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Dual-energy �DE� imaging of the chest improves the conspicuity of subtle lung nodules through the

removal of overlying anatomical noise. Recent work has shown double-shot DE imaging �i.e.,

successive acquisition of low- and high-energy projections� to provide detective quantum effi-

ciency, spectral separation �and therefore contrast�, and radiation dose superior to single-shot DE

imaging configurations �e.g., with a CR cassette�. However, the temporal separation between high-

energy �HE� and low-energy �LE� image acquisition can result in motion artifacts in the DE images,

reducing image quality and diminishing diagnostic performance. This has motivated the develop-

ment of a deformable registration technique that aligns the HE image onto the LE image before DE

decomposition. The algorithm reported here operates in multiple passes at progressively smaller

scales and increasing resolution. The first pass addresses large-scale motion by means of mutual

information optimization, while successive passes �2–4� correct misregistration at finer scales by

means of normalized cross correlation. Evaluation of registration performance in 129 patients

imaged using an experimental DE imaging prototype demonstrated a statistically significant im-

provement in image alignment. Specific to the cardiac region, the registration algorithm was found

to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during

diastole. Modulation transfer function �MTF� analysis reveals additional advantages in DE image

quality in terms of noise reduction and edge enhancement. This algorithm could offer an important

tool in enhancing DE image quality and potentially improving diagnostic performance. © 2009

American Association of Physicists in Medicine. �DOI: 10.1118/1.3036981�
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I. INTRODUCTION

Dual-energy �DE� imaging removes overlapping anatomical

structures that might otherwise impede the detection and

characterization of subtle lung nodules in a chest

radiograph.
1,2

By acquiring two projections at different ener-

gies and selectively decomposing distinct tissue components,

the “soft-tissue” image effectively removes bony anatomical

noise �e.g., ribs and clavicles�, thereby enhancing the sensi-

tivity in the detection of subtle lung nodules. The “bone”

image, on the other hand, can distinguish calcified structures,

thus potentially improving specificity in the characterization

of benign lesions. Other applications of DE imaging abound,

including musculoskeletal imaging �e.g., differentiation of

fractures from bony metastases�, cardiac imaging �e.g., im-

aging of coronary calcium�, and interventional procedures

�e.g., stent visualization�.
“Double-shot” DE imaging �in which low- and high-

energy projections are acquired in successive exposures� has

been shown to offer improved detective quantum efficiency,
3

increased spectral separation �resulting in higher contrast�,
and lower radiation dose compared to a “single-shot” tech-

nique �in which the two projections are acquired simulta-

neously by means of a detector sandwich�. However, an in-
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trinsic challenge to double-shot DE imaging is the

susceptibility to motion artifacts resulting from anatomical

misregistration between exposures.

The time delay between two projections may range from

hundreds of milliseconds
4–6

to several seconds, depending

on system configuration. Even small delays can result in ap-

preciable motion artifacts in DE images—e.g., due to motion

of the heart. Initial implementation of the experimental pro-

totype DE imaging system used in this study has a fairly long

interexposure delay of 5 to 8 s. For such a long delay, ana-

tomical misregistation is unavoidable due to constant motion

of the heart, respiratory motion �even during breath-hold—

e.g., rebound of the diaphragm�, and gross patient motion

�e.g., patient relaxation, slouch, etc.�. The resulting motion

artifacts in DE images typically appear as bright or dark

streaks delineating anatomical edges, reducing overall image

quality and diminishing diagnostic performance. Example

motion artifacts are illustrated in Fig. 1.

Rigid 2D-to-2D registration is not sufficient to achieve the

necessary accuracy in image alignment at both global scales

�e.g., shoulders and ribcage� and local scales �e.g., heart and

vasculature�. A variety of deformable 2D-to-2D registration

algorithms have been proposed to register radiographs. To

align chest radiographs acquired at separate times for the

purpose of detecting interval change, Kano et al. developed

an algorithm that computes cross correlation-based local

matching of small regions of interest �ROIs� placed in the

lung.
7

The local displacements were applied using a nonlin-

ear geometric warping technique. Ishida et al. added to this

method an initial global matching found through cross cor-

relation of two radiographs at low resolution
8

and later ex-

tended the algorithm to include iterative steps.
9

Armato

et al. employed the same algorithm in the subtraction of

temporally sequential DE soft-tissue images.
10

Other appli-

cations involve registering ventilation-perfusion images with

digital chest radiography using contour detection and ana-

tomical landmarks.
11,12

These techniques have demonstrated

radiographic registration suitable for visualizing change over

extended time scales �e.g., disease progression or treatment

response�. They were not developed for purposes of DE im-

aging, where the goal is subpixel level registration accuracy

between LE and HE images acquired in rapid succession

�within seconds�.
For double-shot DE imaging, therefore, our goal was to

develop a deformable 2D-to-2D registration algorithm that is

fully automated �no manual intervention�, computationally

simple �and therefore fast by means of future multithreaded

GPU implementations�, robust against differences in pixel

intensity between low-energy �LE� and high-energy �HE�
projections �unlike, for example, Demons-type algorithms�,
and accurate in registering motion across both large �centi-

meter� and small �millimeter� anatomical scales. To address

these challenges, a multiscale, multiresolution �MSMR� reg-

istration algorithm using a hybrid of mutual information

�MI� optimization and normalized cross correlation �NCC�
was developed to align HE and LE images prior to DE de-

composition. Metrics of MI �Refs. 13 and 14� and NCC �Ref.

15� are each commonly used similarity measures in 2D, 3D,

and 4D as well as single- and multimodal image

registration.
16–21

We evaluated the performance of both simi-

larity measures and combined the two in a hybrid manner to

optimize performance and speed. A multiscale �i.e., ROIs of

various size considered in multiple passes� and multiresolu-

tion �i.e., variable pixel binning in each pass� approach

proved to resolve misregistration across varying scales,
16

avoid local minima,
17

and improve computational

efficiency.
16,17,19,22

II. METHODS

II.A. Description of algorithm

In the following section, we present an algorithm that

operates on multiple scales and at multiple resolutions to

transform the HE image in iterative passes. In each pass, a

series of translation vectors is calculated by either MI or

NCC optimization. A spatial transformation inferred from

these vectors is then interpolated and applied to the HE im-

age in a pixel-wise manner. The transformed HE image and

original LE image constitute the inputs to the next pass,

where the process is repeated. The rationale for the multi-

scale, multiresolution pyramid is described in Sec. II A 1, the

choice of objective functions in Sec. II A 2, and image trans-

formation and interpolation techniques in Sec. II A 3.

II.A.1. Multiscale, multiresolution morphological

pyramid

The algorithm operates by a morphological pyramid in

which multiple iterations �passes� are performed at progres-

sively smaller scale �i.e., size of ROI� and finer resolution

�i.e., pixel size�. The MSMR approach offers advantages

�compared to a single-pass, full-resolution approach� in com-

putational efficiency, avoidance of local minima, and correct-

ing motion across various scales �discussed in Sec. IV A�.
The registration process is illustrated in Fig. 2. The LE image

is taken as the fixed image �also called the target or reference

image�, and the HE image is the moving image �also called

the source or transformed image�. In theory, either image

(a) (b)

FIG. 1. Example motion artifacts in unregistered DE bone images. �a�
Zoomed-in view of the shoulder. �b� Zoomed-in view in the region of the

heart. The bright and dark edges result from anatomical misregistration be-

tween HE and LE exposures.
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may be selected as fixed or moving, but taking the HE image

as the latter offers an advantage to DE image quality, as

discussed in Sec. IV D.

In each pass �n�, both images are divided into a number of

ROIs of extent Ln. To allow transformations beyond the

range of Ln, the ROIs in the HE image include an additional

margin kn of approximately 1 /10 the size of Ln. Also in each

pass, the pixel sizes of both the target and moving images are

averaged over a given bin size �box mean over an area of

sidelength denoted bn�, resulting in an image of size 3000 /bn

in which pixels are the average values from nonoverlapping

bins. Both Ln and bn are in units of pixels in the original

image. In a morphological pyramid, Ln and bn reduce or

remain the same �but do not increase� at each pass. A number

of potential “paths” �i.e., selection series of Ln, bn� were

investigated as described in Appendix A, each presenting

tradeoffs in the susceptibility to local minima and correction

of small- or large-scale misregistration. The “diagonal” path

provided the best overall performance and was used for all

results below. For this nominal path, the original �3000

�3000 pixel� images were registered in a total of n=4

passes. Nonoverlapping square ROIs of size Ln=720, 384,

192, and 96 were laid regularly in the middle of the image,

leaving margins on the four sides to prevent transformations

beyond the image in case “outward” translation vectors were

calculated for the border ROIs. The respective pixel binning

in each pass was bn=16, 8, 4, and 2 �i.e., pixel size 2.29,

1.14, 0.57, 0.29 mm in passes 1–4, respectively�. As de-

scribed in Appendixes A and B, a full-resolution pass �n=5;

bn=1� was computationally intense and did not significantly

improve registration performance.

II.A.2. Objective function—A hybrid approach

At each pass, ROIs are registered according to optimiza-

tion of a given objective function—e.g., MI or NCC. The

former is a prevalent metric for registration used in many

applications
16–21

in combination with a given optimization

technique �e.g., simplex search�.23,24
As discussed in Appen-

dix C, registration based on MI and a simplex search was

found to be fairly robust against local minima, although

computationally slow. Registration by NCC, on the other

hand, was fast, but may give poor performance for highly

correlated images
16 �i.e., exhibiting multiple peaks in the

cross-correlation matrix�. The two basic metrics are summa-

rized below, motivating the implementation of a hybrid ap-

proach.

II.A.2.a. Mutual information optimization. Mutual infor-

mation �MI� is defined as
13,14

MI�A,B� = H�A� + H�B� − H�A,B� , �1�

where H�A� is the entropy of image A given by

H�A� = − �
a

pA�a�ln�pA�a�� . �2�

Here, a represents pixel values in image A and pA�a� is the

marginal probability distribution of image A. For two jointly

distributed images A and B, the marginal probability distri-

bution of A is simply its probability distribution disregarding

information in B.

H�A ,B� is the joint entropy of image A and B given by,

H�A,B� = − �
a,b

pAB�a,b�ln�pAB�a,b�� , �3�

where pAB�a ,b� is the joint probability distribution of image

A and B which describes the probability that pairs of values

�a ,b� occur together. Misregistration results in dispersion of

the joint probability distribution, which leads to higher joint

entropy.
21

Mutual information, presented as the difference

between the entropies of A and B and their joint entropy,

describes the shared information between two images.
21,25

Both pA and pAB were calculated with images normalized to

64 gray levels. Larger and smaller numbers of gray levels

were investigated, with 64 selected as the smallest value for

which registration performance was stable. The optimal

alignment between two images is achieved when MI is maxi-

mized. Optima were computed using the MATLAB �vR2007a,

The Mathworks, Natick, MA� function fminsearch, in which

transformation vectors were varied until a maximum in MI �a
minimum in −MI� was obtained. The search technique was

based on the Nelder-Mead simplex algorithm
23,24

modified

by imposing upper and lower bounds of the transformation
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vectors, thus constraining the search space of the x- and

y-components within �kn /bn, where kn is the size of the

additional margins included in ROIs of the HE image, and bn

is the bin size, as defined in the previous section. Therefore,

the ROI can be transformed within but not beyond the addi-

tional margin of size kn. This prevents unrealistic translations

�e.g., caused by local minima or noisy regions with little

anatomical features, e.g., the abdomen�. The final transfor-

mation vector for the ROI is that which maximizes MI, rep-

resented as

T�i, j� = min
x,y

�− MIi,j�LE,HE;x,y�� , �4�

where T�i , j� identifies the final transformation vector of the

�i , j�th ROI of the moving image, MI is the mutual informa-

tion between the �i , j�th ROI in the HE and LE images, and

x and y are displacements in the horizontal and vertical di-

rections, respectively.

II.A.2.b. Normalized cross correlation. The normalized

cross correlation �NCC� matrix between ROIs in the HE and

LE image was calculated as
15,16,20

NCC�u,v� =
��x,y����IHE�x,y� − IHE��ILE�x − u,y − v� − ILE�

���x,y����IHE�x,y� − IHE�2���x,y����ILE�x − u,y − v� − ILE�2
, �5�

where IHE and ILE are the mean of the HE and LE images in

the overlap region �x ,y���. Given HE and LE ROIs of size

Ln+kn and Ln, respectively, NCC is the �2Ln+kn−1�2 cross-

correlation matrix. Note that NCC is a matrix, not to be

confused with Pearson’s correlation coefficient. NCC was

calculated using the MATLAB function normxcorr2, with the

position of the maximum value of the NCC matrix giving the

displacement that maximizes correlation. Taking into account

the relative sizes of the images, the translation vector for a

given HE ROI is the difference between the location of the

NCC peak and the size of the LE image ROI,

T�i, j� = max
x,y

�NCC� − Ln. �6�

As described in Appendix C, both MI and NCC offered po-

tential objective functions: the former was computationally

slow but robust against local minima; the latter was consid-

erably faster �by a factor of �6� but did not perform as well

when the image data are are self-similar
16

—i.e., when sub-

regions of an image can be approximated using other subre-

gions of the same image. �Such self-similarity is more likely

to occur in large ROIs, with the ribs offering a good example

of a recurrent, self-similar pattern.� In the first pass �n=1� in

particular, MI outperformed NCC. However, in passes n

=2–4, the two performed equivalently. A hybrid approach

was therefore implemented. In the first pass, MI constituted

the objective function, where its resilience to local minima in

the presence of large sets of anatomical features was essen-

tial, but computational efficiency was not a major limitation

�since the images in pass n=1 involve few ROIs at large

scale and coarse pixel size�. In subsequent passes, registra-

tion was based upon NCC, where multiple peaks in the

cross-correlation matrix were not as prevalent and suscepti-

bility to local minima was not as severe �owing to smaller

ROIs and good initial conditions provided by MI registration

in pass 1�. Computational efficiency was also essential in

pass n=2–4 since the images involve many ROIs at small

scale and fine pixel size.

II.A.3. Image transformation and interpolation

The set of translation vectors, T�i , j�, computed for all

ROIs in each pass are not directly applied. Instead, a local-

weighted-mean transformation
26 �LWM� was inferred from

the pairs of control points related by the ensemble of vectors

in a given pass. The LWM transformation was used to ac-

count for locally varying distortions, and was bilinearly in-

terpolated to a pixel-wise transformation that is applied to

the entire moving �HE� image. This in combination with

multiple passes at multiple scales effects a deformable trans-

formation.

II.B. Imaging system

As described in previous work,
27,28

an experimental

prototype DE imaging system was developed based upon a

Kodak RVG-5100 digital radiography chest stand

�Carestream Health Inc., Rochester, NY�. Modifications in-

clude: �1� a high-performance flat-panel detector �FPD�
�3000�3000 pixels, 0.143 mm pixel pitch, CsI:Tl scintilla-

tor, Trixel Pixium-4600, Moirans, France�; �2� a computer-

controlled filter wheel for differential filter selection in low-

and high-kVp projections; �3� a cardiac-gated image acqui-

sition system; and �4� an acquisition workstation that con-

trols imaging technique, filter selection, and synchronization

of the source and FPD. A cardiac monitoring system was

implemented for purposes of retrospective analysis of the

gating system. The monitor recorded pulse oximetry and

x-ray trigger signals to determine whether a given x-ray ex-

posure was delivered synchronous to diastole or systole. Pre-

vious studies identified the optimal imaging techniques:
29

an

LE beam at 60 kVp and an HE beam at 120 kVp �0.6 mm

Ag+2 mm Al added filtration�, with the radiation dose allo-

cated such that approximately 1 /3 of the total energy was
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imparted by the LE beam, and with total dose equivalent to

that of a conventional PA chest radiograph �e.g., 0.11 mGy

for average chest thickness�.
Postprocessing of images, including offset-gain correc-

tion, deformable registration, and DE image decomposition

was performed on a desktop PC �Dell Precision 380 work-

station with a single-core 3.0 GHz GPU, 2 GB RAM�. Initial

implementation of the algorithm was in MATLAB, which, al-

though known to be considerably slower than lower-level

executable code �e.g., C��, C#, etc.�, provided a suitable

prototyping platform. Image review was performed on dual-

head �1536�2048 pixels�, 8-bit gray-scale displays �AXIS

III, National Display Systems, Morgan Hill, CA�.

II.C. Performance evaluation in patient images

II.C.1. Clinical imaging trial

Image data were collected from a preclinical patient im-

aging trial conducted at the University Health Network �Tor-

onto, ON�. The trial consisted of 220 patients accrued under

informed consent. Exclusion criteria for the study included

diseases that would result in cardiac arrhythmia, inability to

maintain a breath-hold for �10 s, and anterior-posterior

chest thickness exceeding 28 cm.
28,29

Patients were random-

ized to 5 arms varying in imaging technique, use of the car-

diac trigger, etc., among which 129 DE images were ac-

quired at optimal acquisition technique �kVplow, kVphigh,

filter selection, dose allocation, and cardiac-gated� as indi-

cated by previous work.
29

The 129 images from the optimal

technique group were used in the evaluation of registration

performance below �Sec. III A�. An additional 21 DE images

were acquired without cardiac gating but with otherwise op-

timal techniques, and were used in the evaluation of the

cardiac-gating system in combination with the optimal tech-

nique group �Sec. III B�.

II.C.2. Deformable registration vs prospective

cardiac gating

Cardiac motion presents a significant source of misregis-

tration in DE imaging. This is certainly a concern for the

prototype described above, for which low-and high-energy

exposures are obtained on separate heartbeats. Similarly, this

is a concern even for considerably faster DE imaging sys-

tems �e.g., 200,
6

150,
30

or 35 ms �Ref. 31� exposure inter-

val�, since chance exposure during systole can still present

significant motion artifacts. The cardiac-gating system men-

tioned above aimed to deliver both exposures coincident

with diastole through the use of a pulse oximeter and a

model for heart-rate-dependent timing.
28,32

The timing

model, designed to trigger at mid-diastole, accounts for the

dependence of diastolic period on heart rate by a variable

implemented delay that could support triggering at heart

rates up to 140 bpm. As currently implemented, x-ray expo-

sure was synchronous to mid-diastole of the same heartbeat

as the oximeter trigger for heart rate �65 bpm, and to mid-

diastole in the subsequent heartbeat for heart rate �65 bpm.

The simple oximeter-based gating system has been shown to

provide significant reduction in cardiac motion artifact.
32

In

the current article, we evaluated the extent to which deform-

able image registration further mitigates cardiac motion arti-

facts or outperforms prospective gating altogether.

Of the 150 cases, 137 had timing information available

for retrospective analysis. There were 109 cases involving

both low- and high-energy exposures delivered synchronous

to diastole �as determined by the cardiac monitoring system

described in Sec. II B�. The remaining 28 cases involved one

or both exposures acquired during systole. The quality of

registration was evaluated in an image subregion about the

heart as shown in Fig. 3 for the following cases:

�i� �Systole trigger/no registration�—unsuccessful cardiac

gating, without image registration �hypothesized as the

worst case�, average heart rate= �78.3�10.8� bpm;

�ii� �Diastole trigger/no registration�—successful cardiac

gating, without image registration �corresponding to a

“hardware-only” approach�; average heart rate

= �77.5�15.2� bpm;

�iii� �Systole trigger/MSMR registration�—unsuccessful

cardiac gating, with image registration �examining the

extent to which image registration can overcome the

hypothetical worst case�, average heart rate

= �78.3�10.8� bpm;

�iv� �Diastole trigger/MSMR registration�—successful car-

diac gating with image registration �hypothesized as

the best case�, average heart rate= �77.5�15.2� bpm.

The cases were further pooled to examine:

�v� ��Systole or diastole� trigger/no registration�—
evaluating the degree of artifact to be expected in a

population of ungated DE images without registration,

average heart rate= �77.7�14.4� bpm; and

Shoulder

Diaphragm

Ribs

Heart

Overall

FIG. 3. Example image illustrating the location of five subregions for regis-

tration performance evaluation—the overall image �excluding the collima-

tors� and four anatomical subregions chosen to more closely examine gross

patient motion, slouch, cardiac motion, and respiratory motion.
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�vi� ��Systole or diastole� trigger/MSMR registration�—a

“software-only” approach in which a population of un-

gated DE images is operated upon by MSMR registra-

tion, average heart rate= �77.7�14.4� bpm.

We hypothesized that �i� and �iv� would present worst and

best cases, respectively, in terms of artifact magnitude. Fur-

ther, we quantified the extent to which worst case motion �iii�
could be resolved by deformable registration compared to

best case motion—e.g., comparing data from �iii� to �ii�. Fi-

nally, we compared the performance of a software-only ap-

proach �i.e., cases from �iii� or �vi� triggered in systole or

diastole with MSMR registration applied� to a hardware-only

approach �i.e., cases from �ii� involving successful diastole

gating, but no registration algorithm�.

II.C.3. Performance evaluation

Registration performance was quantified in terms of the

absolute value of MI �i.e., �MI� as in Eq. �1�� between the

moving �HE� image and the fixed �LE� image. Higher �MI�
corresponds to better image registration performance. Re-

sults were computed as the average �MI� over all cases within

a particular group, with error bars reflecting 2 standard de-

viations. Recognizing that adopting a figure of merit ��MI��
that is also an objective function in the registration algorithm

�MI in the first pass of the hybrid algorithm� creates a poten-

tial for bias in the evaluation, we evaluated other perfor-

mance metrics as well—e.g., sum of squared differences,

correlation coefficient and coefficient of variation in differ-

ence histograms. Each followed the same trends as �MI�, and

�MI� appeared to best reflect qualitative changes in image

quality; therefore, �MI� is used throughout.

Registration performance was evaluated considering the

overall image as well as the four subregions illustrated in

Fig. 3. The overall image region �2700�2700 pixels� con-

tained nearly the entire field of view, excluding collimator

edges. The shoulder subregion �1100�400 pixels� included

the left clavicle, the first and second ribs, and part of the left

lung apex. The ribs subregion �400�800 pixels� typically

contained the fifth to the eighth ribs, comprising the majority

of the right lung but excluding the vasculature adjacent to the

mediastinum. The heart subregion �400�500 pixels� and

diaphragm subregion �500�400 pixels� were selected to

evaluate cardiac and respiratory motion artifacts, respec-

tively. The size of the overall image and subregions was

fixed for all patients while the locations were manually se-

lected for each case.

A Student t-test was used to evaluate the statistical sig-

nificance of the difference measured in �MI� between two

image groups. A one-sided t-test was used when testing for a

directional alternative hypothesis �e.g., registered vs unregis-

tered, as in Secs. III A and III B�, whereas a two-sided t-test

was used for nondirectional alternative hypothesis �e.g., hy-

brid algorithm vs MI optimization-only algorithm, as in Ap-

pendix C�. For two groups comparing registration in the

same patients �Sec. III A and Appendix C�, a pairwise t-test

was used. Otherwise, a two-sample heteroscedatic �unequal

variance� test was used �Sec. III B�. The t-test analysis was

computed in MICROSOFT EXCEL.

As a basis of comparison and aid to interpreting the �MI�
results, the approximate upper limit of �MI� was measured

using an anthropomorphic chest phantom �model 55-8PL,

Radiology Support Services, Long Beach, CA� imaged at the

same techniques as in the patient imaging study. The �MI� of

the resulting HE and LE images was calculated, illustrating

the ideal case in which the patient was perfectly still between

exposures, recognizing the potential variation associated

with differences in attenuation �pixel values� of materials in

the phantom and individual patients.

II.D. Effect of MSMR registration on spatial resolution

Measurements of the modulation transfer function �MTF�
were performed to determine the transfer function of the reg-

istration algorithm and its effect on spatial resolution in the

resulting DE images. The edge-spread measurement method

has been described in previous work.
33

A Pb edge �2 mm

thick� was placed at a slight angle ��5° � to the FPD matrix

and imaged at the same LE and HE techniques as described

above. In addition, three HE images were acquired in which

the edge was manually perturbed from its original position:

slightly ��1 mm orthogonal to the edge�, modestly ��5 mm

orthogonal to the edge�, and grossly ��10 mm orthogonal to

and angulated with respect to the edge�. The MTF was ana-

lyzed from the LE image, the HE image, and the three reg-

istered HE images. In each case, the MTF was computed by

determining the oversampled edge spread function �ESF�,34

the derivative of which yielded the line spread function
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FIG. 4. Registration performance evaluated in terms of �MI� for registered

and unregistered images. In each case �overall image as well as various

subregions�, the algorithm gave statistically significant improvement

�p-value �0.001� in registration of the HE �moving� image with the LE

�fixed� image. Values represented by the � symbol represent those obtained

with the stationary anthropomorphic chest phantom.
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�LSF�. The absolute value of the fast Fourier transform

�FFT� of the area-normalized LSF yielded the MTF. The

MTF was reported as the average analyzed over 25 measure-

ments performed at different regions along the edge. Consid-

ering the MSMR algorithm as a linear image transfer pro-

cess, the MTF of the MSMR algorithm was estimated as the

quotient of the MTF for a registered image divided by that of

the original �unperturbed� image.

III. RESULTS

III.A. Registration performance

Figure 4 shows �MI� before and after registration averaged

over 129 patients for the overall image and the four anatomi-

cal subregions. �MI� is significantly improved following

MSMR registration in all cases �p�0.001�. Although the

increase in the population mean �MI� is fairly small, the small

p-values �computed from pairwise, one-tailed t-tests� demon-

strate a statistically significant improvement case by case. Of

the 129 cases, there were only four in which registration

degraded the overall �MI�. As a basis of comparison, the �MI�
values achieved with the stationary anthropomorphic chest

phantom were 2.47 �overall�, 2.77 �shoulder�, 2.12 �ribs�,
3.12 �heart�, and 2.69 �diaphragm�.

Representative cases comparing the overall images and

subregions before and after registration are shown in Figs. 5

and 6, respectively. The example images exhibit �MI� as close

as possible �within 0.05� to the mean values plotted in Fig. 4

�and are therefore representative of average performance�.
Figure 5 illustrates the improvement in overall image align-

ment. The motion artifacts, most markedly around the pa-

tient’s left ribcage and shoulder, are corrected in the regis-

tered image, leading to significant improvement in DE image

quality in both soft-tissue and bone images. Figure 6�a� il-

(a) Soft Tissue Images (b) Bone Images

Unregistered

|MI|=2.25

Registered

|MI|=2.54

Unregistered

|MI|=2.25

Registered

|MI|=2.54

FIG. 5. Example images before and after MSMR registration: �a� soft-tissue images and �b� bone images. Representative cases were selected with �MI� close

to the population mean in Fig. 4.
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|MI| = 2.54

Unregistered

|MI| = 2.25

(a) Shoulder

Registered

|MI| = 1.66

Unregistered

|MI| = 1.48

(b) Ribs

Registered

|MI| = 2.41

Unregistered

|MI| = 2.27

(c) Heart

Registered

|MI| = 2.46

Unregistered

|MI| = 2.22

(d) Diaphragm

FIG. 6. Example DE images in the

subregions of Fig. 3 before and after

MSMR registration. Representative

cases were selected with �MI� close to

the population mean in Fig. 4. Subre-

gions represent �a� shoulder, �b� ribs,

�c� heart, and �d� diaphragm.
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lustrates the shoulder region and reveals significant reduction

in bone edge artifacts about the clavicles arising from gross

patient motion/slouch. Note also the improved alignment of a

lead BB placed on the patient’s back. Similarly, the soft-

tissue images in Fig. 6�b� show the reduction of rib edges,

improving the conspicuity of underlying bronchial structures.

The bone image in Fig. 6�c� represents the typical magnitude

of cardiac motion artifact—a dark �or bright� streak along the

left ventricular wall that is significantly reduced following

deformable registration. Finally, the bone image in Fig. 6�d�
illustrates improvement in the respiratory motion artifact

along the dome of the diaphragm, which can undergo signifi-

cant motion �relaxation� even under conditions of breath-

hold.

III.B. Deformable registration vs prospective cardiac
gating

The mean �MI� of the heart subregion with and without

registration is plotted in Fig. 7 for diastole trigger �N=109

cases�, systole trigger �N=28 cases�, and pooled �diastole

and systole, N=137 cases� groups. The registration algorithm

is seen to improve image alignment in all groups. As ex-

pected for cases without registration, diastole trigger �group

ii� improved �MI� compared to systole trigger �group i�, al-

though to a fairly small extent ��MI�systole=2.14, �MI�diastole

=2.22, p-value=0.153�, since the simple hardware gating

system allows exposure to trigger anywhere within the dias-

tolic phase �i.e., does not provide a trigger at precise sub-

phases as might be achieved with ECG�. Also as expected,

cases with diastole trigger and MSMR registration �group iv�
exhibit the best performance. Comparing group �iii� with

group �ii�, the results demonstrate that the algorithm alone

improves registration even in the worst case �systole trigger�
to a greater degree than the best case �diastole trigger�
achievable by the hardware gating system alone. Thus, the

software approach performs better �in the worst case� than

the hardware approach �in the best case� �p-value=0.046�.
Finally, the pooled cases �groups v and vi� demonstrate that,

in a population of systole or diastole trigger images �analo-

gous to ungated acquisition�, the algorithm imparts a signifi-

cant improvement in image alignment �p-value�0.001� and

gives registration superior to that of the hardware gating sys-

tem alone �group ii� �p-value�0.001�.
Example images of the heart subregion are shown in Fig.

8. Representative images are those with �MI� close to the

population mean in Fig. 7. As evident in the bright streak

artifact along the border of the heart, the images are qualita-

tively consistent with Fig. 7: worst performance for systole

trigger without registration �group i�; improved performance

with diastole trigger �group ii�; further improvement via

registration—even for systole trigger �group iii�; and best

overall performance for diastole trigger and registration

�group iv�.

III.C. Effect on spatial resolution

MTF results are summarized in Fig. 9. The MTF of the

LE and HE are approximately the same. For each of the

perturbed HE images, the registered image exhibits MTF that
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FIG. 7. Registration performance associated with a cardiac-gating system in

comparison to and in combination with the MSMR registration algorithm.

The algorithm is found to improve registration beyond that achievable with

a simple gating system—even in the case of systole trigger. Abbreviations:

S–systole trigger group; D–diastole trigger group; S+D–pooling of systole

and diastole trigger groups; Reg–with registration; NoReg–without

registration.

|MI|=2.21 |MI|=2.25 |MI|=2.45|MI|=2.39

(i) Systole /

Without Registration

(ii) Diastole /

Without Registration

(iii) Systole /

With Registration

(iv) Diastole /

With Registration

FIG. 8. Example images in the heart

subregion corresponding to systole

and diastole triggers with and without

MSMR registration. Representative

cases were selected with �MI� close to

the population mean in Fig. 7.
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is reduced from that of the original �unperturbed� image as a

result of bilinear interpolation during image transformation.

The change in MTF for HEreg is approximately independent

of the degree of perturbation �slight, modest, or gross�. The

MTF for the registration algorithm �given by the quotient of

the mean registered MTF and the original MTF� is also

shown, suggesting a low-pass characteristic comparable to

that of the detector MTF. The small jump in the MTF at

3.1 mm−1 is believed to be associated with the registration

algorithm �likely due to “spurious” response of the bilinear

interpolation filter
35

applied in the image transformation�.
The algorithm therefore imparts a characteristic blurring of

the transformed image. Note, however, that blurring of one

image in DE image decomposition is analogous to an un-

sharp mask, imparting edge enhancement and an improve-

ment in the MTF of the resulting DE image. Also, as dis-

cussed below, blurring of the HE image as a result of

registration is analogous to a noise-reduction technique
30

in

which the HE image is purposely blurred to reduce image

noise.

IV. DISCUSSION AND CONCLUSIONS

An algorithm for registering two x-ray projections ac-

quired during DE imaging of the chest has been described

and characterized. The algorithm combines MI optimization

and NCC in multiple passes in which the HE image is reg-

istered at progressively smaller scales and higher resolutions.

Evaluation of registration performance in a cohort of 129

patients imaged at optimal DE techniques demonstrated a

statistically significant improvement in image alignment. For

the heart subregion in particular, registration outperformed a

simple cardiac-gating system that triggers both projections

within the diastolic phase of the heart cycle. The blurring

effect of registration on the HE image appears to offer an

additional advantage in DE image quality in terms of edge

enhancement and reduced noise analogous to common noise

reduction techniques.
36

An intrinsic limitation to DE image registration and the

work reported above lies in the fact that 2D transformations

cannot accurately describe 3D motion,
37

thus making 2D

projection registration an estimate of the true 3D transforma-

tion. Also, as identified in other work,
16,21,25

the inherent

limitations of MI and NCC as similarity measures might de-

teriorate registration performance. Investigation of the rel-

evance of these limitations in the context of DE image reg-

istration will be subjects of future research.

IV.A. Multiscale hybrid registration

An algorithm operating on multiple scales and resolutions

is seen to address the variable scales and types of motion in

different regions of the chest. Gross patient motion, e.g., shift

and slouch, exhibited most remarkably by large anatomical

structures such as the ribcage, clavicles, and skin lines, gen-

erally requires large scales and lower spatial resolution to

register. Motion on a finer scale, e.g., cardiac and diaphragm

motion, requires deformation over a smaller scale and higher

resolution. Even finer motion of vasculature and bronchioles

requires a further decrease in scale and an increase in reso-

lution to correct. Therefore, an inverse relationship exists

between the scale �i.e., spatial extent� over which deforma-

tions are computed and the spatial resolution �i.e., pixel size�
within the image at each iteration. By reducing or retaining

Ln and bn in each pass, the algorithm corrects large-scale

features first and then addresses motions on finer levels. Nu-

merous registration paths could be considered �i.e., combina-

tions of Ln and bn as in Appendix A�, but the diagonal path

with sequential halving of scale and doubling of spatial res-

olution �i.e., the “diagonal” path in Fig. 10� proved to be the

best choice in terms of registration performance. The MSMR

approach offers additional advantages in the optimization

process in computational efficiency �by reducing the search

space and speeding convergence� and avoidance of local

minima.

The multiscale algorithm also combines MI optimization

and NCC in a hybrid manner. As discussed in Appendix C,

MI effectively corrected large-scale motion and was robust

against local minima. Due to the small number of ROIs in

pass 1, MI optimization did not constitute a computational

burden. In passes 2–4, NCC gave a good performance in

correcting motions on a finer scale and significantly im-

proved computational efficiency. The hybrid method per-

formed equivalently to �nonhybrid� MI optimization alone

and gave considerable improvement in speed �by a factor of

�6�.
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FIG. 9. MTF measurements based on LE, HE, and registered HE �HEreg�.
The transfer function of the registration algorithm is labeled MTFMSMR,

calculated as the quotient of MTFs for the registered �HEreg� and unregis-

tered �HE� cases.
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IV.B. Deformable registration vs prospective cardiac
gating

The experimental prototype DE imaging system has a

relatively long interexposure delay of 5–8 s, which will be

improved in future implementations incorporating a faster

FPD. Other double-shot DE imaging systems achieve delays

as short as 200 ms �XQ/I Revolution, General Electric, Mil-

waukee, WI�. However, the problem of motion artifacts in

double-shot DE imaging systems can persist even with sub-

second delays. Patient drift and respiratory motion may be

minimized by acquisition in rapid succession and breath-hold

respectively, but cardiac motion remains a challenging

source of misregistration.

Cardiac-gating systems have been shown to reduce car-

diac artifacts in other DE imaging systems
30,38

as well as in

the current prototype
32

as assessed by human observers. This

is consistent with the higher �MI� achieved by the diastole

trigger group compared to the systole trigger group in Sec.

III B. Although the �MI� measurements exhibited a fairly

large p-value for these two groups, this is likely due to the

small size of the systole trigger group as well as evaluation

of �MI� over the entire subregion �rather than just the cardiac

edge�. Software registration, even in the worst case �i.e.,

group iii, systole trigger, registered�, was found to outper-

form successfully hardware-triggered cases �i.e., group ii, di-

astole trigger, unregistered�. The pooled data �group vi� give

a conservative estimate of how the software-only approach

performs in an ungated population of images, indicating su-

perior image alignment compared to that achievable by the

hardware gating system alone �group ii�. We note that the

pooled data comprise fewer systole cases than an ungated

group. It should also be recognized that other means of car-

diac gating �e.g., ECG� can potentially mitigate motion arti-

facts to a greater extent compared to the diastole trigger in

this study by distinguishing subphases within diastole. For

example, the ECG-gated DE system by Sabol et al. differen-

tiated R-R wave interval �100%� into 5% steps and could

trigger within the desired phase with 2% error.
30

Even with

such accurate triggering, there is potential for artifacts result-

ing from cardiac, respiratory, or gross patient motion, and it

is likely that the combination of accurate hardware cardiac

gating and high-performance software registration would

represent the best possible case.

IV.C. Effect of registration on DE image quality

The interpolation process during registration is analogous

to a simple smoothing filter applied to the HE image. This

has two implications. First, noise in the HE image is reduced,

thereby reducing noise in the DE soft-tissue and bone im-

ages. Second, blurring of the HE image has the effect of an

unsharp mask, which results in edge enhancement in the DE

soft-tissue and bone images. �As with noise reduction algo-

rithms, such edge enhancement can be beneficial with re-

spect to structures of interest but may also introduce edge

artifacts.�

IV.D. Future work

The registration algorithm reported and evaluated here in

the context of DE imaging could provide a generic means of

registering 2D images in single-modality and multimodality

imaging applications. To the extent that MI does not assume

a functional form or relationship between image intensities,

the approach is compatible with the registration of images

exhibiting different pixel intensities for common structures.

The HE and LE projections forming the basis of the current

study were acquired in fairly rapid succession �5–8 s� and

exhibit a modest �though certainly appreciable� degree of

motion ��1–10 mm�. Future studies will involve the evalu-

ation of the registration algorithm on images with smaller as

well as more severe motion artifacts, for example, faster ac-

quisition DE images in which cardiac motion is the primary

�or only� source of misregistration,
6

and images acquired

over much longer time scales with correspondingly more se-

vere motion, as in temporal subtraction images acquired at

an average of 13 month intervals.
10

The hybrid MSMR algo-

rithm will also be compared to other well-known registration

techniques, such as B-spline. The clinical significance of reg-

istration in DE imaging is currently being evaluated in hu-

man observer tests of diagnostic performance.
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APPENDIX A: SELECTION OF PATH

Figure 10 illustrates a variety of “morphological pyra-

mids.” Four values of ROI size �Ln� and pixel binning factor

�bn� were selected to divide the original image size �3000

�3000 pixels� with a margin into square ROIs, each ap-

proximately half the size of the last. A given combination of

ROI and bin size represents a point on a registration “path,”

where the path can consist of single or multiple points. For

multipoint paths, the “pyramid” aspect of a morphological

pyramid suggests that the path climbs from larger ROI to

smaller ROI and from larger bin size to smaller bin size, as

represented in Fig. 10 by arrows that only point up and/or

left. Thus, each step in the morphological pyramid represents

a smaller Ln and/or a smaller bn.

To examine the effect of Ln and bn on registration perfor-

mance, nine patients exhibiting varying degrees of motion

were investigated. The �MI� of unregistered images and im-

ages registered with the 14 different paths in Fig. 10 were

computed. Example results for two patients are summarized

in Fig. 11, with �a� corresponding to a case with large motion

artifacts and �b� representing a case with slight misregistra-

tion.

The path yielding the best �MI� is seen to vary from case

to case. For images exhibiting large motion artifacts, there is

a strong dependence of registration performance on Ln. Reg-

istration paths consisting of only small ROI size �Ln=96,

paths 3, 4, 9, and 14� perform poorly, whereas paths with at

least one large ROI �Ln=720� significantly enhance the reg-

istration performance. For images with slight motion arti-

facts, there is no clear dependence of performance on Ln or

bn, but paths traversing different Ln and bn appear to perform

best overall. It is also interesting to note the marked perfor-

mance difference demonstrated by paths 5, 10, and 14 for

large and small motions, which suggests a possible direct

relationship between the degree of motion artifact and Ln

required for registration. The diagonal path �#11, marked in

black� was found to provide high performance �within −0.02

of the highest �MI� in eight out of the nine cases� regardless

of the severity of motion artifacts, and thus was the nominal

choice applied to the entire patient cohort.

APPENDIX B. CONVERGENCE OF ALGORITHM

To determine the number of passes required for registra-

tion, the behavior of the algorithm was analyzed in terms of

the mean ROI displacement �i.e., the amount of transforma-

tion applied to the image� and increment in �MI� �i.e., the

improvement in image alignment� in each pass. The two

quantities were computed as an average over all ROIs within
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a particular pass. Figure 12 shows the average results over a

total of 129 patients, with error bars reflecting 2 standard

deviations. Exponential fits are superimposed to extrapolate

the curves to pass 5.

From Fig. 12, the algorithm is seen to converge following

pass 4. According to the morphological pyramid described in

Appendix A, a fifth pass consisting of L5=48 pixels and b5

=1 was considered. However, a fifth pass was found to result

in a small displacement �approximately 0.163 mm� and small

improvement in �MI� compared to the result of pass 4. DE

images resulting from images registered by four-pass and

five-pass algorithms were qualitatively indistinguishable.

Furthermore, the fifth pass involves full resolution and small

ROIs for which computation time became a severe limitation

�approximately 270 min�. Therefore, a total of four passes

was incorporated in the nominal algorithm.

APPENDIX C. RATIONALE FOR HYBRID

Two studies were conducted to evaluate the objective

functions, MI and NCC. The first specifically examined per-

formance in the first pass �n=1�. Twenty DE images were

randomly chosen from the clinical trial, each registered sepa-

rately using MI optimization or NCC in pass n=1. Recog-

nizing that comparison in terms of the objective function for

the MI optimization approach may bias the results in its fa-

vor, a variety of additional figures of merit was considered in

analyzing registration performance. These include the sum of

squared differences in LE and HE pixel values, coefficient of

variation and kurtosis of the difference histogram, and Pear-

son’s correlation coefficient—all of which yielded fairly con-

sistent trends. The sum of squared differences between LE

and HE pixel values, normalized by the number of pixels in

the respective subregions, is plotted in Fig. 13. MI-based

registration was found to give superior performance demon-

strated by a lower sum of squared differences in the overall

image as well as the four anatomical subregions. In fact,

NCC was frequently observed to decrease registration accu-

racy �judged qualitatively from DE images and quantitatively

from deteriorated figures of merit� in the first pass, whereas

MI optimization consistently provided significant improve-

ment. Such behavior in pass n=1 is likely associated with

large ROIs that are susceptible to self-similarity and multiple

degrees of motion for which NCC is known to be subject to

local minima.
16

MI optimization addressed this limitation as

it is less sensitive to the image intensity distributions and can

adequately correct motion over large scales. Therefore, MI

optimization was selected as the basis for the first pass �n
=1� to ensure good initial conditions for subsequent passes.

In addition, MI optimization in pass 1 did not impose serious

TABLE I. Time �minutes� taken for each pass using MI and NCC optimiza-

tion. NCC improves computational speed by a factor of �6. Measurements

were performed in MATLAB software implemented on a desktop PC �Dell

Precision 380; 3.00 GHz CPU; 2 GB RAM�. Future work will consider

GPU-based implementations for registration speed consistent with clinical

requirements.

n MI optimization NCC

Pass 1 10.7 2.2

Pass 2 34.0 6.7

Pass 3 154.8 29.1

Pass 4 643.0 115.3
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computational penalties �as shown in Table I�, owing to a

small number of ROIs and coarse pixel resolution �bn=16�.
The second study examined the performance of MSMR

registration based on MI optimization only �all passes� com-

pared to that of a hybrid approach in which MI optimization

was used in pass n=1, followed by NCC in passes 2–4. As

shown in Fig. 14, the MI-only and hybrid approaches yielded

indistinguishable registration performance in the four subre-

gions �p-values �0.05 in each subregion�. While there is

weak evidence for improved registration using MI only �p
=0.006� in the overall region, DE images resulting from the

MI-only and hybrid algorithms were qualitatively indistin-

guishable. As shown in Table I, the hybrid algorithm exhib-

ited a significant improvement in computation time �by a

factor of �6�. The advantage in time becomes more pro-

nounced in later passes as the number of ROIs increases.

These results motivated the selection of the hybrid algorithm

as the nominal choice for all cases considered in the current

work, with MI optimization employed in pass 1 and NCC in

subsequent passes.
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