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ABSTRACT: Large area van der Waals (vdW) thin films are assembled materials consisting of a 

network of randomly stacked nanosheets. The multi-scale structure and the two-dimensional 

nature of the building block mean that interfaces naturally play a crucial role in the charge transport 

of such thin films. While single or few stacked nanosheets (i.e. vdW heterostructures) have been 

the subject of intensive works, little is known about how charges travel through multilayered, more 

disordered networks. Here we report a comprehensive study of a prototypical system given by 

networks of randomly stacked reduced graphene oxide 2D nanosheets, whose chemical and 

geometrical properties can be controlled independently, permitting to explore percolated networks 

ranging from a single nanosheet to some billions with room temperature resistivity spanning from 

10-5 to 10-1 W×m. We systematically observe a clear transition between two different regimes at a 

critical temperature T*: Efros-Shklovskii variable range hopping (ES-VRH) below T* and power 

law (PL) behavior above. Firstly, we demonstrate that the two regimes are strongly correlated with 

each other, both depending on the charge localization length x, calculated by ES-VRH model, 

which corresponds to the characteristic size of overlapping sp2 domains belonging to different 
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nanosheets. Thus, we propose a microscopic model describing the charge transport as a 

geometrical phase transition, given by the metal-insulator transition associated with the percolation 

of quasi-1D nanofillers with length x, showing that the charge transport behavior of the networks 

is valid for all geometries and defects of the nanosheets, ultimately suggesting a generalized 

description on vdW and disordered thin films. 

 

KEYWORDS: charge transport, van der Waals thin films, graphene-based materials, conductive 

polymers, composite materials, disorder, percolation.  

 

The development of cheap techniques to produce and to process large quantities of 

monoatomic thick materials such as graphene1 and related 2D-materials allowed to create 

synthetic structures, i.e. van der Waals (vdW) materials, with tuned properties.2-3 Using solution-

processing approaches,4-6 the produced nanosheets can be arranged forming macroscopic vdW 

thin films composed of billions of 2D sheets randomly stacked, in which the structural and 

electrical continuity of the 2D/3D architectures is provided by the contact regions between the 

sheets. The versatility and the processability of such assembles allow to control with great 

flexibility both the crystal quality of the sheets and their stacking geometry (e.g. thin films, 

membranes, foams, etc.), holding a significant potential for the emerging applications based on 

large-area flexible and wearable devices,7 coatings and advanced composites.8 

Despite of the great technological developments, a general framework describing the charge 

transport (CT) in vdW thin films is still lacking. Most of the studies carried out during the last 15 
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years provided an in-depth insight into CT in individual almost defect-free nanosheets or stacks 

obtained by superimposing only a finite number of them fin the so-called vdW heterostructures.9  

The CT in a network differs intrinsically from that of the single sheets because of the major 

role played by inter-sheet processes. A model taking into account the superimposition of 

individual sheets represents an over demanding computational task since it would require a 

detailed description of the mechanisms involved at interfaces on different length and time scales. 

Moreover, due to the need of finding the ideal trade-off between costs of production on large 

scale and competitive properties, the individual sheets forming the film necessarily possess 

intrinsically lower quality than the pristine (greater amount of defects and chemical 

functionalization, higher size polydispersity), thus further increasing the resources required for 

their simulation. 

The experimental approaches used so far suffered primarily from the poor processability of 

graphene. In particular, macroscopic films made by exfoliated graphene dispersions contain 

significant amounts of multilayers. The presence of residual contaminants or dopants is also a 

factor that limits the ability to develop comprehensive models. Instead, the use of pure 2-

dimensional, monoatomic nanosheets as (semi)conductors would enable to unravel the 

correlation between system dimensionality, nanostructuring of the interfaces and charge 

transport in complex networks.  

It is worth taking into account that networks of 2D materials obtained by overlapping sheets 

are characterized by 2D interfaces which can be as large as the area of the individual sheets. 

Hence, each of the atom composing the material will lie at the interface, in contact with the 

sheets above or beneath it (figure 1a), being in sharp contrast with conventional 3D assemblies or 
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composite materials. Networks of stacked 2D nanosheets can thus be defined as a multi-junction 

material where the CT mechanisms acting on the single sheet are strongly involved with those at 

the interface (sheet-to-sheet). 

As prototypical material we used single monolayer sheets of reduced graphene oxide (RGO), 

which consists of a (semi)conductive graphene lattice comprising oxygen-containing defects.10-11 

Differently from solution-processed exfoliated graphene, such sheets can be obtained in the 

monodisperse form of single layers with their lateral size tunable from >100 nm to » 100 µm by 

sonication treatments.12 These nanosheets can thus be dispersed in various liquids, processed 

varying their size, film thickness hence their conductivity,13 and easily arranged on a substrate 

forming networks with partially ordered structure, where all the single sheets are randomly 

distributed in the plane orientation and stacked perfectly parallel at a fixed distance (i.e. RGO 

interlayer distance) forming thus RGO thin films. In addition to the study of the CT mechanisms 

of vdW thin films, the capability to tune the chemico/physical properties of the building block 

and as well as to fabricate large-area networks in controlled way allowed to use RGO networks 

as test-bed systems to investigate the CT mechanisms in disordered and amorphous materials and 

as well as to verify the wide range of theories developed; see 14 and the references within for a 

comprehensive overview. 

Here we present a scale-independent model for the charge transport in highly disordered 

networks of defective 2D materials based on a robust data analysis of the electrical resistivity vs 

temperature ρ(T). This resistivity is a reliable physical observable to achieve in depth insight into 

single sheet to large-area aggregates. Moreover, we show that CT properties of such network can 

be described in a more general framework of the geometrical phase transition. By taking full 
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advantage of the controlled structural and morphological composition of the films we carried out 

a multiscale quantitative analysis to elucidate the different transport regimes taking place in such 

materials. In particular, we investigated the CT mechanisms occurring at the sheet-to-sheet 

interfaces, typically considered as bottlenecks, as well as the role of the geometrical complexity 

of the network on the overall electrical conductivity of the nanosheets assemblies. The use of 

RGO enabled us to tune independently i) the conductivity of each nanosheet, ii) the lateral size 

of the nanosheets, and iii) the thickness of the material, i.e. the number of nanosheets stacked 

over each other.15 

RESULTS AND DISCUSSIONS 

The starting material were water solutions of single-layer GO nanosheets. These solutions 

were spun onto SiO2 substrates at different concentrations, followed by a sample’s reduction via 

thermal annealing at increasing temperature (Tann = from 200 °C up to 940 °C) for 60 minutes at 

a vacuum of 10-6 mbar to transform them in conductive RGO. Finally, gold electrodes were 

deposited by thermal evaporation through a shadow mask. Upon changing systematically such 

experimental parameters, a set of 28 different devices was produced. At lower nanosheet density, 

micrometer sized highly-reduced RGO sheets (sp2 content = 96±2% as determined by X-ray 

Photoelectron Spectroscopy) were connected by rare and clearly visible contact points with a 

size to form networks on micrometer scale (figure 1b). Differently, at higher deposition density, 

continuous layers of stacked sheets (figure 1c), were produced with tunable oxidation degrees, 

sheet size tuned from <0.3 µm to >17 µm, and film thickness from 1 up to 35 layers. All the 

fabricated samples (a.k.a. devices) were studied by microscopic and spectroscopic techniques 

(see Methods) at each step of preparation. 



 7 

Preliminary Field-Effect Transistor (FET) measurements performed on single and sparse 

network of micrometer sized highly-reduced RGO sheets (figure S5) showed hole transport with 

linear region mobility (𝜇!"#,%&') of ca 1 – 10 cm2×V-1×s-1 (figure 1e). Despite of the analysis of the 

𝜇!"#,%&' vs temperature is the most common approach to study CT mechanism, such physical 

observable could not be the most useful to compare systems with different geometries and scale-

lengths. Moreover, thin films with channel length and width of ca. 1 cm are strongly affected by 

the edge effects. For this reason, we focussed our attention to the study of the electrical 

resistivity vs temperature 𝜌(𝑇) for each device from ca 10 K to 300 K, to detect the existence of 

different transport regimes. In all the 28 different devices we found that 𝜌 decreases with the 

increasing of temperature, clearly indicating that all the networks possess a semiconducting 

behavior, with room temperature resistivity rRT lying in the range between 2 and 2×10-5 W×m. All 

the acquired 𝜌(𝑇) curves are reported in the Supporting Information. 

Observation of CT regimes at different temperatures. Typically, CT in disordered and 

amorphous organic semiconductors is modeled as hopping transport between localized states. 

Although the literature related to the transport phenomena is enormously rich and several models 

have been developed to study this physical framework, we can identify two “common” 

functional dependences that were used and combined to describe the measured r(T) trends: i) a 

stretched exponential and ii) a power law (PL). The first form is used to describe Variable Range 

Hopping (VRH) models16-17 and Fluctuation-Induced Tunneling (FIT)18 transports, typically 

observed at low temperatures. The latter form is observed in a wide range of systems and 

temperatures and it is related to high-density conductivity of disordered semiconductors (see Ref. 

8 and the references within) (SI, Section 2.1).  
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From the experimental and data analysis point-of-view, a critical issue is related to the fitting 

analysis since the use of stretched exponential or PL functional forms describing r(T) can lead to 

systematic errors. For example, the application of the commonly used least-squares procedures 

for fitting a Poisson-distributed data is known to lead to biases.19 We avoided possible artefacts 

by devising a robust self-consistent method based on the reduced activation energy (W), i.e. the 

logarithmic derivative of resistivity versus temperature:20-21 𝑊(𝑇) = −𝑑(𝑙𝑛𝜌) 𝑑(𝑙𝑛𝑇)⁄ . This 

mathematical function transforms stretched exponentials and PL curves into linear functions in 

log-log space, clearly simplifying the issues related to the fitting procedures. 

We should consider if deviation from linearity could be ascribed to the presence of multiple 

transport mechanisms acting simultaneously, whose average would (by a fortuitous chance) give 

a critical exponent =0.5. In such case, the resistivity r should be described as the sum of different 

terms, one for each mechanism: 𝜌 = 𝜌( + 𝜌) +⋯+ 𝜌'. Then, the logarithm derivative of the 

resistivity, W(T) will have a complicated analytic form as there is no closed-form expression to 

solve a sum within the logarithm argument: 𝑊 = − * +,-

* +, #
= − *

* +, #
ln(𝜌( + 𝜌) +⋯+ 𝜌'), thus 

showing a complex behaviour at least in some of the 28 devices we analysed. Conversely, all the 

devices showed a linear trend, thus indicating that a single CT process is in action for each given 

temperature. 

From the best of our knowledge the W(T) method is commonly used for the study the CT of 

inorganic semiconductors. It has not been employed systematically for graphene-based materials; 

previous works used it to study conductivity only in limited, narrow portions of the measured 

temperature range. Currently, several VRH models have been proposed to describe the CT of 

graphene-based materials without a general consensus.4, 8, 20-26 See Section S2.2 for more details. 
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It is noteworthy to underline that most of the analysis performed in literature are based on simple 

fits of r(T). We use the W(T) method to explore all the 28 devices proposing this systematic 

approach to settle this open debate. 

The simple analysis of r(T) did not allow to compare quantitatively our samples. Differently, 

W(T) trends clearly revealed the differences between samples, as depicted in figure 2 by 

showing set of original data corresponding to a single RGO sheet (figure 2a) and a representative 

case of RGO network (figure 2b), either represented in the standard way r(T), and the 

corresponding W(T) trends. In both cases W(T) curves clearly showed linear trends for well-

defined temperature ranges supporting the presence of single mechanisms acting at different 

temperatures. In the case of individual RGO sheets the log-log plot of W(T) is linear with a 

negative slope corresponding to a VRH regime over the entire range of the measured 

temperatures. Differently, for RGO networks we can clearly distinguish two regimes separated 

by a transition temperature (T*): a linear trend with negative slope similar to that measured in 

single sheets for T<T* and a constant trend corresponding to PL for T>T*. Comparing all the 

RGO networks, we observed that T* increases with the electrical resistivity at room temperature, 

rRT (figure 3a, the dashed curve is a guide for eyes). A third type of regime is observed in RGO 

films with high reduction and high thickness (thickness > 6 nm). This further regime is present at 

relatively high T (> 250 K, see figure S7) and shows a positive trend of W (i.e. 
./

.#
> 0). 

Although a robust quantitative analysis of the experimental data is not possible due to the low 

signal-to-noise ratio of the r(T) data, the positive W trend clearly indicates that semiconductive 

RGO films tend to become quasi-conductive as we increase the film thickness. A similar 

behavior was already observed by Shaina et al.27 in thick RGO films (thickness > 500 nm) with 



 10 

larger variations of r and W values showing how such regime becomes predominant when films 

are subjected to uniaxial strain. We could propose a single scheme summarizing the CT of RGO 

networks by the quantitative analysis of the two regimes comparing systematically all the 28 

devices, where the single sheet is a particular case of the RGO networks where the transition 

temperature T* is out of the range of measured temperatures (T* > 300 K). This scheme is 

supported by the behavior observed on micro-networks of few partially overlapped nanosheets 

where T* (open circles) is compatible with the room temperature within the experimental error 

bar (T* » 300 K) indicating that T* is related to the structural complexity of the network (e.g. 

number of overlapping nanosheets). For the sake of simplicity, the observation of linear W(T) 

trends in all the 28 devices clearly excludes the presence of multiple mechanisms, and allows a 

clear assignment of the CT mechanism. Thus, the temperature dependence of the electrical 

resistivity of all the measured devices – and the corresponding W(T) – could be written as: 

𝜌(𝑇) = 3𝜌0,123 ∙ 𝑒𝑥𝑝 8#!# 94𝜌0,56 ∙ :##";78							 			⟺ 						 ln𝑊(𝑇) = 3−𝛽 ∙ ln 𝑇 + ∆ 																						𝑇 < 𝑇∗
ln𝑚				 																																	𝑇 > 𝑇∗ 	 (1) 

where ∆= ln:𝛽 ∙ 𝑇04;. 

Both VRH and PL regimes showed similar functional forms being defined by three 

parameters: a prefactor (ρ0,VRH or ρ0,PL), a characteristic temperature (T0 or T1), and a characteristic 

exponent (b or m).  

In the following paragraphs, we describe the role and the physical details of such parameters 

(i.e. the six ones defined in eqn.1 and T*) using a generalized description of the experimental 

features and correlating the data obtained in all the RGO networks. The data analysis procedure 
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was performed as follows: first, we fitted the W(T) curves by calculating b, T0 and m as free 

parameters, then we set these parameters and calculated the resistivity prefactors by fitting the 

r(T) curves. Finally, we fitted both W(T) and r(T) using the parameters previously calculated as 

initial values, verifying their convergence on successive reiterations.  

VRH regime. In VRH the stretching exponent p is strongly dependent on the shape of density 

of states at Fermi energy, g(EF). As reported in figure 3b, all the devices showed the same b 

values = 0.52±0.06, being in excellent agreement with results obtained on single RGO sheets28-29 

and with the values measured on hydrogenated graphene (b = 0.47 – 0.58).30 

All the b values were always close to 1/2, providing an unambiguous answer to the long-

debated nature of the charge transport in RGO thin films. For sake of comparison, figure 3b also 

shows the values expected for other regimes (dashed blue lines): VRH in 2D and 3D (b = 1/3 and 

b = 1/4, respectively), Nearest-Neighbours Hopping (NNH) and Fluctuation-Induced Tunneling 

(FIT) (b = 1). All of such regimes can be clearly excluded. The value b = 1/2 can be explained 

by two possible VRH models: 1D-Mott and Efros-Shklovskii (ES). These two models differ in 

the shape of the density of states: while g(EF) is constant in the former, ES is caused by a gap at 

the Fermi level due to the Coulombic interactions between the excited state above the EF and the 

hole left by the same electron below.31 1D-VRH is typically used to describe the CT of 1D 

conductors (e.g., quantum wires, nanotubes or polymers),32 but is apparently insignificant in the 

case of the carbon network structures.33 Conversely, ES-VRH dominates at all measurable 

temperatures in case of high-disorder systems and it has been already observed in RGO sheets.28 
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The characteristic temperature of the hopping mechanism 𝑇0 is inversely proportional to the 

localization length (ξ) defined as the average spatial extension of the charge carrier 

wavefunction. According to the ES-VRH regime, the relation is given by 𝑇0 = ).;	=#

>?	@!@$A%∙C
,31 

where e is the electron charge, er the dielectric constant, and e0 the electric permittivity of the 

vacuum. For sake of simplicity, we compacted the equation as: 𝑇0 = 𝛿/𝜉, where 𝛿 collected all 

the constant values. Concerning the dielectric constant, we should consider that charges will hop 

form one nanosheet to the other during the mesoscopic transport, changing continuously their 

depth inside the RGO layer. Thus, all charges will be exposed part of the time to the outer 

vacuum, part of the time to the underlying SiO2, and always to RGO. The effective dielectric 

constant felt by the charge will depend on how much time the charge will spend in the outer or 

inner layers; however, except from the extreme cases of a perfect monolayer compared to 

macroscopic bulk RGO, the average dielectric constant felt by the charge in few-layers RGO 

should be comparable. In the case of single of few sheets we estimated er = 2.5, resulting from 

the average of the dielectric constant of the substrate (SiO2 = 3.9) and of the medium 

(vacuum/air = 1),34 while in the case of RGO thin film we considered er = 3.5, according to 

previous reports.35-36 ES-VRH regime fully describes the measured r(T) behavior of single RGO, 

PL regime is instead dominant at high temperature (close to RT) when two or more nanosheets 

are assembled partially in contact with each other. The PL regime describes r(T) in most of the 

measured temperature range for thick RGO films. Thus, the observation of the PL regime 

indicates a clear fundamental role of the inter-sheet CT in a network, as detailed below. 

Similar results were observed in different GRM thin films. Recently Silverstein et al.37 

exploited the W(T) approach to investigate CT of RGO thin films obtained by voltage-induced 
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reduction clearly observing two regimes separated by a transition temperature T*: a VRH regime 

with b = 0.43 for T<T* and a roughly constant trend (slope = 0.03) for T>T* suggesting a PL 

regime. Taking into account the confidence intervals calculated by digitizing the published data 

both values show an excellent agreement with the scheme here presented. A further agreement 

with the two-regimes scheme is reported by Turchanin et al.38 in the case of GRM thin films 

obtained by cross-linking of aromatic molecules. Although no W(T) analysis were available for 

such data, the resistivity showed a VRH behavior for few layers with a transition to PL with the 

increasing thickness. This analogy with systems that are less disordered than the one discussed 

here suggests that the interplay of the two regimes may describe the microscopic properties of 

assembly of 2D nanosheets in general, and not only RGO materials. 

PL regime. We performed further analysis to elucidate the CT mechanism occurring in the PL 

regime. Furthermore, we wanted to understand if the ES-VRH and PL regimes are correlated and 

if it is possible to use only a single parameter to describe the electrical properties of all the RGO 

networks, for the whole temperature range studied.  

Differently from the VRH regime, in PL regime only m values could be evaluated using the 

W(T) analysis (figure S7-S14). The m values observed ranged between 0.2 and 4.0 (table S3) 

increasing with the measured rRT of each network (Figure 3c) and the PL characteristic 

temperature T1 could not be directly decoupled from the prefactor r0,PL. The resistivity measured 

in the PL regime is often described, in literature using a general function 𝜌 = 𝐵 ∙ 𝑇78, where B 

is the scale factor. We could combine such general function with eqn. 1 to obtain: 

ln 𝐵 = ln 𝜌0,56 +𝑚 ∙ ln 𝑇(         (2) 
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It is noteworthy to underline that eqn.2 is a mathematical equivalence between the parameters 

of each individual i-th RGO network. Therefore, we should consider a sequence of independent 

equivalences, one for each measured sample, where m and ln 𝐵 parameters are directly 

calculated by W(T) and r(T) analysis, respectively. Moreover, each equivalence showed a 

solution given by a linear combination of ln 𝑇( and ln 𝜌0,56. 

Figure 3d shows the correlation plot ln 𝐵 vs m for each sample. If the parameters were 

uncorrelated, randomly scattered data should be observed in the plot. Conversely, all data lay on 

a straight line (red line), as depicted in figure 3d. Such experimental evidence allowed i) to 

decouple the characteristic temperature T1 and the prefactor r0,PL and ii) to prove that such 

parameters are the same for all the samples, corresponding to the constant slope (ln 𝑇() and the 

Y-intercept (ln 𝜌0,56), as calculated by a linear fit according to eqn.2. Considering the PL 

functional form reported in eqn.1, we achieved for all the RGO networks 𝑘D𝑇( = 148±5 meV, 

𝜌0,56 = (4.4±0.1)×10-6 W×m. The invariance of such parameters clearly indicates that the same 

mechanism governed the CT of all the RGO networks. The power exponent m is the only 

parameter that independently identifies each sample. We compared the measured m values with 

those reported in literature for conjugated polymers to cast light on the mechanism involved in 

the CT. The functional PL shape ruling the relation between electrical resistivity and temperature 

corresponds to the critical regime of the Metal-Insulator Transition (MIT) in conducting 

polymers.39-40 The MIT model described the conductivity behavior being neither metallic nor 

insulating, predicting a value of m between 1/3 and 1.  

Another approach is based on the use of a universal scaling curve,41 being such curve 

commonly observed in low-defects semiconductive polymers. The CT along the polymeric 
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backbone is influenced by the coupling strength of the charge and the nuclear vibrations (i.e. a 

phonon bath). This mechanism is described by the quantum nuclear tunneling (NT) theory, in 

which the carriers tunnel through the potential barrier formed by the coupling of the electronic 

charge to its nuclear environment. Such coupling constant is called Kondo parameter, defined as 

𝛼E = 8

)
+ 1.41 The higher the value, the stronger the coupling. Typical values reported in 

literature in p-conjugated polymers for bath phonon energies are ~100 meV42 and aK within the 

range 1.6 – 6.75,43 corresponding to m values between ca. 1.2 and 11.5. An alternative 

description of PL transport, assuming multiphonon tunnelling of localized electrons with a weak 

electron-lattice interaction,44 could be discarded because in our case the phonon bath energy was 

>> kBT. We found that the power exponent m in RGO networks spans between the ranges 

defined by the values calculated by MIT and measured using NT models (Figure 3c). Such 

experimental evidence i) highlight the analogy between PL transport in RGO networks and 

conjugated polymers thin films, and ii) suggest that both classes of materials can be studied with 

similar approaches. Thus, we could describe the parameter m similarly to the case of polymers, 

in terms of reorganization energy (𝜆) of phonon bath upon electron transfer.45 We generalize the 

NT theory defining the phonon bath energy in RGO networks = 𝑘D𝑇(. Thus, the reorganization 

energy term describes the strength of the electron-phonon bath and can be reliably estimated as 

twice the relaxation energy of a polaron localized over the region of two overlapped RGO sheets, 

i.e. the twice the polaron binding energy: 𝜆 = :8
)
+ 1; ∙ 𝑘D𝑇(.46 

Correlation between ES-VRH and PL regimes. A natural question to be addressed is 

whether the two CT regimes that we observed at low and high T (ES-VRH and PL) are 

correlated. We observed that:  
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i) the PL exponent m (or the correlated reorganization energy l) decreases with the increase of 

the localization length calculated in ES-VRH (figure S10), and  

ii) the measured r(T) data and the corresponding W(T) analysis do not show discontinuities at 

the transition temperature T* between ES-VRH and PL regimes.  

The first experimental evidence confirms a strong analogy with polymeric semiconductors, 

where the reorganization energy decreases as the size of the π conjugated system is increased.47 

Moreover, the measured trend (Figure S10) roughly agrees with the relation 𝜉 ∝ 1/𝑚) 

computationally obtained for highly doped 1D semiconductors by Rodin et al.48 The second 

experimental result implies that, at the transition temperature T*, the resistivity calculated in the 

VRH regime corresponds to that in PL one: 𝜌123(𝑇∗) = 𝜌56(𝑇∗). As shown in the study of the 

functional forms of the r(T) curves, also in this case we used the W(T) method focusing the 

analysis of the equivalence achieved for W curves: 𝑊123(𝑇∗) = 𝑊56(𝑇∗). The use of linearized 

curves made it possible to derive a general formula comparing the parameters of the two CT 

regimes: T*, b, m and x, as calculated using eqn. 1 for each i-th RGO network. Calculating all 

the terms as sum of logarithms (for more details see SI, Section S6.1), we obtained: 

𝛽 ∙ ln 𝑇∗ + ln𝑚 = −𝛽 ∙ ln 𝜉 + 𝛽 ∙ ln 𝛿 + ln 𝛽      (3) 

Similarly to the correlation analysis discussed before in eqn. 2 and figure 3d, we should 

consider a set of independent equations, one for each measured i-th RGO network. Figure 3e 

shows the correlation plot ln 𝜉 vs (𝛽 ∙ ln 𝑇∗ + ln𝑚) where each point corresponds to the data of 

each RGO network and the red line corresponds to a linear fit from eqn. 3. The plot shows an 

excellent linear behavior, with slope = −𝛽8=F' = -0.55±0.03, in good agreement with b = 1/2 
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(ES-VRH). The good correlation achieved is an additional proof that ES-VRH and PL regimes 

should be strongly correlated, even if the two regimes are based on different mechanisms and act 

at different temperature ranges. A similar approach related to equivalence of the resistivity 

values is reported in SI (figure S12 and Section S6.2). 

A clarification is needed on the physical meaning of the transition temperature T*. 

Experimentally, T* values range between 200 K and 20 K with the increase of the localization 

length (Figure S11). This is in qualitative agreement with the model developed for disordered 

wires by Gornyi et al.,49 where T* is related to the disorder and it is inversely proportional to the 

localization length. Noteworthy, the model previously proposed by Rodin,48 where the PL 

exponent m is proportional to the number of hopping events, can be seen as a special case of eqn. 

3, assuming T* as constant and bmean = 1/2. 

Dependence of x on the structural and geometrical properties of the RGO nanosheets 

network. In the case of single RGO sheet the transport is purely 2D, the localization length x 

corresponds approximately to the half of the size of the aromatic domains (f): 𝜙 ≈ 2𝜉,28 and 

charges “hop” from one domain to the next one. Differently, when two or more sheets are 

overlapped (even partially) we can distinguish two components in the transport: in-plane and 

out-of-plane. The case in which two adjacent sheets (i.e. belonging to the same plane) only touch 

the edges is statistically negligible. Thus, the sheet-to-sheet transport is mainly out-of-plane and 

consequently the in-plane component is related to the single sheet.  

Experimentally, we varied such two components tuning independently different parameters 

which define the material: the oxidation degree (i.e. the corresponding intrinsic conductivity), the 

lateral size of the nanosheets composing the network, and the thickness of the thin film (i.e. the 
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number of stacked nanosheets layers Nlayer). In general, we observed that x increases with the 

decrease of the room temperature resistivity (Figure 4a). First, we varied the intrinsic 

conductivity of each nanosheet composing the network. This could be achieved by changing the 

content of the sp2 carbons on the RGO basal plane by thermal annealing, as evidenced by XPS 

measurements (Figure 4b). The average film thickness was kept constant with the average 

number of stacked sheets being Nlayer = 8±1. The average lateral size of the single RGO sheets 

was <sRGO> = 428±14 nm. Second, we varied the lateral size of the RGO sheets (Figure 3b). We 

tested nanosheets having 3 different lateral sizes: S1 = 17.2±0.6 µm, S2= 428±14nm and S3= 

380±7nm. For each size, three different sp2 contents: 77% (■), 86% (■) and 96% (■) were tested 

for a total of 9 different size-conductivity combinations. The localization length was found to 

increase significantly with the aromatic content and to a lesser extent, with the nanosheet lateral 

size. 

The results of the electrical characterizations of these films are provided in figure 4b: for low 

sp2 content (≲80%), we obtain 1.3 < 𝜉 < 5 nm, in agreement with the values typically observed 

in a single RGO sheet.11, 50 For higher aromatic contents (≳80%) the parameter 𝜉 reaches a size 

up to 300±20 nm evidencing that charges can be delocalized over the single aromatic region on 

the RGO sheet. We want to underline that such result is peculiar to the macroscopic network 

because in the case of an assembly of a few sheets partially in contact, the measured 𝜉 amounts 

to a few nm (see table S3 and figure S8, devices #26 and #27), despite the sp2 content amounts 

96%. Such results can be accounted for only assuming that charges travelling along the 

nanosheet (in-plane) prefer to circumvent a defect, jumping on different planes (out-of-plane) 

(Figure 5a). This suggests that the electronic states can span through different overlapping sp2 

domains belonging to different sheets; charges are delocalized over different nanosheets and 
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contribute thus to CT as a single conductive domain with characteristic size ξ. Thus, we 

investigated the influence of out-of-plane mechanisms by preparing devices with an increasing 

number of stacked layers, i.e. having increasing thickness, from single RGO sheets, covering 

only partially the substrate, to macroscopic stacks having a high number of stacked nanosheets 

up to Nlayer = 34±2 (figure 4d). ξ increases sharply at Nlayer » 5, then reaching a constant value 

ranging between 2-3 µm for Nlayer » 8. 

For each sample, we measured the dependence of room temperature resistivity (rRT) on Nlayer 

(figure S13) showing, as expected, an opposite trend with respect to that observed on ξ in the 

case of RGO thin films. Such behavior is similar to that observed in thin metal films (<100 nm) 

where the electrical resistivity become larger as the film thickness decreases in size. In such 

systems this change occurs because the mean free path of charge carriers is reduced due to 

increased scattering effects.51 The inter-sheet CT (out of plane-plane) is favored respect to intra-

sheet CT (in-plane). This result agrees with the observation of coherent commensurate electronic 

states at the interface between sp2 regions, recently observed.52 In general, all the layered 

graphitic materials have similar electrical properties along the out-of-plane direction; for 

example turbostratic and Kish, high oriented pyrolytic and natural graphites usually show 

metallic- or semi-metallic-like behavior.53-56 

RGO networks as “composite materials”. The CT of RGO networks is governed by π-

conjugated regions given by the overlapping sp2 domains connected by a network of random 

paths with ξ as a characteristic length. Thus, the longer the π-conjugated domains due to 

increased amount of aromatic content or the number of RGO layers, the greater the localization 
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length, i.e. the lower are both the parameter m and the corresponding reorganization energy, as 

observed in semiconducting π-conjugated systems.57 

We developed a purely geometrical approach to describe ξ as a characteristic size and to 

reproduce as well the behavior of such parameter with the number of layers. RGO networks are 

described as composite materials (Figure 5b), where π-conjugated regions (i.e. both overlapping 

sp2 domains in red and isolated ones in yellow) represent conductive fillers activated by an 

external electrical field E, while holes, defects and sp3 insulating regions behave like an 

insulating matrix (green). For example, we reported the case of three-layer RGO film with 

randomly distributed sp2 domains (disks) on each layer. We considered only transport through 

the stack (out-of-plane) and negligible contribution of in-plane transport to resistivity. Fillers 

obtained by the overlapping stacked disks are visualized by collapsing all the layers on the 

projected plane (red regions in bottom surface). 

A similar cartoon representing the lateral view of the multilayer RGO is depicted in Figure 5c 

(i.e. disks become segments) allowing a direct visualization of the complex morphology of a 

representative filler (red line) given by a random path with blobs and dead ends spanning in 3 

dimensions with an overall length equal to the localization length ξ. Using a classical physics 

approach, the random paths network corresponds to the superimposition of all the possible 

trajectories of the charge carrier that travels between the planes "jumping" from one aromatic 

domain to another. Geometrically, this is analogue to describe the problem of a liquid flowing in 

a porous structure where holes correspond to the single sp2 domain. Such connectivity of holes is 

a tortuous conduction path which can have multiple passes and dead ends. In general, the greater 

the overlap of the holes (i.e. porosity increasing), the better the passage of the liquid.  
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Since the localization length becomes orders of magnitude larger than the average size of a sp2 

region in a single sheet: 𝜉 ≫ 𝜙, we can neglect the sp2 domain size and consider only the 

distance between two overlapping aromatic regions (d) corresponding to the layer-layer distance. 

Thus, we can write a general form to describe the number-of-layer -dependence of the 

localization length as: 

𝜉R𝑁%FG=HT ∼ I

)
+ 𝑑 ∙ ∑ 𝑛(𝑖)J&'()*

&K)
       (4) 

where the first term corresponds to the contribution of the single layer (i = 1) and the latter to 

the following layers. n(i) is the number of steps (i.e. the number of conductive sp2 regions 

involved in the path, being the stack) along the i-th layer, such parameter follows roughly a 

Poisson distribution because of the external bias is parallel to the film (𝑬 = 𝐸∥). 
Given a random path in (3D) thick film, the decrease of layers corresponds to a reduction of 

the number of steps. When the film thickness decreases down to a critical thickness (in our case, 

Nlayer » 8) the continuous percolated random path breaks in small connected regions, 

corresponding to an abrupt decrease of ξ. The ultimate case corresponds to a single sheet (Nlayer = 

1), where no sp2 regions are overlapped and ξ roughly corresponds to two times the typical sp2 

domain size in RGO (<10 nm, table S3). The fitting curve obtained by eqn.S6.3 (red line in 

Figure 4d, see SI Section S6.3) shows an excellent agreement with the experimental data.  

Disorder and Phase Transition. Dispersed in the form of a highly entangled (interconnected) 

structure in the matrix, the conductive fillers exhibit distinct curved and branched shapes with 

total length equal to ξ, ultimately forming an interlocked structure of quasi 1D-fillers in the 

agglomerated state (a.k.a. spaghetti-like structure). The longer the conductive fillers, the better is 
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the electrical conducibility of the system, in agreement with the experimental findings where ξ 

increased with the decreasing of the measured room temperature resistivity (rRT) (Figure 6a). 

The results described above indicate that the same CT mechanisms governed all the devices 

tested and did not depend on the size of the nanosheet network as well as the number of the RGO 

sheets involved in the CT (ranging from a single sheet to some billions). The absence of a 

characteristic length (𝜉 varies between 1 nm to ca 3 µm) indicates some sort of “universal” 

behaviour of CT in terms of a percolation process at the disorder-induced metal-insulator 

transitions.58 From the considerations above, it seems evident that there are clear analogies 

between RGO networks and conjugated polymer thin films; suggesting us to use the approach 

developed by Heeger to study conductive polymeric thin films.40, 59-60 A useful qualitative 

indicator of the extent of disorder used in such systems is the ratio of the electrical resistivity 

measured at the lowest and highest measurement temperatures tested. We adopted the same 

approach and defined a parameter 𝜌H = 𝜌M0E/𝜌2#, 50 K being the lowest temperature where all 

devices showed a measurable resistivity. The relation between 𝜌H and 𝜉 for all our devices is 

shown in figure 6a. As expected, the disorder decreases when the localization length 𝜉 tends to 

grow asymptotically. Moreover, the inset in figure 6a shows the linear correlation between the 

left term in eqn. 3: (𝛽 ∙ ln 𝑇∗ + ln𝑚) and 1/𝜌H, indicating that 𝜌H ∝ 1/ ln 𝜉, in agreement with 

what previously suggested by Gornyi et al. for low-dimensional disordered systems 49 (SI, 

Section 6.4). 

Heeger defined 𝜌H as an “effective order parameter” for metal-insulator transitions (MIT) in 

the case of semiconducting π-conjugated polymers.61 However, such parameter can give several 

issues. It is clear that this approach could not be quantitative since the arbitrary choice of the 

chosen temperatures. Moreover, in the case of RGO networks, ρr roughly indicates the ratio 
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between resistivity corresponding to VRH and PL regimes; for each RGO network the two 

regimes were sampled in different ways, since for each sample T* lies in different positions 

within the 50 K-room temperature range (see Figure 3a). For this reason, we propose to use the 

prefactors r0,VRH and r0,PL as the characteristic resistivity values of the two regimes and to define 

a “general effective order parameter” as 𝜌0,H = 𝜌0,123 𝜌0,56⁄ . Experimentally, we achieved that i) 

r0,VRH tends to r0,PL with the increase of ξ (Figure S14), corresponding to 𝜌0,H → 1, and ii) r0,PL is 

the same for all the RGO networks (Figure 3d). 

We could thus describe the CT of RGO networks in terms of geometrical phase transition (i.e. 

percolation)8 of random networks of conductive wires with mean length equal to 𝜉. The complete 

disorder-driven transition to metal corresponds to the case in which the critical regime is 

achieved for all the temperatures and the electrical resistivity no longer depends on temperature. 

In such case, no VRH regime could be measured and the electrical resistivity r(T) trend could be 

described by a power law (i.e. T* ® 0K) with the exponent m ® 0. In the case of m = 0, the 

solution of the continuity equation: 𝜌123(𝑇∗) = 𝜌56(𝑇∗) is given by r0,VRH = r0,PL and 

corresponding to r0,r = 1. The analytical solution is provided in Section S6.2. Figure 6b shows a 

schematic diagram of resistivity vs temperature in in the vicinity of MIT. Displayed as a double 

logarithm graph, the VRH regime is described by a non-linear curve that decreases until it 

becomes (at T*) a straight line (PL regime) with slope m. with tends to zero at the complete 

transition. 

We modelled the disorder-driven MIT in terms of the critical exponent formalism in 

continuous phase transition theory, assuming that: 
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i) x corresponds to the mean cluster size and is correlated to the order parameter; 

ii) r0,PL corresponds to the critical threshold of the transition. 

Mathematically, a percolating system is described by a parameter p which controls the 

occupancy of bonds (or sites) in the system. At a critical value pc, the mean cluster size goes to 

infinity and the percolation transition takes place. As one approaches pc, the mean cluster size 

diverges following a power law as |𝑝 − 𝑝N|7O, where g is the critical exponent depending on the 

dimensionality. g= 43/18 for 2D- and g=1.8 for 3D-systems, as reported in Table 2 in ref.58. Such 

mathematical approach is general, the parameter p is a probability and shows the same role as T 

in thermal phase transitions - a short list of examples is reported in ref.62, Table 1.1 - or the filler 

loading in a composite in MIT, for instance. 

We applied the percolation formula to follow the transition between the –: r0,VRH and r0,PL. In 

our approach, p corresponds to r0,VRH and the percolation threshold pc is r0,PL, defining the 

variable Π as:  

Π = ]𝜌0,123 − 𝜌0,56] 𝜌0,56^ = ]𝜌0,H − 1]      (5) 

where at the percolation threshold r0,VRH = r0,PL (r0,r = 1), the difference is zero (Π = 0) and the 

mean wire length is infinite (𝜉 → ∞). Conversely, r0,VRH >> r0,PL (r0,r ® ¥) and Π → ∞ when 

𝜉 → 0. The approach to the threshold is governed by power laws, which hold asymptotically 

close to critical value r0,PL: 𝜉~Π7O, as a continuous transition. This expression is analogue to the 

magnetic fluctuations / susceptibility 𝜒~|𝑇 − 𝑇N|7O, where Tc is the threshold temperature. In the 

case of random networks of conductive wires (i.e. spaghetti-like structure) the cluster size can be 
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easily approximated to the wire length and thus, g is the critical exponent describing the mean 

wire length. Figure 6c depicts the relation between x and P in log-log scale over two orders of 

magnitude. The observed negative linear trend confirms the power law behavior with g = 

1.7±0.2. Such result agrees with the critical exponent of 3D systems and allows to describe RGO 

networks as analogous to entangled disordered systems of conductive 1D fillers with fractal 

dimension amounting to 2.53, close to the transition point (see Table 2 in ref.62).  

It is noteworthy to underline that the percolation approach model does not depend on 

nanoscopic details, such as the chemical or electronic properties of the thin-film or the physical 

mechanisms of CT between RGO sheets. Such approach reveals the analogy between the 

networks of randomly stacked 2D sheets with the networks of 1D conductive channels with 

complex morphology and a well-defined fractal dimension. Moreover, fundamental works of 

Epstein et al.63 and Fogler et al.32 pointed out the role the inter-chain coupling showing that the 

CT of networks of 1D systems is described by ES-VRH instead of 1D-VRH, as discussed above. 

A similar approach could be used to model the further regime observed at high temperature 

with the increase of the RGO film thickness and identified by W(T) with positive trend (Figure 

S7, e.g. device #10). Observed by Govor et al.33 in self-organized carbon networks and ascribed 

to the transfer of the charge carriers excited at the mobility edge, such transition could be 

described as a MIT induced by temperature, modelling the behavior of resistivity in thick RGO 

films subjected to uniaxial strain.27 

 

CONCLUSIONS 
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In summary, by taking advantage of the exceptional processability and tunability of sizes and 

properties, RGO was used as prototypical building block to study CT in vdW thin films given by 

percolated networks of pure 2D nanosheets stacked over each other, yielding a (semi)conductive 

material with a strongly anisotropy and tunable structure. Exploring a set 28 different systems – 

from a single RGO nanosheet to networks of few nanosheets partially overlapped and 

macroscopic thin films – we could measure systematically the electrical resistivity vs 

temperature r(T) obtaining a different behavior between networks of sheets (thin films and few-

sheets partially in contact) and the single RGO sheet. While the latter only featured the Efros-

Shklovskii VRH regime, the former show the presence of an additional PL regime at high 

temperature. The clear transition between two different yet correlated regimes makes it possible 

to define some key points in the long-debated CT mechanism in films obtained from solution 

processing of 2D materials. The charge transport and as well as the electrical behavior of the 

networks do not depend much on the size of the nanosheets but primarily on the sp2 aromatic 

clusters belonging the RGO nanosheets and how much they overlap when the nanosheets stack. 

Sheet-to-sheet interfaces do not act as bottlenecks; instead, the electrical behavior of the network 

is dominated by the inter-sheet transport through the overlapped aromatic regions describing a 

quasi-1D path where x is the characteristic length. Thus, we could model the charge transport of 

RGO networks in terms of composite materials where quasi-1D building blocks behave as 

conductive fillers in an insulating matrix taking advantage of models commonly used to study 

charge transport in conjugated polymeric thin films and generalizing the approach developed by 

Alan Jay Heeger for conductive polymers in the vicinity of disorder-driven metal-insulator 

transition (MIT). Since x varies over three orders of magnitude (from very few nanometer to ca 3 

micron), we considered scale invariance approach describing the charge transport as a 
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geometrical phase transition, given by the metal-insulator transition associated with the 

percolation of quasi-1D nanofillers.  

Introducing the fractal geometry, Mandelbrot had wondered what the dimension of a ball of 

yarn was, and how it depended on scaling regimes.64 This is similar geometrical issue dealt with 

the networks of 2D RGO nanosheets whose CT can be described in terms of bulk (3D) 

composite with quasi-1D conductive fillers. Based on a systematic and quantitative analysis of 

experimental data, the developed model combines concepts, approaches and results of different 

fields, such as graphene and 2D related materials, polymers science, networks, percolation and 

critical phenomena. The role of interfaces and their nanostructure, the universal behavior 

observed from the nano- to the macro- scale and the analogies with charge transport in 1D and 

3D systems give to this result a broad importance, and could be used in principle to describe the 

CT for vdW thin films and many others disordered materials, such as composites and granular 

materials. 

EXPERIMENTAL SECTION 

Device preparation. Graphene Oxide (GO) was produced by modified Hummers methods, via 

the intercalation of strong oxidizing agents into Graphite, sonication in to ultrasonic bath and 

purified by dialysis.65 The average size of the GO flakes was tuned by using ultrasonic bath of 

the solution for different amounts of time, following a previously reported procedure.12 Thin 

films were produced by spin-coating the GO water suspension on a clean SiO2/Si substrate 

(2,000 rpm for 60s), the concentration of GO in water was 2.0 g/L for the high nanosheet density 

and 0.3 g/L for the low nanosheet density. To tune the thickness, the procedure could be repeated 

multiple times (see below). Reduced Graphene Oxide (RGO) thin films were produced by 
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thermal annealing in high vacuum (10-7 mbar) at different temperatures the GO films. In order to 

prevent the potential occurrence of a short circuit between the RGO film and the doped silicon, 

the portion of film close to the edges was mechanically removed for a width of about 1 mm 

(Figure S3a). All the 28 devices showed very low leakage currents ileak (103 times lower than 

source-drain current). 

28 devices were produced by changing systematically three parameters: i) sp2 content, via 

thermal reduction of GO, with a sp2 content ranging from 74% to 96%), ii) nanosheets with 

different lateral sizes from <0.3 µm to >17 µm, and iii) the film thickness, spanning from 1 up to 

35 layer. We labelled each device with a progressive number, from #1 to #28: the effect of the 

thickness is investigated in devices #1 – #5 employing the 2 probes analysis and in devices #6 – 

#10 with the 4 probes geometry; the chemical composition (carbon sp2 fraction) is varied in 

devices #11 – #16, where we re-analyzed previously published (by our group) results;24 the 

flakes lateral size is varied in devices #17 – #25 together with the sp2 fraction; device #26 and 

#27 are a double sheet RGO partially superponed and device #28 is a single sheet device. The 

details about each device, as size, thickness, resistivity, annealing temperature and sp2 fraction 

are reported in SI.  

Optical images of RGO few-sheet networks were acquired with Olympus BX 51 TRF. 

X-ray Photoelectron Spectroscopy (XPS). The C 1s high-resolution XPS spectra were 

recorded with a Phoibos 100 hemispherical energy analyzer (Specs) using Mg Kα radiation (ħω 

= 1253.6 eV; X-Ray power = 125 W) in constant analyzer energy (CAE) mode, with pass 

energies of 10 eV. Fitting the spectra in the region of the C 1s peak allowed to quantify the 

relative amounts of aromatic carbon (C-C sp2, 284.4 eV), aliphatic carbon (C-C sp3, 285.0 eV), 
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hydroxyl (C-OH, 285.7 eV), epoxy (C-O-C, 286.7 eV), carbonyl (C=O, 288.0 eV) and carboxyl 

(O-C=O, 289.1 eV), (Figure S1). The XPS spectra corresponding to different reduction degrees, 

and the details of the fitting procedure are given in our previous publications.66 In particular, the 

shape of aromatic carbon peak is chosen as asymmetric following our recent work,67 while the 

other peaks are modelled by a pseudo Voigt curve. XPS analysis were used to monitor the 

thermal reduction of the pristine GO and as well as the reproducibility of the fabricated devices. 

At fixed annealing temperature, XPS spectra were acquired on RGO films with different 

thicknesses showing no variation in the chemical analysis confirming the uniformity of the 

thermal-reduction across multi-layered stacked films. 

Atomic Force Microscopy (AFM). AFM was employed to measure the film thickness using a 

Bruker MultiMode 8, with probe cantilevers model RTESPA-300 (material: 0.01 - 0.025 Ωcm 

Sb (n) -doped Si, f0: 300 kHz, k: 40 N/m, from Bruker) working in the tapping mode. Image 

processing was performed using the histogram analysis method.68 Since the thickness of single 

layers of GO and RGO changes from 1.0 to 0.4 nm as a function of the annealing temperature,69 

we report the film thickness as the number of effective layers Neff. (details are reported in SI, 

figure S2)  

Electrical resistivity measurements 𝛒(𝐓). After thermal annealing, electrical contacts were 

deposited on the RGO devices by thermal evaporation of 3 nm of Cr and 100 nm of Au. The 

device was then mounted on the device holder and connected with a micro-bonder and silver 

paste. In the 2 probes configuration, the channel length and channel width of the devices were 

estimated by using the optical microscope and are reported in table S4. In the 4 probes geometry 

the contacts (1 mm diameter) were evaporated in the Van Der Pauw geometry at the corners of a 
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»1 cm2 device. The distance between the contacts was 9 mm. Representative pictures of the 

devices in the two configurations are reported in figure S3b. The electrical resistance (R) was 

measured using the Ammeter-Voltmeter Method (Figure S4a) and the corresponding resistivity 

was calculated as: 𝜌 = 𝑅 ∙ 𝑤 ∙ ℎ 𝐿⁄ , where w, h and L are the channel width, length and height, 

respectively. All the geometrical sizes are reported in Table S4. Contact resistance was measured 

using the Transfer Line Method (TLM) and can be neglected (Figure S4b). 

Devices #26 – #28, micrometric electrodes were lithographically patterned to characterize the 

electrical transport across a limited number of overlapping flakes. Lithography was carried out 

by exposing a standard photoresist (AZ1505, Microchemicals) with the 405 nm laser of a 

Microtech laser writer. A 30-nm-thick Au film (without adhesion layer) was thermally 

evaporated onto the patterned photoresist and lift-off was carried out in warm acetone (40 °C). 

Relatively large flakes were chosen for these devices, leading to a channel length and width in 

the range 20 - 100 µm. 

The resistance vs temperature measurements were carried out with a Quantum Design Physical 

Properties Measurements System (PPMS), using an external Keithley 2636 Source-Meter. The 

resistance was measured in the temperature range between 300 K to 2 K with a slow ramp (1 

K/min). The Ohmic behavior of the device was checked by the linearity of the I-V curves (see 

figure S4a). In the 2-probes configuration, we fixed the voltage bias at a value in the range 25-

250 mV (depending on the device resistance at room temperature) and measured the current. In 

the 4-probes configuration, we fixed the current in the range of 10 µA and monitored the voltage. 

No significant differences were observed between 2- and 4- probes measurements in the whole 

temperature range. 
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Figure 1. RGO networks. (a) Cartoon showing typical interfaces in systems with different 

dimensionality. (b) Optical image of a sparse network composed by few 2D RGO sheets in 

partial contact. Inset: optical image showing the metal pad geometry used to measure CT in such 

samples; inset size 1.7´1.2 mm2. (c) Topographical AFM image of a thick RGO film (Z-range = 

4 nm). Inset: photograph of the device used for the ρ(T) measurements performed at 

temperatures ranging from 300 K down to 5 K. (d) Structure of RGO sheet, modelled and kindly 

provided by Aleandro Antidormi (see15 for details). (e) Few RGO-sheets Field-Effect Transistor. 

Measured transfer characteristic IDS-VG (black symbols) and linear fit (red line) with scheme and 

zoom of the optical image as insets. FET mobility in linear region: 𝜇!"#,%&' = 𝑚%&'
6

/
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(

P-.
≈ 2 

cm2/V/s, where W » L » 25 µm, VDS = 0.5 V, Cox = 1.5×10-8 F/cm2 is the gate insulator 

capacitance per unit area and 1/𝑚%&' = 33.5±0.4 MW is the inverse of the slope of the linear fit 

(red line). 
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Figure 2. Log-log-scale plots of r vs T and corresponding Reduced Activation Energy W(T) 

measured in (a) single RGO sheet and (b) a typical RGO network. Two transport regimes are 

observed: ES-VRH (red curve) and PL (black curve). While different models can fit the 

measured r(T) trends, the use of W(T) unambiguously indicates that the correct models are ES-

VRH with exponent b = 0.5 (red line, slope of W(T) linear region) at low temperature and PL 

(black line) at high temperatures. 2D-Mott VRH (b = 1/3) and NNH (b = 1) models are reported 

as blue and green dashed lines, respectively. In general, the overall W(T) trend measured on all 

the devices is a concave function(see SI, paragraph 3.1). 
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Figure 3. Behaviour of the main parameters vs room temperature resistivity rRT. (a) Transition 

temperature T* vs RT resistivity for all samples. The red dashed line is a guide to the eye. (b) 

Values of exponent b, as calculated for low temperature data corresponding to the VRH regime. 

The average b value (red line) measured on the 28 devices is 0.52±0.06, corresponding to the 

ES-VRH model. The shadowed area width corresponds to twice the standard deviation. For the 

sake of comparison, dashed blue lines show the values expected for other regimes: VRH in 2D 

and 3D (b = 1/3 and b = 1/4, respectively) and Arrhenius (NNH) (b = 1). (c) Values of power 

exponent m corresponding to the PL regime, calculated from high temperature data, plotted vs 

RT resistivity. The corresponding relation energy x is also reported on the secondary Y axis. The 

shadowed areas corresponded to the range of values calculated with critical regime model 

(green) and reported in literature for conjugated polymers using NT theory (red). b and m 

parameters shown in in b) and c) are calculated from reduced activation energy. Low signal-to-

noise ratio affected devices with rRT > 0.1 W×m preventing the calculation of T* and m 
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parameters. Correlation plots. (d) PL regime: ln 𝐵 vs m obtained from eqn. 1 for high 

temperature data. The achieved linear trend (red line) indicates that all the RGO networks follow 

the same CT mechanism with a given characteristic energy (kBT1). (e) Continuity of W(T) curve 

at T*. 𝜉 is directly calculated for ES-VRH using the parameter T0. The linear fit (red line) is 

calculated using eqn. 3 and the obtained mean b value amounts 0.55±0.03 (line slope), in 

excellent agreement with the arithmetic mean value calculated in figure 3b. In all graphs, 

symbols correspond to different type of devices: (!) thin films, (-) few sheets partially 

overlapped,(") single high-reduced RGO sheet and (8) thin films from ref.37. Full details of each 

device are in SI, table S3 and S4. 
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Figure 4. Localization length (x) as function of: (a) the room temperature resistivity; (b) sp2 

content in the nanosheets, tuned by thermal reduction, (c), sheet size (sRGO) tuned by sonication 

of the nanosheets before processing, and (d) film thickness (Nlayer). Data in (b) are fitted with an 

exponential function (red line in semi-logarithmic plot). In (c) three aromatic sp2 content (■ 77%, 

■ 86% and ■ 96%) are analyzed for each sheet lateral size. Lines are just a guide for the eye. In 

(d) different symbols indicate different devices. In (a) and (d), symbols correspond to different 

type of devices: (!) thin films, (-) few sheets partially overlapped and (") single high-reduced 
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RGO sheet. For a detailed description of all devices see table S3. Red line corresponds to the 

curve calculated with eqn. S6.3b. The size of a typical sp2 region taken from ref.28 is also 

reported (� symbol) for comparison.  

 

 

Figure 5. Cartoons representing the charge transport in RGO networks. (a) CT in single RGO 

sheet (pure 2D transport) described by semimetallic behavior achieved in the aromatic domain 

and hopping at the edges (voids or defects). In the case of stacked RGO sheets, charges can 

move in 3 dimension due to p-p stacking allowing to circumvent the defect. “Composite 

material” model: (b) Top view and (c) Lateral view. (Top view) Three-layer RGO thin film. 

Each plane is represented as a patchwork of isolated sp2 domains (circles) separated by domain 

border defects composed of voids, C-O functionalities or other defects. For sake of clarity, we 

distinguish each layer with a different colors. Dashed red line corresponds to a random path 

connecting overlapped disks. (Lateral view) Dependence of x with number of layers. In the case 
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of the thin films x extend up to several sp2 domains forming a random path with multiple passes 

and dead ends. Reducing the film thickness, the length reduces to the ultimate case of half the 

size of the sp2 single domain in the case of single layer. The corresponding number of steps n(i) 

(bars) follow the Poisson distribution (blue lines). 

 

 

Figure 6. CT of RGO networks. (a) The localization length calculated by applying the ES-VRH 

to experimental data, plotted vs the disorder degree (𝜌H). The yellow line is a guide for the eye. 

Inset: correlation plot between the right expression of eqn.4 – as calculated by PL regime – and 

1/rr. (b,c) Percolation-type description of the Metal-Insulator Transition (MIT). (b)Schematic 

diagram of resistivity vs temperature in the vicinity of MIT. A typical measured r(T) is reported 

as a continuous curve (the red and blue sections indicate the different regimes) while a pure 

critical phase is reported as a black dashed curve. (c) Plot of the localization length x vs the 

parameter P in log-log scale, suggesting the presence of percolation. The slope of the linear fit 

(red line) is 1.7±0.2. 
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