiment on the



IEEE TRANSACTIONS OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Weizmann dataset, with the codebook now learned

from segmented training data. We obtained 0.8637

RP AUC, slightly worse than the performance on

unsegmented images (0.8903). This slight drop in

performance is not particularly surprising given that

no interior edges are present, but it does confirm the

power of the codebook learning algorithm.

6) Learned edge detection: The Canny edge de-

tector [12] has thus far proved a capable basis for

our features. However, recent developments such as

the Berkeley edge detector [38] and boosted edge

learning (BEL) [18] take a more modern approach to

edge detection, whereby a model of edges is learned

from training data. We compared performance be-

tween the three edge detectors on the Weizmann test

set, without using retraining. Two BEL models [18]

were trained: one using natural image boundaries,

the second using segmented horse images. The

results are summarized in Table I.

TABLE I

PERFORMANCE USING DIFFERENT EDGE DETECTORS.

Classification Detection

ROC AUC RP AUC

Canny 0.9127 0.8498

Berkeley [38] 0.9275 0.8871

BEL [18] Natural 0.9029 0.8354

BEL [18] Horse 0.9518 0.8976

The Berkeley detector performs considerably bet-

ter than Canny, especially for detection. While the

BEL trained on natural images gave no improve-

ment, the BEL trained on segmented horse images

performs the best of all detectors. Note that current

implementations of both Berkeley and BEL are very

much slower than Canny, and so these advances

may not yet be useful in certain applications. This

experiment has shown that a modern, learned edge

detector complements our object detection system;

future work remains to extend this evaluation to the

other datasets in this paper.

7) SVM classification benchmark: To compare

contour fragments against interest point based fea-

tures, and to determine the challenge that the Weiz-

mann horse dataset poses, we evaluated a bench-

mark using an SVM built on a bag-of-words repre-

sentation [55]. In our experiment, SIFT [36] were

extracted and clustered into a number of ‘words’.

Histograms of word counts for each image were

computed, and a radial basis function SVM was

trained to discriminate between class and back-

ground images. SVM parameters were optimized

using cross validation, as were the numbers of

clusters.

The ROC curve for the SVM benchmark is shown

in Figure 11(a). We observe considerably worse per-

formance than our contour based classifiers achieve.

This suggests that the varied textures of the objects

in this dataset cannot be characterized well by local

descriptors. Our contour-based detector is however

able to exploit the characteristic outline of the

objects.

8) Single-scale Weizmann horses: Using the

single-scale Weizmann horse dataset, we compare

against [46], where 92.1% RP EER was achieved

(using some segmented data). Experiments in [25]

improved accuracy to 94.2% RP EER using contour-

based features, and to 95.7% by combining contour

features with local descriptors. Our method using no

segmented training data and only contour features

obtained 95.68% RP EER and 0.9496 RP AUC.

This is as good as [25], but without needing the

additional feature type.

9) Graz 17: We conclude our evaluation by

evaluating on the Graz 17 class dataset. In Table II

we compare our results to [43] (which subsumes

the results of [42]), and in Figure 12 show example

detections. Parameter values were unchanged from

the previous multi-scale Weizmann experiments,

although the number of parts and number of scales

were optimized against the training data.

There are several conclusions to draw. Firstly, for

most classes we perform comparably to [43], and

for the larger (admittedly slightly more straightfor-

ward) datasets we show a significant improvement,

with almost perfect performance on motorbikes.

Classification proves easier than detection in most

cases, since strong but poorly localized detections

contribute positively to classification but negatively

to detection. Performance is worse for a few classes,

such as cars (2
3

rear) and cars (front), and poor

for both techniques for bikes (front) and people.

There are few training images for these classes,

and objects exhibit considerably more out-of-plane

rotation. Also, the small number of test images

means that even one missed detection has a very

large effect on the RP EER (up to 100
N

% for N

test images). Much more significant therefore is our

sustained improvement for classes with more test
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TABLE II

CLASSIFICATION AND DETECTION PERFORMANCE ON THE GRAZ 17 DATASET, WITH COMPARISON TO [43].

Number of images Classification (ROC) Detection (RP)

Class Training Test AUC EER AUC EER [43] EER

Airplanes 100 400 0.9953 3.4% 0.9310 6.8% 7.4%

Cars (rear) 100 400 0.9992 1.5% 0.9912 1.8% 2.3%

Motorbikes 100 400 1.0000 0.4% 1.0000 0.3% 4.4%

Faces 100 217 0.9966 2.4% 0.9850 2.8% 3.6%

Bikes (side) 90 53 0.9366 13.2% 0.6959 32.1% 28.0%

Bikes (rear) 29 13 0.9172 15.4% 0.6398 26.7% 25.0%

Bikes (front) 19 12 0.9375 16.7% 0.6344 41.7% 41.7%

Cars ( 2

3
rear) 32 14 0.9000 20.9% 0.6925 30.0% 12.5%

Cars (front) 34 16 0.9727 12.5% 0.7233 29.4% 10.0%

Bottles 54 64 0.9802 7.8% 0.9468 9.4% 9.0%

Cows (side) 45 65 0.9992 1.7% 0.9975 1.5% 0.0%

Horses (side) 55 96 0.9816 6.3% 0.9680 6.3% 8.2%

Horses (front) 44 22 0.9566 13.6% 0.7852 27.3% 13.8%

Cows (front) 34 16 0.9727 6.3% 0.8575 18.8% 18.0%

People 39 18 0.9321 16.7% 0.4271 47.6% 47.4%

Mugs 30 20 0.9600 5.0% 0.9035 10.0% 6.7%

Cups 31 20 0.9825 5.0% 0.9158 15.0% 18.8%

images.

VII. CONCLUSIONS AND FUTURE WORK

Our thorough evaluation has demonstrated that

contour can be used to successfully recognize ob-

jects from a wide variety of object classes at multi-

ple scales. Our new approximate oriented chamfer

matching outperformed existing contour matching

methods, and enabled us to build a class-specific

codebook of uncluttered contour fragments from

noisy training data. We observed that retraining

on both the training and test data can improve

generalization and test performance. Finally, we

showed how modern, learned edge detection gave

an improvement over the traditional Canny edge

detector.

A. Future Work

We are interested in developing a more principled

method to combine the classification probabilities

from multiple sliding windows. We plan also to in-

vestigate further our codebook of contour fragments.

The clustering algorithm is slightly inefficient, and

perhaps agglomerative clustering would be faster.

The codebook might also be used in a bag-of-words

model. Our investigation of modern edge detection

algorithms is also preliminary and more work is

desirable here.
An eventual goal of object detection is both

localization and segmentation of the object from

the background. Preliminary segmentation results

using our inferred object bounding rectangles as

initialization to GrabCut [44] show promise. In-

dividually segmented fragments could serve as a

segmentation prior, similarly to [32]. An alternative

method proposed in [56] is to learn to segment

directly from the image. Eventually, edge detection,

segmentation, and recognition should be combined

at a fundamental level.
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