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Multiscale Contrast Enhancement for Radiographies:
Laplacian Pyramid Versus Fast Wavelet Transform

Sabine Dippel*, Martin Stahl, Rafael Wiemker, and Thomas Blaffert

Abstract—Contrast enhancement of radiographies based
on a multiscale decomposition of the images recently has
proven to be a far more versatile and efficient method than
regular unsharp-masking techniques, while containing these
as a subset. In this paper, we compare the performance of two
multiscale-methods, namely the Laplacian Pyramid and the fast
wavelet transform (FWT). We find that enhancement based on
the FWT suffers from one serious drawback—the introduction of
visible artifacts when large structures are enhanced strongly. By
contrast, the Laplacian Pyramid allows a smooth enhancement
of large structures, such that visible artifacts can be avoided.
Only for the enhancement of very small details, for denoising
applications or compression of images, the FWT may have some
advantages over the Laplacian Pyramid.

Index Terms—Fast wavelet transform, image enhancement,
mammography, multiscale methods, radiography.

I. INTRODUCTION

I N digital radiography, suitable image processing can help
to reconcile some of the problems faced in the display of

radiographic images. Radiographs often contain at the same
time large contrast variations and important low-contrast
details. Suitable postprocessing can help to meet the conflicting
requirements of reproducing the low-contrast details without
clipping the general gray-value range. A standard technique
for the enhancement of small details (i.e., edges) is unsharp
masking [1], where the image is split up into two or three
frequency channels. The edge image is then amplified and
added again to the corresponding low-pass image. In the case
where the image is split into three frequency channels, a
contrast equalization can be achieved by additionally applying
a dynamic range compression to the low-pass image. Clearly,
this provides no access to structures of intermediate sizes.
Therefore, various multiscale methods have been proposed
recently, where the image is split up into a larger number of
frequency channels, which can then be processed separately.

In medical image processing, multiscale methods have been
used for many purposes, e.g., in the context of segmentation [2],
registration [3], noise reduction [4], or compression of images
[5]–[7]. Mostly, these applications used wavelet methods for the
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multiscale decomposition of the signal (for a review of wavelet
applications in biomedical signal processing in general, see [8]).

Only within the last decade, multiscale methods have been
applied to contrast enhancement of medical images. Two types
of multiscale methods have been used in this context: the
Laplacian Pyramid [9], [10] and wavelet methods [12]–[15].
We want to stress here that by contrast enhancement we do not
mean image enhancement via reduction or suppression of noise,
which we will not discuss here, but rather contrast amplification
of the structures of interest. Clearly, contrast amplification
will amplify noise, too, if no additional steps are taken to
prevent this. However, we will not discuss such methods here,
but instead focus on methods to enhance details at different
scales—be they noise or anatomical structure. For a discussion
of methods to prevent too strong amplification of noise, see
[10] for the Laplacian Pyramid and [13] for wavelet methods.
While enhancement by means of the Laplacian Pyramid was
applied to X-ray images in general [9], [10], wavelet-based
methods were mainly used in the context of mammography
[12]–[14], although there are also some isolated applications to
magnetic resonance (MR) and computed tomography (CT) im-
ages [12] or chest radiographs [15]. With nonlinear multiscale
enhancement based on the Laplacian Pyramid, we obtained
very satisfactory results in two clinical trials [10]. There are
reasons why one might expect that wavelet-based enhancement
could be even more powerful than the Laplacian Pyramid:
perfect decomposition due to orthogonality of the wavelet
bases, direction sensitivity, and high noise-reduction potential.
In this paper, we explore the possibilities of enhancement
via the fast wavelet transform (FWT) for radiographs and
compare them with results from the Laplacian Pyramid, since
no comparison of these different multiscale methods has been
performed so far. We restrict ourselves to pyramidal methods of
decomposition, since for radiographs, which are usually quite
large (up to 3 k 3 k pixels), such methods seem to be most
appropriate, both for reasons of disc space and computation
time. Especially if the multiscale processing is to be integrated
in the regular processing chain of a digital radiography system,
processing times of more than 10 s are usually unacceptable.

We compare the suitability of these methods for enhancement
of radiographs in general, i.e., we are looking for an approach
which will be applicable to any kind of radiographic applica-
tion (skeleton, chest, abdomen, mammography, etc.). Generally,
an enhancement algorithm faces the challenge of enhancing the
contrast of barely visible details, without distorting the overall
image impression by over-amplification of structures which are
already clearly visible. The case of mammograms is typical of
images which at the same time contain low-contrast structures
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Fig. 1. The Laplacian Pyramid with subband remapping. Ther (x) in the dashed box “enhancement” denote the remapping functions that may be applied to the
bandpass images.

in the breast combined with a very large general gray value vari-
ation between background and tissue. Here, essentially any en-
hancement of the low-contrast structures is welcomed. Some of
the results presented in [13], [14] for mammography change the
image impression significantly. This would probably be unac-
ceptable for general radiographic applications.

The outline of the paper is as follows. In Section II, we briefly
present the Laplacian Pyramid and the FWT.1 This includes a
survey of previous applications of these methods to radiographs.
In Section III, we compare the effect of contrast enhancement
in the framework of these different decomposition methods and
discuss the influence of their properties on the perception of ra-
diographic images. A final discussion of the merits and prob-
lematic points of the different methods follows in Section IV.

II. M ULTISCALE DECOMPOSITION ANDENHANCEMENT OF

IMAGES

A. The Laplacian Pyramid Decomposition Scheme

The Laplacian Pyramid was introduced by Burt and Adelson
in the context of compression of images [16]. It has the ad-
vantage that the image is only expanded to 4/3 of the orig-
inal size and that the same (small) filter kernel can be used
for all pyramid levels. Fig. 1 schematically shows the algo-
rithm. The image is filtered with a small kernel (we use a bi-
nomial 5 5-kernel, which leads to a Laplacian filter for the
high-pass images). In each filter step, the previous low-pass
image (in the first step, this is the original image) is smoothed
by the small kernel and sub-sampled by a factor of two to give
the next low-pass image. This new low-pass image is up-sam-
pled again by inserting zeros after each pixel and smoothed
once more with the small kernel before it is subtracted from

1In the literature, the nomenclature for this is somewhat inconsistent. The
algorithm we present here is sometimes termed FWT, sometimes Mallat algo-
rithm, and sometimes pyramid algorithm.

the previous low-pass image. The sequence of low-pass images
is termed a Gaussian Pyramid, while the sequence of the sub-
tracted (bandpass) images is termed a
Laplacian Pyramid.

For enhancement of images by means of a Laplacian Pyramid
decomposition, the bandpass images are mapped by a (usually
nonlinear) function. In [9] and [10], nonlinear functions were
used and shown to give good results. Vuylsteke and Schoeters
[9] used a power law with a linear lower and upper cutoff

for

for

elsewhere

(1)

Stahlet al. [10] used a power law bounded by linear functions
for very small and very large contrast

for

elsewhere
(2)

Here, is a lower cutoff value introduced to avoid too strong
amplification of noise and is the upper limit for the nonlinear
enhancement. is a constant gain factor. While Vuylsteke and
Schoeters [9] used the same remapping parameters in all sub-
bands, Stahlet al. [10] introduced a variation of the gain in
all subbands, as well as other additional features not shown in
Fig. 1 to adapt the remapping to the image type at hand. These
special features include noise robustness and a density-depen-
dent enhancement. For more detail, see [10].

With these additional features incorporated in the enhance-
ment algorithm, we conducted an observer-preference study at
Fulda Municipal Hospital (Fulda, Germany). Results obtained
on a large variety of image types showed that by careful selec-
tion of the parameters on the different scales improved detail
visibility and improved overall contrast and sharpness could be
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achieved, retaining a balanced image impression while avoiding
boosting noise too strongly [10]. A receiver operating charac-
teristic study performed on phantoms and chest images with
simulated lesions at the Medical University Hannover (Han-
nover, Germany) showed a general trend toward better detection
for most lesion types [11] for the multiscale processed images,
again without affecting the image impression in a negative way.
Generally, especially for images showing an overlay of many
structures, such as chest, pelvis, lateral images of the spine, etc.,
the processing was judged to render all these structures more
visible.

B. FWT

Wavelets are functions which are generated by the dilation
and translation of a single function

(3)

(Clearly, this can be generalized for arbitrary dimensions, but
for the sake of clarity, we discuss only the one-dimensional
case here.) In practical applications, particularly for the discrete
wavelet transform, often , is chosen for the dila-
tion. The data points define a natural grid for the values of the
translation parameter. A wavelet transform with is
termeddyadic wavelet transform. The so-calledmother wavelet

has to satisfy the condition . (Actually, the
condition is one on the Fourier transform of, however, for a
wavelet with compact support, this is equivalent to the condition
stated here.)

A wavelet transform is now simply the representation of a
function by a superposition of wavelets. In the discrete case,
the function can be represented as

(4)

where . It can be shown that
there exist choices for such that the constitute an or-
thonormal basis of . Then, the coefficients are given
by

(5)

Such orthonormal bases can be constructed iteratively by a mul-
tiresolution analysis, where the signal is approximated on scales
of decreasing resolution. This analysis was introduced by Mallat
[17], who also pointed out the connection between multiscale
decomposition schemes like the Laplacian Pyramid and a mul-
tiresolution approximation on the basis of a wavelet decompo-
sition in [18]. While in the Laplacian Pyramid, information in
successive levels is correlated (the transform is oversampled by
a factor of 4/3), it is possible to achieve an exact separation of
details based on an orthogonal wavelet representation, denoted
as multiresolution approximation.

In a multiresolution approximation, in addition to the wavelet
, a scaling function is defined, which is a smoothing func-

tion. The approximation of the function at resolution

(the projection of onto the approximation space )
is then given by

(6)

with

(7)

From the orthogonality of the bases and
, a pyramidal algorithm can be derived, where

the approximation of the function at resolution level at
point can recursively be calculated by

(8)

The detail signal (i.e., the edges at level) is given by

(9)

with and .
However, there are some drawbacks of orthonormal wavelet

bases. It can be shown that there are no nontrivial orthonormal
linear phase FIR filters with exact reconstruction (the trivial ex-
ception is the Haar basis with and

, all other ). Linear phase (which is desir-
able, e.g., for the possibility to use reflecting instead of periodic
boundary conditions) can be preserved by relaxing the orthonor-
mality requirement and requiring biorthogonality instead [19].
A biorthogonal wavelet basis is simply one where the recon-
struction filters and may be different from and , but fulfill
the reconstruction requirement

(10)

and are related to and by

and (11)

with

(12)

Antonini et al.[19] give the corresponding filter coefficients for
a number of such biorthogonal wavelet bases and test their per-
formance when applied to image compression. To our knowl-
edge, none of these wavelets has so far been applied to image
enhancement. In Section III, we will discuss enhancement re-
sults for one of these wavelet types.

The above discussion can be generalized for images, where
we then end up with three “detail images”—one which is
low-pass filtered in the direction and high-pass filtered in
the direction ( ), one which is low-pass filtered in the
direction and high-pass filtered in the direction ( ) and
finally one which is high-pass filtered in both directions ( ,
often termed “diagonal image”). The structure of the pyramidal
decomposition and reconstruction in the two-dimensional case



346 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 4, APRIL 2002

Fig. 2. Filter bank representation of the wavelet decomposition of an image.

Fig. 3. Filter bank representation of the back transformation corresponding to the decomposition shown in Fig. 2.~H and ~G denote the inverse filters ofH and
G. Though in the orthonormal case,~H = H and ~G = G, in more general cases, e.g., for biorthogonal wavelets as discussed below, they may differ.

is shown in Figs. 2 and 3. The FWT is usually represented as
in Fig. 4.

The FWT is not the only type of wavelet transform that may
be used—and has been used—for the enhancement of images.
Enhancement of medical images by means of a wavelet de-
composition was so far mainly performed on images decom-
posed in a different way than presented above. Laineet al. [13],
[14] used both a redundant wavelet transform and reconstruc-
tion from wavelet maxima. The latter method was also applied
to MR and CT images by Luet al.[12]. In the redundant wavelet
transform, the scaling of the wavelet is not achieved by subsam-
pling of the image in each step, as in the pyramidal algorithm

described above, but rather by a scaling of the filter. Non-orthog-
onal wavelets can, therefore, be used in the transform. Laineet
al. [13], [14], e.g., used a Laplacian filter and, thus, in fact per-
formed a decomposition very similar to the Laplacian Pyramid,
but without the pyramidal structure. They then used a linear
remapping with two different slopes. The results obtained with
this enhancement do not alter the general image impression as
much as their results with other methods.

Another method of wavelet decomposition, which is es-
pecially suitable for image compression and denoising, is
the coding of an image by wavelet maxima [20]. There, a
regular (redundant) wavelet transform is applied to the image,
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Fig. 4. Represents the way in which a decomposed image is usally stored or
presented.

but in a subsequent step only the position and magnitude
of the edges (i.e., wavelet maxima) of the detail images are
retained. The original image can be reconstructed in an iterative
process, which converges to the original image. In the first 20
iteration steps, convergence is quite fast, however, afterwards
it slows down considerably. The algorithm is in fact a very
good tool for noise reduction. Laineet al. performed contrast
enhancement on mammograms by applying a constant, but
scale-dependent gain on the wavelet maxima (with a lower
limit to avoid boosting of noise) [13]. Luet al. did the same
for mammograms, MR and CT images, but without the noise
robustness feature [12]. The results for mammograms do not
look as convincing as with the redundant wavelet transform as
far as the general image impression is concerned. Note also
that due to the large number of iteration steps needed to get a
good approximation of the original image, this method is quite
time-consuming.

To our knowledge, none of the wavelet-based enhancement
methods described here has been tested in clinical routine so far.
In Section III, we will discuss the possibility of image enhance-
ment based on the FWT and compare it with the results obtained
by a Laplacian Pyramid. Some properties of the FWT indicate
that it might give better results than the Laplacian Pyramid. One
would expect that the selective enhancement of structures of a
certain size might be possible in an image where the detail infor-
mation of successive layers is orthogonal and that the isolation
of noise might be achieved more effectively in a wavelet frame-
work than in a Laplacian Pyramid.

III. COMPARISON OF THEDECOMPOSITIONSCHEMES

Obviously, a comparison of the performance of the two de-
composition schemes is a difficult task, since there is a variety
of possible filters that might be used in the wavelet transform
and an even greater variety of possible subband remapping func-
tions. As far as the remapping is concerned, we will, therefore,

TABLE I
FILTER COEFFICIENTS OF THEBI-ORTHOGONAL 7–9-TAP WAVELET

USED IN THE COMPARISON

discuss the effect of a simple linear remapping of the subbands,
where the slope of the remapping look-up table (LUT) may vary
over the different scales. This should capture the essential ef-
fects of a general remapping of the subbands, while at the same
time facilitating comparison between different decomposition
methods. It also has the advantage that due to the use of constant
remapping factors for the subbands, in the case of the FWT the
enhancement is the same if remapping is applied to the wavelet
coefficients directly or to the reconstructed wavelet channel [this
can be seen from the linearity of (10)]. In the case of a nonlinear
remapping function, this would not be true.

It is beyond the scope of this paper to discuss all wavelet
types that might be used for image decomposition and enhance-
ment. Therefore, for the wavelet transform, we restrict ourselves
to two different wavelet types: an orthonormal one, namely a
Daubechies wavelet and a biorthogonal one introduced in [19],
which is quite close to an orthonormal wavelet and showed
best results for the compression of images out of the biorthog-
onal wavelets discussed in [19]. The filter coefficients of this
biorthogonal 7–9-tap wavelet from [19] are given in Table I, for
the Daubechies wavelets, see, e.g., [21] and [22].

For the comparison, we use two characteristically different
images. The first is a posterior-anterior (pa) image of a skull
(Fig. 5), since it contains large, low-contrast structures such as
the marking of the calotte by vessels, small low-contrast struc-
tures, such as the facial structure and the nasal bone and quite
sharp edges, such as the skull-background transition and the fill-
ings. In this particular image, there is a very low-contrast occip-
ital fracture (behind the right eye), which is nearly invisible in
the original unprocessed image. The second image we use is a
mammogram (Fig. 9), since this is the image type used most
in previous works on wavelet-based image enhancement. The
images were obtained by a Philips PCR 9000 computed radi-
ography system, which already performs pre-ranging of the im-
ages.

For the linear enhancement of the skull image, we used the
gain values found to be optimal in an observer preference study
at Fulda Municipal Hospital for pa-skull images in the case of
nonlinear remapping with function (2). It has to be noted here
that in addition to the gain in (2), a global (constant) enhance-
ment factor was applied to all subbands. For the linear enhance-
ment, we, therefore, used the product of the remapping gain
from (2) and this global enhancement factor. These gain values
(see figure captions) were used both for remapping of the Lapla-
cian Pyramid decomposition and the wavelet decomposition.
For comparison, the corresponding result for nonlinear enhance-
ment of the Laplacian Pyramid decomposition is shown as well.
There, however, we did not include the noise-robustness feature
used in [10], to facilitate comparison with the linear case.
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Fig. 5. Original image of skull.

It is clear that the selection of the gain values used in the
Laplacian Pyramid might introduce a bias toward this decom-
position method in the comparison of the two decomposition
schemes, since the wavelet decomposition splits up the image
differently and the wavelet coefficients are not comparable
with the gray values of the Laplacian Pyramid levels. However,
tests of many different parametrizations of the wavelet-based
enhancement showed that the characteristics we are going to
discuss here do not change by using different parameters—ei-
ther hardly any enhancement is visible, or certain artifacts are
visible very well—regardless of the parametrization. We will
come back to this later when discussing results of enhancement
of synthetic edges.

Figs. 6–8 show the results obtained with the different remap-
ping and decomposition types. The wavelet decomposition was
performed with the biorthogonal 7–9-tap wavelet. Obviously,
linear and nonlinear enhancement via the Laplacian Pyramid
show very similar results as compared to the FWT results. The
sharper edges in the linearly enhanced image (Fig. 6) seem to
disturb the harmonic image impression a little, but there are
no obvious artifacts (e.g., ringing). The image enhanced via
the FWT instead gives a distinctly different impression. Apart
from the very disturbing artifacts visible near strong edges (e.g.,
skull-cap/background or fillings), the general image impression
is far more “high-pass-like” than in the Laplacian Pyramid en-
hanced cases. The fine structure seems to come out more clearly,
which is best seen by the very good delineation of the fracture,
but this renders the image “busier.” We will see later that the oc-
currence of these artifacts is a problem inherent to the wavelet

Fig. 6. Skull processed with Laplacian Pyramid and linear remapping. The
gain in the subbands wasg = 1.68,g = 1.68,g = 1.68,g = 2.4,g =

2.4,g = 2.4,g = 2.4.

Fig. 7. Skul processed with Laplacian Pyramid and nonlinear remapping
according to (2). Parameters: gain, see Fig. 6, structure boost:p = 5.0,p =

5.0,p = 5.0,p = 2.0,p = 2.0,p = 2.0,p = 2.0.
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Fig. 8. Skull, processed with wavelet pyramid and linear remapping of
subbands. The gain in the subbands was the same as for Fig. 6.

transform itself and is not caused by a bad choice of remapping
parameters or the type of wavelet.

The question is now whether this effect is observable as well
in mammograms, which so far have shown quite promising
results when other wavelet-based enhancement methods were
used. Figs. 9–11 show the results obtained for the same remap-
ping types as for the skull. However, the parameters used here
were the ones which in our clinical study at Fulda Municipal
Hospital showed to be optimal for lateral images of the sacrum,
which just like the mammograms is characterized by many
superposing structures of all sizes and low contrast [23].

Apparently, the problems which occur for the skull images
persist in the mammograms. Apart from that, the Laplacian
Pyramid enhancement gives very promising results, especially
with nonlinear remapping. In fact, the strong ringing artifacts
in the FWT-enhanced images arise from a property of the FWT
itself. They are not a result of the wavelet-type or remapping
parameters used (in fact, as we will see, this wavelet type is
least affected by this artifact of the types we have tested).2

The fact that the artifacts are inherent in the FWT becomes
clear when we regard the step-response of the wavelet- and
Laplacian Pyramid-based enhancement. Figs. 13–16 show the
response of a wavelet-based and a Laplacian Pyramid-based

2The additional strong ringing artifacts at the top and right edges of the mam-
mogram are a result of the (artificial) edges produced by the periodic boundary
conditions we used for the wavelet transform (though not for the Laplacian
Pyramid). Although for the biorthogonal wavelet used, reflecting boundary con-
ditions are possible, this is not the case for the (nonshift-invariant) orthogonal
Daubechies wavelets.

Fig. 9. Mammogram (original image).

Fig. 10. Mammogram processed with Laplacian Pyramid, but linear
remapping. The gain in the subbands wasg = 3.0,g = 3.0,g = 3.0,g =

3.9,g = 3.9,g = 3.9,g = 3.9.
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Fig. 11. Mammogram processed with Laplacian Pyramid and nonlinear
remapping according to (2). Parameters: gain, see Fig. 10, boost:p = 2.1,
p = 2.1,p = 2.1,p = 1.2,p = 1.2,p = 1.2,p = 1.2.

enhancement to a step-edge, where only one level at a time is
mapped by a linear LUT with slope 2. The difference between
(all) wavelet types and the Laplacian Pyramid is striking. All
wavelets exhibit an additional overshooting at the edge (addi-
tional to the inevitable one which in fact is a result of linear
enhancement of a bandpass image). It is most severe for the (or-
thogonal) Daubechies wavelets. Particularly, there is no large
difference between the Daubechies wavelets of 4th and 12th
order, except for the fact that the 12th order wavelet results in
smoother waveforms around the edge. In fact, what we see on
the edges is mainly the wavelet itself on this particular scale. In
the case of the Daubechies wavelets, the asymmetric response
of the wavelets is due to the asymmetry of the wavelet itself. In
the case of the biorthogonal wavelet, it arises from the fact that
high- and low-pass filter are shifted by one pixel with respect
to each other, which is why the asymmetry disappears for lower
scales, since then the exact position of the filters with respect to
the edge is no longer so important due to the smoothing of the
edge.

Figs. 13–15 in fact explain the appearance of Figs. 8 and 12
with respect to their counterparts enhanced via the Laplacian
Pyramid. While at high-resolution levels the second overshoot
is relatively small compared to the one directly at the edge, its
height grows to the same order of magnitude as that of the first
overshoot if the enhancement took place in the lower resolution
levels of the pyramid. This property accounts for the impression
that in the enhanced images, artifacts occur only at a relatively
large scale—they are always present, but become visible only in
the enhancement of larger scales.

Fig. 12. Mammogram processed with wavelet pyramid and linear remapping
of subbands. The gain in the subbands was the same as for Fig. 10.

Fig. 13. Effect of linear enhancement of a single level (multiplication of the
wavelet coefficients by a factor of two) for Daubechies 4th order wavelet. From
bottom to top: result of enhancement of level 1, 2, …, 6. The dotted line shows
the original edge.

The reason for the additional overshooting of the signal in
the case of the FWT is the fact that the enhanced bandpass is
high-pass filtered in the back-transform once more, thus empha-
sizing the edges even more. If no enhancement takes place, this
effect cancels out when the signal is added to the corresponding
low-pass, since the low-pass, too, was low-pass filtered once



DIPPELet al.: MULTISCALE CONTRAST ENHANCEMENT FOR RADIOGRAPHIES: LAPLACIAN PYRAMID VERSUS FWT 351

Fig. 14. Same as Fig. 13, but for a Daubechies 12th order wavelet.

Fig. 15. Same as Fig. 13, but for the biorthogonal 7–9 tap wavelet.

more in the back-transform. If, however, certain levels are en-
hanced, the effects do not cancel any more. In the Laplacian
Pyramid, on the other hand, only smoothing operations take
place in the back-transform, thus smearing out the edge en-
hancement particularly at lower scales.

The effect of the multiscale enhancement with varying gain
becomes even clearer if we consider its response to a (sharp)
step edge and to a softer edge (the step edge smoothed with a
box kernel of size 150). The effect of both Laplacian Pyramid
and FWT-based enhancement with varying gain for these kinds
of edges is shown in Figs. 17–20.

Fig. 17 shows that in the Laplacian Pyramid, a pronounce-
ment of the higher frequencies results in a very sharp accen-
tuation of the edge, while a pronouncement of lower frequen-
cies still enhances the edge, but far more softly and not by the
same amplitude. Equal enhancement of all scales clearly has the

Fig. 16. Effect of linear enhancement of a single level (multiplication of the
corresponding bandpass image by a factor of two) in the Laplacian Pyramid.
From bottom to top: result of enhancement of level 1, 2, …, 6. The dotted line
shows the original edge.

Fig. 17. Response of Laplacian Pyramid-based enhancement with varying
gain to a step edge. The remapping function was linear. Dotted-dashed line:
original edge; full line:g = � � � = g = 2.0; long-dashed line:g = 4.0,
g = 3.5,g = 3.0,g = 2.5,g = 2.0,g = 1.5,g = 1.0; dotted line:g =

1.0,g = 1.5,g = 2.0,g = 2.5,g = 3.0,g = 3.5,g = 4.0.

same effect as unsharp masking with a correspondingly large
kernel. For the FWT-based enhancement, results are similar (see
Fig. 18), though again disturbed by a second overshoot. It should
be noted, too, that even though the extension of the enhanced
edge is similar in both cases (Laplacian Pyramid and FWT), it
decays much faster in the beginning for the FWT, i.e., looks
sharper.

For a soft edge, the difference between Laplacian Pyramid-
based and wavelet-based enhancement is even more striking.
Fig. 19 shows that in fact, since the edge only reaches a sig-
nificant slope at the lower levels of the pyramid, equally strong
enhancement of all scales leads to a very similar result as par-
ticularly strong enhancement on the lowest scale. For the FWT,
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Fig. 18. Response of wavelet-based enhancement with varying gain to a step
edge. Line styles are the same as in Fig. 17.

Fig. 19. Response of Laplacian Pyramid-based enhancement with varying
gain to a soft edge. Line styles are the same as in Fig. 17. The dashed line
additionally shows the result for equally strong enhancement in all levels, but
for a Laplacian Pyramid with one more decomposition level.

the picture is completely different. Here, hardly any response to
the enhancement is discernible in Fig. 20 if the same number of
pyramid levels as before is used. The edge cannot be resolved
in the same number of levels as within the Laplacian Pyramid
framework. If we use one more level in the decomposition, the
enhanced edge appears, though spoilt by the same artifacts as
the sharp edge. The second overshoot is even more severe than
for the sharp edge. Besides, even if we only take into account
the first overshoot enhancing the edge, the amount of enhance-
ment is less than in the case of the Laplacian Pyramid.

From the response shown in Figs. 17–20 it can be concluded
that one may not achieve a similar image impression as for the
Laplacian Pyramid by means of an enhancement via the FWT.
Though remapping of the highest levels only would look very
similar to the results of the Laplacian Pyramid (even might bring
out fine structures better), there is no way in which a satisfac-
tory (artifact-free) enhancement of larger structures might be

Fig. 20. Response of wavelet-based enhancement with varying gain to a soft
edge. Line styles are the same as in Fig. 17. The dashed line additionally shows
the result for equally strong enhancement in all levels, but for a FWT one level
deeper.

achieved. Also, a nonlinear remapping function would not over-
come this problem.

IV. DISCUSSION

The results presented in the previous section show that al-
though the FWT has some properties that seem to make it a good
candidate for multiscale image enhancement (orthogonality of
corresponding high- and low-pass, direction sensitivity, good
sensitivity for small structures), there is a problem arising from
the fact that in the back-transform, the high-pass has to be fil-
tered with a wavelet once more before adding it to the corre-
sponding low-pass, thus producing visible ringing artifacts if the
corresponding high-pass was previously enhanced. In fact, this
is not a completely new aspect—the artifacts that occur when
different levels are enhanced differently lead to similar problems
as too strong quantization in compression with wavelets [22].
Still, the problem is not so severe in compression applications,
since best compression rates can be achieved particularly by
compressing higher scales, which are not that sensitive to these
artifacts. However, in the multiscale enhancement of images, we
particularly want to explore the possibilities of enhancement of
lower levels. However, since very small details seem to be en-
hanced better by the FWT than by the Laplacian Pyramid, in an
enhancement based on the remapping of the higher levels only,
the FWT might yield better results than the standard technique.
Also, noise might be filtered out better by a wavelet transform.

The results presented previously by Laineet al.[13], [14] ac-
tually confirm our results. The enhanced images they produced
with the redundant wavelet transform are very similar to ours
which were enhanced with the Laplacian Pyramid. This is due to
the fact that the filter used there is essentially a Laplacian and the
back-transform filter in this case is a smoothing filter, just like
in the Laplacian Pyramid. The enhancement results for other
wavelet transform types shown in [13] alter the image impres-
sion so thoroughly, that they would be inappropriate for general
radiographic applications.
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A comparison of the images enhanced linearly and nonlin-
early in the framework of a Laplacian Pyramid decomposition
shows that nonlinearity of the remapping function is indeed an
important feature to avoid ringing artifacts at very strong edges.
The analysis of the response of the filter to a step-edge shows
that enhancement of higher levels enhances mostly sharp edges
and small details. On the other hand, enhancement of lower
levels enhances all edges, but the sharp edges are enhanced very
softly, thus, probably giving rise to the “soft” image impression
of certain images as remarked in our clinical study. Small de-
tails, by contrast, will not be enhanced if only the lower pyramid
levels are enhanced, since they are smoothed out there already.

V. CONCLUSION

We have shown that for the enhancement of radiographs in
general, decomposition by an FWT leads to undesirable artifacts
in the enhanced images. By contrast, the Laplacian Pyramid
seems to be a more suitable decomposition method for multi-
scale enhancement, since it is free from such artifacts and results
in very balanced image impression. The detailed discussion of
other wavelet decomposition methods is beyond the scope of
this paper, since here, we restrict ourselves to pyramidal im-
plementations of the decomposition for reasons of time and
space constraints in the processing chain of digital radiography
system. However, as we have shown, in the case of a pyramidal
decomposition of the image, the Laplacian Pyramid seems to be
the method of choice.
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