
1

Multiscale Combinatorial Grouping
for Image Segmentation and
Object Proposal Generation

Jordi Pont-Tuset*, Pablo Arbeláez*, Jonathan T. Barron, Member, IEEE,

Ferran Marques, Senior Member, IEEE, Jitendra Malik, Fellow, IEEE

Abstract—We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for

recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm.

We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a

grouping strategy that combines our multiscale regions into highly-accurate object proposals by exploring efficiently their combinatorial

space. We also present Single-scale Combinatorial Grouping (SCG), a faster version of MCG that produces competitive proposals in

under five second per image. We conduct an extensive and comprehensive empirical validation on the BSDS500, SegVOC12, SBD,

and COCO datasets, showing that MCG produces state-of-the-art contours, hierarchical regions, and object proposals.

Index Terms—Image segmentation, object proposals, normalized cuts.

✦

1 INTRODUCTION

TWO paradigms have shaped the field of object recog-
nition in the last decade. The first one, popularized

by the Viola-Jones face detection algorithm [1], formu-
lates object localization as window classification. The ba-
sic scanning-window architecture, relying on histograms
of gradients and linear support vector machines, was
introduced by Dalal and Triggs [2] in the context of
pedestrian detection and is still at the core of seminal
object detectors on the PASCAL challenge such as De-
formable Part Models [3].

The second paradigm relies on perceptual grouping to
provide a limited number of high-quality and category-
independent object proposals, which can then be de-
scribed with richer representations and used as input to
more sophisticated learning methods. Examples in this
family are [4], [5]. Recently, this approach has dominated
the PASCAL segmentation challenge [6], [7], [8], [9], im-
proved object detection [10], fine-grained categorization
[11] and proven competitive in large-scale classification
[12].

Since the power of this second paradigm is critically
dependent on the accuracy and the number of object
proposals, an increasing body of research has delved

• J. Pont-Tuset and F. Marques are with the Department of Signal Theory
and Communications, Universitat Politècnica de Catalunya, BarcelonaTech
(UPC), Spain. E-mail: {jordi.pont,ferran.marques}@upc.edu

• P. Arbeláez is with the Department of Biomedical Engineering, Universi-
dad de los Andes, Colombia. E-mail: pa.arbelaez@uniandes.edu.co

• J. T. Barron, and J. Malik are with the Department of Electrical
Engineering and Computer Science, University of California at Berkeley,
Berkeley, CA 94720. E-mail: {barron,malik}@eecs.berkeley.edu

* The first two authors contributed equally

Fig. 1. Top: original image, instance-level ground truth

from COCO and our multiscale hierarchical segmenta-

tion. Bottom: our best object proposals among 150.

into the problem of their generation [13], [14], [15], [12],
[16], [17], [18], [19]. However, those approaches typically
focus on learning generic properties of objects from
a set of examples, while reasoning on a fixed set of
regions and contours produced by external bottom-up
segmenters such as [20], [21].

In this paper, we propose a unified approach to
multiscale hierarchical segmentation and object proposal
generation called Multiscale Combinatorial Grouping
(MCG). Fig. 1 shows an example of our results and Fig. 2
an overview of our pipeline. Our main contributions are:

• An efficient normalized cuts algorithm, which in
practice provides a 20× speed-up to the eigenvector
computation required for contour globalization [20],
[22] (Sect. 3.1).

• A state-of-the-art hierarchical segmenter that lever-
ages multiscale information (Sect. 3.3).

• A grouping algorithm that produces accurate object
proposals by efficiently exploring the combinatorial
space of our multiscale regions (Sect. 5).

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. DOI  10.1109/TPAMI.2016.2537320



2

Fixed-Scale

Segmentation

Rescaling &

Alignment Combination

R
e
so

lu
ti

o
n

 

Combinatorial

Grouping

Image Pyramid Segmentation Pyramid Aligned  Hierarchies  Object Proposals Multiscale Hierarchy

Fig. 2. Multiscale Combinatorial Grouping. Starting from a multiresolution image pyramid, we perform hierarchical

segmentation at each scale independently. We align these multiple hierarchies and combine them into a single

multiscale segmentation hierarchy. Our grouping component then produces a ranked list of object proposals by

efficiently exploring the combinatorial space of these regions.

We conduct a comprehensive and large-scale empirical
validation. On the BSDS500 (Sect. 4) we report significant
progress in contour detection and hierarchical segmen-
tation. On the VOC2012, SBD, and COCO segmentation
datasets (Sect. 6), our proposals obtain overall state-of-
the-art accuracy both as segmented proposals and as
bounding boxes. MCG is efficient, its good generaliza-
tion power makes it parameter free in practice, and it
provides a ranked set of proposals that are competitive
in all regimes of number of proposals.

2 RELATED WORK

For space reasons, we focus our review on recent normal-
ized cut algorithms and object proposals for recognition.

Fast normalized cuts: The efficient computation of
normalized-cuts eigenvectors has been the subject of
recent work, as it is often the computational bottleneck
in grouping algorithms. Taylor [23] presented a tech-
nique for using a simple watershed oversegmentation
to reduce the size of the eigenvector problem, sacri-
ficing accuracy for speed. We take a similar approach
of solving the eigenvector problem in a reduced space,
though we use simple image-pyramid operations on
the affinity matrix (instead of a separate segmentation
algorithm) and we see no loss in performance despite a
20× speed improvement. Maire and Yu [24] presented
a novel multigrid solver for producing eigenvectors at
multiple scales, which speeds up fine-scale eigenvector
computation by leveraging coarse-scale solutions. Our
technique also uses the scale-space structure of an image,
but instead of solving the problem at multiple scales,
we simply reduce the scale of the problem, solve it at
a reduced scale, and then upsample the solution while
preserving the structure of the image. As such, our
technique is faster and much simpler, requiring only a
few lines of code wrapped around a standard sparse
eigensolver.

Object Proposals: Class-independent methods that
generate object hypotheses can be divided into those
whose output is an image window and those that gen-
erate segmented proposals.

Among the former, Alexe et al. [16] propose an ob-
jectness measure to score randomly-sampled image win-
dows based on low-level features computed on the
superpixels of [21]. Manen et al. [25] propose to use the
Randomized Prim’s algorithm, Zitnick et al. [26] group
contours directly to produce object windows, and Cheng
et al. [27] generate box proposals at 300 images per
second. In contrast to these approaches, we focus on
the finer-grained task of pixel-accurate object extraction,
rather than on window selection. However, by just tak-
ing the bounding box around our segmented proposals,
our results are also state of the art as window proposals.

Among the methods that produce segmented propos-
als, Carreira and Sminchisescu [18] hypothesize a set of
placements of fore- and background seeds and, for each
configuration, solve a constrained parametric min-cut
(CPMC) problem to generate a pool of object hypotheses.
Endres and Hoiem [19] base their category-independent
object proposals on an iterative generation of a hierarchy
of regions, based on the contour detector of [20] and
occlusion boundaries of [28]. Kim and Grauman [17]
propose to match parts of the shape of exemplar objects,
regardless of their class, to detected contours by [20].
They infer the presence and shape of a proposal object
by adapting the matched object to the computed super-
pixels.

Uijlings et al. [12] present a selective search algorithm
based on segmentation. Starting with the superpixels
of [21] for a variety of color spaces, they produce a set of
segmentation hierarchies by region merging, which are
used to produce a set of object proposals. While we also
take advantage of different hierarchies to gain diversity,
we leverage multiscale information rather than different



3

color spaces.
Recently, two works proposed to train a cascade of

classifiers to learn which sets of regions should be
merged to form objects. Ren and Shankhnarovich [29]
produce full region hierarchies by iteratively merging
pairs of regions and adapting the classifiers to different
scales. Weiss and Taskar [30] specialize the classifiers also
to size and class of the annotated instances to produce
object proposals.

Malisiewicz and Efros [4] took one of the first steps
towards combinatorial grouping, by running multiple
segmenters with different parameters and merging up
to three adjacent regions. In [8], another step was taken
by considering hierarchical segmentations at three differ-
ent scales and combining pairs and triplets of adjacent
regions from the two coarser scales to produce object
proposals.

The most recent wave of object proposal algorithms
is represented by [13], [14], and [15], which all keep the
quality of the seminal proposal works while improving
the speed considerably. Krähenbühl and Koltun [13]
find object proposal by identifying critical level sets
in geodesic distance transforms, based on seeds placed
in learnt places in the image. Rantalankila et al. [14]
perform a global and local search in the space of sets
of superpixels. Humayun et al. [15] reuse a graph to
perform many parametric min-cuts over different seeds
in order to speed the process up.

A substantial difference between our approach and
previous work is that, instead of relying on pre-
computed hierarchies or superpixels, we propose a uni-
fied approach that produces and groups high-quality
multiscale regions. With respect to the combinatorial ap-
proaches of [4], [8], our main contribution is to develop
efficient algorithms to explore a much larger combinato-
rial space by taking into account a set of object examples,
increasing thus the likelihood of having complete objects
in the pool of proposals. Our approach has therefore
the flexibility to adapt to specific applications and types
of objects, and can produce proposals at any trade-off
between their number and their accuracy.

3 THE SEGMENTATION ALGORITHM

Consider a segmentation of the image into regions that
partition its domain S = {Si}i. A segmentation hierarchy
is a family of partitions {S∗,S1, ...,SL} such that: (1)
S∗ is the finest set of superpixels, (2) SL is the complete
domain, and (3) regions from coarse levels are unions of
regions from fine levels. A hierarchy where each level Si

is assigned a real-valued index λi can be represented by a
dendrogram, a region tree where the height of each node
is its index. Furthermore, it can also be represented as an
ultrametric contour map (UCM), an image obtained by
weighting the boundary of each pair of adjacent regions
in the hierarchy by the index at which they are merged
[31], [32]. This representation unifies the problems of
contour detection and hierarchical image segmentation:

Thr
esh

old
Merging-sequencepartitions

λ*

λ1

λ2

λL

Region Tree (dendrogram)

*

#

#

#

SL

S2

S1

S*

Ultrametric Contour Map

Fig. 3. Duality between a UCM and a region tree:

Schematic view of the dual representation of a seg-

mentation hierarchy as a region dendrogram and as an

ultrametric contour map.

a threshold at level λi in the UCM produces the segmen-
tation Si.

Figure 3 schematizes these concepts. First, the lower
left corner shows the probability of boundary of a UCM.
One of the main properties of a UCM is that when we
threshold the contour strength at a certain value, we
obtain a closed boundary map, and thus a partition.
Thresholding at different λi, therefore, we obtain the
so-called merging-sequence partitions (left column in
Figure 3); named after the fact that a step in this sequence
corresponds to merging the set of regions sharing the
boundary of strength exactly λi.

For instance, the boundary between the wheels and
the floor has strength λ1, thus thresholding the contour
above λ1 makes the wheels merge with the floor. If we
represent the regions in a partition as nodes of a graph,
we can then represent the result of merging them as their
parent in a tree. The result of sweeping all λi values
can therefore be represented as a region tree, whose root
is the region representing the whole image (right part
of Figure 3). Given that each merging is associated with
a contour strength, the region tree is in fact a region
dendogram.

As an example, in the gPb-ucm algorithm of [20],
brightness, color and texture gradients at three fixed disk
sizes are first computed. These local contour cues are
globalized using spectral graph-partitioning, resulting in
the gPb contour detector. Hierarchical segmentation is
then performed by iteratively merging adjacent regions
based on the average gPb strength on their common
boundary. This algorithm produces therefore a tree of
regions at multiple levels of homogeneity in brightness,
color and texture, and the boundary strength of its UCM
can be interpreted as a measure of contrast.

Coarse-to-fine is a powerful processing strategy in
computer vision. We exploit it in two different ways
to develop an efficient, scalable and high-performance
segmentation algorithm: (1) To speed-up spectral graph
partitioning and (2) To create aligned segmentation hi-
erarchies.



4

3.1 Fast Downsampled Eigenvector Computation

The normalized cuts criterion is a key globalization
mechanism of recent high-performance contour detec-
tors such as [20], [22]. Although powerful, such spectral
graph partitioning has a significant computational cost
and memory footprint that limit its scalability. In this
section, we present an efficient normalized cuts approx-
imation which in practice preserves full performance for
contour detection, while having low memory require-
ments and providing a 20× speed-up.

Given a symmetric affinity matrix A, we would like
to compute the k smallest eigenvectors of the Laplacian
of A. Directly computing such eigenvectors can be very
costly even with sophisticated solvers, due to the large
size of A. We therefore present a technique for efficiently
approximating the eigenvector computation by taking
advantage of the multiscale nature of our problem: A

models affinities between pixels in an image, and images
naturally lend themselves to multiscale or pyramid-like
representations and algorithms.

Our algorithm is inspired by two observations: 1) if
A is bistochastic (the rows and columns of A sum to 1)
then the eigenvectors of the Laplacian A are equal to
the eigenvectors of the Laplacian of A2, and 2) because
of the scale-similar nature of images, the eigenvectors
of a “downsampled” version of A in which every other
pixel has been removed should be similar to the eigen-
vectors of A. Let us define pixel decimate (A), which
takes an affinity matrix A and returns the set of indices
of rows/columns in A corresponding to a decimated
version of the image from which A was constructed. That
is, if i = pixel decimate (A), then A [i, i] is a decimated
matrix in which alternating rows and columns of the im-
age have been removed. Computing the eigenvectors of
A [i, i] works poorly, as decimation disconnects pixels in
the affinity matrix, but the eigenvectors of the decimated
squared affinity matrix A2 [i, i] are similar to those of A,
because by squaring the matrix before decimation we
intuitively allow each pixel to propagate information to
all of its neighbors in the graph, maintaining connec-
tions even after decimation. Our algorithm works by
efficiently computing A2 [i, i] as A [:, i]

T
A [:, i]1 (the naive

approach of first squaring A and then decimating it is
prohibitively expensive), computing the eigenvectors of
A2 [i, i], and then “upsampling” those eigenvectors back
to the space of the original image by pre-multiplying
by A [:, i]. This squaring-and-decimation procedure can
be applied recursively several times, each application
improving efficiency while slightly sacrificing accuracy.

Pseudocode for our algorithm, which we call
“DNCuts” (Downsampled Normalized Cuts) is given in
Algorithm 1, where A is our affinity matrix and d is
the number of times that our squaring-and-decimation
operation is applied. Our algorithm repeatedly applies
our joint squaring-and-decimation procedure, computes

1. The Matlab-like notation A [:, i] indicates keeping the columns of
matrix A whose indices are in the set i.

Algorithm 1 dncuts(A, d, k)

1: A0 ← A

2: for s = [1, 2, . . . , d] do
3: is ← pixel decimate (As−1)
4: Bs ← As−1 [ : , is ]
5: Cs ← diag(Bs

~1)−1Bs

6: As ← CT

s Bs

7: end for
8: Xd ← ncuts(Ad, k)
9: for s = [d, d− 1, . . . , 1] do

10: Xs−1 ← CsXs

11: end for
12: return whiten(X0)

Fig. 4. Example of segmentation projection. In order to

“snap” the boundaries of a segmentation R (left) to those

of a segmentation S (middle), since they do not align, we

compute π(R,S) (right) by assigning to each segment in

S its mode among the labels of R.

the smallest k eigenvectors of the final “downsam-
pled” matrix Ad by using a standard sparse eigensolver
ncuts(Ad, k), and repeatedly “upsamples” those eigen-
vectors. Because our A is not bistochastic and decimation
is not an orthonormal operation, we must do some
normalization throughout the algorithm (line 5) and
whiten the resulting eigenvectors (line 10). We found that
values of d = 2 or d = 3 worked well in practice. Larger
values of d yielded little speed improvement (as much of
the cost is spent downsampling A0) and start negatively
affecting accuracy. Our technique is similar to Nystrom’s
method for computing the eigenvectors of a subset of A,
but our squaring-and-decimation procedure means that
we do not depend on long-range connections between
pixels.

3.2 Aligning Segmentation Hierarchies

In order to leverage multi-scale information, our ap-
proach combines segmentation hierarchies computed
independently at multiple image resolutions. How-
ever, since subsampling an image removes details and
smooths away boundaries, the resulting UCMs are mis-
aligned, as illustrated in the second panel of Fig. 2. In this
section, we propose an algorithm to align an arbitrary
segmentation hierarchy to a target segmentation and,
in Sect. 5, we show its effectiveness for multi-scale
segmentation.

The basic operation is to “snap” the boundaries of a
segmentation R = {Ri}i to a segmentation S = {Sj}j , as
illustrated in Fig. 4. For this purpose, we define L(Sj),



5

the new label of a region Sj ∈ S , as the majority label of
its pixels in R:

L(Sj) = argmax
i

|Sj ∩Ri|

|Sj |
(1)

We call the segmentation defined by this new labeling of
all the regions of S the projection of R onto S and denote
it by π(R,S).

In order to project an UCM onto a target segmentation
S , which we denote π(UCM,S), we project in turn each
of the levels of the hierarchy onto S . Note that, since
all the levels are projected onto the same segmentation,
the family of projections is by construction a hierar-
chy of segmentations. This procedure is summarized in
pseudo-code in Algorithm 2.

Algorithm 2 UCM Rescaling and Alignment

Require: An UCM with a set of levels [t1, ..., tK ]
Require: A target segmentation S∗

1: UCMπ ← 0
2: for t = [t1, ..., tK ] do
3: S ← sampleHierarchy(UCM, t)
4: S ← rescaleSegmentation(S,S∗)
5: S ← π(S,S∗)
6: contours← extractBoundary(S)
7: UCMπ ← max(UCMπ, t ∗ contours)
8: end for
9: return UCMπ

Observe that the routines sampleHierarchy and
extractBoundary can be computed efficiently because
they involve only thresholding operations and connected
components labeling. The complexity is thus dominated
by rescaleSegmentation in Step 4, a nearest neighbor
interpolation, and the projection in Step 5, which are
computed K times.

3.3 Multiscale Hierarchical Segmentation

Single-scale segmentation: We consider as input
the following local contour cues: (1) brightness, color and
texture differences in half-disks of three sizes [33], (2)
sparse coding on patches [22], and (3) structured forest
contours [34]. We globalize the contour cues indepen-
dently using our fast eigenvector gradients of Sect. 3.1,
combine global and local cues linearly, and construct
an UCM based on the mean contour strength. We tried
learning weights using gradient ascent on the F-measure
on the training set [20], but evaluating the final hierar-
chies rather than open contours. We observed that this
objective favors the quality of contours at the expense of
regions and obtained better overall results by optimizing
the Segmentation Covering metric [20].

Hierarchy Alignment: We construct a multiresolu-
tion pyramid with N scales by subsampling / super-
sampling the original image and applying our single-
scale segmenter. In order to preserve thin structures
and details, we declare as set of possible boundary

locations the finest superpixels in the highest-resolution.
Then, applying recursively Algorithm 2, we project each
coarser UCM onto the next finer scale until aligning it
to the highest resolution superpixels.

Multiscale Hierarchy: After alignment, we have a
fixed set of boundary locations, and N strengths for
each of them, coming from the different scales. We
formulate this problem as binary boundary classification
and train a classifier that combines these N features into
a single probability of boundary estimation. We exper-
imented with several learning strategies for combining
UCM strengths: (a) Uniform weights transformed into
probabilities with Platt’s method. (b) SVMs and logistic
regression, with both linear and additive kernels. (c)
Random Forests. (d) The same algorithm as for single-
scale. We found the results with all learning methods
surprisingly similar, in agreement with the observation
reported by [33]. This particular learning problem, with
only a handful of dimensions and millions of data points,
is relatively easy and performance is mainly driven by
our already high-performing and well calibrated fea-
tures. We therefore use the simplest option (a).

4 EXPERIMENTS ON THE BSDS500

We conduct extensive experiments on the BSDS500 [35],
using the standard evaluation metrics and following the
best practice rules of that dataset. We also report results
with a recent evaluation metric Fop [36], [37], Precision-
Recall for objects and parts, using the publicly-available
code.

Single-scale Segmentation: Table 1-top shows the
performance of our single-scale segmenter for different
types of input contours on the validation set of the
BSDS500. We obtain high-quality hierarchies for all the
cues considered, showing the generality of our approach.
Furthermore, when using them jointly (row ’Comb.’
in top panel), our segmenter outperforms the versions
with individual cues, suggesting its ability to leverage
diversified inputs. In terms of efficiency, our fast nor-
malized cuts algorithm provides an average 20× speed-
up over [20], starting from the same local cues, with
no significant loss in accuracy and with a low memory
footprint.

Multiscale Segmentation: Table 1-bottom evaluates
our full approach in the same experimental conditions as
the upper panel. We observe a consistent improvement
in performance in all the metrics for all the inputs, which
validates our architecture for multiscale segmentation.
We experimented with the range of scales and found
N = {0.5, 1, 2} adequate for our purposes. A finer
sampling or a wider range of scales did not provide
noticeable improvements. We tested also two degraded
versions of our system (not shown in the table). For
the first one, we resized contours to the original image
resolution, created UCMs and combined them with the
same method as our final system. For the second one, we
transformed per-scale UCMs to the original resolution,



6

Boundary Region

Fb Fop SC PRI VI
Input ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS

S
in

g
le

-S
ca

le Pb [33] 0.702 0.733 0.334 0.370 0.577 0.636 0.801 0.847 1.692 1.490

SC [22] 0.697 0.725 0.264 0.306 0.540 0.607 0.777 0.835 1.824 1.659

SF [34] 0.719 0.737 0.338 0.399 0.582 0.651 0.803 0.851 1.608 1.432

Comb. 0.719 0.750 0.358 0.403 0.602 0.655 0.809 0.855 1.619 1.405

M
u

lt
is

ca
le Pb [33] 0.713 0.745 0.350 0.389 0.598 0.656 0.807 0.856 1.601 1.418

SC [22] 0.705 0.734 0.331 0.384 0.579 0.647 0.799 0.851 1.637 1.460

SF [34] 0.725 0.744 0.370 0.420 0.600 0.660 0.810 0.854 1.557 1.390

Comb. 0.725 0.757 0.371 0.408 0.611 0.670 0.813 0.862 1.548 1.367

TABLE 1

BSDS500 val set. Control experiments for single-scale

(top) and multiscale (bottom) hierarchical segmentation

with different input contour detectors

but omitted the strength transfer to the finest superpixels
before combining them. The first ablated version pro-
duces interpolation artifacts and smooths away details,
while the second one suffers from misalignment. Both
fail to improve performance over the single-scale result,
which provides additional empirical support for our
multiscale approach. We also observed a small degra-
dation in performance when forcing the input contour
detector to use only the original image resolution, which
indicates the advantages of considering multiscale infor-
mation at all stages of processing.

Since there are no drastic changes in our results when
taking as input the different individual cues or their com-
bination, in the sequel we use the version with structured
forests for efficiency reasons, which we denote MCG-
UCM-Our.

Comparison with state-of-the-art.: Figure 5 com-
pares our multiscale hierarchical segmenter MCG ( )
and our single-scale hierarchical segmenter SCG ( )
on the BSDS500 test set against all the methods for
which there is publicly available code. We also compare
to the recent ISCRA [29] hierarchies ( ), provided
precomputed by the authors. We obtain consistently the
best results to date on BSDS500 for all operating regimes,
both in terms of boundary and region quality.

Note that the range of object scales in the BSDS500
is limited, which translates into modest absolute gains
from MCG ( ) with respect to SCG ( ) in terms
of boundary evaluation (left-hand plot), but more sig-
nificant improvements in terms of objects and parts
(right-hand plot). We will also observe more substantial
improvements with respect to gPb-UCM ( ) when we
move to PASCAL, SBD, and COCO in Section 6 (e.g. see
Fig. 9).

Ground-Truth Hierarchy: In order to gain further
insights, we transfer the strength of each ground-truth
segmentation to our highest-resolution superpixels SN∗

and construct a combined hierarchy. This approxima-
tion to the semantic hierarchy, Ground-Truth Hierarchy
(GTH) in Fig. 5, is an upper-bound for our approach as
both share the same boundary locations and the only
difference is their strength. Since the strength of GTH

is proportional to the number of subjects marking it, it
provides naturally the correct semantic ordering, where
outer object boundaries are stronger than internal parts.

Recently, Maire et al. [38] developed an annotation
tool where the user encodes explicitly the “perceptual
strength” of each contour. Our approach provides an
alternative where the semantic hierarchy is reconstructed
by sampling flat annotations from multiple subjects.

5 OBJECT PROPOSAL GENERATION

The image segmentation algorithm presented in the
previous sections builds on low-level features, so its
regions are unlikely to represent accurately complete
objects with heterogeneous parts. In this context, object
proposal techniques create a set of hypotheses, possibly
overlapping, which are more likely to represent full
object instances.

Our approach to object proposal generation is to
combinatorially look for sets of regions from our seg-
mentation hierarchies that merged together are likely
to represent complete objects. In this section, we first
describe the efficient computation of certain region de-
scriptors on a segmentation tree. Then, we describe how
we use these techniques to efficiently explore the sets of
merged regions from the hierarchy. Finally, we explain
how we train the parameters of our algorithm for object
proposals and how we rank the candidates by their
probability of representing an object.

Fast computation of descriptors: Let us assume, for
instance, we want to compute the area of all regions
in the hierarchy. Intuitively, working strictly on the
merging-sequence partitions, we would need to scan all
pixels in all partitions. On the other hand, working on
the region tree allows us to scan the image only once to
compute the area of the leaves, and then propagate the
area to all parents as the addition of the areas of their
children.

As a drawback, the algorithms become intricate in
terms of coding and necessary data structures. Take, for
instance, the computation of the neighbors of a certain
region, which is trivial via scanning the partition on the
merging sequence (look for region labels in the adjacent
boundary pixels), but need tailored data structures and
algorithms in the region tree.

Formally, let us assume the image has p pixels, and we
build a hierarchy based on s superpixels (leaves of the
tree), and m mergings (different UCM strength values).
The cost of computing the area on all regions using the
merging-sequence partitions will be the cost of scanning
all pixels in these partitions, thus p·(m+1). In contrast,
the cost using the region tree will involve scanning the
image once, and then propagating the area values, so
p+m, which is notably faster.

We built tailored algorithms and data structures to
compute the bounding box, perimeter, and neighbors of
a region using the region tree representation.



7

Boundaries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Human [0.81-0.21] ISCRA [0.72]

GTH [0.96] NCuts [0.63]

MCG-Our [0.74] EGB [0.61]

SCG-Our [0.74] MShift [0.60]

gPb-UCM [0.73] Quadtree [0.41]

Objects and Parts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Human [0.56-0.05]

GTH [0.64]

MCG-Our [0.38]

SCG-Our [0.35]

ISCRA [0.35]

gPb-UCM [0.35]

MShift [0.23]

NCuts [0.21]

EGB [0.16]

Quadtree [0.06]

Fig. 5. BSDS500 test set. Precision-Recall curves for boundaries [35] (left) and for objects and parts [36] (right). The

marker on each curve is placed on the Optimal Dataset Scale (ODS), and its F measure is presented in brackets in the

legend. The isolated red asterisks refer to the human performance assessed on the same image (one human partition

against the rest of human annotations on the same image) and on a different image (one human partition against the

human partitions of a different, randomly selected, image).

Combinatorial Grouping of Proposals: We can
cast object segmentation as selecting some regions in
the hierarchy, or in other words, as a combinatorial
optimization problem on the hierarchy. To illustrate this
principle, Figure 6(a) shows the simplified representation
of the hierarchy in Figure 3. Figure 6(b) and (c) show two
object proposals, and their representation in the region
hierarchy.

R4

R5

R1

R2

R3

R6

R9

R7

R1 R2 R3 R4

R8

R5 R6

(a)

R9

R7

R1 R2 R3 R4

R8

R5 R6

(b)

R9

R7

R1 R2 R3 R4

R8

R5 R6

(c)

Fig. 6. Object segmentation as combinatorial opti-
mization: Examples of objects (b), (c), formed by select-

ing regions from a hierarchy (a).

Since hierarchies are built taking only low-level fea-
tures into account, and do not use semantic information,
objects will usually not be optimally represented using a
single region in the hierarchy. As an example, Figure 6(c)
shows the optimum representation of the car, consisting
of three regions.

A sensible approach to create object proposals is there-
fore to explore the set of n-tuples of regions. The main
idea behind MCG is to explore this set efficiently, taking
advantage of the region tree representation, via the fast

computation of region neighbors.

The whole set of tuples, however, is huge, and so it
is not feasible to explore it exhaustively. Our approach
ranks the proposals using the height of their regions in
the tree (UCM strength) and explores the tree from the
top, but only down to a certain threshold. To speed the
process up, we design a top-down algorithm to compute
the region neighbors and thus only compute them down
to a certain depth in the tree.

To further improve the results, we not only consider
the n-tuples from the resulting MCG-UCM-Our hierar-
chy, but also the rest of hierarchies computed at different
scales. As we will show in the experiments, diversity
significantly improves the proposal results.

Parameter Learning via Pareto Front Optimization:
MCG takes a set of diverse hierarchies and computes the
n-tuples up to a certain UCM strength. We can interpret
the n-tuples from each hierarchy as a ranked list of Ni

proposals that are put together to create the final set of
Np proposals.

At training time, we would like to find, for differ-
ent values of Np, the number of proposals from each
ranked list N i such that the joint pool of Np proposals
has the best achievable quality. We frame this learning
problem as a Pareto front optimization [39], [40] with
two conflicting objective functions: number of proposals
and achievable quality. At test time, we select a working
point on the Pareto front, represented by the

{

N i

}

values, based either on the number of proposals Np we
can handle or on the minimum achievable quality our



8

application needs, and we combine the N i top proposals
from each hierarchy list.

Formally, assuming R ranked lists Li, an exhaustive
learning algorithm would consider all possible values
of the R-tuple {N1, . . . , NR}, where Ni ∈ {0, . . . , |Li|};
adding up to

∏R

1
|Li| parameterizations to try, which is

intractable in our setting.
Figure 7 illustrates the learning process. To reduce the

dimensionality of the search space, we start by selecting
two ranked lists L1, L2 (green curves) and we sample
the list at S levels of number of proposals (green dots).
We then scan the full S2 different parameterizations to
combine the proposals from both (blue dots). In other
words, we analyze the sets of proposals created by
combining the top N1 from L1 (green dots) and the top
N2 from L2.

10
1

10
2

10
3

10
4

0.3

0.6

0.9

Number of proposals

Q
u

a
li
ty

10
1

10
2

10
3

10
4

0.3

0.6

0.9

Number of proposals

Q
u

a
li
ty

10
1

10
2

10
3

10
4

0.3

0.6

0.9

Number of proposals

Q
u

a
li
ty

Ranked lists of object proposals

L 1 L R

Pareto front

reduction of parameters

{N 1 · · ·  N R}

Fig. 7. Pareto front learning: Training the combinatorial

generation of proposals using the Pareto front

The key step of the optimization consists in discarding
those parameterizations whose quality point is not in
the Pareto front (red curve). (i.e., those parameterizations
that can be substituted by another with better quality
with the same number of proposals, or by one with the
same quality with less proposals.) We sample the Pareto
front to S points and we iterate the process until all the
ranked lists are combined.

Each point in the final Pareto front corresponds to a
particular parameterization {N1, . . . , NR}. At train time,
we choose a point on this curve, either at a given
number of proposals Nc or at the achievable quality
we are interested in (black triangle) and store the pa-
rameters

{

N1, . . . , NR

}

. At test time, we combine the
{

N1, . . . , NR

}

top proposals from each ranked list. The
number of sampled configurations using the proposed
algorithm is (R − 1)S2, that is, we have reduced an
exponential problem (SR) to a quadratic one.

Regressed Ranking of Proposals: To further reduce
the number of proposals, we train a regressor from
low-level features, as in [18]. Since the proposals are
all formed by a set of regions from a reduced set of
hierarchies, we focus on features that can be computed
efficiently in a bottom-up fashion, as explained previ-
ously.

We compute the following features:
• Size and location: Area and perimeter of the can-

didate; area, position, and aspect ratio of the bounding
box; and the area balance between the regions in the

candidate.
• Shape: Perimeter (and sum of contour strength)

divided by the squared root of the area; and area of the
region divided by that of the bounding box.

• Contours: Sum of contour strength at the bound-
aries, mean contour strength at the boundaries; mini-
mum and maximum UCM threshold of appearance and
disappearance of the regions forming the candidate.
We train a Random Forest using these features to regress
the object overlap with the ground truth, and diversify
the ranking based on Maximum Marginal Relevance
measures [18]. We tune the random forest learning on
half training set and validating on the other half. For
the final results, we train on the training set and evaluate
our proposals on the validation set of PASCAL 2012.

6 EXPERIMENTS ON PASCAL VOC, SBD,
AND COCO

This section presents our large-scale empirical validation
of the object proposal algorithm described in the previ-
ous section. We perform experiments in three annotated
databases, with a variety of measures that demonstrate
the state-of-the-art performance of our algorithm.

Datasets and Evaluation Measures: We conduct ex-
periments in the following three annotated datasets: the
segmentation challenge of PASCAL 2012 Visual Object
Classes (SegVOC12) [41], the Berkeley Semantic Bound-
aries Dataset (SBD) [42], and the Microsoft Common
Objects in Context (COCO) [43]. They all consist of
images with annotated objects of different categories.
Table 2 summarizes the number of images and object
instances in each database.

Number of Number of Number of
Classes Images Objects

SegVOC12 20 2 913 9 847
SBD 20 12 031 32 172
COCO 80 123 287 910 983

TABLE 2

Sizes of the databases

Regarding the performance metrics, we measure the
achievable quality with respect to the number of pro-
posals, that is, the quality we would have if an oracle
selected the best proposal among the pool. This aligns
with the fact that object proposals are a preprocessing
step for other algorithms that will represent and classify
them. We want, therefore, the achievable quality within
the proposals to be as high as possible, while reducing
the number of proposals to make the final system as fast
as possible.

As a measure of quality of a specific proposal with
respect to an annotated object, we consider the Jaccard
index J , also known as overlap or intersection over
union; which is defined as the size of the intersection
of the two pixel sets over the size of their union.



9

To compute the overall quality for the whole database,
we first select the best proposal for each annotated
instance with respect to J . The Jaccard index at instance
level (Ji) is then defined as the mean best overlap for all
the ground-truth instances in the database, also known
as Best Spatial Support score (BSS) [4] or Average Best
Overlap (ABO) [12].

Computing the mean of the best overlap on all objects,
as done by Ji, hides the distribution of quality among
different objects. As an example, Ji = 0.5 can mean
that the algorithm covers half the objects perfectly and
completely misses the other half, or can also mean that
all the objects are covered exactly at J = 0.5. This
information might be useful to decide which algorithm
to use. Computing a histogram of the best overlap would
provide very rich information, but then the resulting
plot would be 3D (number of proposals, bins, and bin
counts). Alternatively, we propose to plot different per-
centiles of the histogram.

Interestingly, a certain percentile of the histogram
of best overlaps consists in computing the number of
objects whose best overlap is above a certain Jaccard
threshold, which can be interpreted as the best achiev-
able recall of the technique over a certain threshold. We
compute the recall at three different thresholds: J =0.5,
J=0.7, and J=0.85.

Learning Strategy Evaluation: We first estimate the
loss in performance due to not sweeping all the possible
values of {N1, . . . , NR} in the combination of proposal
lists via the proposed greedy strategy. To do so, we will
compare this strategy with the full combination on a
reduced problem to make the latter feasible. Specifically,
we combine the 4 ranked lists coming from the single-
tons at all scales, instead of the full 16 lists coming from
singletons, pairs, triplets, and 4-tuples. We also limit the
search to 20 000 proposals, further speeding the process
up.

In this situation, the mean loss in achievable quality
along the full curve of parameterization is Ji = 0.0002,
with a maximum loss of Ji=0.004 (0.74%). In exchange,
our proposed learning strategy on the full 16 ranked lists
takes about 20 seconds to compute on the training set of
SegVOC12, while the singleton-limited full combination
takes 4 days (the full combination would take months).

Combinatorial Grouping: We now evaluate the
Pareto front optimization strategy in the training set of
SegVOC12. As before, we extract the lists of proposals
from the three scales and the multiscale hierarchy, for
singletons, pairs, triplets, and 4-tuples of regions, leading
to 16 lists, ranked by the minimum UCM strength of the
regions forming each proposal.

Figure 8 shows the Pareto front evolution of Ji with
respect to the number of proposals for up to 1, 2, 3, and
4 regions per proposal (4, 8, 12, and 16 lists, respectively)
at training and testing time on SegVOC12. As baselines,
we plot the raw singletons from MCG-UCM-Our, gPb-
UCM, and Quadtree; as well as the uniform combination
of scales.

103 104 105
0

20

40

60

80

100

Number of proposals

R
eg

io
n

d
is

tr
ib

u
ti

o
n

p
er

ce
n

ta
g

e

Scale 2.0

Scale 1.0

Scale 0.5

Multi-Scale

Fig. 10. Region distribution learnt by the Pareto front

optimization on SegVOC12.

The improvement of considering the combination of
all 1-region proposals ( ) from the 3 scales and the
MCG-UCM-Our with respect to the raw MCG-UCM-Our
( ) is significant, which corroborates the gain in diver-
sity obtained from hierarchies at different scales. In turn,
the addition of 2- and 3-region proposals ( and )
noticeably improves the achievable quality. This shows
that hierarchies do not get full objects in single regions,
which makes sense given that they are built using low-
level features only. The improvement when adding 4-
tuples ( ) is marginal at the number of proposals we
are considering. When analyzing the equal distribution
of proposals from the four scales ( ), we see that the
less proposals we consider, the more relevant the Pareto
optimization becomes. At the selected working point, the
gain of the Pareto optimization is 2 points.

Figure 10 shows the distribution of proposals from
each of the scales combined in the Pareto front. We
see that the coarse scale (0.5) is the most picked at
low number of proposals, and the rest come into play
when increasing their number, since one can afford more
detailed proposals. The multi-scale hierarchy is the one
with less weight, since it is created from the other three.

Pareto selection and ranking: Back to Figure 8,
the red asterisk ( ) marks the selected configuration
{

N1, . . . , NR

}

in the Pareto front (black triangle in Fig-
ure 7), which is selected at a practical level of proposals.
The red plus sign ( ) represents the set of proposals after
removing those duplicate proposals whose overlap leads
to a Jaccard higher than 0.95. The proposals at this point
are the ones that are ranked by the learnt regressor ( ).

At test time (right-hand plot), we directly combine the
learnt

{

N1, . . . , NR

}

proposals from each ranked list.
Note that the Pareto optimization does not overfit, given
the similar result in the training and validation datasets.
We then remove duplicates and rank the results. In this
case, note the difference between the regressed result in
the training and validation sets, which reflects overfit-
ting, but despite this we found it beneficial with respect
to the non-regressed result.



10

Training

10
2

10
3

10
4

10
5

10
6

0.4

0.5

0.6

0.7

0.8

0.9

Number of proposals

Ja
cc

ar
d

in
d

ex
at

in
st

an
ce

le
v

el
(J

i
)

Validation

10
2

10
3

10
4

10
5

10
6

0.4

0.5

0.6

0.7

0.8

0.9

Number of proposals

Ja
cc

ar
d

in
d

ex
at

in
st

an
ce

le
v

el
(J

i
)

Pareto up to 4-tuples

Pareto up to triplets

Pareto up to pairs

Pareto only singletons

Raw Ours-multi singl.

Raw gPb-UCM singl.

Raw Quadtree singl.

Equal distribution

Selected configuration

Filtered candidates

Regressed ranking

Fig. 8. Pareto front evaluation. Achievable quality of our proposals for singletons, pairs, triplets, and 4-tuples; and

the raw proposals from the hierarchies on PASCAL SegVOC12 training (left) and validation (right) sets.

PASCAL SegVOC12

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of proposals

Ja
cc

ar
d

in
d

ex
at

in
st

an
ce

le
v

el
(J

i
)

SBD

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of proposals

Ja
cc

ar
d

in
d

ex
at

in
st

an
ce

le
v

el
(J

i
)

COCO

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of proposals

Ja
cc

ar
d

in
d

ex
at

in
st

an
ce

le
v

el
(J

i
)

MCG-Our

SCG-Our

CPMC [18]

CI [19]

GOP [13]

GLS [14]

RIGOR [15]

ShSh [17]

SeSe [12]

MCG-UCM-Our

gPb-UCM

Quadtree

Fig. 9. Object Proposals: Jaccard index at instance level. Results on SegVOC12, SBD, and COCO.

In the validation set of SegVOC12, the full set of
proposals (i.e., combining the full 16 lists) would contain
millions of proposals per image. The multiscale com-
binatorial grouping allows us to reduce the number of
proposals to 5 086 with a very high achievable Ji of 0.81
( ). The regressed ranking ( ) allows us to further
reduce the number of proposals below this point.

Segmented Proposals: Comparison with State of
the Art: We first compare our results against those
methods that produce segmented object proposals [13],
[14], [15], [12], [16], [17], [18], [19], using the implemen-
tations from the respective authors. We train MCG on
the training set of SegVOC12, and we use the learnt
parameters on the validation sets of SegVOC12, SBD,
and COCO.

Figure 9 shows the achievable quality at instance level
(Ji) of all methods on the validation set of SegVOC12,
SBD, and COCO. We plot the raw regions of MCG-
UCM-Our, gPb-UCM, and QuadTree as baselines where
available. We also evaluate a faster single-scale version of
MCG (Single-scale Combinatorial Grouping - SCG), which
takes the hierarchy at the native scale only and combines
up to 4 regions per proposal. This approach decreases
the computational load one order of magnitude while

keeping competitive results.
MCG proposals ( ) significantly outperform the

state-of-the-art at all regimes. The bigger the database is,
the better MCG results are with respect to the rest, which
shows that our techniques better generalize to unseen
images (recall that MCG is trained only in SegVOC12).

As commented on the measures description, Ji shows
mean aggregate results, so they can mask the distribu-
tion of quality among objects in the database. Figure 11
shows the recall at three different Jaccard levels. First,
these plots further highlight how challenging COCO
is, since we observe a significant drop in performance,
more pronounced than when measured by Ji and Jc.
Another interesting result comes from observing the
evolution of the plots for the three different Jaccard
values. Take for instance the performance of GOP ( )
against MCG-Our ( ) in SBD. While for J=0.5 GOP
slightly outperforms MCG, the higher the threshold, the
better MCG. Overall, MCG has specially good results
at higher J values. In other words, if one looks for
proposals of very high accuracy, MCG is the method
with highest recall, at all regimes and in all databases.
In all measures and databases, SCG ( ) obtains very
competitive results, especially if we take into account



11

PASCAL SegVOC12

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J=0.5

J=0.7

J=0.85

Number of proposals

R
ec

al
l

SBD

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J = 0.5

J = 0.7

J = 0.85

Number of proposals

R
ec

al
l

COCO

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J = 0.5

J = 0.7

J = 0.85

Number of proposals

R
ec

al
l

MCG-Our

SCG-Our

CPMC [18]

CI [19]

GOP [13]

GLS [14]

RIGOR [15]

ShSh [17]

SeSe [12]

Quadtree

Fig. 11. Segmented Object Proposals: Recall at different Jaccard levels. Percentage of annotated objects for

which there is a proposal whose overlap with the segmented ground-truth shapes (not boxes) is above J = 0.5,

J = 0.7, and J = 0.85, for different number of proposals per image. Results on SegVOC12, SBD, and COCO.

PASCAL SegVOC12

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J = 0.5

J = 0.7

J = 0.85

Number of proposals

R
ec

al
l

SBD

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J = 0.5

J = 0.7

J = 0.85

Number of proposals

R
ec

al
l

COCO

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J = 0.5

J = 0.7

J = 0.85

Number of proposals

R
ec

al
l

MCG-Our

SCG-Our

CPMC [18]

CI [19]

GOP [13]

GLS [14]

RIGOR [15]

ShSh [17]

SeSe [12]

RP [25]

EB [26]

BING [27]

Obj [16]

Quadtree

Fig. 12. Bounding-Box Proposals: Recall at different Jaccard levels. Percentage of annotated objects for which

there is a bounding box proposal whose overlap with the ground-truth boxes is above J = 0.5, J = 0.7, and J = 0.85,

for different number of proposals per image. Results on SegVOC12, SBD, and COCO.

that it is 7× faster than MCG, as we will see in next
sections.

The complementarity of MCG with respect to other
proposal techniques, and their combination using the
Pareto front optimization is studied in [44].

Boxes Proposals: Comparison with State of the
Art: Although focused in providing segmented object
proposals, MCG may also be used to provide boxes
proposals, by taking the bounding box of the segmented
proposals and deduplicating them. We add the state
of the art in boxes proposals [26], [27], [25], and [16]
to the comparison. Figure 12 shows the recall values
of the boxes results when compared to the bounding
boxes of the annotated objects, for three different Jaccard
thresholds.

While many of the techniques specifically tailored to
boxes proposals are competitive at J =0.5, their perfor-

mance drops significantly at higher Jaccard thresholds.
Despite being tailored to segmented proposals, MCG
clearly outperforms the state of the art if you look
for precise localization of the bounding boxes. Again,
SCG is very competitive, especially taking its speed into
account.

MCG and SCG Time per Image: Table 3 shows
the time per image of the main steps of our approach,
from the raw image to the contours, the hierarchical
segmentation, and the proposal generation. All times are
computed using a single core on a Linux machine. Our
full MCG takes about 25 s. per image to compute the
multiscale hierarchies, and 17 s. to generate and rank
the 5 038 proposals on the validation set of SegVOC12.
Our single-scale SCG produces a segmentation hierarchy
of better quality than gPb-ucm [20] in less than 3 seconds
and with significant less memory footprint.



12

Fig. 13. COCO Qualitative Results: Image, ground truth, multi-scale UCM and best MCG proposals among the 500

best ranked. (More qualitative examples in the supplemental material.)

Contour Hierarchical Candidate
Total

Detection Segmentation Generation

MCG 4.6± 1.3 20.5± 5.6 17.0± 9.8 42.2± 14.8
SCG 1.0± 0.3 2.7± 0.7 2.6± 0.4 6.2± 1.1

TABLE 3

Time in seconds per image of MCG and SCG

Table 4 shows the time-per-image results compared to
the rest of state of the art in segmented proposals gen-
eration, all run on the same single-core Linux machine.

Proposal
Generation

MCG (Our) 42.2± 14.8
SCG (Our) 6.2± 1.1

GOP [13] 1.0± 0.3
GLS [14] 7.9± 1.7
SeSe [12] 15.9± 5.2
RIGOR [15] 31.6± 16.0
CPMC [18] ≥120
CI [19] ≥120
ShSh [17] ≥120

TABLE 4

Time comparison for all considered state-of-the-art

techniques that produce segmented proposals. All run

on the same single-core Linux machine.

Practical considerations: One of the key aspects of
object proposals is the size of the pool they generate.
Depending on the application, one may need more preci-
sion and thus a bigger pool, or one might need speed and
thus a small pool in exchange for some loss of quality.
MCG and SCG provide a ranked set of around 5 000 and
2 000 proposals, respectively, and one can take the N

first in case the specific application needs a smaller pool.
From a practical point of view, this means that one does
not need to re-parameterize them for the specific needs
of a certain application.

In contrast, the techniques that do not provide a
ranking of the proposals, need to be re-parameterized
to adapt them to a different number of proposals, which
is not desirable in practice.

On top of that, the results show that MCG and SCG
have outstanding generalization power to unseen images
(recall that the results for SBD and COCO have been
obtained using the learnt parameters on SegVOC12),
meaning that MCG and SCG offer the best chance to
obtain competitive results in an unseen database without
need to re-train.

Figure 13 shows some qualitative results on COCO.

7 CONCLUSIONS

We proposed Multiscale Combinatorial Grouping
(MCG), a unified approach for bottom-up segmentation
and object proposal generation. Our approach produces



13

state-of-the-art contours, hierarchical regions, and object
proposals. At its core are a fast eigenvector computation
for normalized-cut segmentation and an efficient
algorithm for combinatorial merging of hierarchical
regions. We also present Single-scale Combinatorial
Grouping (SCG), a speeded up version of our technique
that produces competitive results in under five seconds
per image.

We perform an extensive validation in BSDS500,
SegVOC12, SBD, and COCO, showing the quality, ro-
bustness and scalability of MCG. Recently, an indepen-
dent study [45], [46] provided further evidence to the
interest of MCG among the current state-of-the-art in
object proposal generation. Moreover, our object candi-
dates have already been employed as integral part of
high performing recognition systems [47].

In order to promote reproducible research on percep-
tual grouping, all the resources of this project – code,
pre-computed results, and evaluation protocols – are
publicly available2.

Acknowledgements: The last iterations of this work
have been done while Jordi Pont-Tuset has been at Prof.
Luc Van Gool’s Computer Vision Lab (CVL) of ETHZ,
Switzerland. This work has been partly developed in the
framework of the project BIGGRAPH-TEC2013-43935-R
and the FPU grant AP2008-01164; financed by the Span-
ish Ministerio de Economı́a y Competitividad, and the Eu-
ropean Regional Development Fund (ERDF). This work
was partially supported by ONR MURI N000141010933.

REFERENCES

[1] P. Viola and M. Jones, “Robust real-time face detection,” IJCV,
vol. 57, no. 2, 2004.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based mod-
els,” TPAMI, vol. 32, no. 9, 2010.

[4] T. Malisiewicz and A. A. Efros, “Improving spatial support for
objects via multiple segmentations,” in BMVC, 2007.

[5] C. Gu, J. Lim, P. Arbelaez, and J. Malik, “Recognition using
regions,” in CVPR, 2009.

[6] J. Carreira, F. Li, and C. Sminchisescu, “Object recognition by
sequential figure-ground ranking,” IJCV, vol. 98, no. 3, pp. 243–
262, 2012.

[7] A. Ion, J. Carreira, and C. Sminchisescu, “Probabilistic joint image
segmentation and labeling by figure-ground composition,” IJCV,
vol. 107, no. 1, pp. 40–57, 2014.

[8] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik, “Semantic segmentation using regions and parts,” in
CVPR, 2012.

[9] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic
segmentation with second-order pooling,” in ECCV, 2012.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion,” in CVPR, 2014.

[11] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based
r-cnns for fine-grained category detection,” in ECCV, 2014.

[12] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” IJCV, vol.
104, no. 2, pp. 154–171, 2013.

2. www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/

[13] P. Krähenbühl and V. Koltun, “Geodesic object proposals,” in
ECCV, 2014.

[14] P. Rantalankila, J. Kannala, and E. Rahtu, “Generating object
segmentation proposals using global and local search,” in CVPR,
2014.

[15] A. Humayun, F. Li, and J. M. Rehg, “RIGOR: Recycling Inference
in Graph Cuts for generating Object Regions,” in CVPR, 2014.

[16] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness
of image windows,” TPAMI, vol. 34, pp. 2189–2202, 2012.

[17] J. Kim and K. Grauman, “Shape sharing for object segmentation,”
in ECCV, 2012.

[18] J. Carreira and C. Sminchisescu, “CPMC: Automatic object
segmentation using constrained parametric min-cuts,” TPAMI,
vol. 34, no. 7, pp. 1312–1328, 2012.

[19] I. Endres and D. Hoiem, “Category-independent object proposals
with diverse ranking,” TPAMI, vol. 36, no. 2, pp. 222–234, 2014.

[20] P. Arbeláez, M. Maire, C. C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation,” TPAMI, vol. 33,
no. 5, pp. 898–916, 2011.

[21] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” IJCV, vol. 59, p. 2004, 2004.

[22] X. Ren and L. Bo, “Discriminatively trained sparse code gradients
for contour detection,” in NIPS, 2012.

[23] C. J. Taylor, “Towards fast and accurate segmentation,” CVPR,
2013.

[24] M. Maire and S. X. Yu, “Progressive multigrid eigensolvers for
multiscale spectral segmentation,” ICCV, 2013.

[25] S. Manén, M. Guillaumin, and L. Van Gool, “Prime Object Pro-
posals with Randomized Prim’s Algorithm,” in ICCV, 2013.

[26] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in ECCV, 2014.

[27] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr, “BING:
Binarized normed gradients for objectness estimation at 300fps,”
in CVPR, 2014.

[28] D. Hoiem, A. Efros, and M. Hebert, “Recovering occlusion bound-
aries from an image,” IJCV, vol. 91, no. 3, pp. 328–346, 2011.

[29] Z. Ren and G. Shakhnarovich, “Image segmentation by cascaded
region agglomeration,” in CVPR, 2013.

[30] D. Weiss and B. Taskar, “Scalpel: Segmentation cascades with
localized priors and efficient learning,” in CVPR, 2013.

[31] L. Najman and M. Schmitt, “Geodesic saliency of watershed
contours and hierarchical segmentation,” TPAMI, vol. 18, no. 12,
pp. 1163–1173, 1996.

[32] P. Arbeláez, “Boundary extraction in natural images using ultra-
metric contour maps,” in POCV, June 2006.

[33] D. Martin, C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color and texture cues,”
TPAMI, vol. 26, no. 5, pp. 530–549, 2004.

[34] P. Dollár and C. Zitnick, “Structured forests for fast edge detec-
tion,” ICCV, 2013.

[35] http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/resources.html.

[36] J. Pont-Tuset and F. Marques, “Supervised evaluation of image
segmentation and object proposal techniques,” PAMI, 2015.

[37] ——, “Measures and meta-measures for the supervised evaluation
of image segmentation,” in CVPR, 2013.

[38] M. Maire, S. X. Yu, and P. Perona, “Hierarchical scene annotation,”
in BMVC, 2013.

[39] M. Everingham, H. Muller, and B. Thomas, “Evaluating image
segmentation algorithms using the pareto front,” in ECCV, 2006.

[40] M. Ehrgott, Multicriteria optimization. Springer, 2005.
[41] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[42] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in ICCV, 2011.

[43] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. Zitnick, “Microsoft COCO: Common Objects in
Context,” in ECCV, 2014.

[44] J. Pont-Tuset and L. V. Gool, “Boosting object proposals: From
pascal to COCO,” in ICCV, 2015.

[45] J. Hosang, R. Benenson, and B. Schiele, “How good are detection
proposals, really?” in BMVC, 2014.

[46] J. Hosang, R. Benenson, P. Dollár, and B. Schiele, “What makes
for effective detection proposals?” PAMI, 2015.



14

[47] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultane-
ous detection and segmentation,” in ECCV, 2014.

Jordi Pont-Tuset is a post-doctoral researcher
at ETHZ, Switzerland, in Prof. Luc Van Gool’s
computer vision group (2015). He received the
degree in Mathematics in 2008, the degree in
Electrical Engineering in 2008, the M.Sc. in
Research on Information and Communication
Technologies in 2010, and the Ph.D with honors
in 2014; all from the Universitat Politècnica de
Catalunya, BarcelonaTech (UPC). He worked at
Disney Research, Zürich (2014).

Pablo Arbeláez received a PhD with honors in
Applied Mathematics from the Université Paris-
Dauphine in 2005. He was a Research Scientist
with the Computer Vision Group at UC Berke-
ley from 2007 to 2014. He currently holds a
faculty position at Universidad de los Andes in
Colombia. His research interests are in com-
puter vision, where he has worked on a number
of problems, including perceptual grouping, ob-
ject recognition and the analysis of biomedical
images.

Jonathan T. Barron is a senior research sci-
entist at Google, working on computer vision
and computational photography. He received a
PhD in Computer Science from the University
of California, Berkeley in 2013, where he was
advised by Jitendra Malik, and he received a
Honours BSc in Computer Science from the
University of Toronto in 2007. His research inter-
ests include computer vision, machine learning,
computational photography, shape reconstruc-
tion, and biological image analysis. He received

a National Science Foundation Graduate Research Fellowship in 2009,
and the C.V. Ramamoorthy Distinguished Research Award in 2013.

Ferran Marques received the degree in Elec-
trical Engineering and the Ph.D. from the Uni-
versitat Politècnica de Catalunya, BarcelonaT-
ech (UPC), where he is currently Professor at
the department of Signal Theory and Commu-
nications. In the term 2002-2004, he served
as President of the European Association for
Signal Processing (EURASIP). He has served
as Associate Editor of the IEEE Transactions
on Image Processing (2009-2012) and as Area
Editor for Signal Processing: Image Communi-

cation, Elsevier (2010-2014). In 2011, he received the Jaume Vicens
Vives distinction for University Teaching Quality. Currently, he serves
as Dean of the Electrical Engineering School (ETSETB-TelecomBCN)
at UPC. He has published over 150 conference and journal papers, 2
books, and holds 4 international patents.

Jitendra Malik is Arthur J. Chick Professor in
the Department of Electrical Engineering and
Computer Science at the University of California
at Berkeley, where he also holds appointments
in vision science and cognitive science. He re-
ceived the PhD degree in Computer Science
from Stanford University in 1985. In January
1986, he joined UC Berkeley as a faculty mem-
ber in the EECS department where he served as
Chair of the Computer Science Division during
2002-2006, and of the Department of EECS dur-

ing 2004-2006. Jitendra Malik’s group has worked on computer vision,
computational modeling of biological vision, computer graphics and
machine learning. Several well-known concepts and algorithms arose in
this work, such as anisotropic diffusion, normalized cuts, high dynamic
range imaging, shape contexts and poselets. According to Google
Scholar, ten of his papers have received more than a thousand citations
each. He has graduated 33 PhD students. Jitendra was awarded the
Longuet-Higgins Award for “A Contribution that has Stood the Test of
Time” twice, in 2007 and 2008. He is a Fellow of the IEEE and the
ACM, a member of the National Academy of Engineering, and a fellow
of the American Academy of Arts and Sciences. He received the PAMI
Distinguished Researcher Award in computer vision in 2013 and the
K.S. Fu prize in 2014.


	1 Introduction
	2 Related Work
	3 The Segmentation Algorithm
	3.1 Fast Downsampled Eigenvector Computation
	3.2 Aligning Segmentation Hierarchies
	3.3 Multiscale Hierarchical Segmentation

	4 Experiments on the BSDS500
	5 Object Proposal Generation
	6 Experiments on PASCAL VOC, SBD, and COCO
	7 Conclusions
	References
	Biographies
	Jordi Pont-Tuset
	Pablo Arbeláez
	Jonathan T. Barron
	Ferran Marques
	Jitendra Malik


