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ABSTRACT In this paper, a multiscale contour steered region integral (MCSRI) method is proposed

to classify highly similar shapes with flexible interior connection architectures. A component distance

map (CDM) is developed to robustly characterize the flexible interior connection structure, shape of the

exterior contour, and their inter-relationship in a shape image. A novel multiscale region transform (MReT)

is proposed to perform region integral over different contour-steered strips at all possible scales to effectively

integrate patch features, and thus enables a better description of the shape image in a coarse-to-fine

manner. It is applied to solve a challenging problem of classifying cultivars from leaf images, which is

a new attempt in both biology and computer vision research communities. A soybean cultivar leaf vein

database (SoyCultivarVein), which is the first cultivar leaf vein database, is created and presented for

performance evaluation. The experimental results demonstrate the superiority of the proposed method over

the state-of-the-art methods in similar shape classification and the possibility of cultivar recognition via leaf

pattern analysis, which may lead to a new research interest towards fine-level shape analysis on cultivar

classification.

INDEX TERMS Cultivar classification, multiscale region transform, component distance map, structure

pattern analysis.

I. INTRODUCTION

Soybean, one of the most essential global sources for protein

and oil, is now the first legume species with a complete

genome sequence [1]. Soybean cultivar classification is the

first key step to facilitate soybean phenotype improvement

needed for sustainable human and animal food production,

energy production and environmental balance in agriculture

worldwide. Given the vital role of soybean in ecosystem

and agriculture, developing accurate and automatic cultivar

classification approaches is of significant importance for both

biology and computer vision research communities. This

paper attempts to provide technical solutions to address the

challenging cultivar classification problem, while acknowl-

edging that our work is a first significant exploration for the

specific soybean cultivar classification from leaf images.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yi Shang.

Many researchers have made great efforts on plant species

classification by matching leaf images mainly represented

by contour and vein features [2], [3]. The most common

similarity classification approaches tested on general leaf

image databases are based on the contour feature represen-

tations [4]–[9]. These contour-based methods yield desirable

performances of plant species classification and retrieval on

various publicly available leaf image databases. However,

these methods fail to function when classifying cultivars,

which is much more challenging than classifying species due

to the fact that all cultivars belong to the same species. In other

words, only utilizing the contour features may not provide

sufficiently discriminative description of the leaf images for

classifying cultivars in fine-level with similar shapes.

To address the insufficient description of solely using

contour features, vein-based methods [10], [11] have been

proposed for species identification from leaf images due to

the vein structure diversity across species [12]. As stated

in biology research community [13], [14], leaf architecture
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FIGURE 1. An example of soybean leaf veins, where 1◦ represents major
vein, 2◦ denotes secondary vein, and 3◦ depicts tertiary vein.

describes definite structural patterns organized from elements

of leaves, and can be coarsely classified into major vein,

secondary vein and tertiary vein, as illustrated in Fig. 1.

A major supportive reason for using vein features is that

species differ strongly in leaf venation architecture [15]–[17].

Unfortunately, the above vein-based leaf recognitionmethods

only demonstrate an applicability to species classification

with obvious vein type variance, thus, cannot be applied to

cultivar classification where all cultivars own the same vein

type (e.g. the pinnate vein type for soybean cultivars) accord-

ing to the vein type definition in their work. To overcome

the limitations of above coarse-level vein type classification,

Larese et al. [18] proposed a fine-level vein feature repre-

sentation, for the first time, to address legume classification

(soybean, red bean, and white bean). And then extended

their method to the challenging cultivar classification to clas-

sify three soybean cultivars [19], a step closer to cultivar

classification. Their inspiring work indeed demonstrates the

importance of vein structure in legume level classification and

the potential for further cultivar classification.

In this paper, we report our effort in confirming the pos-

sibility of cultivar recognition from leaf images, and a new

method that may lead to advancement of pattern analysis

research from species recognition to a new area of cultivar

recognition. We proposed a multiscale contour steered region

integral method to analyze the patch distance maps formed by

the veins and the contour of a leaf. A new Multiscale Region

Transform (MReT) is proposed, which can overcome the lim-

itation of widely used line integral transforms (such as Radon

Transform) in better encoding not only global features but

also local features within a shape. A component distance map

construction process is developed to robustly characterize the

flexible interior connection structure, shape of the exterior

contour, and their inter-relationship in a shape image. The

very encouraging experimental results demonstrate the avail-

ability of cultivar information in leaf images and the effective-

ness of the proposed method for cultivar identification, which

may advance the research in leaf shape recognition from

species to cultivar. In addition, a first soybean cultivar leaf

vein database, which contains leaf images of 100 cultivars,

is created and reported in this paper.

The rest of the paper is organized as follows. A brief review

of relatedwork is presented in Section II. Section III describes

the details of the proposed multiscale contour steered region

integral method. The experimental results and analysis on

the first soybean cultivar vein database are presented in

Section IV. Finally, the paper concludes in Section V.

II. RELATED WORK

Plant species classification from leaf images has received

considerable attention from researchers in the past few

decades [7], [8], [20]–[25]. Utilizing leaf images to classify

the plant species is mainly due to the fact that leaf features

are much more persistent and universal among the organs

of plants [26]. The most recent leaf-related work proposed

by Yin et al. [27] focuses on the multi-leaf segmentation,

alignment and tracking problems. Considering the essen-

tial importance for high-throughput plant phenotyping study,

an automatic image analysis method for Arabidopsis, which

is the first plant with sequenced genome [28], is proposed.

They closely connect the computer vision community and

biology community for further comprehensive exploration in

automatic plant classification and phenotype improvement.

Similarly, we focus on the soybean because soybean is one

of the most important crop plants, especially for its essen-

tial role in seed protein, oil content, and its capacity to fix

atmospheric nitrogen. In addition, soybean genome has been

sequenced with predicted protein-coding genes 70% more

than the Arabidopsis [1], which may facilitate finding the

connection between the genotype and phenotype of soybean

to further improve the soybean cultivars.

Given the wealth of existing work on leaf contour-based

shape classification, we naturally follow and investigate sev-

eral popular algorithms that have been proven effective in

leaf image classification. The most common contour-based

approaches are based on pairwise similarity measures in

which the matching costs are computed between a given pair

of shapes. In these methods, feature representations extracted

from each sampled contour point are designed to establish the

robust correspondence [29]. Belongie et al. [4] developed a

very effective shape descriptor, shape contexts (SC), which is

widely used as a state-of-the-art benchmark. In their proposed

descriptor, a histogram is attached to each boundary point for

describing the relative distribution of the remaining points to

that point. The matching is formulated as finding the corre-

spondence in a point-by-point manner. Ling and Jacobs [5]

proposed a powerful inner-distance shape contexts (IDSC)

method, which is an improved form of the SC by using the

length of the shortest path between two boundary points

within the shape boundary. Dynamic Programming (DP) is

also included for the shape matching after calculating the

IDSC distance. Wang et al. [9] proposed a height func-

tions (HF) method, in which the distance between the tangent

line of each contour point and the other remaining contour

points are calculated as the height function. Their descriptor
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is designed to be robust and compact with invariances to

translation, rotation and scaling. In the matching stage,

they employed the DP algorithm for searching the opti-

mal correspondence between sample points of two shapes.

Srivastava et al. [6] introduced an important contour-based

method which represents the shapes of curves using a square-

root velocity (SRV) method. Through a gradient-based itera-

tion process that is named as path straightening, the geodesics

between shapes of closed elastic curves can be determined

and thus be utilized for shape matching. In [30], they applied

their method to the plant species classification and obtained

excellent results on three publicly available plant species leaf

databases (MAP score of 92.37% on Flavia [31], Nearest

Neighbor score of 99.18% on Swedish [32] and identification

score of 95.3% on ImageCLEF2011 [33]).

To further enhance the discriminative ability of con-

tour representation from global information to local details,

multiscale strategies are employed in recently proposed

methods. Hu et al. [8] proposed a Multiscale Distance

Matrix (MDM) method for plant species leaf recognition,

in which the distances between sampled contour points are

calculated in each scale to form the distance matrix. They

also extended the MDM to be combined with other distances

(e.g. inner-distance) to further explore their discriminability.

Wang and Gao [7] presented a hierarchical string cuts (HSC)

method to partition a contour into multiple scaled curve

segments to describe a shape. The shape is described with

global information and local details using geometric fea-

tures from the partitioned shape segments. The abovemen-

tioned contour-based methods yield desirable results on plant

species leaf classification. However, one of their fundamental

limitations is that the interior information inside the shape

is ignored. More precisely, the vein structure in a leaf is not

considered.

Larese et al. [18] proposed an automatic procedure for

legume classification (soybean, red bean and white bean)

based only on the analysis of the leaf vein morphological

features. Using LEAF GUI [34], they extract local features

of the median, minimum and maximum values of 16 fea-

tures such as vein length and vein orientation (16 × 3 =

48 features), and 4 global features to form 52 features in

total for leaf description. Encouraging results on three legume

classification are reported, which demonstrate the importance

of vein structure in leaf legume classification. In [19], they

also applied the same method to classify three soybean culti-

vars, and obtained average classification accuracies ranging

from 55.04% to 58.76%, which outperform the average clas-

sification accuracy of human experts (41.56% [19]). More

studies associated with plant species identification can be

found in [3].

III. MULTISCALE CONTOUR STEERED

REGION INTEGRAL METHOD

In this section, a multiscale contour steered region inte-

gral (MCSRI) method is proposed for fine-level structure pat-

tern analysis. To facilitate the MCSRI, a component distance

map (CDM) is first developed, in which the interior structure,

shape of the exterior contour, and their inter-relationship are

characterized. A novel Multiscale Region Transform (MReT)

is proposed to encode not only global features but also local

structures within a shape. Then the algorithm for computing

the discrete form MReT is presented. Finally, the similarity

measure is defined using the transform coefficient matrices.

A. COMPONENT DISTANCE MAP

As a practical transform that attracts continuous research

interest [35]–[39], the 2D Distance Transform (DT) can be

defined as the calculation of a distancemap inwhich the value

of each pixel p is its minimum distance to a given set of pixels

O in a binary image:

DT (p) = min {D (p, q) , q ∈ O} , (1)

whereD can be any Lp distance metric [39] (L2 is used in this

paper). By applying DT, the central part of a shape is assigned

with higher value compared to the boundary or margin part

which is more likely to be deformed. However, applying DT

directly on the whole leaf shape encounters information loss

of vein structure, as can be seen from Fig. 2(a).

FIGURE 2. Visual comparison of distance map and component distance
map of the leaf image shown in Fig. 1. (a) Distance map; (b) Component
distance map.

To address the vein structure information loss problem,

we propose to construct a component distance map (CDM) to

characterize the vein structure, shape of the contour, and their

inter-relationship in a leaf image. Veins and contour partition

the leaf into two types of patches: vein patches and hybrid

patches. Vein patches are the patches that are only enclosed

by vein points, while hybrid patches are those enclosed by a

mixture of vein points and leaf contour points. A leaf, g(x, y),

is composed of multiple various sized vein patches Gvi and

hybrid patches Ghj , which can be represented as:

g (x, y) =

N v
∑

i=1

gvi (x, y) +

N h
∑

j=1

ghj (x, y), (2)

where g(x, y) is a labeled image, in which all pixels in a vein

patch Gvi and a hybrid patch Ghj are labeled by a value of
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i and a value of N v + j, respectively. N v and N h are the

numbers of vein patches and hybrid patches, respectively.

gvi (x, y) is defined to be i if (x, y) ∈ Gvi , and 0 otherwise.

Similarly, ghj (x, y) is defined to be N v + j if (x, y) ∈ Ghj ,

and 0 otherwise. The procedure of constructing the CDM of

a leaf image is shown in Algorithm 1. Outputs f vD(x, y) and

f hD(x, y) are vein and hybrid distance maps characterizing the

vein structure and contour-vein relationship in a leaf image,

respectively. Fig. 2(b) shows an example of the CDM of a

soybean leaf image, in which the vein and hybrid distance

maps are displayed together for easy observation.

Algorithm 1 Calculating Component Distance Map

Input:

g (x, y): input labeled leaf image;

gvi (x, y) , i = 1, 2, . . . ,N v: vein patch functions;

ghj (x, y) , j = 1, 2, . . . ,N h: hybrid patch functions;

Function:

η(m): compute the distance map by applying Eq. (1) on

each non-zero point in matrix m;

Output:

f vD (x, y): vein patch distance map;

f hD (x, y): hybrid patch distance map;

1: Initialize:

Let f vD (x, y) and f hD (x, y) be zero matrices with the same

size of input image g (x, y);

2: For i = 1 to N v

3: f vD (x, y) = f vD (x, y) + η(gvi (x, y)); (A1)

4: End For

5: For j = 1 to N h

6: f hD (x, y) = f hD (x, y)+η(ghj (x, y)); (A2)

7: End For

B. MULTISCALE REGION TRANSFORM

Radon Transform (RT) [40] has been widely used [41]–[43]

for capturing directional information of an image by calcu-

lating the line integral along a varying orientation. However,

its integral over 1D line only represents global features but

fails to provide local discriminative description of the shape,

particularly those of interior structural patterns.

Here, we present a novel Multiscale Region Transform

(MReT) to be applied on the CDM (refer to Section III.A),

which can overcome the above limitation. By using the

multiscale feature representation, the image region can be

described in a coarse-to-fine manner to provide comprehen-

sive description of the leaf image. More importantly, this

allows encoding the inter-relationship of contour and interior

context of a shape that can providemore discriminative power

than the Radon transform. The proposed MReT transform

and its use in shape description (see Fig. 3) are given as

follows:

Definition 1: Given a contour point p(u) ( u ranges from

0 to 1), the arc length l(t), from p(u) to its end point

p(u, t) on the contour along clock-wise direction, is defined

as l (t) = P/2t , where P is the perimeter of contour, and t is

the scale index ( t = 0, 1, . . . , log2P ).

Definition 2: According to Definition 1, the straight line

passing through p(u) and p(u, t) is named as the base line

and can be formulated as:

L
(

θ tu, ρ
t
u

)

=
{

(x, y) ∈ R
2|x sin θ tu + y cos θ tu = ρtu

}

, (3)

where ρtu is the perpendicular distance from the origin to the

base line L
(

θ tu, ρ
t
u

)

. θ tu is the angle between the base line and

the y-axis.

The yellow, purple, and red dashed lines in Figs. 3(f)-3(h)

illustrate three examples of the base line at scales t = 1, 2, 3.

Definition 3: Given the base line L
(

θ tu, ρ
t
u

)

defined in

Eq. (3), a boundary line L
(

θ tu, λ
t
u

)

, which is vertical to the

base line is defined as

L
(

θ tu, λ
t
u

)

=
{

(x, y) ∈ R
2|x cos θ tu + y sin θ tu = λtu

}

, (4)

where λtu is the perpendicular distance from the origin to the

boundary line L
(

θ tu, λ
t
u

)

.

When the boundary line L
(

θ tu, λ
t
u

)

scans along the

base line from passing through p(u) to the position of

passing through p(u, t), we can define a region integral

transform as:

Definition 4: Let p(u) and p(u, t) be denoted by coordi-

nates (x(u), y(u)) and (x(u, t), y(u, t)), a region integral on

p(u) at scale t is defined as:

8z
f

(

t, θ tu
)

=

∫ ∞

−∞

∫ x(u,t) cos θ tu+y(u,t) sin θ tu

x(u) cos θ tu+y(u) sin θ tu

∫ ∞

−∞

∫ ∞

−∞

f zD (x, y) δ (x cos θ tu

+ y sin θ tu − λtu, x sin θ tu + y cos θ tu − ρtu ) dxdydλtudρtu,

(5)

where z = h, v and δ(φ, χ) is the 2D Dirac delta function

defined as

δ (φ, χ) =

{

1, if φ = χ = 0

0, otherwise
(6)

The MReT on a given function f zD (x, y) at point p(u) is

defined as

MReT (θu)
z
f

=
[

8z
f

(

0, θ0u

)

, 8z
f

(

1, θ1u

)

, . . . , 8z
f

(

log2P, θ
log2P
u

)]T
.

(7)

The MReT transform at a single point p(u) generates a vector

of (log2P + 1) coefficients with each describing the region

integral for one scale at point p(u). By moving p(u) along

the contour for a complete loop, which results in a varying

θ ∈ [0, 2π ), the above vector grows into a MReT coefficient
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FIGURE 3. An example illustrating the process of the proposed multiscale region transform. (a) Input image. (b) Uniformly sampled contour (N = 256)
with three example locations of a moving p(u) point. (c), (d) and (e): Base lines (indicating the orientations of the region integral) for scales 1, 2 and 3
(shown in yellow, purple and red respectively) for the three example locations of p(u) shown in (b). (f), (g) and (h) display the scanning ranges of the
region integral for the p(u) shown in (c) at scales 1, 2, and 3, respectively. (i), (j) and (k) display the scanning ranges of the region integral for the p(u)
shown in (d) at scales 1, 2, and 3, respectively. (l), (m) and (n) display the scanning ranges of the region integral for the p(u) shown in (e) at scales
1, 2, and 3, respectively. From (f) to (n): The curves in red and blue display the line integral values along the boundary line on f v

D
(x, y ) and f h

D
(x, y ),

respectively.

matrix of (log2P+1) by P dimensions:

MReT zf

=













8z
f

(

0, θ01
)

. . . 8z
f

(

0, θ0P
)

8z
f

(

1, θ11
)

. . . 8z
f

(

1, θ1P
)

...

8z
f

(

log2P, θ
log2P

1

) . . .

...

8z
f

(

log2P, θ
log2P

P

)













.

(8)

This matrix describes how the region integrals at different

scales synchronously vary when the point p(u) moves.

As p(u) moves along the contour, the region integral is

performed over different regions defined by the scanning

range and orientation of the boundary line at all possible

scales. An example of the MReT process, that illustrates

various orientations and ranges of the region integral on a

moving p(u) at different scales, is given in Fig. 3. When

scale t = 1, 2, . . ., p(u) and p(u, t) cut a half, a quarter,

. . . , off the contour to steer the region integral at different

orientations. The greater the t is, the smaller integral region

is scanned, which provides finer descriptions on local details

of the target. When scale t = 0, p(u) and p(u, t) become

the same point after a complete loop and thus the region
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Algorithm 2 Selecting Points in Moving Integral Strips

Rf
(

t, θ ti
)

Input:

(x (i) , y (i)) = p(i): start point of base line;

(x (j) , y (j)) = p(i, t): end point of base line;

(x, y): any point in CDM f zD (x, y);

Output:

BooleanIN (x, y) =

{

1, if (x, y) ∈ Rf
(

t, θ ti
)

0, otherwise;

1: Substitute x into Eqs. (9) and (10), respectively, and

calculate

yi = x (i) cot θ ti + y (i) − x cot θ ti (A3)

and

yj = x (j) cot θ ti +y (j)−x cot θ ti . (A4)

2: If (yi − y) · (yj − y) ≤ 0

3: IN (x, y) = 1;

4: else

5: IN (x, y) = 0;

6: End If

integral is performed over the whole region of the given

image, making the first row elements in matrixMReT zf share

the same value. The 2nd, 3rd, 4th rows in matrixMReT zf are

visualized in the 3rd, 4th, and 5th columns of Fig. 3.

C. DISCRETE MReT

In this section, we present the algorithm of computing dis-

crete Multiscale Region Transform.

First, the contour of the leaf is uniformly sampled into

N = 28 = 256 points, as illustrated by the process

from Fig. 3(a) to Fig. 3(b). Then, for each sampled contour

point p(i), we compute the end points p(i, t) for scales t =

0, 1, . . . , log2N . Based on the Definition 1 in Section III.B,

the end points in discrete form become p (i,N ) , p (i,N/2) ,

. . . ,p
(

i,N/2t
)

, . . . ,p (i, 1). Their arc lengths l(t) become

digitized as 256, 128, . . . , 1, for N = 256 sampling.

In a numerical form, the start and end base line points on

the contour (that is p(u) and p(u, t) defined in continuous

forms in Definition 4) are digitized into p (i) = (x(i), y(i)) and

p (j) = (x(j), y(j)). Then the points (x, y) on the two boundary

lines passing through p(i) and p(j) can be determined by

x cos θ ti + y sin θ ti = x (i) cos θ ti + y (i) sin θ ti , (9)

and

x cos θ ti + y sin θ ti = x (j) cos θ ti + y (j) sin θ ti , (10)

respectively. The integral region of the proposedMReT trans-

form, denoted as Rf
(

t, θ ti
)

, is a strip between the above

two boundary lines. The width, location, and orientation of

the integral strip vary according to the scale t , location of

the moving p (i) along the contour, and baseline angle θ ti
(see Figs. 3(f)-3(n)). We developed a fast algorithm (see

Algorithm 3 Computing Discrete Multiscale Region

Transform
Input:

f vD (x, y): vein patch distance map;

f hD (x, y): hybrid patch distance map;

N : number of sampling points on contour;

Output:

MReT vf : vein MReT coefficient matrix;

MReThf : hybrid MReT coefficient matrix;

1: Initialize the two MReT coefficient matrices as zero

matrices:

MReT vf = 0(log2N+1)×N , MReThf = 0(log2N+1)×N ;

2: Fori = 1 to N

3: For t = 0 to log2N

4: Compute (x (i) , y (i)) = p(i) and (x (j) , y (j)) =

p(i, t) using Definition 1;

5: For k = 1 to Nf
6: Determine if the point (xk , yk) in a labeled image is

inside the integral strip Rf
(

t, θ ti
)

using Algorithm 2;

7: If IN (xk , yk) = 1

8: 8v
f

(

t, θ ti
)

= 8v
f

(

t, θ ti
)

+ f vD (xk , yk); (A5)

9: 8h
f

(

t, θ ti
)

= 8h
f

(

t, θ ti
)

+ f hD (xk , yk); (A6)

10: End If

11: End For

12: End For

13: rvi = [8v
f

(

0, θ0i
)

, .., 8v
f

(

log2N , θ
log2N

i

)

]
T
; (A7)

14: rhi = [8h
f

(

0, θ0i
)

, .., 8h
f

(

log2N , θ
log2N

i

)

]
T
; (A8)

15: End For

16: MReT vf = [rv1, .., r
v
N ]; (A9)

17: MReThf = [rh1, .., r
h
N ]; (A10)

Algorithm 2) to efficiently determine whether a point in the

image is located inside the moving integral strip Rf
(

t, θ ti
)

,

which will be used in Algorithm 3 for discrete MReT

computation.

Let
{

(xk , yk) ,k = 1, · · · ,Nf
}

be a subset of pixels in the

image whose g(xk , yk ) 6= 0 (refer to Eq. (2)). Nf is the total

number of pixels enclosed in the leaf contour. The procedure

of computing the discreteMReT coefficient matrixMReT zf is

presented in Algorithm 3, in which Eq. (5) is transformed into

the sum of label values in a moving integral strip Rf
(

t, θ ti
)

.

It is worth noting that when scale t = 0, p(i) and p(j)

become the same point and θ ti becomes an arbitrary angle,

resulting in infinite number of boundary lines spanning all

possible orientations. Thus, every region point (xk , yk) can

be considered as being located on the boundary lines, which

leads to (yi − yk ) · (yj − yk ) ≡ 0 in Step 2 of Algorithm 2.
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For a contour point p(i), the discrete MReT generates two

(log2N+1) dimensional vectors:

rvi = [8v
f

(

0, θ0i

)

, . . . , 8v
f

(

t, θ0i

)

, . . . , 8v
f

(

log2N , θ
log2N

i

)

]
T
,

(11)

and

rhi = [8h
f

(

0, θ0i

)

, . . . , 8h
f

(

t, θ0i

)

, . . . , 8h
f

(

log2N , θ
log2N

i

)

]
T
.

(12)

Bymoving p(i) along the contour for a complete loop, the two

vectors grow into a pair of (log2N+1)-by-N matricesMReT vf
and MReThf (see A9 and A10 in Algorithm 3). Because

the size of the integral region for calculating an entry in rzi
decreases when t increases (see Figs. 3(f)-(h)), 8z

f

(

t, θ0i
)

is

locally normalized by dividing its maximum value 8z
f

(

t, θ0i
)

among all i. Because 8z
f

(

0,θ0i
)

is a constant for all i, it is

normalized by its mean obtained from a set of example leaf

images.

As Steps 2, 3 and 5 take time O(N ), O(log2N ) and O(Nf )

respectively, the algorithm 3 has a computational complexity

of O(Nf Nlog2N ).

D. SIMILARITY MEASURE

Given two sets of matrices T =
⋃

k

MReT zf (T )_k =
{

MReT zf (T )_1, . . . ,MReT zf (T )_K

}

andM=
⋃

k

MReT zf (M )_k =
{

MReT zf (M )_1, . . . ,MReT zf (M )_K

}

representing the MReT

coefficient matrices of the test and model cultivars respec-

tively. Each matrix set is comprised of K matrix pairs of

MReT vf and MReThf . K is the number of leaf types (In our

experiments, K is set as 3 where k = 1 denotes a upper part

leaf, k = 2 denotes a middle part leaf, and k = 3 denotes

a lower part leaf. Note that MReT zf (T )_k in T can only be

matched against the matrix of the same type in M , that is

MReT zf (M )_k with the same leaf type index k .

MReT zf is rotation variant. When the initial location of

the contour point, that steers the Multiscale Region Trans-

form (i.e., the red boxed point in Fig. 3), moves clockwise,

the entire column of rzi in MReT zf shifts to the right. The

magnitudes of its 1D Fourier transform coefficients and 2D

Fourier transform coefficients are calculated by

8̃z
1 (t, k) =

(

1

N

)

∣

∣

∣

∣

∣

N
∑

i=1

8z
f

(

t, θ ti
)

exp

(

−
j2π ik

N

)

∣

∣

∣

∣

∣

, (13)

where k = 1, . . . ,N and t = 0, . . . , log2N , and

8̃z
2 (t, k) =

(

1

Nlog2N

)

∣

∣

∣

∣

∣

∣

N
∑

i=1

log2N
∑

γ=1

8z
f

(

t, θ ti
)

× exp

(

−j2π

(

ik

N
+

γ t

log2N

))

∣

∣

∣

∣

∣

∣

, (14)

where k = 1, . . . ,N and t = 1, . . . , log2N . From theory,

the above obtained 8̃z
1 (t, k) and 8̃z

2 (t, k) are invariant to

the initial location of the contour point that steers the MReT,

and thus invariant to rotation of the whole leaf. To make

the generated feature descriptor robust to noise and compact,

the lowestM order coefficients are used to describe the object

(i.e., the soybean cultivar in this study), whereM≪N .

Both 8̃z
1 (t, k) and 8̃z

2 (t, k) are used to construct a feature

descriptor as

9
z
f =



























8̃z
1 (0, 1) . . . 8̃z

1 (0,M)

8̃z
1 (1, 1) . . . 8̃z

1 (1,M)
...

8̃z
1

(

log2N , 1
)

. . .

...

8̃z
1

(

log2N ,M
)

8̃z
2 (1, 1) . . . 8̃z

2 (1,M)
...

8̃z
2

(

log2N , 1
)

. . .

...

8̃z
2

(

log2N ,M
)



























, (15)

in which 8̃z
1 (t, k), k = 0, . . . ,M are features invariant

to rotation of the shape while 8̃z
2 (t, k) , k = 1, . . . ,M

act as constrains that ensure rvi and rhi remain meaningful

MReT vectors for each contour point p(i). Thus, the test

and model cultivars are represented by feature matrices

9
z
f (T ) =

⋃

k

9
z
f (T )_k =

{

9
z
f (T )_1, . . . ,9

z
f (T )_K

}

and 9
z
f (M ) =

⋃

k

9
z
f (M )_k =

{

9
z
f (M )_1, . . . ,9

z
f (M )_K

}

, where z = v, h.

Fig. 4 gives an example of illustrating the cultivar feature

matrix construction process, and 9
z
f is visually displayed in

Fig. 4(d).

The dissimilarity between two given cultivars can be mea-

sured using the fast L1 Minkowski distance of the two

matrices:

dis
(

9
z
f (T )

, 9z
f (M)

)

=

K
∑

k=1

[

w

∣

∣

∣
9v
f (T )k

− 9v
f (M)k

∣

∣

∣
+

∣

∣

∣
9h
f (T )k

− 9h
f (M)k

∣

∣

∣

]

(16)

where w is a weight that balances the contributions of vein

patches and hybrid patches in measuring the dissimilarity of

soybean cultivar leaves.

IV. EXPERIMENTS AND DISCUSSIONS

To examine if the soybean leaf veins and shapes contain

discriminative pattern information for identifying cultivars,

experiments are conducted to evaluate the performance of

the proposed method and compared with nine state-of-the-

art leaf identification benchmark methods. They are: (1) vein

trait method [18], [19], (2) two versions of Shape Con-

texts, i.e., standard Shape Contexts (SC) and Shape Contexts

with dynamic programming (SC-DP) [4], (3) Inner Distance

Shape Contexts (IDSC) and Inner Distance Shape Contexts

with dynamic programming (IDSC-DP) [5], (4) square-root

velocity (SRV) method [6], (5) Hierarchical String Cuts

(HSC) [7], (6) Multiscale Distance Matrix (MDM) [8], and

(7) Height Functions (HF) [9]. The widely used Nearest
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FIGURE 4. An example of illustrating the cultivar feature matrix construction process. (a) A soybean cultivar plant in the field. (b) Three
example leaves collected from the upper, middle, and lower parts of the cultivar plant. (c) Feature matrices 9z

f _1
, 9z

f _2
, and 9z

f _3
calculated

from the three leaf images in (b). (d) Feature matrix 9z
f

of the cultivar.

Neighbor score (1NN) [4]–[9], Cumulative Match Character-

istic (CMC) curve [5], and bulls-eye test score [4], [5], [7], [9]

are employed for performance measurement, as used in the

benchmark methods. Score level fusion is used when imple-

menting the benchmark algorithms for joint matching of the

leaves from the upper, middle and lower parts. The code of

the proposed MReT method is available online at https://

maxwell.ict.griffith.edu.au/cvipl/demos/MRet2019.zip.

A. SOYBEAN CULTIVAR LEAF VEIN DATABASE

There is a growing sentiment in the pattern analysis and com-

puter vision community to create image databases to cater for

the need of advancing the research from species identification

to more challenging fine-level cultivar identification. In this

research, we built the first soybean cultivar leaf vein database,

SoyCultivarVein, by collecting the leaf images from soybean

plants of different cultivars. The SoyCultivarVein database1

contains 600 leaves collected from plants of 100 soybean

cultivars that grow in Jilin Province of China. For each cul-

tivar, we randomly collected two cultivar samples with each

sample containing a leaf from the upper part, a leaf from the

middle part, and a leaf from the lower part of the plants. The

transparent scans of the back side of the leaves are obtained

using an EPSON V800 scanner with a resolution of 600 DPI

and 24 bit true color setting.

Ground truth venation of the leaves are manually labeled

using the botanic vein order classification method [13], [14].

It is worth noting that it is very difficult for human to distin-

guish cultivars due to the small inter-cultivar differences in

comparison with their intra-cultivar variations (see examples

in Fig. 5). Examples of leaf veins and contours from the

100 cultivars in the SoyCultivarVein database are shown in

Fig. 6, in which each cultivar is represented by one of the

1Database available at https://maxwell.ict.griffith.edu.au/cvipl/databases/
SoyCultivarVein_Dataset.7z

upper part leaves. For some soybean cultivars, their leaves

from different parts of the plants exhibit a quite diverse

appearance in completely different shapes, while for other

soybean cultivars, their leaves from different parts of the

plants have the same shape. However, compared to the species

leaf image databases Leaf100 [7], MEW2012 [45], ICL [8],

the leaves in the SoyCultivarVein database are highly similar

due to the fact that they all belong to the same species, making

it a new and challenging dataset for the artificial intelligence

and pattern analysis research community.

B. DETERMINATION OF PARAMETER

In this section, we investigate the effect and sensitivity of

parameterw in Eq. (16) on the recognition accuracy. In theory,

the parameter w is a weight used to balance the contributions

from the vein patches and the hybrid patches. Fifty culti-

vars randomly selected from the SoyCultivarVein database

were used in our parameter sensitivity analysis. We randomly

select one sample from each cultivar to construct a testing

dataset, and the remaining samples are used as the model

dataset. The experiment of nearest neighbor classification

(1NN) [4]–[9] is repeated 1000 times. The average recogni-

tion accuracies of the proposed method are plotted against the

values of w in Fig. 7.

It is observed that, the average accuracy of the proposed

method is 50.13% when w = 0 (that is only using hybrid

patches). It increases quickly with the increase of w and then

remains higher than 60% with w ranging from 0.7 till +∞.

It is also worth noting that, when the parameter w becomes

infinite (that is only using vein patches), the average clas-

sification accuracy still remains 62.51%, confirming the

significance of the vein structure information in cultivar clas-

sification. For the rest of the experiments in this paper, we set

w as 4.5 for both the proposed method and the proposed

method using additional 3◦ veins.
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FIGURE 5. Examples illustrating the small inter-cultivar differences (compare contours and veins horizontally) in comparison to their intra-cultivar
variations (compare contours and veins vertically) in SoyCultivarVein database. The second row also displays the tertiary veins provided in the
database.

C. COMPARISON WITH FINE-LEVEL LEAF

CLASSIFICATION METHOD

In this section, we compare the performance of the pro-

posed method against the only fine-level leaf classification

method [18], [19], which explored leaf classification among

three legumes and three cultivars. For a fair comparison,

we first use the same small-class classification protocol as

in [19] by randomly selecting three cultivars from the Soy-

CultivarVein database for our experimental tests. We repeat

the experimental test 100 times by each time randomly res-

electing three cultivars from the SoyCultivarVein database.

For each three-cultivar classification test, the same 1NN pro-

tocol as in Section IV.B is used for computing the average

classification accuracy. The average classification accuracies

of the competing methods are tabulated in Table 1. The

proposed method achieved an average classification accuracy

of 96.24%, which is significantly higher than the 57.30%

accuracy of the benchmark [19]. It is noted that, the per-

formance of the vein trait method [19] (57.30%) obtained

from our randomly selected three-cultivar test is close to the

classification accuracy range (55.04% to 58.76% ) reported

in [19], confirming the reliability of the result in [19] on a

different database.We also examine the discriminative ability

of the tertiary veins for cultivar classification. In the sec-

ond experiment, the tertiary veins are used to further parti-

tion the patches. The proposed method using additional 3◦

veins achieved an average classification accuracy of 96.61%,

slightly higher (0.37%) than the proposed method using

major and secondary veins.

Another series of experiments are conducted by increasing

the number of soybean cultivars from 10 to 100 with a step

size of 10. The experimental test is repeated 100 times by
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FIGURE 6. Examples of leaf vein images from the 100 cultivars in the SoyCultivarVein database. One upper part leaf per cultivar is shown as an
example.
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FIGURE 7. Average classification accuracy versus parameter w .

TABLE 1. Average classification accuracy on three-cultivar subset of
SoyCultivarVein database (M = 7, tmax = 3).

FIGURE 8. Average classification accuracies using varying number of
cultivars from SoyCultivarVein database.

reselecting different cultivars randomly from the SoyCulti-

varVein database. The average classification accuracies of

the proposed method and the benchmark method are plotted

against an increasing number of cultivars in Fig. 8. It is

encouraging to observe that the proposedmethod consistently

outperform the benchmarkmethodwith a largemargin.When

the number of the soybean cultivars increases from 10 to 100,

the average classification accuracy of the proposed method

drops from 86.87% to 58.19% (the proposed method using

additional 3◦ veins drops from 87.05% to 60.67%), while

the accuracies of the benchmark approach decreases from

23.03% to 4.96%.

D. COMPARISON WITH SPECIES

CLASSIFICATION METHODS

In this section, we compare the proposed method with the

state-of-the-art contour-based benchmarks (SC [4], IDSC [5],

SRV [6], HSC [7],MDM [8], andHF [9]) on all the 600 leaves

of 100 cultivars in the SoyCultivarVein database.

TABLE 2. Average classification accuracy on SoyCultivarVein database
(M = 7, tmax = 3).

1) CLASSIFICATION TEST

Table 2 illustrates the average classification results of the

proposed approach together with the state-of-the-art contour-

based methods. Using the same evaluation setting as used

in Section 4.2, the proposed method achieves the highest

classification accuracies of 58.19% and 60.67% (using addi-

tional 3◦ veins) respectively, which are significantly higher

than the state-of-the-art benchmarks. Given the success of

above benchmarks in species leaf classification, these results

demonstrate the effectiveness and superiority of the proposed

method in cultivar classification.

2) CUMULATIVE PERFORMANCE TEST

To further compare the cumulative performance of classifi-

cation rather than presenting a single classification rate for

each competing method, we employ the Cumulative Match

Characteristic (CMC) curve [44]–[47] to evaluate the per-

formance of proposed method against the benchmarks. For

each soybean cultivar, there are two samples in the Soy-

CultivarVein database. We randomly select one sample from

each cultivar to construct a test dataset, and the remaining

samples are used as the model dataset. Each sample in the

test dataset is matched against all the samples in the model

dataset, which results in 100 matching tests. The classifica-

tion evaluation is repeated 1000 times by reselecting different

samples randomly from the SoyCultivarVein database to con-

struct the test and model datasets. The CMC curve, at rank N,
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FIGURE 9. CMC curves of all the competing methods on the whole
SoyCultivarVein database.

calculates the average percentage (of the 1000 repeats) of the

test samples whose correct match (that is the test sample and

the model sample belong to the same cultivar) is among the

top N best matches [48]. The CMC curves of the proposed

method and the state-of-the-art approaches, including SC [4],

SC + DP [4], IDSC [5], IDSC + DP [5], SRV [6], HSC [7],

MDM [8], and HF [9], are shown in Fig. 9. It can be seen

that the CMC curve of the proposed method is higher than all

the benchmark methods with a large margin of over 10% in

accuracy. The consistent superiority of the proposed method

against the state-of-the-art methods reconfirms the discrim-

inative ability of the proposed method in fine-level cultivar

pattern classification. The very small margin between the pro-

posed method and the proposed method using additional 3◦

veins as shown in CMC curves indicates that the tertiary veins

may not provide more additional discriminative information

over the secondary veins for cultivar classification.

3) IMAGE RETRIEVAL TEST

Comparative experiments are also conducted using the

bulls-eye test score measurement for image retrieval

tasks [4], [5], [7], [9], [48]–[52]. In this retrieval test, each

query sample is matched against all the samples in the

SoyCultivarVein database. The number of correct matches

(that is the retrieved sample and the query sample belong to

the same cultivar) in the top 2 × T (where T is the number

of samples in the database that belong to the same cultivar

of the query sample) retrieved samples that have the smallest

dissimilarity values are counted. The average percentage of

matched samples out of T over all the queries is the bulls-eye

test score [5]. Since there are two samples for each cultivar

in the SoyCultivarVein database, T = 2 in this experiment.

As can be seen from Table 3, the proposed method achieves

TABLE 3. Image retrieval rate on SoyCultivarVein database
(M = 7, tmax = 3).

a bulls-eye test score of 84.50%, which is 3.75% higher than

the second best IDSC + DP [5] method and 10.75% higher

than the well-known SC [4] method.

V. CONCLUSION

Soybean cultivar classification is the first key step to facil-

itate soybean phenotype improvement needed for sustain-

able human and animal food production, energy production

and environmental balance in agriculture worldwide. In this

paper, we proposed a novel multiscale contour steered region

integral method, in which the flexible interior (vein) con-

nection structure, shape of the exterior contour, and their

inter-relationship are effectively characterized at multiple

scales to provide a comprehensive coarse-to-fine description

of the leaf structure. The encouraging experimental results

on the soybean cultivar leaf vein (SoyCultivarVein) database

demonstrate the availability of cultivar information in leaf

images and effectiveness of the proposed method for cultivar

identification, which may advance the research in leaf shape

analysis from species to cultivar. Also, the creation and public

availability of the cultivar leaf vein database for the first

time in the research community will enable on-going leaf-

based cultivar classification, as well as providing the ground

truth for research on automatic vein extraction. Solving

the problem of extracting discriminative feature represen-

tations to further improve the cultivar classification perfor-

mance would be an interesting and important topic for future

work.
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