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Abstract

This thesis presents a new method for detection of complex curvatures such as
corners, circles, and star patterns. The method is based on a second degree local
polynomial model applied to a local orientation description in double angle rep-
resentation. The theory of rotational symmetries is used to compute curvature
responses from the parameters of the polynomial model. The responses are made
more selective using a scheme of inhibition between different symmetry models.
These symmetries can serve as feature points at a high abstraction level for use
in hierarchical matching structures for 3D estimation, object recognition, image
database search, etc.

A very efficient approximative algorithm for single and multiscale polynomial
expansion is developed, which is used for detection of the complex curvatures in
one or several scales. The algorithm is based on the simple observation that poly-
nomial functions multiplied with a Gaussian function can be described in terms
of partial derivatives of the Gaussian. The approximative polynomial expansion
algorithm is evaluated in an experiment to estimate local orientation on 3D data,
and the performance is comparable to previously tested algorithms which are more
computationally expensive.

The curvature algorithm is demonstrated on natural images and in an object
recognition experiment. Phase histograms based on the curvature features are
developed and shown to be useful as an alternative compact image representation.

The importance of curvature is furthermore motivated by reviewing examples
from biological and perceptual studies. The usefulness of local orientation infor-
mation to detect curvature is also motivated by an experiment about learning a
corner detector.
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Chapter 1

Introduction

1.1 Motivation

The work in this thesis has been carried out within the project “Contents based
search in image and video databases”. This project is part of VISIT (VISual
Information Technology), which is a national Swedish strategic research initia-
tive within the field of Visual Information Technology, supported by the Swedish
Foundation for Strategic Research (SSF). The goal of this particular project is to
develop methods and tools for contents based image and video database search.

Imagery will be an essential type of information in the future, especially in
the emerging IT-networks. Large image and video databases will be common
and serve as key sources of information for private people in their everyday life,
as well as for professionals in their work. The research field concerning Content
Based Image Retrieval (CBIR) has therefore increased considerably during the
last decade, see e.g. [Smeulders et al., 2001], [Johansson, 2000b], [Rui et al., 1999],
[Marsicoi, 1997]. Almost every existing computer vision algorithm has been ap-
plied in CBIR. But still, todays CBIR-systems are not very capable of mimicking
human retrieval and need to be combined with traditional textual search. Manual
annotation of keywords to every image in a large database is however a tedious
work. Since the annotator is only human, he is bound to forget useful keywords.
Also, keywords cannot capture abstract concepts and feelings. The old saying
“One picture is worth a thousand words” definitely still holds. Humans also tend
to abstract query images for some conceptual information. We tend to associate
objects in terms of our ability to interact with them. This phenomenon can also
be traced in text-based systems where the categories often represent actions (or
corresponding nouns). For example, glasses can look very different from each other
but are still associated because we can perform a common action on them, namely
drink. A truly useful system for general browsing has to be able to perform this
association, but this is a very difficult task to accomplish in practice.

The basic idea and motivation for this thesis is that local, high level, and
selective image features will play an important role in future CBIR systems. This
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kind of features have so far been sparsely applied in CBIR, but the attention
around them has increased in the last few years. They should be more descriptive
than most of the low level features applied today, e.g. lines and edges.

Large image databases can consist of thousands, or even millions of images.
The need for efficient algorithms is therefore crucial. As an example, the company
behind the text based Internet search engine AltaVista estimates that, in a CBIR
system for the net, the computational time for each image should be at most
around a second. A large part of the work in this thesis is therefore focused on
efficient algorithms.

As systems grow more complex, it is also important from a practical perspective
that algorithms are easy to understand and to implement. The feature detection
strategy presented in this thesis takes a unified approach to single and multiscale
detection of complex curvature such as corners, circles, and star patterns. The
algorithm employs a polynomial model of a local orientation image to detect these
features. The same model applied on gray-level images has been used for detection
of edges and lines and estimation of local orientation, and for a number of other
applications. The polynomial model therefore serves as a unified approach to these
tasks. Furthermore, an efficient multiscale algorithm for computing the polynomial
model is presented.

1.2 Contributions

The computer vision community consists of people from many different research
disciplines, and the terminology varies to a great extent. Hence it is difficult to
review related work and say what is really new and not. The list below contains
the contributions that are likely to be new.

• The local polynomial expansion model in chapter 4 is not new, but a new ef-
ficient approximative algorithm is developed to estimate the model in several
scales. The algorithm uses Gaussian filters and derivative filters to compute
partial derivatives. This idea to compute partial derivatives is not new, but
it has probably never been used before as a way to estimate polynomial
models.

The approximative algorithm has some relation to [Burt, 1988]. This refer-
ence was found very recently, and a comparison has not yet been made. The
approach is very different from the one in this thesis, but the results may be
similar.

• The idea in section 5.3.4 to detect curvature in several scales by using a
local polynomial model based on a local orientation description, is also new.
Polynomial models have been used before to detect curvature, but then ap-
plied on gray-level images directly. By using local orientation, it is easier
to represent more complex curvatures. It should be noted that using local
orientation to detect curvature is not a new idea, the review in chapter 5 of
the rotational symmetry theory deals with this issue. The polynomial model
approach should be seen as an efficient way to detect these symmetries.
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Polynomial models have been used for a number of computer vision tasks,
and this model serves as a unified framework to these tasks.

• The idea to use normalized inhibition in section 5.3.3 to make the rotational
symmetry responses more selective is also new.

The other approach, normalized convolution in section 5.3.2, has previously
been used in a special case. The generalization is natural, but it has probably
never been explored before.

These two ideas have also been published in [Johansson and Granlund, 2000]
and [Johansson et al., 2000].

• The idea of using canonical correlation to learn feature detectors in section
6.3 is not new, but it has previously only been used to learn local orientation
detectors. In this section it is shown that the same idea can be used to
learn a corner detector. In addition, it is shown that parameters from a
polynomial model of the image representation can be used instead of the
representation itself. This greatly reduces the amount of data and makes
the learning easier.

Section 6.3 is published in [Johansson et al., 2001].

• The idea to use phase histograms on rotational symmetry responses as an
image representation, section 6.4.2, is also new.

• The back-projection idea in appendix A is a method to transform local ori-
entation descriptions in double angle representation to corresponding gray-
level patterns. Part of the idea is inspired from [Bigün, 1997], but otherwise
assumed to be new.

1.3 Thesis outline

Figure 1.1 contains an overview of the thesis outline and in which order the sec-
tions should be read. The thesis is mainly divided into three parts: introduction,
theory, and experiments.

Chapters 1 and 2 introduce and motivate the work in the thesis and also review
some related work.

The theory and algorithm part is divided into three chapters. Chapter 3 con-
tains a short description of the basic signal processing tools used in this thesis;
normalized convolution and canonical correlation. These tools will be used in the
remaining theory chapters and in the experiments. Chapter 4 reviews an algorithm
for local polynomial expansion using normalized convolution and also describes a
new approximative method, which more efficiently estimates the polynomial model
in several scales. Chapter 5 reviews the rotational symmetry theory and describes
a new algorithm to detect the symmetries using the local polynomial model. Chap-
ter 6 contains experiments based on the theories and algorithms, except section
6.4.2 about phase histograms, which also may be viewed as ’theory’.
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All experiments are gathered in chapter 6. Sections 6.1 and 6.2 evaluate the
new algorithms developed in chapters 4 and 5 respectively. Section 6.4 uses the
rotational symmetry detection algorithm in an object recognition experiment. Sec-
tion 6.5 discusses some other possible applications for this algorithm. Section 6.3
contains an experiment on learning a detector for corner orientation. This experi-
ment may seem a bit off track from the rest of the thesis, but it should be viewed
as an additional attempt to motivate the use of rotational symmetries and local
orientation as information for curvature detection.

Finally, chapter 7 summarizes the work and discusses some ideas for future
research.

Ch 1, 2: Introduction

1. Introduction 2. Background

Ch 3, 4, 5: Theory

3.1. Normalized convolution

��
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89
//

3.2. Canonical correlation
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4. Local polynomial expansion
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5. Rotational symmetries
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Ch 6: Experiments

6.1. Polyexp evaluation 6.2. Rotsym evaluation

6.5. Other applications 6.4. Object recognition 6.3. Learning corners

7. Summary & Future

Figure 1.1: Thesis outline
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1.4 Notations

Below follows a list of notations used in this thesis:

• Italic letters (e.g. I and z) denote real or complex functions or scalars. Lower-
case letters in boldface (e.g. f) denote vectors, and uppercase letters in bold-
face denote matrices (e.g. P).

• Partial derivatives are sometimes denoted using subscripts, e.g. fx = ∂f
∂x ,

fxy = ∂2f
∂x∂y , etc.

• Conjugate transpose for complex vectors and matrices is denoted by ∗. For
real vectors and matrices transpose is also denoted as T .

• a · b denotes pointwise multiplication of the elements of the two vectors a

and b.

• |z| denotes magnitude and ∠z denotes argument, or phase, of the complex
value z.

• ẑ for complex values denotes normalized value, i.e. ẑ = z/|z| and â for a
vector denotes unit length.

• Two scalar (inner) products are used in this thesis. One unweighted and one
weighted:

〈a, f〉 = a∗b
〈a, b〉W = a∗Wb

(1.1)

where W is a positive semidefinite matrix.

Additional notations are introduced when needed.
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Chapter 2

Background

This chapter reviews some work related to this thesis.

2.1 Biology

The use of local curvature for object recognition is still limited in the field of
computer vision. Designing curvature detectors can be motivated by looking at
biological systems. There are a number of studies and perceptual experiments that
indicate the importance of curvature in biological vision. This section presents
some of them. Unfortunately they give no clues to how to further use curvature
information for recognition tasks. The figures in this section are copied from the
cited articles.

Attneave ([Attneave, 1954]) views point features in an information theoretical
perspective. Point features such as curvature points and corners contain
more information than lines and edges because they cannot as easily be pre-
dicted from neighboring points. He also shows that objects can be recognized
from simplified drawings using straight lines between high curvature points,
see figure 2.1.

Oster ([Oster, 1970]): Phosphenes are subjective images which result from in-
ternal activity in the eye and the brain. They can arise spontaneously as
moving specks of light, for example when you close your eyes or enter a dark
room. Other patterns can be induced by pressing the eyeballs, star patterns
can arise from a blow on the head (hence the expression ’seeing stars’), and
still other patterns can be induced from chemical drugs or from electrical
stimulation. These patterns are interesting because they must be related to
the visual pathway, and the visual cortex. Curvature, circles and star pat-
terns seem to be among the patterns that appear when electrical impulses
are sent into the brain through electrodes placed on the head, see figure 2.2.

Oster also points out that scribbles from children during their early years are
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Figure 2.1: From [Attneave, 1954]. Perceptual experiment showing the importance
of curvature. Quote: “Drawing made by abstracting 38 points of maximum curva-
ture from the contours of a sleeping cat, and connecting these points appropriately
with a straight edge.”

Figure 2.2: From [Oster, 1970]. Examples of phosphenes. Quote: “CLASSIFI-
CATION of electrically induced phosphenes was undertaken by Max Knoll. On
the basis of reports from more than 1,000 volunteers he grouped the phosphenes
into 15 categories, each represented here by a typical example and numbered in
accordance with its commonness. Certain forms are characteristic of each pulse
frequency for each individual.”
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similar to typical electrically induced phosphenes, as the ones in figure 2.2.
As the child grows older the scribbles are combined to form more complex
figures such as objects. The drawings are subsequently improved and finally
relations between objects are included.

Blakemore and Over ([Blakemore and Over, 1974]) Cell adaptation means that
cells that have been strongly activated become less responsive due to fatigue.
During adaptation so called after-effects can occur which means that the in-
terpretation of an event becomes biased to cell responses that have not been
adapted. For example, if one looks at a yellow colored area for a about
minute and then at a gray area it appears bluish, since blue is the comple-
mentary color to yellow (see [Atkinson et al., 1990]). Blakemore and Over
showed that we can experience curvature after-effects. A person had looked
fixedly on a curvature image for a minute, see figure 2.3, and was then asked
to look at an image with a line and correct the orientation until it looked
straight. If the line needed correction, the person experienced an after-effect.
Blakemore and Over argued that this indicated the existence of curvature-
selective cells. They also argued that the curvature cells use information
from orientation-selective cells.

Biederman ([Biederman, 1987]), ([Biederman and Cooper, 1991]): An object can
often be recognized by its contour alone, see the left column in figure 2.4.
This means that there is a great deal of redundant information in a color or
intensity image. Biederman showed that if we go one step further and only
use high-curvature features, we can still recognize the objects in many cases,
see the middle column in figure 2.4. The recognition task becomes much
more difficult if we use other contour parts (right column).

Gallant et al ([Gallant et al., 1993]): Gallant et al studied the selectivity for po-
lar (circle, spiral-, and star-patterns), hyperbolic (curvature patterns), and
Cartesian (lines, edges, etc) image patterns in some cells in area V4 in the
macaque visual cortex (also see Tanaka below). They found that many cells
are more sensitive to polar and hyperbolic patterns than to Cartesian pat-
terns. Many of the cells were tuned to one phase within the class, for exam-
ple some cells were sensitive to star-patterns but not to circle patterns, some
were sensitive to curvature around one direction but not to the other direc-
tions. Also, some cells were selective to more than one of the three classes
of patterns but they still kept their tuning selectivity within the classes. It
should also be mentioned that many of the cells were fairly invariant to the
location of the pattern within the receptive field.

The results of this experiment are interesting because these patterns are
the same as those found by the rotational symmetry detectors described in
chapter 5.

Humphreys ([Humphreys et al., 1994]): Many conclusions about how the brain
works can be made by observing persons with lesions in the brain. Humphreys
studied the effects of lesions in the parietal lobe (Balints syndrom). These
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Figure 2.3: From [Blakemore and Over, 1974]. Perceptual experiment on curva-
ture after-effects. Left: Inspection stimulus. Right: Test stimulus. Quote: “The
subjects adapted by viewing the inspection stimulus and then, while fixating the
dark center of the test stimulus, they adjusted the curvature of the line until it
appeared straight. There were four inspection conditions: (i) steady fixation on a
spot of light at a, (ii) smooth eye movements following the spot as it moved hor-
izontally over a total excursion b-b, (iii) pursuit eye movements with a vertically
moving fixation spot c-c, (iv) horizontal scanning from b-b but with the pattern
blanked off at each side, beyond d, exposing only a central pattern of curves, 2-5
deg wide. Significant after-effects were generated under conditions (i), (ii) and
(iv), but not with vertical scanning.”

persons had for example difficulty recognizing words if there were objects
present - the objects seemed to outvote the words. It was also difficult to
recognize squares represented by lines when another object represented by
corners was present. On the other hand, it was no problem if the square was
represented by corners and the other object by lines, see figure 2.5. This
implies that corners outvote lines in some sense, and that they therefore are
more important. This may also be because corners have a stronger influence
than lines upon the attention mechanism.

Tanaka et al ([Tanaka, 1996]), ([Kobatake and Tanaka, 1994]): It is assumed that
there are two visual pathways in the brain, popularly called the where and
what pathways. The first one deals with location of objects. The second one,
also called the ventral visual pathway, presumably deals with recognition of
objects. One simplified model is that the visual information is processed
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Figure 2.4: From [Biederman, 1987]. Perceptual experiment showing the impor-
tance of curvature. Quote: “Example of five stimulus objects in the experiment
on the perception of degraded objects. (The left column shows the original intact
versions. The middle column shows the recoverable versions. The contours have
been deleted in regions where they can be replaced through collinearity or smooth
curvature. The right column shows the nonrecoverable versions. The contours
have been deleted at regions of concavity so that collinearity or smooth curva-
ture of segments bridges the concavity. In addition, vertices have been altered,
for example, from Ys to Ls, and misleading symmetry and parallelism have been
introduced.)”
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(a) (b) (c) (d)

Figure 2.5: From [Humphreys et al., 1994]. Square and diamond test patterns
represented by lines and corners. Objects (a),(b),(c),(d) were shown either isolated
or in pairs (a,d) and (b,c) for a short duration of time, and two persons with lesions
in the parietal lobe was asked to detect whether a square was present. They failed
the task for the pair (a),(d) but not for isolated objects or for the pair (b,c).

approximately in a sequence through five local areas in the brain:

V 1 ⇒ V 2 ⇒ V 4 ⇒ TEO ⇒ TE (2.1)

TE (inferotemporal cortex) is assumed to be the last area in the pathway
specifically involved in visual processing. The information from TE goes out
to other parts of the brain. The cell responses become more refined and se-
lective along the way, and their behavior is very non-linear and unpredictable
at the end of the path. Tanaka et al measured individual cell responses to
different image patterns. First, objects were shown, and the ones that gave
a cell response were subsequently simplified in a way that the cell response
remained high, to finally arrive at what they called the cell critical feature.
This pattern was assumed to be the simplest, yet optimal pattern for the
cell. Some of these patterns are shown in figure 2.6. The patterns should
not be taken too seriously, it would be almost impossible to find the optimal
pattern for an individual cell, but they may at least give a hint of the com-
plexity in each brain area. It can also be mentioned that the cell responses
were more invariant to size and position of the patterns in the later areas
TEO and TE.

Horridge ([Horridge, 2000]) has shown that honeybees can be taught to discrim-
inate between circle and star patterns. His experiments also suggest that the
bees have ’tangential’ and ’radial’ filters, i.e. cells that are sensitive to edges
directed out from the center of the eye’s fixation point (e.g. edges in a star
pattern) and edges directed orthogonally to those (e.g. edges in a circular
pattern).

2.2 Some image feature detectors

In this thesis a strategy for detection of complex curvature is developed. There are
many principles described in the literature for detection of similar features, or at
least in some sense for detection of features at the same complexity level. Examples
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Figure 2.6: From [Kobatake and Tanaka, 1994]. Quote: ”Examples of the complex
critical features in the 4 regions. YG, yellow green; Br, brown.”

are corners, curvature, symmetries, line endings and junctions. Applications in-
volve motion segmentation and tracking of objects [Smith and Brady, 1995], image
enhancement and restoration [Smith and Brady, 1997], and 3D surface reconstruc-
tion by tracking corners in time [Charnley and Blisset, 1989].

This section reviews some of these detectors. It is not the intention to compare
the different detectors but merely to give an idea of what is available today and
discuss some advantages and disadvantages. The detectors either use intensity
information or local orientation information. They are presented in chronological
order.

Moravec ([Moravec, 1977]): Probably the first ’points of interest’-detector. Di-
rectional variance is measured over small square windows of typically 4 to 8
pixels on a side. Sums of squares of differences of pixels adjacent in each of
four directions (horizontal, vertical and two diagonals) over the window are
obtained. The variance of the window is the minimum of these four sums.
This variance is then used as a measure of information in the window.

Beaudet ([Beaudet, 1978]): Also one of the first attempts to detect interesting
points. The local image area is approximated with its k:th order Taylor
series expansion using least squares (different values of k are tried). He then
evaluates some different corner detectors based on the model parameters and
decides that the best one is

IxxIyy − I2
xy (2.2)

where Ixx, Iyy, and Ixy are second order derivatives of the image intensity
function.
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Haralick, Kitchen & Rosenfeld, and Nagel ([Haralick and Watson, 1981],
[Haralick, 1984], [Haralick and Shapiro, 1993], [Kitchen and Rosenfeld, 1982],
[Nagel, 1983]) have all developed similar corner detectors based on polyno-
mial expansion models. An incomplete third degree polynomial model is
fitted locally to the image:

I(x, y) ∼ k1 + k2x + k3y + k4x
2 + k5xy + k6y

2

+k7x
3 + k8x

2y + k9xy2 + k10y
3 (2.3)

This model is sometimes called the facet model. A well known curvature
measure is the derivative of the contour tangent angle along the contour. It
can be shown that this curvature measure can be computed as

κ =
2IxyIxIy − IyyI2

x − IxxI2
y

(I2
x + I2

y )3/2
∼ 2(k2k3k5 − k6k

2
2 + k4k

2
3)

(k2
2 + k2

3)
3/2

(2.4)

The corner detector is then defined as

κ|∇I|γ (2.5)

|∇I|γ can be viewed as a certainty measure of the curvature κ.

Rotational symmetries : The rotational symmetries are thoroughly described
in chapter 5. The theory was developed around 1981 by Granlund and
Knutsson and a number of people have been doing research on them, see the
review in section 5.4. The basic idea is to use local orientation (in double
angle representation) to detect complex curvature. A set of filters is applied
on the orientation image and from the result it is possible to detect and
distinguish between a number of features, such as corners, circles, and star
patterns.

Harris ([Harris and Stephens, 1988]): Harris detector, also called Plessey detec-
tor, is one of the best known detectors for point features. First the image
gradient ∇I is computed, for instance using differentiated Gaussian filters.
Then the outer product of the gradient is computed and averaged over a
local area in the image using a Gaussian filter,

A =
∑

x

g(x)∇I(x)∇I(x)T (2.6)

A is a 2×2 matrix and is sometimes called an orientation tensor. By looking
at the eigenvalues of this matrix we can decide whether the local image
area contains a one- or two-dimensional structure. For example, edges and
lines will give one large and one small eigenvalue, while for corners both
eigenvalues will be large. The Harris corner detector is defined as

det(A) − 0.04trace2(A) (2.7)

This detector is often claimed to be a corner detector but it detects a whole
range of patterns and cannot distinguish between corners and other two-
dimensional structures.
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Noble ([Noble, 1988]) presented a detector which is closely related to the Harris
detector:

det(A)

trace(A)
(2.8)

where A is computed according to equation 2.6. It is shown that this measure
is approximately the average curvature weighted with the image gradient.

Cooper ([Cooper et al., 1990]) detects corners in two steps; First, find possible
corner locations by testing similarity between image patches along the edge
direction. The patches differ if we are close to a corner. Second, compute
the contour direction and if the absolute value of the second derivative along
the contour direction is greater than zero, the region is detected as a corner.

Mehrotra, Nichani, and Ranganathan ([Mehrotra et al., 1990]) Line endings
are detected in 8 different directions. First and second derivatives of a Gaus-
sian are used as filters (where the origin is located on the edge of the filter
instead of in the middle). Both corner angle and corner orientation are
computed.

Deriche ([Deriche and Giraudon, 1990]): An attempt to improve the location of
the response from Beaudet’s detector in equation 2.2. Corners are detected
in two different scales using the Beaudet detector. A line is drawn between
the two responses and the Laplacian is computed along the line. The zero
crossing of the Laplacian is selected as the corner location.

B̊arman ([B̊arman, 1991]) detects curvature from a local orientation description
in double angle representation. The local orientation image is correlated with
a set of quadrature filters, and the responses are used to detect curvature.
This curvature is related to the first order rotational symmetries described
in chapter 5. B̊arman also uses a similar strategy to detect curvature in 3D
and 4D data.

Rohr ([Rohr, 1992]): Rohr defines a corner by the parameters α (corner orienta-
tion), β (corner angle), a (corner amplitude), and σ (corner softness). Junc-
tions are then modeled as a sum of corner regions. A simple point-of-interest
detector is used to find preliminary locations in which the parameters are
optimized from a least squares problem (the solution is found by an iterative
method). Corners, T-, L-, K-, X- and arrow-junctions can be detected but
large masks (20 × 20) are used which makes the algorithm computationally
complex.

Reisfeld ([Reisfeld et al., 1995]) Describes an operator that measures symmetries
using the image gradient. For each position r0 we will get a contributioin to
the symmetry response from each pair of pixel positions r1 = r0−r and r2 =
r0 + r. The contribution C12 is computed as C12 = D12P12|∇I(r1)||∇I(r2)|
where

D12 =
1√
2πσ

e−|r1−r2|/2σ (2.9)
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is a distance function and

P12 = (1 − cos(θ1 + θ2 − 2α12))(1 − cos(θ1 − θ2)) ,





θ1 = ∠∇I(r1)
θ2 = ∠∇I(r2)
α12 = ∠r

(2.10)

is a function of gradient direction. The first term of P12 is high when the
gradients are oriented in the same direction toward each other, i.e. symmetric
with respect to the line going through r1 and r2. The second term gives a
low response for parallel gradients, which includes edge patterns. A circle
is the optimal pattern. The highest responses were located on the eyes and
the mouth when applied to an image with a face. The algorithm can be
efficiently implemented.

SUSAN ([Smith and Brady, 1997],[Smith and Brady, 1995]) SUSAN stands for
Smallest Univalue Segment Assimilation Nucleus. This corner detector is
both fast (for example 10 times faster than the Harris detector) and noise
robust. The algorithm is as follows:

1. Place a circular mask around the pixel (nucleus) in question, r0.

2. Compute the number of pixels within the mask which have similar
brightness to the nucleus using the formula

n(r0) =
∑

r

c(r, r0) where c(r, r0) = e(
I(r)−I(r0)

t
)6 (2.11)

The set of pixels r with high value c(r, r0) is called the USAN set.

3. Threshold n(r0) to get initial responses using the formula

R(r0) =

{
nmax/2 − n(r0) if n(r0) < nmax/2

0 otherwise
(2.12)

4. Test for false positives; the center of gravity of the USAN set should be
far away from the nucleus and all pixels between the nucleus and the
center of gravity should belong to the USAN set.

5. Apply non-max-suppression to find the corners.

Trajkovic and Hedley ([Trajkovic and Hedley, 1998]) This corner detector is
based on the minimum intensity change (MIC) and the Corner Response
Function, CRF, and can roughly be described as

CRF = min
r

[(I(r0 + r) − I(r0))
2 − (I(r0 − r) − I(r0))

2] (2.13)

In reality the formula is a bit more complicated and fuzzy than above. The
CRF can be computed in a efficient way.
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Chain code In addition to the algorithms described above there are a number of
local curvature detectors based on a local or object contour descriptions, or
chain codes. This approach requires a prior segmentation step which might
work well for well behaved images but less so for natural images.

Examples of multiscale curvature detection, called curvature scale space,
can be found in [Rosin, 1992], [Mokhtarian et al., 1996]. In this cases the
object contour is extracted and the curvature is computed in several scales.
Infliction points, which is defined as points where the curvature is switching
from concave to convex, is used as feature points for the object.

There are no general evaluation criteria or test images for complex feature
detectors. Results are often presented for very simple, synthetic images. Some
of the developers above have compared their detectors with others on synthetic
noisy images, but the results are inconclusive. Still, some general criteria have
been proposed for a good feature detector:

• Good detection: minimum number of false negatives/positives.

• Good location: It is often argued that a corner detector should give highest
response at the corner point and not somewhere inside the corner which is
the case for example in the curvature detector presented in this thesis. This
is however no problem as long as the location is consistent.

• Only one response to each single feature.

• Speed: This is an important criterion for practical applications in general
and real-time applications in particular.

• Insensitive to noise.

The feature detectors presented in chapter 5 in this thesis can be very efficiently
implemented to detect curvature in several scales. They are also able to detect
and distinguish between a number of useful features such as curvature, circles,
and star-patterns, which is more than most of the detectors presented above can
handle. In addition they experience a graceful degradation with respect to many
geometrical transformation such as rotation, zooming, and change of view. They
should therefore be a good platform for further analysis.
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Chapter 3

Fundamental tools

This chapter briefly describes the two fundamental tools used in this thesis; nor-
malized convolution and canonical correlation. They are called fundamental be-
cause they are quite general tools in signal processing and statistical analysis.

3.1 Normalized convolution

This section contains a short summary of the normalized convolution technique.
For a more thorough description, see [Farnebäck, 1999b] and [Farnebäck, 1999a].
The technique was developed about 10 years ago, see [Knutsson and Westin, 1993],
[Westin, 1994] (some of the ideas can be also traced in [Knutsson et al., 1988b] and
[Burt, 1988]).

3.1.1 Summary

Normalized convolution models a signal with a linear combination of a set of basis
functions. It takes into account the uncertainty in the signal values and also per-
mits spatial localization of the basis functions which may have infinite support.

Let {bn}N
1 be a set of vectors in C

M . Assume we want to represent, or ap-
proximate, a vector f ∈ C

M with a linear combination of {bn}, i.e.

f ∼
N∑

1

snbn = Bs (3.1)

where

B =




| | |
b1 b2 . . . bN

| | |


 , s =




s1

s2

...
sN


 (3.2)
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With the signal vector f ∈ C
M we attach a signal certainty vector c ∈ R

M in-
dicating our confidence in the values of f . Similarly we attach an applicability
function a ∈ R

M to the basis functions {bn} ∈ C
M to use as a window for spatial

localization of the basis functions.
This thesis only deals with the case of {bn}N

1 being linearly independent and
spanning a subspace of C

M (i.e. N ≤ M). The approximation can then be de-
scribed as a weighted least squares problem, where the weight is a function of the
certainty and the applicability 1:

arg min
s∈CN

‖f − Bs‖2
W = arg min

s∈CN
(f − Bs)∗W(f − Bs) (3.3)

where W = WaWc, Wa = diag(a), Wc = diag(c).

This has the effect that elements in f with a low certainty and elements in bn

with a low applicability value have less influence on the solution than elements
with a high certainty and applicability. The solution becomes

s = (B∗WB)−1B∗Wf = B̃∗f where B̃ = WB(B∗WB)−1 (3.4)

The columns of B̃ are called the dual basis of {bn}.

In terms of inner products the solution can be written as

s =




〈b1, b1〉W . . . 〈b1, bN 〉W
...

. . .
...

〈bN , b1〉W . . . 〈bN , bN 〉W




−1


〈b1, f〉W
...

〈bN , f〉W


 (3.5)

=




〈a · b1, c · b1〉 . . . 〈a · b1, c · bN 〉
...

. . .
...

〈a · bN , c · b1〉 . . . 〈a · bN , c · bN 〉




−1


〈a · b1, c · f〉
...

〈a · bN , c · f〉




=




〈a · b1 · b̄1, c〉 . . . 〈a · b1 · b̄N , c〉
...

. . .
...

〈a · bN · b̄1, c〉 . . . 〈a · bN · b̄N , c〉




−1


〈a · b1, c · f〉
...

〈a · bN , c · f〉




where ’·’ denotes pointwise multiplication.

The signal f can for instance be a local area in an image and the basis func-
tions bn can be polynomials, Fourier functions or other useful analyzing functions.
Doing this approximation in each local area of the image can be efficiently imple-
mented by means of convolutions, hence the name normalized convolution. This

1In the general case the problem can be formulated as

arg min
r∈S

‖r‖, S = {r ∈ CM ; ‖Br − f‖W is a minimum}
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is because the left arguments in the scalar product, a ·bi · b̄j and a ·bi, can be in-
terpreted as filters that are to be correlated with the signals c and c ·f respectively.

If the overall signal certainty c is too low we cannot rely on the result s. For
the signal f we had a certainty measure, c, indicating how well we can rely on the
information in f . We can apply the same philosophy for the solution s and use an
output certainty, cout, indicating how well we can rely on s. There exist several
suggestions for cout, see [Farnebäck, 1999a]. The one used in this thesis is from
[Westelius, 1995]:

cout =

(
det(B∗WaWcB)

det(B∗WaB)

)1/N

(3.6)

which measures how ’less distinguishable’ the basis functions becomes when we
include uncertainty compared to full certainty. Note that even if the basis functions
are orthogonal in the case of full certainty (c ≡ 1) they may not necessarily be so
when the certainty is varying. The 1/N exponent makes cout proportional to c.

3.1.2 Simple example

As a simple example consider a signal and two basis functions in R
3:

f =




1
2
0


 , b1 =




1
1
1


 , b2 =




1
−1

0


 (3.7)

and their corresponding certainty and applicability respectively:

c =




0
1
1


 , a =




1
2
1


 (3.8)

We thus have

B =




1 1
1 −1
1 0


 (3.9)

and

W = WaWc =




1 0 0
0 2 0
0 0 1






0 0 0
0 1 0
0 0 1


 =




0 0 0
0 2 0
0 0 1


 (3.10)

and the solution becomes

s = (BT WB)−1BT Wf =

(
3 −2

−2 2

)−1(
4

−4

)
=

(
0

−2

)
(3.11)
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i.e.

f ∼ 0b1 − 2b2 = −2b2 (3.12)

Another example can be found in section 4.3 where each local area in an image
is approximated by a first degree polynomial. The basis functions in this case are 1,
x, and y. The signal certainty is chosen as 1 inside the image and 0 outside image
border and the applicability is chosen as a Gaussian function. The polynomial
model is then used to estimate image gradient.

3.2 Canonical correlation

This section contains a short summary of the canonical correlation technique. For
a more thorough description, see [Borga, 1998].

3.2.1 Summary

Assume that we have two stochastic variables

x ∈ C
M1 and y ∈ C

M2 (3.13)

M1 and M2 do not have to be equal. For simplicity we can assume that they
both have zero mean. Canonical correlation analysis, CCA, can be defined as the
problem of finding two sets of basis vectors, one for x and the other for y, such that
the correlations between the projections of the variables onto these basis vectors are
mutually maximized. In other words, CCA measures linear relationships between
two multidimensional variables.

For the case of only one pair of basis vectors we have the projections x = w∗
xx

and y = w∗
yy (∗ denotes conjugate transpose) and the correlation is written as

ρ =
E[xy]√

E[x2]E[y2]

=
E[w∗

xxy∗wy]√
E[w∗

xxx∗wx]E[w∗
yyy∗wy]

=
w∗

xCxywy√
w∗

xCxxwxw∗
yCyywy

(3.14)

where E[.] denotes expectation value and

Cxy = E[xy∗] , Cxx = E[xx∗] , Cyy = E[yy∗] (3.15)

The maximal canonical correlation is found by maximizing ρ with respect to
wx and wy. It can be shown that the maximal canonical correlation can be found
by solving an eigenvalue system.

{
C−1

xx CxyC
−1
yy Cyxŵx = ρ2ŵx

C−1
yy CyxC

−1
xx Cxyŵy = ρ2ŵy

(3.16)



3.2 Canonical correlation 23

The eigenvectors ŵx1, ŵy1 corresponding the the largest eigenvalue ρ2
1 are the pro-

jections that have the highest canonical correlation ρ1. The next two eigenvectors
ŵx2, ŵy2 have the second highest correlation ρ2 and so on.

Only one of the eigenvalue equations needs to be solved since the solutions are
related by

{
Cxyŵy = ρλxCxxŵx

Cyxŵx = ρλyCyyŵy

where λx = λ−1
y =

√
ŵ∗

yCyyŵy

ŵ∗
xCxxŵx

(3.17)

It can also be shown that the different projections are uncorrelated, i.e.





E[xixj ] = w∗
xiCxxwxj = 0

E[yiyj ] = w∗
yiCyywyj = 0

E[xiyj ] = w∗
xiCxywyj = 0

(3.18)

Another property is that CCA is invariant to affine transformations. If we for
instance transform x to u = Ax we simply get the new solution wui = A∗wxi.

It can also be mentioned that CCA is closely related to mutual information.
If x and y are Gaussian variables the mutual information can be computed from
the correlations ρi.

3.2.2 Simple example

Let a, b, and c be three independent stochastic variables with zero mean and
standard deviations σa, σb, and σc respectively. Let

x =

(
a
b

)
, y =

(
a + c
a − c

)
(3.19)

We then have

Cxx =

(
σ2

a 0
0 σ2

b

)
, Cyy =

(
σ2

a + σ2
c σ2

a − σ2
c

σ2
a − σ2

c σ2
a + σ2

c

)
, Cxy =

(
σ2

a σ2
a

0 0

)

(3.20)

which gives

C−1
xx CxyC

−1
yy Cyx =

(
1 0
0 0

)
(3.21)

and the first eigensystem in equation 3.16 has the solution





ρ1 = 1 , ŵx1 =

(
1
0

)

ρ2 = 0 , ŵx2 =

(
0
1

) (3.22)
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The wyi vectors can be found from the second eigensystem in equation 3.16 or
from the second system in equation 3.17:





wy1 = C−1
yy Cyxŵx1 =

(
1/2 0
1/2 0

)
ŵx1 =

(
1/2
1/2

)

ŵy2 =

(
1/2

−1/2

) (3.23)

(The last vector wy2 cannot be computed from equation 3.17 since ρ2 = 0.)
The projections onto the vectors corresponding to the largest canonical correlation
become

x1 = ŵT
x1x = a , y1 = ŵT

y1y = a
√

2 (3.24)

and we see that they are fully correlated, as indicated by ρ1 = 1.



Chapter 4

Local polynomial expansion

4.1 Introduction

Polynomials as a local signal model have been used in a number of image analysis
applications including gradient edge detection, zero-crossing edge detection, image
segmentation, line detection, corner detection, three-dimensional shape estimation
from shading, and determination of optical flow, see [Haralick and Shapiro, 1993],
[Haralick, 1984], [Haralick and Watson, 1981]. The polynomial model is fitted to
a local square-shaped neighborhood in the image using non-weighted least squares.

Recently Farnebäck has shown that polynomial expansion using weighted least
squares with a Gaussian weight function can give much better results on local orien-
tation and motion estimation than other existing methods, see [Farnebäck, 1999a],
[Farnebäck, 2000b], [Farnebäck, 2000a], [Farnebäck, 1999b]. The expansion can be
made by means of correlations with Cartesian separable filters which make the al-
gorithm computationally efficient. The idea of using weighted least squares for
polynomial expansion has also been mentioned in [Westin, 1994] where a second
degree polynomial was used for gradient estimation in irregularly sampled data,
but nothing was said about efficient filtering. The idea can also be found in
[Burt, 1988] where a bilinear model (r0 + r1x + r2y + r3xy) was used for inter-
polation in incomplete and irregularly sampled data. The model was efficiently
estimated from image moments computed locally in the image. The model was
also estimated in several scales by combining image moments in finer scales to
compute moments in coarser scales.

This chapter presents the polynomial expansion theory and an alternative ap-
proximative polynomial expansion algorithm that efficiently computes the param-
eters of Farnebäck’s polynomial model in one or several scales. The algorithm
is based on the simple observation that polynomial functions multiplied with a
Gaussian function can be described in terms of partial derivatives of the Gaussian.

The chapter outline is as follows: Section 4.2 summarizes the work done by
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Farnebäck. Section 4.3 illustrates the theory on a simple gradient estimation
experiment. Sections 4.4 and 4.5 describe the new approximative algorithm in
one and several scales respectively. Sections 4.6, 4.7, and 4.8 discusses practical
details, computational complexity and conclusions. An evaluation of the algorithm
is found in the experiment chapter, section 6.1.

4.2 Using normalized convolution

This section contains a short summary of work done by Farnebäck. Further de-
tails can be found in [Farnebäck, 1999a]. The theory is for pedagogical reasons
explained using a second degree polynomial model on a two-dimensional signal
but the generalization to other polynomial orders and signal dimensionalities is
straightforward.

Assume we want to model an N -dimensional signal f with a second degree
polynomial:

f(x) ∼ c + bT x + xT Ax , x ∈ R
N (4.1)

where c is a scalar, b is a vector and A is a symmetric matrix. In the two-
dimensional case we have

f(x, y) ∼ r1 + r2x + r3y + r4x
2 + r5y

2 + r6xy (4.2)

Let P2 denote the second degree polynomial basis in R
2, i.e. the basis consisting

of all 2D-monomials up to the second degree:

P2 = {1, x, y, x2, y2, xy} (4.3)

In practice the polynomial model is applied to a limited area of size n×n in a
pixel-discretized image. After reshaping the local signal and basis functions into
vectors we can describe them as elements in R

n2

(or C
n2

). Equation 4.2 can then
be rewritten as

f ∼ P2r (4.4)

where

P2 =




| | | | | |
1 x y x2 y2 xy

| | | | | |


 , r =




r1

...
r6


 (4.5)

If we use the normalized convolution theory in section 3.1 we can define the
polynomial expansion problem as

arg min
r∈C

‖f − P2r‖W = arg min
r∈C

(f − P2r)
∗W(f − P2r) (4.6)
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where W = WaWc, Wa = diag(a) is the applicability weight and Wc = diag(c)
is the signal certainty weight. The solution becomes

r = (PT
2 WP2)

−1PT
2 Wf (4.7)

It is assumed that we have enough certainty so that the inverse of PT
2 WP2

exists. The choice of applicability and certainty in general depends on the applica-
tion. There is however one choice of applicability that often is to be preferred due
to its nice properties: the Gaussian function. The Gaussians are the only functions
which are simultaneously both isotropic and Cartesian separable. Cartesian sepa-
rability gives efficient computational structures while the isotropic property gives
well behaved results. It has for instance been shown in an orientation estimation
experiment using polynomial expansion that among a number of different choices
of applicability, e.g. cube, sphere, cone, etc., the Gaussian function gave the best
result (see [Farnebäck, 1999a]).

This choice of applicability will also lead to a very efficient approximative poly-
nomial expansion algorithm as we will see in section 4.4.

The computational structure differs depending on whether we have full cer-
tainty or not. The next two subsections deal with these two cases.

4.2.1 Full certainty

In the case of full certainty we have

Wc = I (4.8)

and the polynomial expansion solution in equation 4.7 is reduced to

r = (PT
2 WaP2)

−1PT
2 Waf (4.9)

=




1 σ2 σ2

σ2

σ2

σ2 3σ4 σ4

σ2 σ4 3σ4

σ4




−1


〈1 · g, f〉
〈x · g, f〉
〈y · g, f〉
〈x2 · g, f〉
〈y2 · g, f〉
〈xy · g, f〉




=




2 − 1
2σ2 − 1

2σ2

1
σ2

1
σ2

− 1
2σ2

1
2σ4

− 1
2σ2

1
2σ4

1
σ4







〈1 · g, f〉
〈x · g, f〉
〈y · g, f〉
〈x2 · g, f〉
〈y2 · g, f〉
〈xy · g, f〉




where the expression for PT
2 WaP2 is computed assuming continous functions.

The matrix (PT
2 WaP2) does not depend on the signal. PT

2 Waf means that we
correlate the signal f(x, y) with the filters

g , xg , yg , x2g , y2g , xyg (4.10)
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These filters can be made Cartesian separable, and it turns out that we only have
to use 9 1D-filters. Figure 4.1 contain the correlator structure needed to compute
PT

2 Waf . After the correlations we multiply the result with (PT
2 WaP2)

−1 in each
local neighborhood to get the final solution r.
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Figure 4.1: Correlator structure for polynomial expansion in 2D with full cer-
tainty. The first and second filters are 1D-filters along the x- and y-dimension
respectively. There is understood to be an applicability factor in each box as well.
From [Farnebäck, 1999a].

4.2.2 Uncertain data

In this case we have to compute the general solution

r = (PT
2 WaWcP2)

−1PT
2 WaWcf (4.11)

PT
2 WaWcf can as before be computed by correlating with the filters in equa-

tion 4.10 but now on the signal c(x, y)f(x, y). PT
2 WaWcP2 now depends on the

signal certainty,

PT

2
WaWcP2 =




〈1 · g, c〉 〈x · g, c〉 〈y · g, c〉 〈x2 · g, c〉 〈y2 · g, c〉 〈xy · g, c〉
〈x · g, c〉 〈x2 · g, c〉 〈xy · g, c〉 〈x3 · g, c〉 〈xy2 · g, c〉 〈x2y · g, c〉
〈y · g, c〉 〈xy · g, c〉 〈y2 · g, c〉 〈x2y · g, c〉 〈y3 · g, c〉 〈xy2 · g, c〉

〈x2 · g, c〉 〈x3 · g, c〉 〈x2y · g, c〉 〈x4 · g, c〉 〈x2y2 · g, c〉 〈x3y · g, c〉
〈y2 · g, c〉 〈xy2 · g, c〉 〈y3 · g, c〉 〈x2y2 · g, c〉 〈y4 · g, c〉 〈xy3 · g, c〉
〈xy · g, c〉 〈x2y · g, c〉 〈xy2 · g, c〉 〈x3y · g, c〉 〈xy3 · g, c〉 〈x2y2 · g, c〉




(4.12)

The elements in this matrix can be computed by correlating c(x, y) with the filters

g , xg , yg , x2g , y2g , xyg , x3g , y3g , x2yg , xy2g...

... x4g , y4g , x3yg , x2y2g , xy3g (4.13)

This can also be made by means of separable filters. Figure 4.2 contains the
correlator structures needed to compute P2Waf and PT

2 WaWcP2 respectively.
The result from the correlations are put into equation 4.11 to get the final solution
r.
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Figure 4.2: Correlator structure for polynomial expansion in 2D with uncertain
data. There is understood to be an applicability factor in each box as well. From
[Farnebäck, 1999a].
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4.3 Example: Estimation of image gradient

For a simple example of polynomial expansion on uncertain data we turn to the
problem of image gradient estimation. A very common method to estimate the
image gradient is to use ’scale derivatives’. This means that the image f is first
convolved with a Gaussian g,

fσ = f ∗ g , g(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (4.14)

which is then differentiated. By the laws of convolution this differentiation can be
computed as convolutions between the original image f and partial derivatives of
g,

∇fσ =

(
fσ,x

fσ,y

)
=

(
f ∗ gx

f ∗ gy

)
where

{
gx = − x

σ2 g
gx = − y

σ2 g
(4.15)

The middle image in figure 4.3 shows the result of this method using σ = 10.
The method gives poor results near the image border. Usually the estimates near
the border are cut off and valuable information may be lost. Another, more im-
portant problem is that this method will also give poor results if we have uncertain
data within the image.

An alternative to the method above is to estimate the image gradient from a
polynomial model fitted on the image. We can for example choose a first degree
polynomial model:

f(x, y) ∼ r1 + r2x + r3y (4.16)

and then estimate the gradient as

∇f ∼ ∇(r1 + r2x + r3y) =

(
r2

r3

)
(4.17)

In practice we have the model

f ∼




| | |
1 x y

| | |






r1

r2

r3


 = P1r (4.18)

where P1 denotes the first degree polynomial basis. The solution becomes

r = (PT
1 WP1)

−1PT
1 Wf (4.19)

=




〈g · 1, c〉 〈g · x, c〉 〈g · y, c〉
〈g · x, c〉 〈g · x2, c〉 〈g · xy, c〉
〈g · y, c〉 〈g · xy, c〉 〈g · y2, c〉




−1


〈g · 1, c · f〉
〈g · x, c · f〉
〈g · y, c · f〉




c is defined as 1 within the image and 0 outside the image. The rightmost image
in figure 4.3 shows the result from this method using a Gaussian applicability with
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σ = 10. Note the considerable improvement near the image borders. Of course
this method has a higher computational complexity. To compute (PT

1 WP1)
−1

we can use the correlator structure in figure 4.1 but with c as input instead of f .
Then we also have to compute PT

1 Wf . We get totally 15 1D-filters plus solving
the equation system 4.19.

f ‖∇fσ‖ ‖(r2, r3)‖

Figure 4.3: Example of image gradient estimation. Left: Testimage ’lenna’. Mid-
dle: Estimated image gradient using differentiated Gaussian filters. Right: Esti-
mated gradient using a first degree polynomial model and zero certainty outside
image border.

The full complexity only has to be applied near the border though. Elsewhere
we have full certainty and the method actually reduces to the ’scale gradient’
method because the matrix (PT

1 WP1)
−1 will then become a diagonal matrix. This

last insight implies that there is a strong relation between polynomial expansion
using a Gaussian applicability and computing image derivatives using ’derivatives
at different scales’. This idea will be used in section 4.4 to create an efficient
approximative polynomial expansion algorithm.

4.4 Approximative expansion using derivative fil-

ters

The first four derivatives of a Gaussian are in the one-dimensional case

g(x) = 1√
2πσ2

e−
1
2 (

x
σ )

2

g′(x) = − x
σ2 g(x)

g′′(x) = x2−σ2

σ4 g(x)

g′′′(x) = 3σ2x−x3

σ6 g(x)

g′′′′(x) = x4−6σ2x2+3σ4

σ8 g(x)

(4.20)
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Partial derivatives in higher dimensionalities can easily be derived from the 1D-
case due to the Cartesian separability of the Gaussian.

Let D2 denote another basis for the second degree polynomial space:

D2 =




| | | | | |
1 −x −y x2 − σ2 y2 − σ2 xy

| | | | | |


 (4.21)

where σ is a scalar. If we multiply this basis with a Gaussian function, g, with
standard deviation σ we can from equation 4.20 see that it is closely related to
partial derivatives of the Gaussian:

WaD2 =




| | | | | |
g σ2gx σ2gy σ4gxx σ4gyy σ4gxy

| | | | | |


 (4.22)

where Wa = diag(g) and gx, ..., gxy denote the partial derivatives up to the
second degree of the Gaussian.

The relation between the basis D2 and the second degree polynomial basis P2

in equation 4.5 is

D2 = P2TPD (4.23)

where

TPD =




1 0 0 −σ2 −σ2 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(4.24)

If we put this relation into the polynomial expansion solution, equation 4.7, we
obtain

r = (PT
2 WP2)

−1PT
2 Wf

= (T−T
PDDT

2 WD2T
−1
PD)−1T−T

PDDT
2 Wf

= TPD(DT
2 WD2)

−1DT
2 Wf (4.25)

This means that we first fit the signal to the basis functions D2 and then trans-
form the result to the model f ∼ P2r using TPD. The gain is that the basis
functions in D2, corresponding to filters with which we correlate the image, can
be approximated with a Gaussian filter followed by small derivative filters. The
gain is most obvious for large σ or for high dimensionalities of the data. As we will
see in section 4.5 it is also useful in multiscale expansion. But first we consider
the cases of full certainty and uncertain data in one scale.



4.4 Approximative expansion using derivative filters 33

4.4.1 Full certainty

As in section 4.2.1 we have

Wc = I (4.26)

and the solution reduces to

r = TPD(DT
2 WaD2)

−1DT
2 Waf (4.27)

r = TPD(DT
2 WaD2)

−1DT
2 Waf (4.28)

= TPD




1
σ2

σ2

2σ4

2σ4

σ4




−1


〈1 · g, f〉
〈−x · g, f〉
〈−y · g, f〉

〈(x2 − σ2) · g, f〉
〈(y2 − σ2) · g, f〉

〈xy · g, f〉




=




1 − 1
2σ2 − 1

2σ2

− 1
σ2

− 1
σ2

1
2σ4

1
2σ4

1
σ4







〈1 · g, f〉
〈−x · g, f〉
〈−y · g, f〉

〈(x2 − σ2) · g, f〉
〈(y2 − σ2) · g, f〉

〈xy · g, f〉




DT
2 Waf means that we correlate the image with the filters

g , σ2gx , σ2gy , σ4gxx , σ4gyy , σ4gxy (4.29)

These filters can be approximated with a Gaussian filter followed by derivative
filters:

σ2gx ≈ g ∗ dx

σ2gy ≈ g ∗ dy

σ4gxx ≈ g ∗ dx ∗ dx

σ4gyy ≈ g ∗ dy ∗ dy

σ4gxy ≈ g ∗ dx ∗ dy

(4.30)

where dx and dy are one-dimensional derivative filters along the x- and y-dimension
respectively.

Figure 4.4 contains the correlator structure needed to compute DT
2 Waf . The

result from the correlator structure is multiplied with TPD(DT
2 WaD2)

−1 in each
local neighborhood to get the final solution r.

This correlator structure only needs 2 Gaussian 1D filters of length n (n de-
pends on σ) and additional 5 derivative filters. This should be compared to 9 1D
filters of length n in the correlator structure in figure 4.1.
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&&NNNN
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Figure 4.4: Correlator structure for approximative polynomial expansion in 2D
with full certainty.

4.4.2 Uncertain data

As in section 4.2.2 we have to compute the general solution

r = TPD(DT
2 WaWcD2)

−1DT
2 WaWcf (4.31)

We have to use one correlator structure to compute DT
2 WaWcf and one structure

to compute DT
2 WaWcD2. They can both be approximated with a Gaussian filter

followed by small derivative filters, see figure 4.5.
This case is not further investigated in this thesis but stated here for complete-

ness. There could be some numerical problems with the approximations regarding
the higher order terms and the inversion of the matrix DT

2 WaWcD2.

4.5 Multiscale polynomial expansion

The new approximative polynomial expansion algorithm described above is easily
generalized to multiscale polynomial expansion. The correlator structure in figure
4.4 consists of a Gaussian filter, g, followed by a derivative structure, ∂. If we
have full certainty and want to fit the polynomial model in several scales we can
simply compute a lowpass hierarchy using Gaussian filters and then in each scale
attach a derivative structure ∂, see figure 4.6. Finally we compute the solution

r = TPD(DT
2 WaD2)

−1DT
2 Waf (4.32)

in each scale using the results from the correlator structure. Figure 4.7 shows an
example of the resulting filters created from the multiscale structure.

In the general case of uncertain data we should attach both the correlator
structures in figure 4.5 in each scale of the lowpass hierarchy. This requires a
lot of computations. A greedy approximation of the general case could be to use
uncertainty only when computing the lowpass hierarchy, i.e. in each scale and each
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Figure 4.5: Correlator structure for approximative polynomial expansion in 2D
with uncertain data.
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Single scale Multiscale
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Figure 4.6: Correlator structures for single scale and multiscale approximative
polynomial expansion in 2D with full certainty. ↓ 2 means down-sampling by a
factor 2.

1 ⋅ g −x ⋅ g −y ⋅ g (x
2
−σ2

) ⋅ g (y
2
−σ2

) ⋅ g xy ⋅ g

Figure 4.7: Basis functions in four scales generated by the multiscale correlator
structure. Black and white colors indicate negative and positive values respec-
tively.
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local neighborhood we calculate

〈g, c · f〉
〈g, c〉 (4.33)

which is then used as input to the derivative structure ∂ in figure 4.6.

Comment:
It may be possible to design a multiscale algorithm by correlating the result from
the lowpass hierarchy with the polynomial basis P instead of the basis D. One
problem is that if we for instance correlate a Gaussian gσ1

with the filter x2gσ2
we

do not get a resulting filter x2gσ3
but instead we obtain

gσ1
∗ x2gσ2

=
σ2

1σ2
3

σ
gσ3

+
σ4

1

σ4
3

x2gσ3 where σ3 =
√

σ2
2 + σ2

2 (4.34)

This means that we have a different basis at each scale. This is not a problem for
the basis D because if we correlate the filters WD with a Gaussian we get the
same filters but with a larger Gaussian applicability W.

4.6 Practical issues

4.6.1 Filter optimization

The derivative filters dx and dy in figure 4.4 can be optimized in a number of ways.
A very simple way is to use the ’derivatives at different scales’-idea described in sec-
tion 4.3 and use dx = − x

σ2
d

gσd
and dy = − y

σ2
d

gσd
to compute approximative partial

derivatives. This does not give a very good approximation if the filters are small.
Another, more powerful method, is to optimize the whole correlator structure in
figure 4.4 with respect to some suitably chosen goal function. The theoretical
basis for these kind of optimizations can be found in e.g. [Andersson et al., 1999],
[Knutsson et al., 1999]. Ideal output functions specified in both the spatial domain
and in the Fourier domain are provided by the user together with filter masks that
define the appearance of the filters, i.e. which filter coefficients that are allowed
to be used in the optimization. All the filter coefficients in the structure are then
optimized to match the spatial and the Fourier domain ideal functions. The filters
usually get good spatial location in both domains which promise good behavior of
the structure. This method is however not further explored in this thesis and is a
topic for future research. In the experiments in section 6.1 we choose an interme-
diate solution:

Given the ideal output filter xg and an input filter g we can optimize an
approximation of a derivative filter d by minimizing the error function

‖xg − g ∗ d‖2 (4.35)
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with respect to d ∈ R
p, where p specify the filter size. The solution is found by

solving a linear equation system. The second derivative can then be optimized
using the same error function but with x2g as ideal output and g ∗ d as input fil-
ter. This optimization method is quite simple and the details are therefore omitted.

Note that special care should be taken for optimization of the filters in the
multiscale structure in figure 4.6. The filters should, due to the down-sampling
function, be thought of as being ’spread out’ in the original image. This means
that if we for example correlate with the filter

d = [ −1 −2 0 2 1 ] (4.36)

after down-sampling, the corresponding filter without down-sampling is

d = [ −1 0 −2 0 0 0 2 0 1 ] (4.37)

and the optimization should therefore be made using the ’filter mask’

d = [ x 0 x 0 x 0 x 0 x ] (4.38)

where x denotes non-zero coefficients.

4.6.2 Minimizing the approximation error

In practice we only have an approximation of D, denoted D̃. D̃ and P do not
span the same subspace so we can only use an approximate transformation matrix,
T̃PD between the two basis sets. The polynomial expansion solution becomes

r̃ = T̃PD(D̃T WD̃)−1D̃T Wf (4.39)

One way to estimate T̃PD is by demanding that all signals f in the second degree
polynomial subspace should get correctly estimated parameters, i.e.

r̃ = r for f = Pr , r ∈ R
6 ⇒ T̃PD = (D̃T WP)−1D̃T WD̃ (4.40)

Another, more general, statistical approach is to minimize

E
[
‖r̃ − r‖2

]
= E

[
‖T̃PD(D̃T WD̃)−1D̃T Wf − (PT WP)−1PT Wf‖2

]
(4.41)

with respect to T̃PD over a set of signals f . E[.] denotes expectation value over
the set. To simplify the computations we assume E[f fT ] ∝ I and the solution,
derived in appendix B, becomes

T̃PD = (PT WP)−1PT W2D̃(D̃T W2D̃)−1D̃T WD̃ (4.42)
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Hence, after computing D̃T Wf using the correlator structure in figure 4.4 we
compute the model parameters by multiplying with the matrix

T̃PD(D̃T WD̃)−1 = (PT WP)−1PT W2D̃(D̃T W2D̃)−1 (4.43)

In the worst case approximation we should still have even and odd basis functions
so the three part matrices in equation 4.43 all have the structure




x1 x2 x2

x3

x3

x4 x5 x6

x4 x6 x5

x7




(4.44)

where xk denote non-zero elements. The matrix T̃PD(D̃T WD̃)−1 will therefore
also have this structure.

4.7 Computational complexity

Table 4.1 contains time complexity and memory overhead for the different versions
of the polynomial expansion algorithm described above. Included are also the case
three-dimensional data with full certainty. This case will be used in an experiment
in section 6.1.2.

Method Time complexity Memory overhead

True 9n+10 6
2D, full cert

Approx 2n+5m+12 6
True 29n+92 21

2D, uncert
Approx 4n+17m+92 21
True 19n+16 10

3D, full cert
Approx 3n+9m+22 10

Table 4.1: Computational complexity for the polynomial expansion algorithms.
n = size of local area, m = size of derivative filters.

The terms dependent of n and m in the time complexity are the total number
of coefficients involved in the correlation structure. In the full certainty cases,
the second term refer to the operations needed to multiply the correlation result
with the matrices (PT WP)−1 and (DT WD)−1 respectively to get the model
parameters. The sparsity of these matrices are taken into account. In the 2D
uncertainty case the model parameters are instead computed by solving a 6 × 6
symmetric positive definite equation system, estimated at 1

663 + 3
262 + 1

36 = 92
operations.
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4.8 Conclusions

There is a strong relationship between local polynomial expansion and derivatives
at different scales, which has been taken advantage of in this chapter to design
a very efficient approximative local polynomial expansion algorithm. The gain of
using the approximative algorithm is most evident when the local area is large
and/or the signal dimensionality is high. It also gives a very efficient computa-
tional structure when the model is fitted in several scales.

Section 6.1 contains two experiments of the approximative polynomial expan-
sion algorithm described in this chapter. The algorithm appears to perform well
for σ > 1 if the size of the derivating filters is at least 5. There is not much differ-
ence between using the two estimations T̃PD in equations 4.41 and 4.40. It seems
that the simpler estimate based on the polynomial subspace is slightly better on
average, but has a somewhat higher maximum error than the statistical estimate.

The introduction 4.1 mentioned another efficient approximative algorithm by
Burt ([Burt, 1988]). A comparison between the two algorithms remains to be done.
The approaches differ but the result may be similar. One difference is that the
filter kernels used by Burt have integer values and the resulting applicability will
therefore be less isotropic. Also, Burts algorithm did not allow for the scale σ to
be chosen freely, but the algorithm can probably be modified to have that feature.



Chapter 5

Rotational symmetries

5.1 Introduction

Human vision seems to work in a hierarchical way in that we first extract low
level features such as local orientation and color and then higher level features
[Bear et al., 1996]. There also seem to exist lateral interactions between cells, per-
haps to make them more selective. No one knows for sure what these high level
features are but there are some indications that curvature, circles, spiral, and star
patterns are among them [Gallant et al., 1993]. Indeed, perceptual experiments
indicate that corners and curvature are very important features in the process
of recognition and one can often recognize an object from its curvature alone
[Attneave, 1954], [Biederman, 1987]. They have a high degree of specificity and
sparsity and as they are point features, they do not suffer from the aperture prob-
lem usually encountered for line and edge structures [Granlund and Knutsson, 1995].
Also, these kind of features are more or less invariant to many geometrical trans-
formations, for example circle- and star-patterns are invariant to rotation, zooming
and high curvature points are to some extent invariant to change of view.

This chapter introduce tools and procedures to model and detect the features
mentioned above. The features are described using the theory of rotational sym-
metries which define curvature from local orientation.

The procedure to detect these features works in a hierarchical way; first, a local
orientation image in double angle representation is calculated. This image is more
invariant to intensity which simplifies curvature detection. Second, curvature is
detected using the local orientation image.

This chapter also suggests two techniques to make the responses more selective
which will simplify subsequent processing. One idea is to use lateral inhibitions
between responses, inspired from biological vision.

Real applications using rotational symmetries have been few, perhaps because
of the lack of efficient computational structures. This chapter also describe a
method to detect the features very efficiently in several scales. A local polynomial
expansion model (see chapter 4) is computed on the local orientation and the ro-
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tational symmetries is detected using the model parameters.

The chapter is outlined as follows: Section 5.2 introduce the theory. Section
5.3 describes tools for selective and efficient detection of the symmetry features.
Background and previous work on rotational symmetries is reviewed in section
5.4, when appropriate terminology has been introduced. Finally, the chapter is
concluded in section 5.5.

Experiments to evaluate the algorithm described in this section can be found in
the experiment chapter. Section 6.2 evaluates the rotational symmetry algorithm
on noisy images of rotational symmetries. Section 6.4 evaluates the use of curva-
ture features in an object recognition experiment on the Columbia Image Object
Database (COIL-100). Section 6.5 discusses and reviews other applications.

5.2 Basic theory

5.2.1 Local orientation in double angle representation

A classical representation of local orientation is simply a 2D-vector pointing in the
dominant direction. An example of this is the image gradient. Another represen-
tation is the double angle representation where we have a complex number, z, with
a phase that is double the local orientation angle, see [Granlund, 1978]. In other
words, if the orientation has the direction θ we represent it with a vector pointing
in the 2θ-direction, i.e. z = ei2θ. Figure 5.1 illustrates the idea.

Re z

Im z

z

2θ

Figure 5.1: Double angle representation of local orientation.

This representation has at least two advantages:

• We avoid ambiguities in the representation of even signals. It does not matter
if we choose to say that the orientation has the direction θ or, equivalently,
θ+π. In the double angle representation both choices get the same descriptor
ei2θ.
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• Averaging the double angle orientation description field makes sense. One
can argue that two orthogonal orientations should have maximally differ-
ent representations, e.g. vectors that point in opposite directions. This is
for instance useful in color images and vector fields when we want to fuse
descriptors from several channels into one description.

The double angle descriptor will throughout this thesis be denoted by a complex
valued function z.

In the experiments in section 6.4 we will use the polynomial based gradient
estimation in the example in section 4.3 to detect edges. From the estimated
gradient, ∇f = (fx, fy), a double angle representation can be computed as

z = |∇f |γei2 arctan(fy/fx) = |∇f |γ−2(fx + ify)2 (5.1)

The γ-parameter controls the energy sensitivity.
As an illustration, the result of using this method on a simple binary image is

shown in the top row in figure 5.9. z will be used to detect complex curvature fea-
tures such as corners, circles, and star-patterns. The rotational symmetry theory
in the next section describes complex curvature in terms of local orientation.

5.2.2 Rotational symmetries

Figure 5.2 shows a circle- and a star-pattern together with their corresponding
local orientation description in double angle representation. Notice that they have
the same phase variation, except for a constant difference π.

Image pattern Local orientation

zcircle = |z|ei2ϕ

zstar = |z|ei2ϕ · eiπ

Figure 5.2: Two image patterns, a circle and a star, together with their corre-
sponding local orientation description in double angle representation.
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The circle and star patterns belong to a family of patterns called rotational
symmetries. They are defined as patterns with a local orientation phase that only
depends on ϕ:

Rotational symmetry

A signal f(r, ϕ) is called a rotational symmetry if ẑ = z/|z|
only depends on ϕ,where z is the local orientation
description in double angle representation of the signal f.

(5.2)

A special case of symmetry patterns are the n:th order rotational symmetries:

n:th order rotational symmetry

z(r, ϕ) = c(r, ϕ)ei(nϕ+α) ,
c(r, ϕ) ∈ R

α ∈ [−π, π]

(5.3)

For example, the circle and star belongs to the second order symmetries. Each
symmetry order n describe a whole class of patterns. Each α represent a member
in the class.

What image patterns corresponds to the local orientation description c ei(nϕ+α)?
To answer this, one has to start with the local orientation image z(r, ϕ) = c ei(nϕ+α)

and go backwards to the original image, f , from which the orientation image was
calculated, i.e.

Double angle representation z ⇒ Grayscale image f

This ’inverse’ is of course not unique, we lost information about the sign of the
image gradient when we computed the double angle. But we get a hint by making
the assumption that the image gradient is parallel to the dominant orientation,
∇f = ±|∇f | ei(nϕ+α)/2. (We have to divide the phase by two to get rid of the
double angle representation, the price is the direction ambiguity.) This will give a
differential equation system that can be solved assuming polar separability. The
solution is derived in appendix A. Figure 5.3 contains a sample of these psychedelic
patterns. Note that the patterns have a fairly constant magnitude |z| (assuming
suitable scale of the local neighborhood). n:th order symmetry patterns with
varying magnitude can for instance be created from the patterns in figure 5.3 by
taking one or several trajectories.

The perhaps most useful symmetries, i.e. the most common visual patterns in
our daily lives, are the

• 0:th order: Describes lines.

• 1:st order: Describes hyperbolic patterns, e.g. curvature and line-endings.
(They are also called parabolic symmetries).

• 2:nd order: Describes circles, stars, and spiral patterns. (Also called circular
symmetries.)
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n = −4

α 
=

 0
α 

=
 π

/2
α 

=
 π

α 
=

 3
π/

2

n = −3 n = −2 n = −1 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

Figure 5.3: Some examples of n:th order rotational symmetry patterns, corre-
sponding to a local orientation description z = ei(nϕ+α). The patterns are derived
in appendix A.

Some examples of these patterns are shown in figure 5.4. Note that all patterns in
a row has the same orientation description when the magnitude |z| is disregarded.

There are other rotational symmetry patterns than the n:th order symmetries
that might be of interest. Figure 5.5 contain some examples of general rotational
symmetry patterns. The normalized orientation descriptor, ẑ(ϕ) can be expressed
as a linear combination of the n:th order symmetry descriptions,

ẑ(ϕ) ∼
∑

n

sneinϕ (5.4)

This is equivalent to a discrete Fourier transform of the periodic function ẑ(ϕ).
Some of the sn coefficients and an approximative reconstruction of the pattern
using only sn, n = −2,−1, ..., 2, is also shown in figure 5.5.

5.3 Detection of rotational symmetries

We now turn to the problem of how to detect the rotational symmetries described
in the previous section. Section 5.3.1 introduces the problems. Section 5.3.2
and 5.3.3 describes two techniques to improve selectivity. Finally section 5.3.4
combine the selectivity technique with the polynomial expansion theory described
in chapter 4 to create an efficient multiscale detection algorithm.

5.3.1 Introduction

In practice the want to find patterns in a limited area of size n × n in a pixel-
discretized local orientation image. After reshaping the local signal z and the polar
coordinates r,ϕ into vectors we can describe them as elements in C

n2

and denote
them as z, r, and ϕ.
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ẑ 0:th order symmetries

e0

eiπ/4

eiπ/2

ei3π/4

1:st order symmetries

ei(ϕ+0)

ei(ϕ+π/4)

ei(ϕ+π/2)

ei(ϕ+3π/4)

2:nd order symmetries

ei(2ϕ+0)

ei(2ϕ+π/4)

ei(2ϕ+π/2)

ei(2ϕ+3π/4)

Figure 5.4: Some examples of 0:th, 1:st, and 2:nd order rotational symmetry
patterns and the corresponding local orientation descriptions.
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−6−5−4−3−2−1 0 1 2 3 4 5 6

n

Figure 5.5: Examples of image patterns and their rotational symmetry description.
Column 1: image pattern. Column 2: Corresponding local orientation in double
angle representation. Column 3: Rotational symmetry components sn (white =

ℜ{sn}, gray = ℑ{sn}, black = |sn|). Column 4:
∑2

n=−2 snei nϕ. Column 5:
Back-projection from column 4.
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A simple way to detect an n:th order rotational symmetry pattern is to correlate
z with a filter a·bn, where a is an applicability function serving as a window for the
basis function bn = einϕ (sometimes called circular harmonic function). Figure
5.6 shows the three filters a ·b0, a ·b1, and a ·b2 where a is chosen as a Gaussian
function. The standard deviation, σ, of the Gaussian controls the size of the
symmetries we want to detect.

a · b0 a · b1 a · b2

Figure 5.6: Filters a ·bn needed to detect the 0:th, 1:st, and 2:nd order rotational
symmetries.

The correlation means that in each local neighborhood we calculate the scalar
products





s0 = 〈a · b0, z〉
s1 = 〈a · b1, z〉
s2 = 〈a · b2, z〉

⇐⇒ s = B∗Waz (5.5)

where

s =




s0

s1

s2


 , B =




| | |
b0 b1 b2

| | |


 (5.6)

and Wa = diag(a). If we have an image pattern z = |z|ei(nϕ+α) we will get
sn = 〈a, |z|〉eiα. Therefore, high magnitude |sn| indicate an n:th order rotational
symmetry and the phase ∠sn points out the class member.

The middle row in figure 5.9 shows the result when correlating the local orien-
tation z in the top row with the filters in figure 5.6. The standard deviation σ is
chosen as about half the size of the circle pattern.

Note that the responses are not as selective as one might want them to be. For
example, a line in the outer area of the local neighborhood gives a high magnitude
in all three responses s0, s1, s2 because this pattern is approximately part of
all three classes (see for instance column n = 1, and n = 2 in figure 5.3 - the
trajectories in the outer area are all approximately lines). Another example is that
we get high second order responses for corners, because they are approximately
’half circles’. In this thesis the goal is to find curvature, corners, circles, etc. The
first and second rotational symmetry responses can be one way to detect these
features, but it would be nice if they were more selective so that the first order
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response gave lower responses to lines and edges and that the second order response
was low for both lines and corners. Sections 5.3.2 and 5.3.3 discusses two different
methods to make the responses more selective. The first method models the local
orientation as a linear combination of the n:th order symmetries. The second one
is a fuzzy classification approach.

5.3.2 Improved selectivity using normalized convolution

This technique is also described in [Johansson et al., 2000]. The idea is to use the
normalized convolution theory discussed in section 3.1 to make the responses more
selective. We simply use bn as basis functions and c = |z| as signal certainty. The
goal is then to approximate the signal ẑ = z/|z| with a linear combination of the
basis functions, i.e.

ẑ ∼ s0b0 + s1b1 + s2b2 = Bs (5.7)

using the certainty c and an applicability a as weight functions for the signal and
basis functions respectively. The solution becomes

s = (B∗WB)−1B∗Wẑ = (B∗WB)−1B∗Waz where W = WaWc (5.8)

As output certainty we use equation 3.6. The top row in figure 5.10 contains the
result cout · sn when using a Gaussian applicability with the same standard devi-
ation as before. The result is now more selective and sparse. It is important to
use the magnitude |z| as certainty and not part of the signal. If we had used a
constant certainty and z as signal we would arrive at the same result as in the
previous section (middle row in figure 5.9). This is because the basis functions are
orthogonal in full certainty and therefore equation 5.8 simplifies to equation 5.5.

The normalized convolution technique not only improves selectivity. It can
also be used to describe other patterns than the n:th order symmetries. As men-
tioned in section 5.2.2, the patterns in figure 5.5 can be approximately described
as a linear combination of a small number of n:th order symmetries. It should be
possible to for instance use bn, n = −2,−1, ..., 2, as basis functions and calculate
the coefficients sn with the normalized convolution technique described here to
find squares, triangles, corners and their corresponding corner angles, etc. Exper-
iments to confirm this is however left as future work.

B∗Wz implies that we compute the correlations

(a · bn) ⋆ z , n = 0, 1, 2 (5.9)

and B∗WB means that the compute the correlations

(a · bm · b̄n) ⋆ c = (a · bm−n) ⋆ |z| , m − n = −2, ..., 2 (5.10)

The computational complexity involved may be too high for some applications.
The next section describes a more efficient method to create selective responses.
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5.3.3 Improved selectivity using normalized inhibition

This technique is also described in [Johansson and Granlund, 2000] and it is also
related to the idea of characteristic phases, see [Granlund, 1999]. To avoid some of
the computations involved in the normalized convolution method we can instead
let the filter responses in equation 5.5 inhibit, or punish, each other so that if
one response is high the other ones becomes lower. This can be though of as a
fuzzy classification into one of the n:th order symmetries. Before we inhibit we
normalize with the amount of certainty, i.e

sn =
〈a · bn, z〉
〈a, |z|〉 (5.11)

This is actually equivalent to the normalized convolution result in the previous
section when only one basis function is used. The normalization ensures (easy to
show) that the magnitude of the response lies between 0 and 1,

0 ≤ |sn| ≤ 1 (5.12)

This property gives a simple inhibition rule. The normalized inhibition is com-
puted as (’p’ is short for ’punish’)

|sp
0| = |s0| (1 − |s1|) (1 − |s2|)

|sp
1| = |s1| (1 − |s0|) (1 − |s2|)

|sp
2| = |s2| (1 − |s0|) (1 − |s1|)

(5.13)

As output certainty we can use

cout = 〈a, |z|〉 (5.14)

(which coincide with the output certainty from the normalized convolution method
when only one basis function is used).

The result of this method when applied to the same simple test image as before
is shown in the second row in figure 5.10. The response is more selective compared
to the normalized convolution method, on the other hand it cannot describe pat-
terns as linear combinations of the n:th order symmetries. The inhibition method
is also much faster to calculate than the normalized convolution method described
in the previous section. We still have to compute the correlations in equation
5.9, but instead of the correlations in equation 5.10 we only have to compute the
output certainty a ⋆ |z|.

However, the filters are still two-dimensional and if we want to find fairly large
image pattern the filters also get large. The next section deals with the subject of
efficient detection.

5.3.4 Efficient detection using polynomial expansion

Introduction

One problem with the methods described so far is that it is difficult to efficiently
calculate the results. For practical use it is often important that the algorithm
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is as fast as possible. The filters can, for some choices of applicability, be made
approximately separable into a small number of 1D-filters using SVD (Singular
Value Decomposition), see [Johansson and Granlund, 2000], or if we want to de-
tect the symmetries in several scales, create a filter-net using a technique similar to
the one described in [Andersson et al., 1999], [Knutsson et al., 1999] (the results
from this is not yet reported). The design of the kernel masks in the filter-net
is not automatic but involves a great deal of engineering which makes it inflexi-
ble and the SVD approach is difficult to efficiently generalize to multiscale filtering.

This section describes how the rotational symmetries can be detected using
the polynomial expansion algorithm in chapter 4. This approach creates less prac-
tical problems than the approaches mentioned above. The singlescale/multiscale
filtering is very efficient and the filter kernels can be automatically created, which
makes this method more flexible. The method is based on the observation that if
the basis functions bn = einϕ are weighted with rn we get polynomials:





b0 = ei0ϕ = (x + iy)0 = 1
rb1 = rei1ϕ = (x + iy)1 = x + iy

r2b2 = r2ei2ϕ = (x + iy)2 = x2 − y2 + i2xy
(5.15)

Note that rnbn is still a member of the n:th order symmetry class. This means
that there is a close relation between the information that can be described by
the basis functions bn and the polynomial coefficients respectively. It is therefore
possible to use the polynomial model parameters to detect rotational symmetries.

Single scale detection

Assume we have a local polynomial expansion model of the local orientation, using
normalized convolution with full certainty (section 4.2.1):

z ∼ Prz , where rz = (PT WaP)−1PT Waz (5.16)

(rz should not be confused with the polar coordinate r). The correlations in
equation 5.5 can then be approximated from the polynomial model parameters:

s = B∗Waz

∼ B∗WaPrz =




1 0 0 σ2 σ2 0
0 σ

√
π
8 −iσ

√
π
8 0 0 0

0 0 0 σ2

2 −σ2

2 −iσ2

2


 rz

(5.17)

Now we do not have to correlate the local orientation z with the filter kernels WB.
Instead we can compute a polynomial model, which can be done quite efficiently,
and then use the polynomial parameters rz to compute an approximation of s.

To interpret the result we notice that both the polynomial expansion and the
transformation from rz to s are linear operations which can be merged into one
single linear operation. From equation 5.16 and 5.17 we have that

B∗WaPrz = B∗WaP(PT WaP)−1PT Waz (5.18)
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This means that B∗WaPrz can be interpreted as correlation on the original signal
z with the filter kernels

WaP(PT WaP)−1PWaB

= Wa[1 1
σ

√
π
8 (x + iy) 1

4σ2 (x2 − y2 + 2ixy)]
(5.19)

The filter kernels are is shown in figure 5.7.

a · 1 a · 1
σ

√
π
8 (x + iy) a · 1

4σ2 (x2 − y2 + 2ixy)

Figure 5.7: Correlation of the polynomial model Prz with the filter kernels a · bn

is equivalent to correlation of the original signal z with the filter kernels above.

We can use the normalized inhibition technique in section 5.3.3 to make the
responses more selective. First we normalize with the amount of certainty:

sn ∼ 〈a · bn, Prz〉
〈a, |z|〉 (5.20)

It would perhaps be more correct to normalize with 〈a, |Prz|〉 instead of 〈a, |z|〉,
but this variant is more computationally complex. The normalized inhibition was
based on the property 0 ≤ |sn| ≤ 1. This does only approximately hold in equation
5.20. But we can modify the inhibition rule and instead use

|sp
0| = h(|s0|) (1 − h(|s1|)) (1 − h(|s2|))

|sp
1| = h(|s1|) (1 − h(|s0|)) (1 − h(|s2|))

|sp
2| = h(|s2|) (1 − h(|s0|)) (1 − h(|s1|))

(5.21)

where

h(t) =

{
1 if t > 1
t otherwise

(5.22)

The phase of sp
n still equals the phase of sn.

The result of this method on the simple test image is shown in the third row
in figure 5.10. cout = 〈a, |z|〉 is used as output certainty. The standard deviation
σ of the Gaussian applicability a was chosen a bit smaller than in the previous
experiments because the filter kernels in figure 5.7 are slightly larger than the
previous kernels in figure 5.6 for the same choice of σ. The result is approximately
equal to the non-approximative normalized inhibition result in the second row.
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Figure 5.8: Multiscale correlator structures needed to compute rotational symme-
tries in several scales. The ∂-box are equal to the ∂-box in figure 4.7.

Multiscale detection

The method above is easily generalized to multiscale detection. We simply use
the multiscale polynomial expansion algorithm in section 4.5. The multiscale al-
gorithm is as follows:

1. Compute a local polynomial expansion model of z in several scales using the
algorithm in section 4.5. In addition, compute a lowpass hierarchy of the
certainty |z|. The total correlator structure is shown in figure 5.8. We now
have model parameters rz and output certainties cout = 〈a, |z|〉 in several
scales.

2. In each scale, compute the scalar product 〈a ·bn, Prz〉 using equation 5.17.

3. In each scale, normalize with the output certainty according to equation
5.20.

4. In each scale, compute the normalized inhibition in equation 5.21.

5. The final response is computed as cout · sp
n.

5.4 Previous work

This section summarize most of the earlier work on rotational symmetries.



54 Rotational symmetries

The rotational symmetry theory was developed around 1981 by Granlund and
Knutsson, however first mentioned in a patent from 1986, see [Knutsson et al., 1988a],
[Knutsson and Granlund, 1988], [Knutsson et al., 1988b]. An early related work
is also [Hoffman, 1966].

A previous solution to achieve better selectivity is called the consistency oper-
ation, see [Knutsson and Granlund, 1988], [Granlund and Knutsson, 1995]. This
technique is also used in a commercial image processing program by ContextVi-
sion1. The name refers to the idea that the operator should only respond to signals
which are consistent with the signal model. The method is based on a combination
of four scalar products:

hn1 = 〈a · bn, z〉 , hn2 = 〈a · bn, c〉 (5.23)

hn3 = 〈a, z〉 , hn4 = 〈a, c〉

The filter results are combined into

hn =
hn4hn1 − hn2hn3

hγ
n4

(5.24)

where the denominator is an energy normalization controlling the model versus
energy dependence of the algorithm. With γ = 1 the orientation magnitude varies
linearly with the magnitude of the input signal. Decreasing the value increases the
selectivity. The result from this operation is called divcons when n = 1 and rotcons
when n = 2. The result when applying this method (with γ = 1) on the simple test
image is shown in the last row in figure 5.10. The result is less selective than the
normalized convolution and inhibition results, especially the rotcons result. The
explanation for this, as pointed out in [Westin, 1994], is that divcons and rotcons
can be fairly comparable to normalized convolution with {b0,b1} resp. {b0,b2}
as basis functions, i.e.

divcons: ẑ ∼ s0b0 + s1b1

rotcons: ẑ ∼ s0b0 + s2b2
(5.25)

This means for instance that the corners are not ’inhibited’ in the rotcons response
but are instead detected as ’half circles’. In general, using normalized convolution
or normalized inhibition instead of the consistency operation produces more selec-
tive and sparse responses.

Bigün, [Bigün, 1988], [Bigün, 1997], [Bigün, 1990], [Bigün, 1987], describes de-
tection of rotational symmetries as a special case of ’finding invariants of Lie groups
of transformations’. The idea is to describe the symmetries as classes of signals
that is invariant to translations in some coordinate system. A suitable coordi-
nate system is chosen and the best translation invariant orientation is found. The
solution can be described as a linear filter on the local gradient in double angle
representation, 〈z, w〉 where w can be a rotational symmetry a ·bn or some other

1http://www.contextvision.se/
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prototype pattern. The difference between |〈z, w〉| and 〈|z|, |w|〉 is used as a
measure of model certainty. This is closely related to the normalized inhibition
idea in section 5.3.3.

The algorithm was illustrated on sea bottom photographs and electronic circuit
schemes. The object was to find sea anemones (spiral patterns) and transistors
respectively.

Bigün also points out the relation to Generalized Hough Transform, GHT,
which uses edges and their orientation to detect curvature, see [Duda and Hart, 1972].
The difference is that in GHT only positive votes give a contribution, while in com-
plex valued correlation we will also get negative votes.

B̊arman, [B̊arman and Granlund, 1988], use the −1:st and 1:st order symme-
tries to detect corners. These two symmetries are well suited for this task, as can
be seen in figure 5.5.

B̊arman has also developed an algorithm to detect curvature using local ori-
entation in double angle representation, see [B̊arman, 1991]. In this algorithm, a
set of quadrature filters is applied on the local orientation image, and the filter
responses are used to detect curvature. An inhibition strategy between a straight
line measure and the curvature measure is applied to improve the curvature di-
rection estimate as well as the curvature certainty. This curvature is related to
the curvature described by the first order symmetry. B̊arman also points out the
close relation between the strategies of detecting edges on the gray-scale image
and detecting curvature on the local orientation image. This is also confirmed by
equations 5.15 and 5.17 where it is shown that computing the first order response
is equivalent to computing the gradient of the local orientation z.

Westelius, [Westelius, 1995], uses the rotcons operator (and a cos2-applicability)
to create potential fields which are used in object recognition problems. The po-
tential fields indicate possible locations for objects, which then can be further
examined.

5.5 Conclusions

The rotational symmetry theory is a tool to describe curvature using local orien-
tation in double angle representation, z. By representing the information as the
phase ∠z and using the magnitude |z| as a certainty measure we can more easily
handle the many variations of curvature patterns that can occur in an image.

This thesis introduces a new algorithm to detect these symmetries in one or
several scales. The new algorithm uses the parameters from a polynomial expan-
sion model, which can be very efficiently computed. The result on a simple test
image shows that the new method gives subjectively the same result as the old
ones but are much faster to compute. Further evaluation can be found in the
experiment chapter. The first experiment in section 6.2 evaluates the performance
on test images of 0:th, 1:st, and 2:nd order symmetries. The images were created
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Simple test image Local orientation, z
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s0 = 〈a · 1, z〉 s1 = 〈a · eiϕ, z〉 s2 = 〈a · ei2ϕ, z〉

Figure 5.9: Top: Simple test image and its corresponding local orientation in dou-
ble angle representation. Middle: 0:th, 1:st, and 2:nd order rotational symmetry
responses. Bottom: Interpretation of the result in the middle row. The intensities
represent the response magnitude. The vectors represent the complex values in
a regular grid for the local orientation and for the 0:th order and at the maxima
points for the 1:st and 2:nd order (because last two are point features).
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Normalized convolution, section 5.3.2
cout · s0 cout · s1 cout · s2

Normalized inhibition, section 5.3.3
cout · sp

0 cout · sp
1 cout · sp

2

Polynomial based detection, section 5.3.4
cout · sp

0 cout · sp
1 cout · sp

2

Consistency operation, section 5.4
divcons rotcons

Figure 5.10: Different techniques to make the responses in figure 5.9 more sparse
and selective.
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using the back-projection method in appendix A. The algorithm seems to work
as expected on those images. The symmetry detection algorithm is also evaluated
in an application experiment in section 6.4, where the goal is to recognize objects
from its curvature.

This chapter has also indicated that with suitable choices of applicabilities there
is strong relationship between polar Fourier transform, polynomial expansion, and
partial derivatives, i.e.





b0 = 1
b1 = eiϕ

b2 = ei2ϕ
!





b0 = 1
b1 = x + iy
b2 = (x + iy)2

!





b0 = 1
b1 = ∂x + i∂y
b2 = (∂x + i∂y)2



Chapter 6

Experiments

This chapter contains experiments based on the theory presented in the previous
chapters.

6.1 Evaluation of the approximative polynomial

expansion algorithm

This section evaluates the approximative polynomial expansion algorithm de-
scribed in chapter 4. The first experiment, section 6.1.1, evaluates the parameter
approximation on natural images. It is difficult to perform the evaluation dis-
regarding the application - sometimes an approximation of a part of the system
can be quite poor without deteriorating the overall system performance. The algo-
rithm is therefore also evaluated in an orientation estimation experiment, section
6.1.2.

6.1.1 Evaluation on natural images

The first evaluation is made by comparing the parameters from the ’ideal’ al-
gorithm in section 4.2.1 (full certainty case) with the approximative algorithm

described in section 4.4.1 using the estimated transformation matrix T̃PD in equa-
tion 4.42 and the filter optimization method based on least squares described in
section 4.6.1. How well the polynomial model is suited for image applications is
not an issue here.

Since this algorithm is intended to be used on image data, it is evaluated on
the same sort of data. Figure 6.1 shows the test images used in this experiment.

The polynomial model parameters were estimated in each image using both the
approximative algorithm and the ideal algorithm with varying standard deviation
of the Gaussian applicability. To avoid border effects, the results within reach
of the image borders, corresponding to half the applicability size, were cut off
before evaluation. This left about 200000–250000 neighborhoods (depending on
the applicability size) for evaluation. The parameters from the approximative and
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Figure 6.1: Test images for the evaluation experiment.

ideal algorithms were then compared using the following error measure:

e =
‖Pr − Pr̃‖W

‖Pr‖W
=

√
(r − r̃)T PT WP(r − r̃)

rT PT WPr
(6.1)

This is a relative error between the local image neighborhoods described by the
approximative parameters r̃ and the true parameters r respectively. The norm
is weighted with the same Gaussian function that was used as applicability to
estimate the parameters. The result is shown in figure 6.2.

The parameters are also separately compared using the SNR measure in ap-
pendix C:

ek = 10 log

∑
(rk − r̃k)2∑

r2
k

[dB] (6.2)

The result is shown in figure 6.3.

Some observations can be made from the experiment:

• The approximation performs well above σ = 2. σ < 2 corresponds to image
regions smaller than 5 × 5 and the approximation becomes worse due to
discretization effects.

• The largest relative errors can be found some distance away from sharp
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Figure 6.2: Relative error, e = ‖Pr−Pr̃‖W

‖Pr‖W
, for Gaussian applicability with varying

standard deviation, σ and varying size of the derivative filters. Bottom figure:
Using derivative filters of size 5. Solid lines: mean(e), Dashed lines: mean(e) ±
std(e), Dash-dotted lines: max(e)
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Figure 6.3: Evaluation of the model parameters separately using equation 6.2.
From top to bottom: e4, e5, e6, e2, e3, e1 (e4, e5 and e2, e3 respectively are almost
identical). Derivative filter size 5 was used.

edges. This is due to the poor performance of the derivative approximation
for such patterns.

• The performance improved with increasing size of the derivative filters, but
larger filter size than 7 did not significantly improve the result.

• The coefficients corresponding to x2 and y2 has the worst average perfor-
mance. This is because the second partial derivatives are estimated by cor-
relating the derivative filter on approximations of the first partial derivatives.

• Section 4.6.2 also mentioned another estimation, T̃PD, in equation 4.40.
Experiments (not included here) indicate that using this estimation gives
a slightly better average performance, while the maximum error becomes
slightly higher.

• In this experiment the same filter was used to approximate both the first
and the second derivative. The result when the second filter was optimized
separately did not differ significantly. If anything it performed slightly worse,
suggesting that the optimization method used in section 4.6.1 may not be
the best one to use.
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6.1.2 Local orientation estimation on 3D data

In this section the approximative polynomial expansion algorithm is evaluated
in an application. The polynomial model parameters are used to estimate local
orientation in a three-dimensional signal. The 64 × 64 × 64 test volume, called
the onion volume, consists of concentric spherical shells, see figure 6.4 for a cut
through the center. Different amounts of noise is added and the local orientation
is then estimated. Estimates near the center and the border of the volume are
removed before the evaluation to avoid center irregularities and border effects.

(a) SNR = ∞ (b) SNR = 10 dB (c) SNR = 0 dB

Figure 6.4: Slice 32 of the 64× 64× 64 test volume with different amount of noise
added. The test volume can be imagined as slice 32 rotated around an axis going
through the center of the volume.

The onion volume has been used before by Andersson, Wiklund and Knutsson
(see [Andersson et al., 1998, Knutsson and Andersson, 1995]) and by Farnebäck
(see [Farnebäck, 1999a, Farnebäck, 2000b]) to evaluate local orientation estimation
algorithms. The orientation estimation was in both cases based on orientation
tensors. In the second case the tensors were computed using parameters from
a local polynomial model, which will be used as reference when evaluating the
approximative polynomial expansion algorithm presented in this thesis.

Before making the experiments we summarize the theory of orientation tensors:

Orientation tensors

A more complete description of this theory can be found in [Farnebäck, 1999a],
[Granlund and Knutsson, 1995].

Assume we have a simple signal, i.e. a signal that varies only in one direction
n and is constant in all directions orthogonal to n. This can be written as

f(x) = h(xT n) (6.3)

for some function h. Figure 6.5 shows some examples of simple and non-simple
two-dimensional signals.

The simple signal above is represented by the orientation tensor

T = An̂n̂T (6.4)



64 Experiments

.

n̂
.

.

.
.

.
.
..

.
. .

.
. .

. .
..

..
.

.
.

.

. .
.

. .
. .

.

. ..
.

.

. .
.

..
...

.
.

.

.
..

.
. .

.
.

.
.

. . . .
...

.
.

. . .
. . ..

..
..

.
..

.
.

.
. .

.

.
.

..
.
.
.
.. .

.

..
.

.
.

Figure 6.5: Examples of a simple signal (left) and non-simple signals (middle and
right).

where A is a scalar that may depend on signal energy, certainty, or other useful
information. It is easy to show that the signal orientation n̂ can be computed
from the tensor as the eigenvector corresponding to the largest eigenvalue. For a
non-simple signal there does not exist a clear definition of the tensor, but the dom-
inant orientation is still estimated as the eigenvector corresponding to the largest
eigenvalue. Besides dominant orientation we can also extract information about
signal variation in other directions by studying the eigensystem of T. However, in
this experiment only the dominant orientation is used.

There are different ways to compute the tensor in practice. One way, used
by Andersson et al., is to look at the local signal energy in different directions
using a set of quadrature filters and weigh them together in a proper way, see
[Granlund and Knutsson, 1995]. A quadrature filter is basically a complex valued
filter with an even real part and an odd imaginary part and with a Fourier trans-
form that is localized around a certain direction. The filtering can be efficiently
computed by use of sequential filter trees [Andersson et al., 1998].

Farnebäck on the other hand uses the parameters from a local polynomial
model to compute the tensor. In the three-dimensional case we have the model

f(x) ∼ c + bT x + xT Ax , x ∈ R
3 (6.5)

where c is a scalar, b is a 3 × 1 vector and A is a 3 × 3 symmetric matrix. The
orientation tensor is computed as

T = AAT + γbbT (6.6)

where γ is a non-negative weight factor between the linear (odd) and quadratic
(even) part of the signal model. The choice of γ depends on σ.

Experiments

In previous experiments an orientation tensor was computed in each local neigh-
borhood and the dominant orientation was estimated as the eigenvector ê1, cor-
responding to the largest eigenvalue. The performance of the algorithms were
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measured by an angular RMS error

∆φ = arcsin




√√√√ 1

2L

L∑

l=1

‖x̂x̂T − ê1ê
T
1 ‖2


 = arccos




√√√√ 1

L

L∑

l=1

(x̂T ê1)2


 (6.7)

where x̂ is the true orientation and L is the number of points. To avoid border
effects and irregularities at the center of the volume, the sum was only computed
for points at radius between 0.16 and 0.84. The results from these experiments
is recalled in table 6.1. In the second case the RMS errors refer to the optimal
choices of σ (≈ 1) and γ (≈ 0.1). In the table is also included the number of filter
coefficients needed to compute the tensors.

In this experiment we use Farnebäcks theory to compute the orientation ten-
sors, equation 6.6, but the polynomial expansion is computed using the approxima-
tive algorithm described in chapter 4. Figure 6.6 contains the correlator structure
needed to compute the approximative polynomial expansion in 3D.
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// z2 − σ2

Figure 6.6: Correlator structure for approximate polynomial expansion in 3D with
full certainty.

The output from the correlator structure in each local neighborhood becomes
D̃T

3 Wf , where D̃3 is an approximation of

D3 =




| | | | | | | | | |
1 −x −y −z x2 − σ2 y2 − σ2 z2 − σ2 xy xz yz

| | | | | | | | | |




(6.8)
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This result is then transformed to the polynomial model parameters by

r̃ = T̃PD(D̃T
3 WD̃3)

−1D̃T
3 Wf (6.9)

Two estimates of T̃PD were mentioned in section 4.6.2. The first one, equation
4.40, minimizes the error in the polynomial subspace:

T̃PD(D̃T
3 WD̃3)

−1 = (D̃T
3 WP)−1 (6.10)

The second one, equation 4.43, minimizes the expectation error using the signal
model Cff = E[f fT ] = I:

T̃PD(D̃T
3 WD̃3)

−1 = (PT WP)−1PT W2D̃3(D̃
T
3 W2D̃3)

−1 (6.11)

Both versions are evaluated in this experiment.
Before the results are presented, it should be mentioned that the angular RMS

error was computed using points at a radius between 0.22 and 0.78 instead of 0.16
– 0.84 used in previous experiments. The reason for this is that the local neighbor-
hood used to compute the approximative polynomial expansion is slightly larger
than in the non-approximative algorithm for the same size of the Gaussian filters
because of the subsequent derivative filters. Therefore, the test volume had to be
pruned somewhat more in order to avoid border effects. For the sake of compar-
ison, the Farnebäck experiment (non-approximative polynomial expansion) was
reproduced using the new radius interval. The new result did not significantly
differ from the previous one using the old radius interval, which suggests that the
result of the new algorithm in this thesis can be compared with both previous
results in table 6.1.

All combinations of the following parameters were tested:

• A Gaussian filter of size 9 was used in all experiments.

• σ = 0.5, 0.6, 0.7, ..., 2.0

• γ = 10−2, 10−1.5, 10−1, ..., 102

• Derivative filters of size m = 3, 5, 7

• Both estimates T̃PD, equations 6.10 and 6.11.

The result for optimal σ and γ is shown in table 6.2. Figure 6.7 shows the RMS
error as a function of σ and γ for the non-approximative and the approximative
algorithms.

Some observations can be made from the experiment:

• Optimal σ (≈ 1) and γ (≈ 0.1) is similar in the non-approximative and
approximative cases, except for SNR = ∞ where σopt ≈ 1.4. The reason
could be that the filter approximation is best for σ > 1, as we could see in
the experiment in section 6.1.1, and the best σ in this experiment is therefore
a trade-off between optimal σ and good filter approximations.
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SNR
Andersson, Wiklund, Knutsson

345 coeff
Farnebäck
171 coeff

∞ 0.76◦ 0.11◦

10 dB 3.02◦ 3.03◦

0 dB 9.35◦ 10.24◦

Table 6.1: Performance of previous algorithms, [Andersson et al., 1998,
Knutsson and Andersson, 1995] and [Farnebäck, 1999a, Farnebäck, 2000b]. The
evaluation included points at a radius between 0.16 and 0.84.

Johansson

pol. subspace T̃PD, eq. 6.10 statistical T̃PD, eq. 6.11

SNR
Farnebäck

171 coeff
m = 3 m = 5 m = 7 m = 3 m = 5 m = 7

54 coeff 72 coeff 90 coeff 54 coeff 72 coeff 90 coeff

∞ 0.11◦ 4.39◦ 0.78◦ 0.28◦ 3.89◦ 0.78◦ 0.28◦

10 dB 3.01◦ 5.79◦ 3.39◦ 3.05◦ 5.26◦ 3.41◦ 3.06◦

0 dB 10.38◦ 11.42◦ 10.25◦ 10.37◦ 13.72◦ 10.40◦ 10.38◦

Table 6.2: Comparison between non-approximative algorithm (Farnebäck) and
new approximative algorithm for different parameter values. The evaluation in-
cluded points at a radius between 0.22 and 0.78.
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Farnebäck Approx, T̃PD eq. 6.10 Approx, T̃PD eq. 6.11
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Figure 6.7: RMS error as a function of σ and γ for the non-approximative
(Farnebäck) and the approximative (new) algorithms. Derivative filter size m = 5
was used in all cases.
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• The statistical estimate of T̃PD, equation 6.11, gives a higher error for σ < 1
and small γ than the estimate in equation 6.10, but otherwise they have
about the same behavior regarding σ and γ as the non-approximative al-
gorithm. The bad performance for the statistical estimate of T̃PD suggests
that the signal model Cff = I may be too simple.

6.1.3 Conclusions

The experiments in section 6.1.1 and 6.1.2 suggest that the approximative poly-
nomial expansion algorithm works well for σ > 1, but more application-oriented
experiments should be made before making any final conclusions. Optimal σ for
the experiment in section 6.1.2 is around 1, which is a bad choice for the ap-
proximative algorithm. This should be taken into account when evaluating the
results.

A derivative filter size of 5 seems to be a good trade-off between accuracy and
computational complexity. The performance is comparable to the performance of
the Andersson, Wiklund, and Knutsson algorithm but the new algorithm needs
only about a fourth as many filter coefficients. There is no significant difference
between the simpler choice of T̃PD in equation 4.40 and the statistical one in
equation 4.43 if σ > 1, perhaps because of the signal model Cff = I not being very
accurate.
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6.2 Evaluation of the rotational symmetry algo-

rithm

This section contains an experiment to evaluate the new rotational symmetry de-
tection method based on polynomial expansion, section 5.3.4. The experiment
aims to evaluate how the algorithm works for the patterns it is designed for. It is
difficult to define what responses the method should give for other features than
the rotational symmetries. This experiment might still give an indication of the
algorithm performance. Further evaluation can be found in section 6.4, where the
rotational symmetries are used in an object recognition experiment.

The experiment is designed as follows:

Step 1: 15×15 test images based on the back-projection algorithm in appendix A
were created. The test images contain 0:th, 1:st, and 2:nd order symmetries
with random phase, see figure 6.8, 6.9, and 6.10 respectively. Noise with
PSNR = 20 dB was added.

Step 2: The local image gradient in double angle representation, z, was computed
for each test image. Image borders corresponding to half the filter size were
removed in order to avoid border effects, leaving 9 × 9 images of z.

Step 3: A global polynomial expansion model with Gaussian applicability, σ = 2,
was computed for each z-image, z ∼ Prz.

Step 4: The normalized responses

sn =
〈g · bn, Prz〉

〈g, |z|〉 , n = 0, 1, 2 (6.12)

were computed, where bn = einϕ.

Step 5: Finally the response magnitudes were inhibited using the rule

|sp
0| = h(|s0|) (1 − h(|s1|)) (1 − h(|s2|))

|sp
1| = h(|s1|) (1 − h(|s0|)) (1 − h(|s2|))

|sp
2| = h(|s2|) (1 − h(|s0|)) (1 − h(|s1|))

(6.13)

where

h(t) =

{
1 if t > 1
t otherwise

(6.14)

Figures 6.8, 6.9, and 6.10 show both the non-inhibited and inhibited responses
for the three sets of test images respectively. As can be seen, the non-inhibited n:th
order response, sn, gives a magnitude approximately equal to 1 for the n:th order
test images. Some of the test images give a high magnitude for more than one
response order, e.g. lines in the outer area of the image. These images correspond
to ambiguous patterns that can be classified as more than one symmetry order.
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If we use the inhibition rule, we will get a low response for these patterns, which
may be desirable if we only want to detect non-ambiguous patterns. The last two
rows in each figure show the patterns which after inhibition gave the lowest and
highest responses respectively. Note that the responses for |sp

2| in the experiment
in figure 6.10 are all fairly high, so some of the lowest response patterns should
still be considered as fairly certain second order symmetries.

The phase estimate is evaluated using the following formula:

std|sp
n|(∆α) =

√
1

N − 1

∑ |sp
n|k(α − α)2∑ |sp

n|k
(6.15)

where α is the true phase and α = ∠sp
n the estimated phase. It is basically the

standard deviation of the error, but weighted with the magnitude response |sp
n|

which serves as a certainty measure.
To conclude, the algorithm seems to work well for the patterns it is designed

to detect. Ambiguous patterns will after inhibition get a lower response, and
more well-defined patterns such as clear lines, edges, and high curvature points
will still have a high response for their corresponding order. The approximation
with polynomials does not significantly affect the result. Performing the same

experiments using sn = 〈g·bn, z〉
〈g, |z|〉 instead of the approximative normalized response

in step 4 gives similar results (not included here). Also, the phase estimate seems
to be fairly accurate for the test images with the highest responses.
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10 examples of 0:th order test images, PSNR = 20 dB
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Figure 6.8: Zeroth, first, and second order responses on zeroth order symmetries.



6.2 Evaluation of the rotational symmetry algorithm 73

10 examples of 1:st order test images, PSNR = 20 dB
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Figure 6.9: Zeroth, first, and second order responses on first order symmetries.
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10 examples of 2:nd order test images, PSNR = 20 dB
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Figure 6.10: Zeroth, first, and second order responses on second order symmetries.
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6.3 Learning a detector for corner orientation

6.3.1 Introduction

It is often difficult to design models and detectors for complex features analyti-
cally. The rotational symmetry detectors in chapter 5 are one exception. Another
approach is to have a system learn a feature detector from a set of training data.
If a suitable model is chosen, we can use the training data to find the model para-
meters. One feature learning approach based on canonical correlation is described
in [Borga, 1998], [Knutsson and Borga, 1999], [Borga and Knutsson, 2000]. They
show how a system can learn to detect local orientation invariant to signal phase
by showing the system pairs of sinusoidal patterns that had the same local orien-
tation but different phases. They used products between intensity values as input
samples to the system, and the system then learned linear combinations of the
input samples which in a simple manner could be decoded into the local orien-
tation angle. It turned out that the linear combinations could be interpreted as
quadrature filters.

This section (also presented in [Johansson et al., 2001]) illustrates how the
same technique can be used to learn a descriptor of corner orientation which is
invariant to corner angle and color (intensity). Several input data representations
are examined: image intensity values, products between intensity values, and local
orientation in double angle representation. The dimensionality of the input data
can be quite large, especially if we use products between intensity values. There-
fore, to reduce the dimensionality, parameters from a polynomial expansion model
on the respective representations were also explored as input data. As shown be-
low this reduction did not affect the performance of the system.

It may not be obvious that a quadratic model should work, but it is motivated
by the following argument:

According to chapter 5 we can detect corners and other complex curvatures
by applying a linear complex filter on a local orientation description in double
angle representatoin. To find the local orientation we can for instance compute
the image gradient, ∇I. This means that in each local neighborhood of the image
we compute the scalar products

∇I =

(
Ix

Iy

)
=

(
〈gx, I〉
〈gy, I〉

)
(6.16)

where gx and gy are derivating filters, for example derivatives of a Gaussian. From
the gradient we can then for instance compute the double angle representation as

z = (Ix + iIy)2 = (〈gx, I〉 + i〈gy, I〉)2 = 〈gx + igy, I〉2 (6.17)

If we reshape I, gx and gy into vectors we can write z as

z =
(
(gx + igy)T I

)2
= (gx + igy)T I IT (gx + igy) = 〈(gx + igy)(gx + igy)T , I IT 〉

(6.18)
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Hence, the double angle representation can be computed using a (complex) linear
combination of products between the intensity values. Corners and other curva-
tures can be computed using a linear filter on the double angle representation,
which means that these features too can be detected using linear combinations of
products between the intensity values.

This discussion suggests that if we want to use learning to create a detector
for corner orientation, it could be a good idea to use a quadratic model.

The first subsection contains a short description of the feature learning algo-
rithm, and in the following subsections we apply this algorithm to the different
image representations starting with the simplest ones, ending with the local ori-
entation representation.

6.3.2 A canonical correlation approach

This subsection describes the basic ideas of the Borga and Knutsson feature learn-
ing algorithm based on canonical correlation analysis (CCA). A more thorough
description can be found in [Borga, 1998].

Assume we have N pairs of training samples:

X = [x(1) x(2) ... x(N)]
Y = [y(1) y(2) ... y(N)]

(6.19)

Each pair (x(n), y(n)) has a number of common properties that we want the system
to learn and other uncommon properties that we want the system to be invariant
to. In this section each sample pair is computed from images of corners that has
the same corner orientation and differ in corner angle and color, see figure 6.12 for
an illustration.

If we compute the canonical correlation, described in section 3.2, between the
signals x(n) and y(n) we will hopefully find a number of projections wT

xkx
(n) and

wT
yky

(n) which has a high correlation. The canonical correlation vectors wxk and
wyk will then be fairly equal and correspond to a one-dimensional subspaces, that
is invariant to the uncommon properties but varies with the common properties.
It should therefore be possible to use wxk to discriminate between the different
values of the common properties.

If we use a quadratic model, i.e. products between intensity values or between
other values, as input data the dimensionality will be fairly high. As a consequence
the vectors wxk will also be large. This is not suitable for practical applications.
We can use eigenvalue decomposition to reduce the computational complexity:

Let Ix be M × M -images corresponding to one of the training samples. If we
reshape Ix into an M2×1-vector ix we can write products between intensity values
as an outer product, ixi

T
x . The input to the learning algorithm is then this outer

product reshape into an M4×1-vector, x = vec(ixi
T
x ). The projection of an image
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onto a canonical correlation vector wx can then be written as

xT wx = iTx Wxix (6.20)

where Wx is the same as wx reshaped into a M2/M2-matrix. We can now use
the eigensystem to Wx, i.e.

Wx =
∑

k

λkeke
T
k (6.21)

and write the projection as

xT wx = iTx

(
∑

k

λkeke
T
k

)
ix =

∑

k

λk(iTx ek)2 (6.22)

We now see that the projection of x onto wx can be computed as projections of
the image ix onto ek followed by a weighted sum of squares. Note that ek can be
viewed as a linear filter on the image.

If we can remove some of the terms in the sum, we can save a lot of com-
putations. It would be tempting to keep the terms corresponding to the largest
eigenvalues, but it turns out that

∣∣E[λk(eT
k ix)2]

∣∣ (6.23)

where E[.] means expectation value, is a more relevant significance measure. It
measures the average energy in the subspace defined by ek. It should be noticed
that the two most significant terms coincide with the largest eigenvalue terms in
the experiments described in this section.

Now we use this idea in a corner detection experiment:

6.3.3 Experiment setup

Figures 6.11, 6.12 and 6.13 show examples of training samples for the experiments.
Each pair of training samples has the same corner orientation but differs in other
properties. When using linear components of intensity values it is not possible to
learn corner orientation invariant to corner color. Therefore, as a first experiment
we only vary the corner angle within the pairs and keep the color constant, see
figure 6.11. In the rest of the experiments both the corner angle and corner color
varies, see figure 6.12 and 6.13. In the local orientation experiments a larger
image size was used in order to avoid border effects when the local orientation was
computed, see figure 6.13.

The noise-free data is only used as part of the evaluation. Gaussian noise was
added to the image data before put into the learning system. It turns out that
the noise actually helps the learning algorithm to find more smooth and robust
vectors wxk. This is not surprising since the algorithm tries to find projections
which are invariant to the noise (because the noise is not a common property)
which implicates a low-pass characteristic of the projections.

The list below contains some facts about the training set:
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The same examples with noise added, PSNR = 10 dB
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Figure 6.11: Examples of pairs of training samples used for learning corner orien-
tation invariant to corner angle when intensity information was used as input to
the system.
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The same examples with noise added, PSNR = 10 dB
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Figure 6.12: Examples of pairs of training samples used for learning corner orien-
tation invariant to corner angle and color (intensity) when intensity information
was used as input to the system.
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10 pairs of training samples, PSNR = 10 dB
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Local orientation in double angle representation
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Figure 6.13: Examples of pairs of training samples used for learning corner orien-
tation invariant to corner angle and color when local orientation information was
used as input to the system.

• The orientation varies between 0◦ and 360◦ with a resolution of 5◦, giving a
total of 72 values.

• The corner angle varies between 60◦-120◦ with a resolution of 5◦, giving a
total of 13 values.

• The pairs consist of all combinations of the images above that have the same
corner orientation but differ in corner angle. For each corner orientation
we have 132 combinations of corner angle pairs. This gives a total of N =
72 × 132 = 12168 sample pairs.

• The corners were made from a product of two edges. The bottom of the
edges has the value 0 and the top of the edge has the value 1. The transition
from bottom to top was made soft with a width of 2 pixels using a cos2

function.

• Gaussian noise with PSNR=10 dB (definition, see C) was added to the data.

• In the color invariance case the corners were randomly inverted.

• – For the intensity value experiments an image size 5 × 5 was used.

– For the local orientation experiments an image size 9×9 was used. The
gradient (Ix, Iy) was then computed using 5×5 differentiated Gaussian
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filters xg and yg with σ = 1.2. The double angle representation is then
computed as z = (Ix + iIy)2. The border values were finally removed
leaving a 5 × 5 local orientation image.

As an evaluation measure 1000 images with random corner orientation, angle
and color were used. Noise with PSNR=10 dB was added. The system then
estimated a corner orientation for each of the images. The angular error was
computed and the mean angular error was removed (the mean is not important
since the system is unaware of the orientation reference value). The standard
deviation of the error was finally computed.

6.3.4 Using intensity information

Linear CCA

As a first experiment we try to learn corner orientation invariant to corner angle.
Intensity values are used as input data to the system, i.e.





x(n) = i
(n)
x = vec(I

(n)
x )

y(n) = i
(n)
y = vec(I

(n)
y )

(6.24)

Thus we have 12168 pairs of 25-dimensional training vectors. The resulting canon-
ical correlations are shown in figure 6.14. We get four quite large correlations. The
absolute values are not critical as long as they are fairly high, they depend on the
noise added.

Canonical correlations, ρ
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Figure 6.14: Resulting canonical correlations when using intensity value represen-
tation.

Figure 6.15 shows the six first canonical correlation vectors reshaped into ma-
trices and their corresponding Fourier transforms. We can see that the first two
vectors are some kind of edge filters, which is not too surprising. The figure also
shows the projection of the noise-free data onto the vectors. The first two pro-
jections vary as sinusoidal functions with 90◦ phase difference. The next two are
sensitive to the double angle of the orientation. Note that the projections are fairly
invariant to corner angle.

To decode the projections into a corner orientation angle, we can simply take
the angle of the vector (wT

x1ix,wT
x2ix). This is illustrated in figure 6.16 on noise-

free data. The estimate is even more invariant to corner angle than the projections



6.3 Learning a detector for corner orientation 81

 w
xk

|DFT( w
xk

)|

 

 

 

 w
xk

T
  i

x

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

0
°

360
°

Orientation

Figure 6.15: Left: The six first canonical correlation vectors, wx1 - wx6, reshaped
into matrices. Middle: Their corresponding Discrete Fourier transform (absolute
value). Right: Projection of the training data without noise onto the canonical
correlations vectors. Note that there are several curves corresponding to different
corner angles.
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alone. The evaluation on 1000 noisy test images, described in the experiment setup
section, is shown in figure 6.17.

arctan(wT
x2ix,wT

x1ix)

   
 

 

 

0
°

180
°

360
°−180

°

0
°

180
°

Figure 6.16: Decoding of canonical correlation projections into corner orientation
on noise-free data. There are several curves, corresponding to different corner
angles.
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Figure 6.17: Evaluation of the decoding formula on noisy data. Standard deviation
of the error was 13.8◦.

Note that the resulting vectors are not designed to be selective to corners alone.
For instance, the first two vectors also detect edges. But if several vectors are used,
it can be possible to separate between different features. The third and the fourth
vector can for example be used to distinguish corners from edges.

Linear CCA on polynomial model parameters

We now perform an experiment similar to the previous one, except that in this
case we use parameters from a polynomial expansion of the images as input to the
algorithm. The polynomial expansion is described in chapter 4, and we get





x(n) = r
(n)
x = (PT

2 WP2)
−1PT

2 Wi
(n)
x

y(n) = r
(n)
y = (PT

2 WP2)
−1PT

2 Wi
(n)
y

(6.25)

where P2 is the second order polynomial basis and W is a diagonal weight matrix
with a Gaussian in the diagonal. A standard deviation of 2 is chosen for the Gaus-
sian. We now have 12168 pairs of 6-dimensional training vectors. The resulting
canonical correlations are shown in figure 6.18.

Again we get four large correlations. Figure 6.19 shows the resulting canonical
correlation vectors. To better understand what they are doing, we can interpret
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Figure 6.18: Resulting canonical correlations when using parameters from a poly-
nomial expansion model of the intensity images.

them as filters on the image. We have

wT
x rx = wT

x (PT
2 WP2)

−1PT
2 Wi(n)

x (6.26)

Therefore

Fwx
= WP2(P

T
2 WP2)

−1wx (6.27)

can be interpreted as the corresponding image filter. Fwxk
and the projections

onto noise-free data are also shown in figure 6.19, and we can see that they more
or less correspond to the previous experiment (figure 6.15).

The performance on noisy data can be seen in figure 6.21. The result is similar
to the previous experiment (figure 6.17). The advantage of using this approach
compared to the previous one is that we have reduced the input dimensionality
from 25 to 6.

Quadratic CCA

We now try to learn corner orientation invariant to both corner angle and color.
The training set is similar to the previous one, except that we also vary the corner
color, see 6.12. As input data we use a quadratic model, i.e. products between
intensity values:





x(n) = vec(i
(n)
x i

(n)T
x )

y(n) = vec(i
(n)
y i

(n)T
y )

(6.28)

We have 12168 pairs of 54(= 625)-dimensional training vectors. The outer product
matrix is symmetric, so in practice we can skip the elements below the diagonal
and reduce the input dimensionality to 25(25+1)/2 = 325. The 50 best canonical
correlations are shown in figure 6.22.

We get six large correlations. The eigenvalues and the significance measures
for these are shown in figure 6.23. Luckily, there are only two significant terms for
each vector wxk, which means that the computations can be substantially reduced.
The projection of x onto the correlations vectors approximated by their two most
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Figure 6.19: Left: The six first canonical correlation vectors, wx1 - wx6. Middle:
Polynomial coefficients wxk interpreted as filters on the original signal i, Fwxk
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−1wxk. Right: Projection of the training data without noise onto
the canonical correlations vectors. Note that there are several curves corresponding
to different corner angles.
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Figure 6.20: Decoding of canonical correlation projections into corner orientation
on noise-free data.
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Figure 6.21: Evaluation of the decoding formula on noisy data. Standard deviation
of the error was 13.5◦.
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Figure 6.22: Resulting canonical correlations when using covariant components of
intensity values. Only the first 50 of the 325 correlations are shown.
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Figure 6.23: Result from the six largest canonical correlations. Left: Eigenvalues
of wxk. Middle: Significance measure of each eigenvector. Right: Projection of
the training data without noise onto wxk approximated by its two most significant
eigenvectors.
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significant terms is also shown in figure 6.23. The true projections are not shown
here but they do not differ significantly from the approximative ones.

The projections do not behave as nice as they did in the previous experiments,
why it is more difficult to find a suitable decoding function. But the projections
are fairly invariant to corner angle and color and thus it should theoretically be
possible to find a decoding function. This is not further investigated in this thesis,
though.

We can still make some interesting observations from this experiment. Figure
6.24 shows the two most significant eigenvectors together with their Fourier trans-
form for each of the six largest correlation vectors. If closely examined, they could
be interpreted as local edge filters! This suggests that local orientation could be a
good choice of input data to the system. The image size is only 5× 5 pixels and it
can therefore be difficult for the system to ’invent’ edge filters by itself, especially
if the image is noisy. We could try to use larger images, but the complexity grows
fast with increasing image size, and at present the computers runs out of memory.
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) | | DFT( e
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) |

Figure 6.24: The two most significant eigenvectors and their Fourier transform for
each of the six largest canonical correlation vectors.

Quadratic CCA on polynomial model parameters

For completeness, the same experiment as above can be performed using a quadratic
model on parameters from a polynomial expansion model of the image. This means
that we have





x(n) = vec(r
(n)
x r

(n)T
x )

y(n) = vec(r
(n)
y r

(n)T
y )

where





r
(n)
x = (PT

2 WP2)
−1PT

2 Wi
(n)
x

r
(n)
y = (PT

2 WP2)
−1PT

2 Wi
(n)
y

(6.29)
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The dimensionality of the input data is now reduced from 325 to 6(6 + 1)/2 = 21.
The resulting canonical correlations are shown in figure 6.25. We get six (or maybe
eight) large correlations.

Canonical correlations, ρ
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Figure 6.25: Resulting canonical correlations when using covariant components of
parameters from a polynomial expansion model of the intensity images.

As before, we get two significant terms for each correlation vector, and the
corresponding eigenvectors are shown in figure 6.26. They can be transformed to
image filters by using equation 6.27. Again, they could be interpreted as local edge
filters. The projections of the filters onto the signal (not shown here) resembles
the ones in the previous experiment (figure 6.23) and the decoding function is still
difficult to design.
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Figure 6.26: Column 1,4: The two most significant eigenvectors for each of the six
largest canonical correlation vectors. Column 2,5: Polynomial coefficients exk in-
terpreted as filters on the original signal i, Fexk

= WP2(P
T
2 WP2)

−1exk. Column
3,6: Discrete Fourier transforms of the filters.

The last two experiments cannot easily be used to design a corner orientation
estimator, but they can serve as a motivation to why we should use local orientation
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as input data to the learning system. The next two experiments therefore uses
local orientation in double angle representation as input data.

6.3.5 Using local orientation in double angle representation

Linear CCA

We now use the training set in figure 6.13 as input to the system.





x(n) = vec(z
(n)
x )

y(n) = vec(z
(n)
y )

(6.30)

We get 12168 pairs of complex valued 25-dimensional training samples (i.e. 50 real
values per vector). A small amount of noise (PSNR=10 dB) was added to x and
y before put into the system. This helped the system to find smoother vectors,
wx, which were easier to interpret. The resulting canonical correlations are shown
in figure 6.27. We get five fairly high correlations. The decrease in correlation for
these five is partly due to the noise added, the difference is less obvious without
the noise. Apart for the decrease, the noise did not change the behavior of the
vectors significantly.

Canonical correlations, ρ
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Figure 6.27: Resulting canonical correlations when using local orientation in
double angle representation.

The five first complex valued correlation projections wx1-wx5 are shown in
figure 6.28. Except for a constant offset phase they can be identified as rotational
symmetry filters:
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wk1 ∼ e−1iϕ ⇐⇒

wk2 ∼ e−2iϕ ⇐⇒

wk3 ∼ e0iϕ ⇐⇒

wk4 ∼ e1iϕ ⇐⇒

wk5 ∼ e3iϕ ⇐⇒

(6.31)

The gray-level patterns refer to the optimal prototype patterns for each rotational
symmetry (c.f. section 5.2.2). All patterns that can be described as rotations
or parts of the prototype pattern (e.g. one of the trajectories) are also detected
by the corresponding filter. The projections of x onto the vectors wxk are also
complex valued, and the magnitude and phase of these projections are also shown
in figure 6.28 (note that the offset phase for the first projection is approximately
zero only by coincidence.). We can see that the phase varies very nicely with the
orientation, while the magnitude is approximately constant but depends somewhat
on the corner angle (i.e. the image energy).

Since the first and second projections are sensitive to the third and fourth
multiple of the orientation respectively, we can for instance decode the projec-
tions into a corner orientation angle by simply taking the phase of the quotient
(w∗

k2zx)/(w∗
k1zx). We can also use the magnitudes of the projections as a cer-

tainty measure. The result of this decoding function on noise-free data is shown
in figure 6.29 and on the evaluation data in figure 6.30. Another decoding func-
tion could simply be to use the phase of the fourth projection, wk4, since this is
approximately the identity mapping. But the result would be less accurate, as can
be inferred from the projection in figure 6.28.

Linear CCA on polynomial model parameters

Again we can use polynomial model parameters as input to the system as a way
to reduce input dimensionality. This time we fit the model to the local orientation
description z:





x(n) = r
(n)
x = (PT

2 WP2)
−1PT

2 Wz
(n)
x

y(n) = r
(n)
y = (PT

2 WP2)
−1PT

2 Wz
(n)
y

(6.32)

We get 12168 pairs of 6-dimensional complex valued training samples. The result-
ing canonical correlations are shown in figure 6.31.
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Figure 6.28: Left: The five largest canonical correlation vectors, wx1 - wx5 (re-
shaped into matrices). Middle and right: Angle and magnitude respectively of
the projection of the training data without noise onto the canonical correlations
vectors.
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Figure 6.29: Decoding of canonical correlation projections into corner orientation
on noise-free data.
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Figure 6.30: Evaluation of the decoding formula on noisy data. Standard deviation
of the error was σ = 19.5◦.
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Figure 6.31: Resulting canonical correlations when using parameters from a poly-
nomial expansion model of local orientation in double angle representation.

We have four fairly large correlations, and we can again visualize the result by
converting the polynomial coefficients to corresponding filters on the local orien-
tation image using equation 6.27. The result is shown in figure 6.32 together with
the signal projections. The evaluation result is shown in figures 6.33 and 6.34.
The result is very similar to the previous experiment. The fifth largest vector has
changed from e3iϕ to a non-significant vector, probably because the polynomial
model cannot handle the fast variations in e3iϕ.

6.3.6 Discussion

It has often been argued, partly motivated by biological vision systems, that lo-
cal orientation information should be used to detect more complex features. The
experiments in this section is an attempt to further motivate this idea. It may
be possible to use the result from the quadratic model experiments, but the local
orientation helps the system to learn a more well behaved representation which is
easier to decode.

It should be possible to use the idea in this section to learn other features
and invariances. One drawback could be the amount of necessary training data.
Preliminary experiments show that by using the polynomial model, the number of
training pairs could be less than if we used the image or local orientation directly.
This is because the number of training samples is generally proportional to the
number of input parameters.

We do not have to use the double angle representation but it helps the system.
Preliminary experiments show that it is sufficient to use a quadratic model of the
gradient, i.e. in each position in the image we compute the vector (I2

x, IxIy, I2
y )

and use them as input to the system. The practical details, including experiment
setup, interpretation of the correlation vectors and decoding of the projections, be-
come more complex and are therefore not included here. But this representation
combined with the polynomial expansion to reduce dimensionality can be useful,
for instance if we want to learn features in 3D-image volumes, where we do not
have a definition of the double angle representation.
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Figure 6.32: Left: The canonical correlation vectors wxk interpreted as filters on
the original signal z, Fwxk

= WP2(P
T
2 WP2)

−1wxk. Middle and right: Angle and
magnitude respectively of the projection of the training data without noise onto
the canonical correlations vectors.
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Figure 6.33: Decoding of canonical correlation projections into corner orientation
on noise-free data.
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Figure 6.34: Evaluation of the decoding formula on noisy data. Standard deviation
of the error was σ = 18.8◦.
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In chapter 5 we claim that the first order rotational symmetry, eiϕ, is a good
descriptor for corners. It would be nice if this symmetry gave the highest corre-
lation in the experiments above instead of only the fourth best correlation. One
reason why this is not happening is that the first order symmetry is not designed
to give a high response at the absolute peak of the corner, but instead gives the
highest response somewhere inside the corner. If we want this symmetry to come
in first, we should therefore show the learning system corners with a center position
located some distance away from the image center.
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6.4 Object recognition in the COIL database

6.4.1 Introduction

In order to illustrate how curvature can be used to recognize objects, an experi-
ment is made on the Columbia Object Image Library, COIL-100, database1. This
database consists of 7200 color images of 100 objects in 72 views (5◦ interval) each.
The image size is 128 × 128. Figure 6.35 shows the 100 objects at the 0◦-view.

Figure 6.35: Columbia Object Image Library, COIL-100. The figure shows one of
the 72 views for each of the 100 objects.

The conditions are quite controlled; there is only one object in each image,
the light source is kept constant, etc. This database is too simple for a general
evaluation of the performance of contents based search algorithms, but it serves
well for small object recognition experiments.

1Available at http://www.cs.columbia.edu/CAVE
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# training views/object
Method

36 18 8 4

SNoW, intensity, [Yang et al., 2000] 95.81 92.31 85.13 81.46
SNoW, edge, [Yang et al., 2000] 96.25 94.13 89.23 88.28

Linear SVM, [Pontil and Verri, 1998] 96.03 91.30 84.80 78.50

Table 6.3: Experimental results of some classifiers using the COIL-100 database.
The numbers represent the correct classification rate in percent on the evaluation
data.

Previous view-based recognition experiments on this database include pro-
jection of each object onto its eigenspace and learning of the object trajectory,
[Nayar et al., 1996], learning of object-separation hyperplanes using Support Vec-
tor Machines (SVM), [Pontil and Verri, 1998] and [Yang et al., 2000], and Sparse
Networks of Winnows (SNoW) [Yang et al., 2000]. The SNoW method tried to
learn the hyperplane using either intensity data or edge information from 32× 32
gray-scale images. The results of the SVM and SNoW techniques can be found in
[Yang et al., 2000] and are recalled in table 6.3 for reference. The experiments use
m views per object as training samples, and the remaining 72−m views are used
to evaluate the algorithm. The values in the table denote the fraction in percent
of correctly classified evaluation images.

In the experiment in this section, different image representations are compared
for their object recognition ability. The representations are:

• Image intensity, I

• Local orientation, z

• First and second order rotational symmetries, s1 and s2

• Phase histograms based on local orientation, Hz

• Phase histograms based on the first and second order symmetries, Hs1
and

Hs2
.

The primary goal is not to compete with the results in table 6.3. These ex-
periments include more sophisticated learning algorithms and a fair comparison is
therefore difficult to make.

Section 6.4.2 introduces the concept of phase histograms. Section 6.4.3 contains
details of the experiment and the result. Finally, section 6.4.4 discusses the result.

6.4.2 Phase histograms

Histograms is a technique to reduce the amount of data by only counting the pres-
ence of features and ignore their locations. Histograms have been widely used in
computer vision, for example histograms of local orientation have been used as a
descriptor of image content in image database search, see e.g. [Johansson, 2000b].
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However, histograms of complex curvature such as rotational symmetries should
be more descriptive since these features are more sparse and selective, but still
contain a lot of information.

This section describes how to calculate histograms of rotational symmetries.
The information in the symmetry responses sn lies in the phase, ∠sn = α. There-
fore we create a phase histogram by letting a bin in the histogram represent the
amount of phase at a certain angle, or put in mathematical terms:

H(sn) ∈ R
N , where Hn(sn) =

∑ |sn|u(∠sn)

and u(α) =

{
cos2(N

4 (α − 2πn
N )) if |α − 2πn

N | < 2π
N

0 otherwise

(6.33)

Figure 6.36 illustrates the phase histogram idea. Figure 6.37 shows the u-function
with N = 8 bins. The bins are a bit overlapping which makes the histogram more
robust to rotation than if we had used non-overlapping bins.
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Figure 6.36: Illustration of phase histogram.
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α

Figure 6.37: Overlapping bins using cos2-bumps.

The histograms are an attempt to bridge the gap between the image domain
and the semantic domain. A histograms on the first order symmetry is a fuzzy
equivalence to the phrase “We have X1 number of corners with orientation V1,
X2 number of corners with orientation V2, etc.”. Histograms on the second order
symmetry correspond to the phrase “The image contains X number of circular
patterns, Y number of star patterns, and Z number of spiral patterns”.
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6.4.3 Experiment: Nearest neighbor classification

Figure 6.38 and 6.39 shows the different features computed on one of the views of
object 60. The list below contains some computational details:

• Intensity, I: The color images are converted to gray-level images, and are
down-sampled in five scales using Gaussian filters with σ = 1.2. The object
contour is close to the image border. Therefore, to avoid border effects,
normalized convolution with zero certainty outside the image border was
used for the Gaussian filtering.

• Local orientation, z: The image gradient ∇I was estimated on the inten-
sity images in each of the five scales. The gradient was computed from a
first degree polynomial model as in the example in section 4.3. The Gaus-
sian applicability had σ = 1.2. Again, zero certainty was used outside the
image border. Finally, the double angle representation was computed as
z = |∇I|ei2∠∇I .

• Phase histograms based on local orientation, Hz: For each scale, a global
phase histogram was computed using equation 6.33 and N = 8 bins. The
z-values were thresholded, removing all values below 10%, before the his-
tograms were computed.

• First and second order rotational symmetries, s1 and s2: The rotational
symmetries were computed using the multiscale algorithm in section 5.3.4,
i.e. the approximative multiscale polynomial expansion algorithm in 4.5 to-
gether with a normalized inhibition scheme to make the responses more
selective. The 128×128 z-image was used as input to the algorithm and the
symmetries were computed in 5 scales using σ = 1.2 in the first scale.

• Phase histograms based on the first and second order symmetries, Hs1
and

Hs2
: The symmetry images were thresholded, removing all values below

10%, and then non-max-suppressed (set all non-peak values to zero) before
the phase histograms were computed.

To calculate all the features in figures 6.38 and 6.39 takes about 1.6 seconds on a
440 MHz SUN Ultra 10. Of these, 0.05 seconds are spent on the computing the
intensity low-pass hierarchy, 0.3 are spent on computing local orientation for each
scale, 0.35 seconds are spent on computing histograms of the local orientation, 0.8
seconds are spent on computing the multiscale rotational symmetries responses,
and 0.1 seconds are spent on computing histograms of the symmetries (the sym-
metry histograms were faster to compute than the local orientation histograms
because of the sparsity property of the symmetry responses).

A simple nearest neighbor classifier is used in the evaluation. Two different
distance measures are used; Euclidean distance and angular distance. Each eval-
uation image was classified to the same object as the nearest training image. For
practical reasons (memory storage and computational complexity), only scales
32 × 32, 16 × 16, and 8× 8 were evaluated for the non-histogram representations.
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128 × 128 64 × 64 32 × 32 16 × 16 8 × 8

Intensity

Local orientation, z (only the magnitude is shown)

Local orientation histograms, Hz

Figure 6.38: Features generated from one view of object 60 in the COIL database.

In the histogram case, different combinations of scales and features were also eval-
uated. It was found that the histogram approach was improved if each element in
the feature vector was normalized with its standard deviation before calculating
the Euclidean distance. The reason is that the different features and scales have
different max responses and therefore some features will have larger impact than
others without the normalization.

The result using the Euclidean distance is shown in table 6.4 and the result
using the angular distance is shown in table 6.5. Some of the results using the
Euclidean distance are also visualized in figure 6.40. The tables also show the
dimensionality of each representation (labeled as “# param”) to illustrate the
complexity of each representation.

6.4.4 Discussion

The experiment above indicates that high level features and their histograms are
useful for object recognition, especially the first order symmetry which corresponds
to high curvature points. Some observations can be made from the results:

• It is difficult to say whether the Euclidean or the angular distance measure
performs better. For the non-histogram representations, it seems as if the
Euclidean distance is better than the angular distance when the number of
training views is large and the image resolution is low and vice versa. For
the histogram representation the Euclidean distance outperforms the angular
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128 × 128 64 × 64 32 × 32 16 × 16 8 × 8

First order rotational symmetries, s1

First order rotational symmetry histograms, Hs1

Second order rotational symmetries, s2

Second order rotational symmetry histograms, Hs2

Figure 6.39: Features generated from one view of object 60 in the COIL database.
The intensities represent the response magnitude and the vectors represent the
complex values at the local maxima points.
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# training views/object
Representation # param

36 18 8 4

I, 32 × 32 1024 98.17 96.31 87.91 71.03
I, 16 × 16 256 98.17 96.37 88.66 72.07
I, 8 × 8 64 97.86 95.72 87.16 71.37

z, 32 × 32 2048 97.86 95.59 84.86 68.09
z, 16 × 16 512 98.08 96.33 87.78 70.43
z, 8 × 8 128 97.56 95.39 85.78 67.16

s1, 32 × 32 2048 97.28 94.24 76.31 56.72
s1, 16 × 16 512 98.33 97.11 87.22 67.15
s1, 8 × 8 128 98.28 97.22 88.25 70.28

s2, 32 × 32 2048 96.08 91.24 69.62 51.82
s2, 16 × 16 512 98.19 96.78 84.30 63.69
s2, 8 × 8 128 98.47 97.09 87.25 69.62

Hz, scale 1 8 88.36 82.78 66.67 49.85
Hz, scale 2 8 86.25 80.96 65.16 50.40
Hz, scale 3 8 87.42 81.54 64.39 48.07
Hz, scale 4 8 85.08 78.30 61.22 45.49
Hz, scale 5 8 83.03 76.22 60.86 45.29

Hz, scales 1–5 40 94.86 90.70 77.94 62.26

Hs1
, scale 1 8 54.50 47.67 37.77 29.06

Hs1
, scale 2 8 63.53 54.11 42.64 31.85

Hs1
, scale 3 8 62.94 52.96 40.22 26.25

Hs1
, scale 4 8 68.03 55.78 40.80 30.96

Hs1
, scale 5 8 73.81 62.28 47.03 34.74

Hs1
, scales 1–5 40 99.58 97.85 86.38 65.26

Hs2
, scale 1 8 34.25 29.89 25.17 20.44

Hs2
, scale 2 8 45.25 38.17 31.05 23.62

Hs2
, scale 3 8 45.19 37.46 27.62 21.85

Hs2
, scale 4 8 49.64 39.74 28.08 21.06

Hs2
, scale 5 8 65.00 52.06 37.84 27.82

Hs2
, scales 1–5 40 98.50 94.30 78.59 57.93

Hz&Hs1
, scales 1–5 80 98.81 97.26 87.55 69.82

Hs1
&Hs2

, scales 1–5 80 99.81 99.04 90.44 71.15
Hz&Hs1

&Hs2
, scales 1–5 120 99.08 98.31 90.28 73.00

Table 6.4: Nearest neighbor using Euclidean distance. Experimental results of
some classifiers using the COIL-100 database. The numbers represent the correct
classification rate in percent on the evaluation data.
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# training views/object
Representation # param

36 18 8 4

I, 32 × 32 1024 97.83 96.19 88.12 71.44
I, 16 × 16 256 97.81 96.50 88.83 72.60
I, 8 × 8 64 97.56 95.81 88.02 71.71

z, 32 × 32 2048 97.42 95.37 86.38 69.47
z, 16 × 16 512 97.33 95.89 87.08 69.47
z, 8 × 8 128 96.53 94.22 82.69 63.75

s1, 32 × 32 2048 97.17 95.39 84.95 65.49
s1, 16 × 16 512 98.11 97.09 88.61 70.22
s1, 8 × 8 128 98.00 96.69 86.91 68.24

s2, 32 × 32 2048 97.11 94.24 81.59 62.19
s2, 16 × 16 512 98.14 96.83 87.53 68.28
s2, 8 × 8 128 98.31 96.81 87.02 69.41

Hz, scale 1 8 81.11 74.89 58.70 41.99
Hz, scale 2 8 79.08 73.07 57.16 42.24
Hz, scale 3 8 80.47 73.24 55.41 39.99
Hz, scale 4 8 75.83 68.50 51.52 38.04
Hz, scale 5 8 73.39 65.39 49.62 37.03

Hz, scales 1–5 40 93.11 89.22 75.23 58.09

Hs1
, scale 1 8 29.56 25.11 20.20 15.72

Hs1
, scale 2 8 38.56 32.15 24.52 18.21

Hs1
, scale 3 8 43.33 34.76 26.25 18.15

Hs1
, scale 4 8 54.44 42.67 31.20 23.94

Hs1
, scale 5 8 60.58 49.96 36.72 26.71

Hs1
, scales 1–5 40 99.17 96.98 83.38 61.00

Hs2
, scale 1 8 19.56 17.65 14.67 11.82

Hs2
, scale 2 8 23.33 18.83 16.44 12.85

Hs2
, scale 3 8 24.72 19.80 15.03 11.85

Hs2
, scale 4 8 35.33 26.59 19.06 14.74

Hs2
, scale 5 8 53.28 42.50 30.89 22.51

Hs2
, scales 1–5 40 97.75 92.78 74.83 54.28

Hz&Hs1
, scales 1–5 80 98.61 97.17 87.09 67.57

Hs1
&Hs2

, scales 1–5 80 99.81 99.06 89.50 69.51
Hz&Hs1

&Hs2
, scales 1–5 120 99.19 98.33 90.20 71.79

Table 6.5: Nearest neighbor using angular distance. Experimental results of some
classifiers using the COIL-100 database. The numbers represent the correct clas-
sification rate in percent on the evaluation data.
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Figure 6.40: Visualization of some of the results in table 6.4. The numbers repre-
sent the correct classification rate in percent on the evaluation data.
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distance in all cases, but the difference is less significant when different scales
or features are combined.

As stated before, the experiment setup is quite controlled. The angular dis-
tance measure should give a better performance than the Euclidean distance
when the lighting conditions varies.

• The combination of first and second order phase histograms gives the best
performance, as can be seen in figure 6.40. Second place is shared by some
of the non-histogram representations together with the histogram represen-
tations based on local orientation and the first order symmetry combined.

• The representations also differ in memory requirements. The representations
based on a combination of Hsp

1
and Hsp

2
have a quite good performance and

each image is represented by a feature vector of length 80, which is a fairly
compact representation of an image.

Also, the symmetry representations, s1 and s2, are sparse which means that
the memory requirements for these representations are smaller than gray-
level or orientation representations of the same size.

The performance of the highest ranked representations do not differ signif-
icantly. The difference may be more obvious using a more complex database.
Still, the conclusion is that the combination of phase histograms from the sym-
metries works at least as well as the non-histogram feature representations for
this database. In addition, the histograms have some advantages over the non-
histogram representations that do not appear in this experiment. They are in-
variant to translation as long as the whole object is still in the image and should
perform better than the non-histogram representations when the location of the
object varies. It is also easier to match images invariant to rotation when we
use the histograms. For example, we can calculate the Fourier series of the his-
tograms, and then use the magnitude of the Fourier coefficients as a rotation
invariant descriptor for the image, see e.g. [Forssén and Johansson, 2000]. Also,
the local orientation and symmetry representations and their histograms are more
invariant to lightning conditions than the intensity representation because they
only depend on differences between intensity values.

Worth noticing is that the combined histograms of the first order symmetry
(Hs1

, scales 1–5) performs much better than the combined histograms of the local
orientation (Hz, scales 1–5), see figure 6.40. This suggests that histograms based
on higher level features such as curvature have a higher descriptional power than
histograms based on low level features such a intensity and local orientation. The
superior performance when using high level features can also be confirmed from the
SNoW results in table 6.3. The edge representation performs better than the in-
tensity representation, which seems to indicate that higher level features are better
suited for object recognition. The nearest neighbor classifier used in this experi-
ment is however very inefficient and future work includes exploring how symmetry
features can be combined with learning procedures to improve the performance in
terms of speed and memory storage. For example, the SNoW architecture claims
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to be well suited for sparse features. However, the representations used in the
SNoW experiments were designed mainly with the sparse property in mind. For
example, the intensity information was representation by a binary vector, each el-
ement corresponded to a certain integer intensity value at a certain position. This
representation lacks metric and should be less robust to changes in the environ-
ment.

There are a number of issues left open for discussion. One example is the
choice of the number of bins for the histograms. This choice is a trade-off between
selectivity and invariance to different transformations, e.g. rotation, deformation,
etc. Another example is how to choose a suitable scale of the local orientation
feature when we want to detect rotational symmetries of a certain other scale.
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6.5 Other possible applications

This section presents two applications where rotational symmetries (chapter 5) are
being under investigation.

6.5.1 Detecting landmarks in aerial images

The goal of the WITAS-project, see [WITAS web page, ] and [Doherty et al., 2000],
is to design an autonomous aircraft for traffic surveillance. One of the research
issues is generation of landmark features for use in navigation. The features can
be used in template matching or local histogram matching to help the aircraft find
landmark objects to establish its position.

Rotational symmetries are one example of interesting landmarks which are
currently under investigation. Figure 6.41 shows an aerial image and its corre-
sponding local orientation magnitude |z|. From the orientation image z rotational
symmetries are detected in several scales. The result is shown in figure 6.41. The
left column shows the magnitude of the first order symmetries. The middle and
right columns are computed as the negative and positive real part respectively of
the second order symmetry responses. The first order symmetry can be used to
find high curvature points, and the second order symmetry can be used to find
crossroads, traffic circles, houses, etc. The rotational symmetry features are more
robust to illumination and seasonal variations than the original gray-level image
which makes them suitable in a matching process. In spite of the apparent com-
plexity, the particular pattern of such features turns out to be quite specific. Such
a higher level matching is likely to take place in human vision as well.

6.5.2 Autonomous truck

An early version of the rotational symmetry detector was used in a robotics project,
where the goal was to have an autonomous truck locate a pallet and pick it up.
Details can be found in the Masters Thesis by Roll, see [Roll, 1999].

Figure 6.42(a) shows an image of a pallet. Figure 6.42(b) shows the correspond-
ing local local orientation magnitude. The rotational symmetries were detected in
several scales and the results were combined into one scale-invariant description
in order to reduce the amount of data. The second order symmetry filter gives
characteristic blobs with zero phase on the pallet indicating circular-like patterns
(in this case squares). The circular patterns can be extracted from the second or-
der response by e.g. taking the real part and ignoring negative values, the result is
shown in figure 6.42(c). The pallet has a characteristic signature in the shape of a
number of blobs. The circle-blob image can be further processed using the Hough
transform to find ’lines’ formed by the blobs, and the correct line can be found by
testing against the characteristic signature hypothesis. The optimal line is shown
in figure 6.42(c), and the values along the line is shown in figure 6.42(d). In spite
of the complexity of the image, the linear set of circular structures turns out to
be quite unique. When the pallet is found in the image, it is possible to calculate
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Figure 6.41: Detection of landmarks in an aerial image.
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Figure 6.42: (a) Image of a pallet. (b) corresponding local orientation magnitude
|z| (c) Circular-like patterns extracted from second order rotational symmetry
response in several scales. The circle features form a line at the pallet position. (d)
characteristics along the line in (c) fulfilling structural hypothesis for the desired
object.

pallet direction, distance and orientation in the real world using the information
in the symmetry image and the local orientation image.

This technique has been tested on 28 images containing pallets. The distance
between the camera and the pallet varied in the range of 1 to 16 meters and the
orientation of the pallet relative to the camera varied between 0 to 40 degrees.
The result was quite promising overall, but the number of test images is too small
to reach a final conclusion. Details can be found in [Roll, 1999].
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Chapter 7

Summary

7.1 Summary and discussion

This thesis describes a new method of detecting curvature in several scales. The
method is based on a local polynomial model applied to a local orientation de-
scription, and the theory of rotational symmetries is used to compute curvature
responses from the model parameters. The responses are made more selective us-
ing an inhibition scheme.

An approximative algorithm for multiscale polynomial expansion is developed
which gives a very efficient multiscale curvature detection algorithm. This is very
important in order for the algorithm to be practically useful. The approximative
algorithm is evaluated in an experiment to estimate local orientation on 3D data,
and the performance is comparable to previously tested algorithms which are more
computationally expensive.

The curvature algorithm is evaluated in an object recognition experiment. Dif-
ferent image representations are compared, and it is shown that histograms of
curvature give the best performance.

The importance of curvature is furthermore motivated by examples from bio-
logical and perceptual studies, and the usefulness of local orientation information
to detect curvature is also motivated by an experiment about learning a corner
detector.

The object recognition experiment shows that curvature is a very useful fea-
ture, but the experiment is made under a controlled environment. There remain
a number of unsolved issues before a practical system for object recognition is
a reality, for example how to handle multiple objects, occlusion, different scales,
deformations, etc., i.e. the classical computer vision problems. One problem with
many of the existing feature detectors used today is their poor selectivity, i.e. they
are unable to distinguish between perceptually very different patterns. Their abil-



110 Summary

ity to describe the scene is therefore very crude. We would get a more ample
description of the scene if we could distinguish between different features. The
rotational symmetries in several scales is one example. Handling all these different
features seems to be difficult in practice, but each feature map is quite sparse,
i.e. few responses are active simultaneously. In recent years, interest in sparse
features has increased and strategies to handle this kind of features are emerging.

7.2 Future research

Future research includes further investigation of the use of rotational symmetry
features and other complex features for object recognition and content based image
retrieval. Two ideas in this direction are discussed here.

7.2.1 Other features: Color and curvature combined

Perceptual experiments indicate that colors close to boundaries are important. A
color illusion can be found [Cornsweet, 1970] and is recalled in figure 7.1. The color
inside the circle seems darker than the color outside the circle, but this is only an
illusion. The colors are the same except close to the circle border. The illusion is
less obvious if we have a straight boundary, for example two areas separated by
an edge. This is an indication that our notion of object color depends on the color
close to high curvature points. A combined color and curvature descriptor should
therefore be very useful. This will be a subject for future research.

7.2.2 Associative networks for sparse features

The object recognition experiment on the COIL database in section 6.4 shows
promising results for the rotational symmetry features. The nearest neighbor
classifier used in this experiment is, however, very inefficient, and future work in-
cludes exploring how symmetry features can be combined with learning procedures
to improve the performance. The rotational symmetry features have a sparse be-
havior. This means that we can handle a large number of different features in a
number of scales without running out of memory because most of the values are
zero. This is not the case for intensity maps and other dense maps. There are
learning structures specifically designed for sparse features, the SNoW structure
mentioned in section 6.4 being one example. Another example is the associative
structure developed by Granlund, see [Granlund, 2000]. Preliminary experiments
show that using the later structure together with complex curvature features can
give powerful descriptors.
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(a) (b)

(c)

Figure 7.1: Color illusion. (a) Image with a circle. The color is the same inside
and outside the circle except close to the circle border. (b) The same image as in
(a) but the circle border is covered, and the color illusion disappears. (c) Intensity
variation along the middle horizontal line.
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Appendices

A Back-projection of rotational symmetries

This section describes the back-projection method mentioned in section 5.2.2. The
method is further explained in [Johansson, 2000a]. The question was: given a de-
scription on local orientation, what class of image patterns does this description
corresponds to? The question is answered for the class of rotational symmetry
patterns.

This ’inverse’ is of course not unambiguous, but we get a hint by making the
assumption that the image gradient is parallel to the dominant orientation. This
section contains a great deal of calculations but the idea is straightforward. There
are two assumptions made. The first one, mentioned above, is not very restrictive.
The second one assumes that the image pattern can be described as a separable
function in some suitably chosen coordinate system, which depend on the selected
symmetry.

A.1 General assumption

The assumption that the image gradient, ∇f , is parallel to the local orientation
β = β(x, y) can be written mathematically as

∇f =

(
fx

fy

)
//

(
cos β
sinβ

)
, where β =

1

2
arg z (A.1)

i.e.
(

fx

fy

)
= ±

√
f2

x + f2
y

(
cos β
sin β

)
(A.2)

We have to divide the phase ∠z by two to get rid of the double angle representation.
The price is the direction unambiguity (±).
Equation A.2 squared gives

{
f2

x =
(
f2

x + f2
y

)
cos2 β

f2
y =

(
f2

x + f2
y

)
sin2 β

⇐⇒ fx sinβ = ±fy cos β (A.3)
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From equation A.2 we see that the ’-’-solution is false and we arrive at the final
equation:

Back-projection equation:

fx sin β = fy cos β
(A.4)

Every pattern description based on the local orientation is described by a function
β(x, y). This function can be put into equation A.4, which can be solved to get
the corresponding gray-image pattern f(x, y).

The next subsection solves the back-projection equation for the special case of
rotational symmetries.

A.2 Rotational symmetries

Theory

A rotational symmetry is defined as

z = |z|ei2β(ϕ) (A.5)

where z is the local orientation in double angle representation. The orientation
β only depends on ϕ and is constant along the r-dimension. We shall now solve
the back-projection equation A.4 assuming β = β(ϕ). In this case it is easier to
switch to polar coordinates:

{
x = r cos ϕ
y = r sin ϕ

(A.6)

The partial derivatives, fx and fy, can be written in polar coordinates using the
chain-rule:

{
fx = ∂f

∂x = ∂f
∂r

∂r
∂x + ∂f

∂ϕ
∂ϕ
∂x = fr cos ϕ − fϕ

sin ϕ
r

fy = ∂f
∂y = ∂f

∂r
∂r
∂y + ∂f

∂ϕ
∂ϕ
∂y = fr sin ϕ + fϕ

cos ϕ
r

(A.7)

If this is inserted in equation A.4 we get

(
fr cos ϕ − fϕ

sinϕ

r

)
sin β =

(
fr sin ϕ + fϕ

cos ϕ

r

)
cos β (A.8)

After some re-shuffling we get the polar version of equation A.4:

Polar back-projection equation:

frr sin(β − ϕ) = fϕ cos(β − ϕ)
(A.9)
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This equation is still quite difficult to solve, but if we make the assumption that
f is polar separable, i.e. f(r, ϕ) = R(r)Φ(ϕ), we get

R′(r)Φ(ϕ)r sin(β − ϕ) = R(r)Φ′(ϕ) cos(β − ϕ)
⇔

R′(r)
R(r) r = Φ′(ϕ)

Φ(ϕ) coth(β − ϕ)
(A.10)

Since β only depends on ϕ we know that the left side only depends on r, and the
right side only depends on ϕ. Therefore both sides have to be constant:

{
R′(r)
R(r) r = K
Φ′(ϕ)
Φ(ϕ) coth(β − ϕ) = K

⇒
{

R(r) = C1r
K

Φ(ϕ) = C2e
K
∫

tan(β−ϕ)dϕ (A.11)

And we get

Rotational symmetries:

f(r, ϕ) = C(re
∫

tan(β(ϕ)−ϕ)dϕ)K

(A.12)

Provided a β(ϕ), this function can be solved numerically to get the final solution.
Figure 5.5 on page 47 shows some examples of images that was generated using
this formula.

There are some cases for which we can solve equation A.12 analytically. Sup-
pose z is the n:th order rotational symmetry ei(nϕ+α), i.e. β(ϕ) = 1

2nϕ + 1
2α.

Then we get

Φ(ϕ) = C2e
K
∫

tan(( n
2 −1)ϕ+ α

2 )dϕ = / ∗ / =

= C2e
−K 1

n
2

−1
ln | cos(( n

2 −1)ϕ+ α
2 )|

=

= C2| cos((n
2 − 1)ϕ + α

2 )|−
K

n
2

−1

(A.13)

/ ∗ / There is one exception to the solution above: If n = 2 we get

Φ(ϕ) = C2e
K
∫

tan( α
2 )dϕ =

= C2e
K tan( α

2 )ϕ (A.14)

If we choose K = 1− n
2 and skip the | . | in the case n 6= 2, and K = 1 in the case

n = 2 we get the final solution:

n:th order rotational symmetry:

f(r, ϕ) = Cr(1−n
2 ) cos((n

2 − 1)ϕ + α
2 ) n 6= 2

f(r, ϕ) = Cretan( α
2 )ϕ n = 2

(A.15)

What do the patterns in equation A.15 look like?
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One way to visualize them is to plot trajectories or isobars (inspired by [Bigün, 1988]).
To get the trajectories we can for instance plot

g(r, ϕ) =
1 + cos(ωf(r, ϕ))

2
(A.16)

in the case n 6= 2. ω determines the frequency of the repetitive pattern. For the
case n = 2 is turns out that

g(r, ϕ) = 1
2 (1 + cos(ω cos(α

2 ) ln f(r, ϕ))) =

= 1
2 (1 + cos(ω(cos(α

2 ) ln r + sin(α
2 )ϕ)))

(A.17)

is a better, well behaved, choice. It is easy to show that if f(r, ϕ) is a solution to
the back-projection equation A.4 then every function g(r, ϕ) = h(f(r, ϕ)) is also
a solution. We can thus generate a larger class of functions than polar separable
functions that solves the symmetry equation. Figure 5.3 on page 45 shows some
examples of functions from equation A.15 using the trajectory functions A.16 and
A.17.

Other choices of g could be a log-norm function:

g(r, ϕ) = e−ω1 ln2(ω2f(r,ϕ)) (A.18)

or a fuzzy threshold function:

g(r, ϕ) =
(f(r, ϕ)(1 − ω1))

ω2

(f(r, ϕ)(1 − ω1))ω2 + (ω1(1 − f(r, ϕ)))ω2
(A.19)

This will give non-repetitive line and edge patterns respectively. Different ω1, ω2

give different patterns, see figure 5.4 on page 46 for examples.

B Minimization of polynomial approximation er-

ror

This section proves the solution of the minimization problem in equation 4.41,
section 4.6. The goal is to minimize

E
[
‖r̃ − r‖2

]
= E

[
‖T̃PD(D̃T WD̃)−1D̃T Wf − (PT WP)−1PT Wf‖2

]
(B.1)

with respect to T̃PD over a set of signals f . E[.] denotes expectation value over
the set. Let

AP = (PT WP)−1PT W

AD = (D̃T WD̃)−1D̃T W
(B.2)
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We can now rewrite the minimization function as

E
[
‖r̃ − r‖2

]
= E

[
‖T̃PDADf − APf‖2

]
(B.3)

= E
[
fT (AT

DT̃T
PD − AT

P)(T̃PDAD − AP)f
]

= E
[
fT AT

DT̃T
PDT̃PDADf + fT AT

PAPf − 2fT AT
PT̃PDADf

]

The solution is found by solving the equation system

∂E
[
‖r̃ − r‖2

]

∂T̃PD

= E
[
2T̃PDADf fT AT

D − 2APf fT AT
D

]

= 2T̃PDADCffA
T
D − 2APCffA

T
D = 0 (B.4)

where Cff = E[f fT ]. The solution becomes

T̃PD = APCffA
T
D(ADCffA

T
D)−1

= (PT WP)−1PT WCffWD̃(D̃T WCffWD̃)−1D̃T WD̃ (B.5)

If we assume Cff ∝ I we get

T̃PD = (PT WP)−1PT W2D̃(D̃T W2D̃)−1D̃T WD̃ (B.6)

(It can be mentioned that the solution would have been the same if we had
used a weighted norm, because each dimension is optimized separately.)

C Definition of SNR, PSNR

Two measures of noise are used in this thesis, SNR and PSNR. The definitions are
stated below.

Signal-to-noise ratio, SNR:

SNR = 10 log10

σ2
x

σ2
e

(C.1)

where σx and σe are the standard deviations of the signal (without noise) and the
noise respectively.

Peak-signal-to-noise-ratio, PSNR:

PSNR = 10 log10

|xp−p|2
σ2

e

(C.2)

where xp−p is the peak-to-peak value of the signal (without noise).

Note that the SNR measure is in a sense more dependent on the signal than
the PSNR measure. For example, two images of corners with different corner angle
have different σx but the same xp−p.



118 Appendices



Bibliography

[Andersson et al., 1998] Andersson, M., Wiklund, J., and Knutsson, H. (1998).
Sequential Filter Trees for Efficient 2D 3D and 4D Orientation Estima-
tion. Report LiTH-ISY-R-2070, ISY, SE-581 83 Linköping, Sweden. URL:
http://www.isy.liu.se/cvl/ScOut/TechRep/TechRep.html.

[Andersson et al., 1999] Andersson, M., Wiklund, J., and Knutsson, H. (1999).
Filter Networks. In Proceedings of Signal and Image Processing (SIP’99), Nas-
sau, Bahamas. IASTED. Also as Technical Report LiTH-ISY-R-2245.

[Atkinson et al., 1990] Atkinson, R. L., Atkinson, R. C., Smith, E. E., Bem, D. J.,
and Hildagd, E. R. (1990). Introduction to Psychology, 10th edition. Harcourt
Brace Jovanovich, Inc.

[Attneave, 1954] Attneave, F. (1954). Some informational aspects of visual per-
ception. Psychological Review, 61.

[B̊arman, 1991] B̊arman, H. (1991). Hierarchical Curvature Estimation in Com-
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SE-581 83 Linköping, Sweden.

[Johansson et al., 2001] Johansson, B., Borga, M., and Knutsson, H. (2001).
Learning corner orientation using canonical correlation. In Proceedings of the
SSAB Symposium on Image Analysis, Norrköping. SSAB. to appear.
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