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Summary. In this paper, we study a multiscale finite element method for
solving a class of elliptic problems with finite number of well separated
scales. The method is designed to efficiently capture the large scale be-
havior of the solution without resolving all small scale features. This is
accomplished by constructing the multiscale finite element base functions
that are adaptive to the local property of the differential operator. The con-
struction of the base functions is fully decoupled from element to element;
thus the method is perfectly parallel and is naturally adapted to massively
parallel computers. We presentthe convergence analysis of the method along
with the results of our numerical experiments. Some generalizations of the
multiscale finite element method are also discussed.

Mathematics Subject Classification (199&5N30

1 Introduction

Multiscale problems occur in many scientific and engineering disciplines,
such as material science, earth and environmental science, petroleum engi-
neering, just to name a few. These problems are characterized by the great
number of spatial and time scales. They are difficult to analyze theoretically
or solve numerically.
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When a standard finite element or finite difference method is applied to
the multiscale problems, the degrees of freedom of the resulting discrete
system can be extremely large due to the necessary resolution for achieving
meaningful (convergent) results. Limited by computing resources, many
practical problems are still beyond the reach of direct simulations. On the
other hand, the large scale features of the solutions are often of the main
interest. Thus, it is desirable to have a numerical method that can capture
the effect of small scales on large scales without resolving the small scale
details.

Here we analyze the multiscale finite element method (MsFEM) intro-
duced in [13] for solving elliptic problems with oscillatory coefficients.
The method has been successfully applied to flows and transport in random
porous media [11,12]. Similar methods for transport problems in oscilla-
tory velocity fields and wave propagation through random media are also
developed and will be reported separately. The purpose of this paper is to
further establish the mathematical foundation of MSFEM. In particular, we
provide estimates for MSFEM when it is applied to elliptic problems with
finite number of well separated scales.

The idea of multiscale finite element method is to capture small scale
information through the base functions constructed in the elements whose
sizes are much larger than the the small scales of the problem and much
smaller than the characteristic large scale of the problem. This is achieved
by solving the finite element base functions from the leading order of homo-
geneous elliptic equation. In this way, the information at scales smaller than
the mesh size is built into the base functions. These base functions are in
general oscillatory. We remark that special base functions in finite element
methods have been used by several authors in capturing multiscale solutions
of PDE's. In particular, the works presentedin [17,5, 7, 14] are most relevant
to the multiscale finite element method [13].

The advantage of MSFEM is its ability to reduce the size of a large
scale computation. This offers significant savings in computer memory. For
example, letN be the number of elements in each spatial direction, and
let M be the number of subcell elements in each direction for solving the
base functions. Then there are totdd N)™ (n is the dimension) elements
at the fine grid level. For a traditional FEM, the computer memory needed
for solving the problem on the fine grid§$(AM ™ N™). In contrast, MSFEM
requires onlyO(M™+ N™) amount of the memory. More discussions about
the computational features of MSFEM can be found in [11].

In practice, many problems may have multiple scales ranging over a
large interval. For example, in ground-water transport problems the scales
can range from fine clay0—*mm to the coarse sand 1mm or gravels up
to 60mm. Other problems may have continuous scales. In this paper, we
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analyze the MsFEM for the problems with multiple but well separated scales.
The latter problems are more difficult to analyze. We hope the present work
could bridge the gap between the analyses of problems with and without
scale separations.

Lete, (k =1,...,n)beasequence of decreasing well separated scales.
We analyze the convergence rate of MSFEM for different choices of the mesh
sizesh. Thush < ¢, corresponds to well-resolved direct calculation, while
1> h > € corresponds to the other extreme where only the largest scale
feature are retained in the final solution. In most cases, howeigsetween
two neighboring small scaleg ande;, . We establistif ! andL, estimates
for these three cases. For the most generic caseewith h > €1, the
leading orderH! norm error of MSFEM isCy+/€ex11/h + Cah/ej. The
first term in the estimate is due to the capturing the scales smaller than
ex+1 through the multiscale base functions, the second term is the error of
resolving scales larger thap with the homogenized part of the multiscale
base functions.

As it can be noticed from thél! error estimate, a straightforward im-
plementation of multiscale finite element method would fail if the mesh size
is close to the small scales in the physical solution. This is an important
phenomenon common in other upscaling methods, i.e., the resonance be-
tween the mesh scale and small physical scales. The improvement of the
resonance error requires a new method of capturing the small scale effect
[12,9]. The second part of the error can also be improved. By changing the
boundary conditions of the multiscale base functions, the homogenized part
of the base function becomes higher order polynomials. Thus, we can obtain
better convergence of order+ (h/e;)™ + \/€k+1/h With integerm > 1.

For the analysis of MSFEM we use tii&" estimates for the first order
correctors of partially homogenized solutions of problems with finite number
of well separated scales. We present these estimates in the paper as they
are not available in the literature. We would like to mention that in [2]

a convergence result of homogenization (without estimate of convergence
rate) has been obtained for the case with infinite number of scales.

We also present the,; estimates for MSFEM. The structure of the esti-
mates are similar to that of thig' norm estimates. Because of some small
terms in theH ! estimate, which cannot be expressed throughtheorm
of the source term of the problem, tlhg@ norm estimate we derived in the
Aubin-Nitsche fashion contains some overestimated terms. These terms,
however, contain no resonance effect. Therefore, Ipuestimate of the
resonance error is tight. Moreover, the overestimated terms can indeed be
eliminated by using the method introduced in [13], which compares the
solution and its numerical counterpart at discrete nodal points.
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Our error estimates are confirmed by our numerical experiments. The
computations are extremely large and are done on parallel computers, e.g.,
the Intel Paragon computer. Even so, we can only test two scale problems.
We confirm theL, estimate when the mesh size is between the physical
scales; andes, i.e.€1 > h > 5. The computations encounter difficulties
because memory limitation prevents us from choosing well separated small
scales in the tests. Consequently, it is difficult to separately verify each
resonance error in thg, estimates, i.eCth/ef andCyes /h. But different
numerical examples demonstrate that in some cases either one of them can
be dominating, whereas in other cases both may be important. Results for
h < eg < €7 are also presented.

The rest of the paper is organized as follows: The formulations of the
2-D problem and multiscale finite element method are introduced in the next
section. In Sect. 3 we estimate the first order correctors for partially homog-
enized solutions. In Sects. 4 and 5 we dedfil/eandL- error estimates for
MsFEM. The numerical results are presented in Sect. 6. The higher order
MsFEM and other possible generalizations are discussed in the concluding
remarks.

2 Formulations

In this section we introduce the model problem and the multiscale finite
element method. In the paper the Einstein summation convention is used:
summation is taken over repeated indices. Throughout the paper, we use the
L (£2) based Sobolev spacé((2) equipped with norms and seminorms:

1/2

lulls.o = / S peuf?|

la|<k
1/2

i = / S [pouf?

laf=k

HE(92) consists of those functions i (£2) that vanish ord2. H—1(2)

is dual space ofi}(£2), i.e. the set of all continuous linear functionals on
H(£2). We deflneH1/2(8!2) as the trace ofif2 of all functions inH!(2)
with the norm||v[, /5 5> = inf [|u[[1,2 where the infimum is taken over all

u € H'() with the tracev. In the paper the spad&®(£2), continuous
functions along with theik!" derivatives is equipped with the norm

[ullex (o ZmaX\DaM
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Throughout, C (with or without subscripts) denotes a generic constant, which
is independent of andh (mesh size), unless otherwise stated@nd C' =
C,C-C = C.When no confusion is possible the same symbol may denote
different constants in different places.

Consider the following elliptic model problem

(2.1) Leu=f in{2, u=0 onads,
whereL, = Viaiﬁvj is the linear elliptic operatog, is a small parameter,
anda; is symmetric and satisfies|¢|? < &af;&; < I¢]* for all ¢ € R?

with 0 < a < 8 < o0, andf € CY(£2).
Furthermore, we assume th&{x) has the form:

2.2) o = ol ( z )

€1 €2 €n
wheree; > e > -+ > ¢, is a set of n ordered length scales, which all
depend on a single parameterFor exampleg;, ¢ = 1,...,n are some
powers ofe, ePi with p; < ps < -+ < p,. Moreover, for simplicity we
assume’ (y1, 12, . . . , yn) to be sufficiently smooth periodic functionsgn
(i =1,...,n)inaunitcub&” (e.g.a’ € C'). This smoothness assumption

is convenient but not crucial for our analysis here. We have analyzed MsFEM
for the problems with discontinuous coefficients in [10]. In the following,
we assume? = (0,1) x (0,1) C R2.

Variational problem of (2.1) is to seeke H{(£2) s.t.

(2.3) a(u,v) = f(v), Yve H) (D),
where
o Ou O
(2.4) a(u,v):/ﬂaya;a;dm, f(v):/gfvda:.

It is easy to see that the bilinear fomn, -) is elliptic and continuous.

A finite element method is obtained by restricting the weak formulation
(2.3) to a finite dimensional subspacefdf ({2). For0 < h < 1, let K"
be a partition off? of rectangled< with diameter les%, which is defined
by an axi-parallel rectangular mesh. In each eleniént K", we define
a set of nodal basi&p’ }, i = 1,...,d, with d(= 4) being the number of
nodes of the element. We will neglect the subsckiptvhen working in one
element. In our multiscale methog, satisfies

(2.5) L' =0 in K e K.

Letz; € K (j = 1,...,d) be the nodal points of{. As usual we
require¢’(z;) = 6;;. One needs to specify the boundary conditiog’affor
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the well-poseness of (2.5). We will assume that the base functions are linear
on each side of on the boundary (unless otherwise stated). So we have:

V= spaf¢i; i=1,...,d, K Cc K"} c H}(%).

In the following we study the approximate solution of (2.3)Tit, i.e.,
u € VP such that

(2.6) a(u" v) = f(v), YveVh

3 Estimates for first order correctors

In this section we review the homogenization theory of (2.1) [6,2] and
estimate the first order correctors, namely the difference between the solution
and itsH' approximater. The main difficulty in this estimate is to express
the H! norm of the first order corrector through right-hand side of (2.1), i.e.
|| fllo,2- Thisis essential for the use of Aubin-Nitsche trick in fheanalysis
of MSFEM. In Lemma 3.1 we prove such a result for smooth domains.
However, for convex polygons we could not obtain the similar estimate. As
shown later, this leads to a slightly overestimatedchorm error.

We consider the case with two scale cases:

xr X

(3.1)  Va ( ) Viue = f in 2, ut =0 ondf
€1 €9

wheref € Ly(§2) ande; > eo. For further convenience we taje= g and
z = Z.Fixing = = X as a parameter we considéf(Z, £) as a family of

e € e
functionsa¥’ (), z) where) is a parameter. By the assumption made in the
previous sectiory (), z) is z periodic for any anda|]? < &a'l (), 2)¢; <

Bl€)? forall € € R? with 0 < a < 3 < co. Then the family of operators,
o . x 0

2 AS = Zai (A1) 2
(3.2) = (A, 62) =

can be homogenized by the standard homogenizationxbleing a param-
eter. Furthermore we homogenizg with respect ta;. Thus

0 . (x x\ 0
gy = =) =
(33) 8$ia (61 ’ 62) a.’E]’ ’

is homogenized in two steps by the reiterated homogenization. More specif-
ically, we definex§(z) on Z = (0,1) x (0,1) as the periodic solution
of

(3.4) ;Ziaij()\, 2)

O(x5(2) + z1)

=0
aZj ’
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such tha’g[Z X’;(z) = 0. Then the homogenized operator f4f is given by

0 0
. Ay = 1]
(3.5) A &x, 83:]
where
o1 Ak + 2i) D0 + 2j)
ij_ L A AT F
(3.6) a; = 7 /Zakl()\,z) oo 07 dz.

Now taking into account that = y = g A, can be homogenized as

0 Y 0
Ao = Ox; %0 oz
where
ij i X +yz) o0 +y5)
(3.7) ag = |Y|/ o dy

andy/ is the periodic solution oft (x/ — y;) = 0, such thatf,, x/ = 0.

Remark 3.1.The reiterated homogenization procedure can be used for the
n-scale case. Denotingd as the partial homogenization operator we have

agp=HoHo-- oHoa<$ xx)

€1’ e e

Following the homogenization steps represented above we can approx-
imate the solution of (3.1) as

(3.8) z%zué+@x?<:)vm%+ﬂe
2

whereu) is the solution of
(3.9) Ay =f in £, uy =0 onds.

Lemma 3.1. Letd, be the solution of (3.8), then under the assumption that
042 is sufficiently smooth we have

310) Ol < (0162/ 24 4 g, ) T

wheren > 0 is an arbitrary positive humber.
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Proof. The proof of this lemma uses the notations introduced earlier. De-
notingu; = uy + e2x5(£)Vmuy We can writea? Vju! as:

(3.11) alVjug = (6}2 + ai’“Véxi)Vjué + ﬁgaij XXV Vg

= ayVjuj + g}V jup + 20 XX'V; Vit

whereg! = a + a*Vix} — ay with V; denotingd /92 Using (3.4) and
the fact thatv,a V; is a partially homogenized operator for (3.3) we have

(3.12) /gg'dz:o and ig{ =0.
z 0z;

I hus,g{'C is a periodic solenoidal vector with average zero. It can be expressed
as [15]
0
k k
9; = TZ],O%J'(% z)

wherea}; = —a¥; andaf; € (L2(Y), H'(Z)). Using this representation
we can write (3.11) as
iy y 0 0 €2 0 0
A k A €2 k by
aleJV]ui = (Il)‘\jv]'UO + 6287:[{74 <a’Lj (y, Z) amkuo) —aaiyj <al-78:[;ku0>
2

Ox;0xy,

Denoting the last two terms on the r.h.satdyfrom (3.1), (3.8), and (3.9)
we have

(3.13) —egafj (y,2) Uy + €20 XV 1V g

V:aV ;0. = —divr, in 2,

3.14
( ) 0 = eaxy\' (x) Vmu())‘ on 012.
€2

Equation (3.14) along with the regularity properties for the solution of the
elliptic PDE gives

. m [T
(3.15) [|0clla () < Clldivr||-1,.0 + Clleax’ (62> Vot 172 (50)-

Furthermore using the fact thidiv p|| 1,0 < C||p|lo, foranyp € La(£2)
we have
0? A\

. k
[divre][—1,0 < Cllreflo,e < C ||e2055(y, 2) 8xj8$ku0

0,2
(3.16) + Cle2a7V ;Y ud 0.0

€2
< Cesludlan < CngHO,Q-




Multiscale finite element for problems with highly oscillatory coefficients 467

In the last step we have used

C
(3.17) ug]2,0 < a”f lo,02
which can be shown following [16].
To estimate of the second term on the r.h.s. of (3.15) we use
x
EQXT <> vmué
€2

(3.18) = inf [[¢]]1,e,

H1/2(00)

where thenf is over all¢ satisfyinge = eQXT(g)VmuS on the boundary
0f2. For the construction of the continuation @fXT(%)VWué onto {?
we introduce a family of boundary functions$ satisfying the following

conditions [15].

1. 7€ C§°(£2),0 < 7¢ < 1, 7° = 1 outside the:; neighborhood 0012.

2. €|V < C'in £2, where the constarit does not depend os (i=1,2).
Such functions can be constructed for any domain with Lipschitz bound-
ary. Then we have

€ A
€9 " — Vinu
X)\ <€2> mTo Hl/Q(GQ)

gHu—Tw@xT(i)vm%

H($2)

<C H(l — 1) eax\' <$> Vmu())‘
€2 0,0

+C ||[(VT9) eaxV! (i) Vot

0,2

+C||(1 —7°) ea VXY <Z;> Vi

0,52

+C||(1 —7°) eaxy <i> VV ot}

0,12

X
scwwmun+cWVfwﬂ@(Q)vM@

0,2

+ Cez|lupll2,0

+C H(l — ) e VYT (;’;) Vontid
0,2

< Cesllugll,e + €2V 7N 2on () U lwr.2vam(a)

(319) —l—CHl - 7—€||L2+77(_Q)|u())\‘W172+4/77(Q) + CEQ‘U0’27Q
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wheren > 0. Furthermore using the inequalities

C
A
ugllz,e < a”f\o,m

le2 V7| 24n () < Ce *T7

11 = 7| 24n () < Cey/ 7,

(3.20) IVug |l p2varncay < Cllflloe

we conclude (3.10). Note that the last inequality follows from Theorem 4(i)
of [3]. O

Remark 3.2.For convex polygon domains we assume thafor any par-
tially homogenized part of it) is i€’?(£2) for the fixede and

C
(3.21) luclorey = € luellez) < —
wheree, is the smallest scale in (2.2) (or in the partially homogenized
problem). This assumptions is true for fixed(: = 1,...,n) under the
compatibility conditions stated in [4]. Under the assumptions (3.21), for
convex polygonal domains we have

€
(3.22) 16l 12y < cﬁ + C1/e.

In the analysis of MsFEM the assumptions (3.21) will be used. In the last
section of the paper we present the error analysis for MsFEM without using
the assumptions (3.21).

Remark 3.3.For further convenience the quantities which depen%{t_%tlrl
with 2 < ¢ < n ande;, i > 1, we denote)(e). It indicates that(e¢) is an
asymptotically small quantity independent of the mesh size.

The above procedure can be applied for homogenization of many scale
problems. Instead of (3.8), using the reiterated homogenization we find

(3.23) Ue = UQ <x,x,...,x> —|—ui+9€,
€1 €Em

whereuy is the partially homogenized part of over the scales,, 1, ...,
en, ul is given by

(3.24)

n—m-+1 2
ue = Z Z e X" ()

- €m.
=1 mp,m<m1<--<m;<n mi
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_ x x
X <6mi_1VkiXk"1 (e >> <6mlvk2xk1 <e>> Viguo | s
m;_1 m1

andd. is the remaining part. The details of the derivation of (3.24) is omitted
here. Furthermore, it can be shown that for smooth dom@ins

10c]l 712y < OO flo,2

with

O(e) = Cre/ M 4 ¢y max

0).
m+1 i>m+1 €1 (77 = )

For convex polygonal domains, under the assumptions (3.21) the estimate
for 6. is similar to (3.22),

1/2 €
(3.25) 10cll 12y < Creyiq + Co [nax, —

4 H! estimates

For simplicity, we first present the estimates for problems with two scales
in detail. The multiscale case can be analyzed in a similar manner.

4.1 H! estimates for two scale case

In this section we analyze the MSFEM for three different cases: (3>
h > €3, (2) h > €1 > €9, and (3)e; > e > h. As in the standard FEM
we have Cea’s Lemma [13]:

Lemma 4.1. Letu and«” be the solutions of (2.1) and (2.6) respectively.
Then
(4.1) a0 < O2 fu— vl 0, Yo V"

Next we formulate two lemmas which will be used in the analysis of
MsFEM. In the formulations of these lemmas the domains a finite
element (e.g., rectangulay, € K", whose diameter is of ordér.

Lemma 4.2. Forany f € H'(K) we have

(4.2) £l ooy < CRMY2| f iy + ChTY2 fll i)

This lemma can be derived from the standard trace mequality [1] using the
scaling argument. We omit the proof of the lemma.
The next lemma is an interpolation inequality (see e.qg. [8]):

Lemma 4.3. If u € H}(K) (N H?(K), then
IVully ) < Chl|Aul| L, k)
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4.1.1 Case 1¢; > h > e
Theorem 4.4. Letu, andu” be the solution and MSFEM solution of (2.1)
respectively. Then

h 1/2
. — <C1— .
(4.3) lue —uflle <O+ o ()

Proof. Definev! € V" such that in eacli € K"
(4.4) vi(x) = (Iyu)(z Zagw

with a;; = ug(x;) whereuy is the partially homogenized part of over the
scalee, andz; are the nodal points of. Then in any elemen € K" we
have

(4.5) Va9V j(ue — M =f inkK,

wherev” on OK is a piecewise linear function whose values at the nodal
points areug(z;).
We divide the solution of (4.5) into two partsi. — v?) = (u. — v?), +
(ue — vM),, where(u, — o), and(u, — v?), satisfy
Via;Vi(ue—vl), = f inK,

4.6
(4.9 (ue —vM), =0 onoK;

Va7V ;(ue — v, =0 in K,
4.7) b N
(ue —v¢); = (ue —v) ONOK;

respectively(u. — v’*), can be estimated from (4.6) using the Lemma 4.3,

(4.8) (e = o)1 L () < CRAfll e

As for (u. — v?)Q, using the expansion over the scale v, = ug +
e2Xx' Vimuo + 0, and (4.7) we have

H (u€ B véL)QHHl(K)

h

< lue = vl gr2am)
X

ug + €axy' () Vimtio — ;' + ClOcll 1205
€2 HY/2(9K)

x
€X'\’ () Vintuo
€2

<C

< Clluo - U?HHl/Q(aK) +C

HY/2(9K)
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(4.9) +C|0c|l 1. (x)-
Combination of (4.8) and (4.9) gives
lue = |l i1 (xy < Crbll fllo.x + Cllvo — 02| a2 oxy
(4.10) +C|le2x™ (g) mUo|| g1/2050) + CllOell (s
The third term on the r.h.s. of this inequality can be estimated as

(4.11)

x
eax™ <> Vmuo
€2

H/2(0K)
1/2 1/2
e2x™" (x) Vmuo e2x" <x> Vimuo
€2 L (OK) €2 H(OK)

2 1/2 2
< Cﬁé/ HVUOHL/Q((?K) (HVUO||L2 oK) + El/ ]Vu0|jlq/12(aK )
- C162/ HVU’U”LQ(BK) + CGQHVUOHLQ(aK)‘vuoyHl (OK)

< Cey? (Vo) Lyiyh ™2 + C (e2h)? [Vug| g iy + C 1/2h1/2

€1

Inthe last step we have used Lemma 4.2 for the first term and the assumption
that|[uol|c2(0) < C/e1 (see (3.21)) for the second term.
For the second term on the r.h.s. of (4.10) we can write

(4.12) luo — v | /2 ox) = s L 9l

oK =ug—vh

Sincev! is the linear function oK we can extend it as a bilinear function
o" onto K. Noticing the fact that because of (4:4) and@” coincide at the
nodal points we have

(4.13) lJuo — U?HHl/Q(aK) < luo = 5| 1 () < Chluola,xc-
Combining (4.11) and (4.13) we have

1/2 —1/2

lue = v HVUOHLQ(K

(4.14) +Ce 1/2h1/2|Vu0\H1 () + C—Z 02 4+ [0 i

172
€1

Summing (4.14) over allk C K and using Cea’s lemma we get
3 2B Vo)l )
+ CallOc| 1 (2

||lue — u

C1/2h1/2|Vu0\ 1) + O
/ h/
€
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< <0h+06h+02,/6;+03”62h> If;
1 1

c 0,0
€9 €9
4.15 C c=+C .
( ) + ?h—i- - + Cy/eg

In the last step we have used (3.17) and the estimatédkdir; () (see
(3.22)). Note in (4.15)/eah /€1, €2/+/e1h, and,/e; are much smaller than
\/€2/h,andey/e; < h/e;. Thus, dropping the lower order terms and using

Cea’s lemma we get (4.3). a
4.1.2 Case 2h > €1 > €

Theorem 4.5. Letu, andu” be the solution and MSFEM solution of (2.1)
respectively. Then

€1\ 1

/2
(4.16) lue — ul |0 < 01h+02< ) Lo
h €1

Proof. We definev” as in (4.4) withuy denoting the fully homogenized
solution over the scalesg ande,. Using the partitionu, — v = (u, —

€

vM)1 + (ue — v?)2 asin case 1, and taking into account the inequality (4.8)
for (u. — v!*); and the expansion af. over the scales; andes,

X T
Ue = ug + e1x" (q) Vinuo + €2xy' <€2> Vmuo

X X /
+eax\' <62> <€1mel (q) VZU()) +0,

we have

(4.17)
l[te = vl (e
_h . h
‘(ue v€)1HH1(K) + H(UE vﬁ)gH}p(K)
< Ch| fllo,x + Cllue — U?HHW(@K)
Xz

< Ol flbe + C<||uo STy () Vo

X
€2X§\n <> Vo

€2 H'/2(0K)

xT o /
eaxy <> <61mel <> Vluo> H + 16 x| -
€2 €1 HY/2(9K)

<

HY/2(3K)

+

+
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Treating the third, fourth, and fifth terms on the r.h.s of (4.17) similarly as
in (4.11) (i.e., applying the interpolation inequality and Lemma 4.2), we get
[[ue — U?HHl(K)
< Ch|fllox + Cllue = vl grr2(ox) + Cerh™ [ Vuollo.x
+C6 Vgl i + Cerh? + O /%Hvuouw

(4.18) +Ceé/2h1/2\Vuo|1,K + Ceah!/? + CHG,HI,K-

For the second term on the r.h.s. of (4.18), sintés a linear function on
OK we can continue it as a bilinear functiéfi onto K. Noticing that the
values ofug and@” coincide at the nodal points we have

(4.19) lluo — 02|12 05y < N0 — 8211 sy < Chlluollz.x

Finally, summing (4.18) ovek’ ¢ K" and using (3.21), (4.19), and the fact
[uol2,0 < C|fllo,2 we get

e = oo < (1 [+ @)+ /2 4 (@) ?) [l
(4.20) +Ceh™ 2 4+ Ceah ™2 + 02 + O /e
€1

Here we have used the estimate (3.25]|ib'|ﬂ 1,0- In (4.20) we may neglect

Verh, el/\/ﬁ, and,/e; since they are lower order comparing wx\t,l‘é' 1/h.
Thus, (4.16) follows from (4.20) and Cea’s lemma. O

41.3Case3¢; > e > h

Theorem 4.6. Letu, andu” be the solution and MSFEM solution of (2.1)
respectively. Then

(4.21) e — ul

h
1,2 < C—|fllon
€2

Proof. Definev! as in (4.4) and take; to be the nodal value af, atz;.
Using the partition of.. — v* we obtain

(4.22) [ue — 0™ g1 iy < CR £

h
0. + [[ue = vl g2 (oK)

The continuation of” from 9K onto K as a bilinear interpolant af in K,
o, yields

(4.23) (e — ”?”Hl/Z(aK) < fJue — ﬁgHHl(K) < ChHue”Q,K‘

Summing (4.22) over alk’, using (4.23), (3.17), and Cea’s lemma we get
(4.21). O
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4.2 H' error estimates for many scale case

Assuming the order of is between the scales, 1 ande,, for m € [1,n],
i.e.,

EL> e >h>ent1 - > €,
we have the following result.

Theorem 4.7. Letu, andu” be the solution and MSFEM solution of (2.1)
respectively. Then

h 112
(428) luc—ull0 < Cr=—+ G () 7 4 €y max
€m h 1i>m+1 €1

Proof. The proof of this theorem is similar to the proof of the Theorem 4.4.
First we define” as in (4.4) witho; = ug(x;) whereuy is the partially ho-
mogenized part ai. over the scales,, 1, . . ., ,. Inthis case the expansion
of u. is given by (3.23),

ue = up(z,x/€1, - ,2/€m) +ui + 0,

whereu! is defined by (3.24). Furthermore ftyu,. — vQHHl(K) we have

(4.25)
[t = vl (1
< Ch| fllo,x + Cllue = 02l 17205
< Chl|fllo.x + Clluo — 02 | g2 05y + Clludll gz oy + CllON &

< Chllfllo,x + Chluolz,x + Cllucll girzary + CllON, k-

In the last step we extendegt on to K as the bilinear interpolant afy.
This gives us the following estimate

(4.26) luo = v | /21y < Chluolo,x-

Next to estimate the third term on the r.h.s. of (4.25) we use the following
inequality

(4.27) lulli o < C||Vuolloox + Céms1|Vuoli ok

In fact, by (3.24). can be written in the form of . () - Vug, whereC,(z)
contains the linear combinations of products@(é) (k=m+1,...,n)
and their gradients. Furthermore, it can be verified that

max |[VCe(z)| < C + 'glaﬁ(ei/q_l) <(C and
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max |[Ce(2)| < Cema,

and henc&/u! is bounded. Therefore,

Vuilloor < IVCe(x) - Vuolloar + ||Ce(x) - Vo ll0,0x
< max [VCe(2)|[[Vuollo,oxc + max |Ce()| 1V ?uoll0,05

< C|Vuglloox + Cemt1|Vuol1ok-

From (4.27), the interpolation inequality, the trace inequality (4.2), and
(3.21) it follows that

Hui ||H1/2(8K)

1141/2 111/2
S ||uEHL/2(8K)”u€||]_I/I(8K)

1/2 1/2 1/2 1/2
< C€7r{+1HVU0”L/2(aK) <HVU0HL/2(3K) + 6,,{+1\VUO\H1(3K))
< Cﬁ:,{ilHVUoHLQ(aK) + Cemyrem /202
< Cel2 W V2| Vugllo s + Cels (B2 Vg1 i
(4.28)  +Cepmy1h'/?e /2.

Substituting (4.28) into (4.25) and then summing (4.25) oveial K",
we have

1/2 41/2
€m h €, iqh
e = ot < C (h TV foc LA “) 17l
€m
+C\/% + CHQeHLQ
1/2 1172
m h e/ b
<C (h+ < h“ +—+ "‘*61) 1£1l0,2
Em+1 €i
4.2 .
( 9) +C\/€mh * ngln?fl €i—1

The estimate (4.24) follows from (4.29), (3.25) (estimaté|@f|; ;), and
Cea’s lemma. The lower order terms wit{< h/¢,,) and with/€,,+1h/
€ms €m+1/Vemh, and /e, 1 (which are asymptotically smaller than

\/€m+1/h) are neglected. 0

Remark 4.1.The estimate (4.24) shows that the error becomes larger as
approaches eithey, ore,,+1. Thisis the resonance phenomenon mentioned
in the introduction. Furthermore, we see from (4.29) that both resonance
errors dominate wheh ~ €, orh ~ €,,11.
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5 L, estimates

In this section we derive the, estimates using thH ! estimates along with

the duality argument. Because some terms inAHeestimate (4.29) can

not be expressed througjif|o .2, the estimates we obtain from the duality
argumentis not optimum whenis not comparable with the physical scales.
The estimates do capture the correct order of the resonance error, which
are the leading order error wheérnis comparable with the physical scales.
Employing the method introduced in [13], which compares the discrete
values of the solution and the numerical solution, we can show that the order
of the method is not affected by those small terms not expressed through
|| fllo,2- The present approach, however, is more concise to present. We use
the following abstract lemma.

Lemma 5.1. Letw and«” be the solutions of (2.3) and (2.6) respectively
with V" consisting of conforming base functions. If

(5.1) Ju—u"[1,0 < Crvllf

‘079 + C%9

wherey andé are small positive quantitieg); > 0, Cy > 0, then

lu—u"o.0 < C3v?|| fllo.c + Cur/ Y6 fllo,2 + Cs0

Proof. We use Aubin-Nitshe trick as follows: Lat be the solution of (2.3)
with f = u — u”, i.e.w € H} () satisfies

(5.2) a(w,v) = (u—u"v), Yve HHN).
Letw;, € V" be the interpolant ofv. Then (5.1) implies
(5.3) Jw — w10 < Ciyllu —u"|lo,0 + Cad.

Choosingv = u — " in (5.2) we have

lu — "5 o = a(u —u, w)

= a(u —ul,w —wp)

< Bllu = uf|10llw —wrll,e

< B(CY[Ifllo. + C28)(Cryllu — u"|jo.0 + Cad)

< lu — u"lo,2(C17?|| fllo,2 + C267) + C7l| fllo,2
(5.4) +C16°%.

Therefore,

lu = u"lo,2 < [C172 fllo.2 + C187|
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/(@121 o2 + C107)* + 4(Cov [ fllo.o + C1?)
< C¥?|fllo,2 + Cr67 + C¥?| fllo.o + C1dy

+C21/ 07| fllo,2 + C36
5.5 < C~? Ci/~6 Cs0.
(5.5) < Cy: | fllo,2 + Ciy /70 fllo,e + Cs .

In our H' estimatesy contains the resonance errors which may become
O(1) depending on the mesh sizeOn the other hand,is an asymptotically
small quantity independent of the mesh size. In particulas: C(h +
6717{_2._1/hl/2 + h/em + eiﬁlhl/z/em) andj = C€m+1€;11/2h_1/2 + O(e)
for our problem (see (4.29)). Note that whefmecomes comparable with
any physical scale is of order one whiley remains asymptotically small.
Consequently, the tergi~4 is an asymptotically small quantity which does
not resonate at any scale of the problemj/ed = O(¢) (see Remark 3.3).
Thusy? is the dominating resonance error whemecomes comparable with
the physical scales. Itis worth to note that some termsinds (see(4.29)) in
our problem do not change when we decrease the mesh size and the physical
scales at the same time but remain asymptotically negligible. These terms
can be called lower order resonance terms.

Applying Lemma 5.1 to the cases analyzed in Sect. 4 we have the fol-
lowing resonance errors:

Theorem 5.2. Letu, andu” be the solution and MSFEM solution of (2.1)
respectively. Then we have the following resonance errors ir.therror
estimates:

1. Cases; > h > €.

(5.6) lue = ulllo.o < Ci (2)2 + 02%
2. Caseh > €1 > €.

(5.7) [ §01h2+6‘2%
3. Case > e > h.

(5.8) ue — w00 < C (%)2

4. Case; > - > e > h> €ni1- > €.

h\?2 €m,
(5.9) e = utllo.0 < €y () ro,
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6 Numerical experiments

In this section we study the convergence and the accuracy of the multiscale
method through numerical experiments. The model problem is solved by
using the multiscale method with the base functions defined by (2.5) and
the linear boundary conditions. Since it is very difficult to construct a test
problem with both exact solution and sufficient generality, we use resolved
numerical solutions in place of exact solutions. The numerical results are
compared with the theoretical analysis.

The implementations of the multiscale method has been given in [11].
Here we outline the implementation and define some notations to be used
below. All computations are performed on a unit square domainJ?2.e-,

(0,1) x (0,1). Let N be the number of elements inandy directions.
The mesh size is thus = 1/N. To compute the base functions, each
element discretized intd/ x M subcell elements with size &f = h/M.
Rectangular elements are used in all numerical tests.

To solve the subcell problem, we use the standard linear finite element
method. After solving the base functions, the local stiffness matrix and
the right hand side are computed using numerical quadrature rules. We
compute the gradients of a base function at the center of a subcell elementand
use two-dimensional centered trapezoidal rule for the volume integration.
This procedure ensures that the entries of the stiffness matrix are computed
with second order accuracy. In our computations, we only solve three base
functions, i.e.,¢* (i = 1,2,3). The fourth one is obtained from* =
1— ¢1 _ ¢2 _ ¢3.

In all examples below, the resolved solutions are obtained using linear
FEM. Given the wave length of small scalgsandes, we solve the model
problem twice on two meshes with one mesh size being twice of other. Then
the Richardson extrapolation is used to approximate the exact solutions from
numerical solutions on two meshes. Throughout our numerical experiments,
both of the mesh sizes used to compute the well resolved solution are less
thane/8, so that the error of the extrapolated solutions is lessltbrat.

The main difficulty in our tests is that the choices of well separated
physical small scales for test problems are severely limited by the available
computer memory. Our parallel implementation of the multiscale method
on an Intel Paragon computer with 512 processors enables us to test the
two scale problem. Even so, we are limited to testing the casescwith
h > e ande; > e9 > h. The case withh > €1 > e with small mesh
size h requires the value of; to be very small in order for the resonance
error to be noticeable in numerical tests (recall that except the resonance
errors there are errors associated withie;, see (4.20) and (5.5)). This
(the smallness oé;) makes it impossible to calculate the fully resolved
(benchmark) solution in the whole domain using the traditional FEM with
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our computer resources. Thus, it is difficult calculate the numerical error or
the convergence of MSFEM.

The case withh in between the two physical scales is generic and im-
portant for practical purposes. As indicated by Theorem 6.2 theorm
error is given by

h 2 €9
(6.1) Ch () + Co—,
€1 h
which consists of two resonance error. One would expect that whien
close toe; the first term dominates and wheiis close toe, the second term
dominates. This asymptotic observation, however, is not always reflected by
the numerical results shown below. There are two reasons. Firstly, the con-
stants(; andC5, may differ by a large factor which is problem dependent.
Secondly, it is difficult to choose well separatgdande, in the numerical
computations. Therefore, the two error may interact with each other. Instead
of verifying each of them, in the following, we show that the numerical error
does follow the estimate in whole. Furthermore, we use a least square fitting
to obtain the constants; andCs in (6.1). These constants indicate the rel-
ative magnitude of the two terms. More discussions along with numerical
examples can be found in [10].
Again due to limitation of computing resources, in all tests betg\and
€9 are fixed during the tests and we only allévio vary.

Example 1In this example, we solve (2.1) with= —1, u|s, = 0, and

iy ij
(6.2) a’ = - QW;S 2y’
3+ sin(=2%) + cos()

€2

wheres are the Kroneker's symbols.

First we present the numerical examples to demonstrate the convergence
rate (6.1). The error estimate (6.1) corresponds to the Gase h > es.
In our numerical examples we fix the valuesegfandes, ¢4 = 0.5 and
€2 = 0.005, and varyh betweere; ande,. In the Table 6.1 we compare the
discretd, errors between the MsFEM solution and the refined solution. The
presence of both? /2 andey/h can be observed from this table. Indeed
if h is close toe; the convergence rate of the method is the second order
with respect taq, and if i is close toe, the convergence rate of the method
is negative first order (see (6.1)). Notice that because there are lower order
errors (see (4.15) and (5.5)) except the leading resonance errors we observe
some deviation from (6.1). Furthermore, in Fig. 6.1 we try to find the best
fitin the form of (6.1) to the, errors given in the Table 6.1. Using the least
square method we compute the valuepfandC, in (6.1) for this best
fit. The computed values @, = 5e¢ — 4 andCs = 1.5¢ — 3 indicate that
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0.5F

*

n
0.08

" n
0.1 0.12

Fig. 6.1.
Table 6.1. ||juc — ul||;, fore; > h>> e
h lo rate
1/8 9.42e-4
1/16 1.61le-4 2.5
1/32 1.87e-4
1/64 5.08e-4 -1.44
1/128 9.77e-4 -0.94
1/256 2.0le-3 -1.04

Table 6.2. ||ue — u”||;, and|luc — u”|);. forh < e2 € 1
h l2 rate loo rate

1/32 1.10e-3 2.04e-3

1/64 3.22e-4 1.77 5.89% -4 1.79
1/128 8.40e-5 1.98 1.52e-4 1.95
1/256 2.09e-5 2.00 3.79e-5 2.00
1/512 4.90e-6 2.09 8.93e-6 2.08
1/1024 1.22e-6 2.00 2.22e-6 2.00

the second term in (6.1) has larger weight than the first term. Recall that the
second term in (6.1) is due to capturing the small scales on the large scales.
The discrepancy between the best fit in the form (6.1) and the diderete
errors in the Fig. 6.1 is due to the lower order errors inftherror estimate.

The result of the numerical experiments for the cAs& e; < € is
shown in Table 6.2. In this table we compare the disdkeegrors between
the MsSFEM solution and the refined solution for fixed values,;cdinde,,
€1 = 0.2 ande; = 0.08. The theoretical results of the previous sections
predict the second order convergence raté for the resonance error. As
it can be observed that the convergence rate of MSFEM is the second order

with respect toh.
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Table 6.3. ||uc — u”||i, fore; > h > e

h lo rate
1/8 2.15e-3
1/16 5.28e-4 2.02
1/32  3.28e-4
1/64 1.75e-4

1/128 1.60e-4

Example 2In our next example, we consider the equation (2.1) with 0
and linear boundary conditions|s, = x, and

i — <2—|—sin(2m¢/61) 2+cos27r(y/61)>
2+ cos(2my/e1) 2+ sin(2mx/er)
2 +sin(2rx/ea) 2+ cos(2my/ea)\ s
(6.3) X (2 tcos(2my/es) | 2+ sin(27rm/ez)> o

wheres are Kronoker's symbols.

As in the first example we fix; = 0.125 andey = 0.0078125 and vary
the mesh sizé betweene; andes. In the Table 6.3 the discrele errors
between the computed solution using MsFEM and the refined solution are
presented. As we see from this table the resonancesgyflodoes not appear
explicitly for the mesh sizé = O(ey). The reason for this is the large weight
of C1 in (6.1) which suppresses the teegyh. As in the previous example
using the least square method we find the best fit in the form (6.1) to the
discretd, error data given in the Table 6.3. The constartaindC, for this
bestfitare”; = 2.1 x 1073 andCy = 2.0 x 10~%. Consequently, the? /2
term in (6.1) has larger weight than thg/h term. The fitted curve as well
as the data points for the numerical error are plotted in Fig. 6.2. It shows that
the error varies consistently with the estimate (6.1). The deviation between
the computed, errors and the best fit of the form (6.1) is due to the lower
order errors in thd., error estimate (see (4.15) and (5.5)).

Example 3In our last example we takg = —1, andu|g, = 0 while
definingal by (6.3). In the Table 6.4 we present the disctetaror between

the refined solution and the solution computed with the use of MsFEM for
the fixede; = 0.125 andes = 0.0078125. As in the previous examples the
mesh sizéh varies between; andey. As we can see from this table that the
presence of both? /2 ande, /h terms (see (6.1)) appearfabecomes close

to €; andes, respectively. Using the least square method we can compute
the values of”; andC» (C; = 0.79 x 1074, Cy = 0.29 x 10~*) for which

the expression (6.1) approximates theerror data given in the Table 6.4.
The discreté; error data between the solution computed using MsFEM and
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x10

0.5F

Fig. 6.2.

Table 6.4. ||uc — ul||;, fore; > h>> e

h lo rate
1/8 8.25e-5
1/16 1.92e-5 2.10
1/32 1.77e-5
1/64 1.17e-5

1/128 3.04e-5 -1.38

Table 6.5. |juc — u?||, and|luc — u||; forh < e2 < e

h l2 rate loo rate

1/64 1.14e-5 2.84e-5

1/128 2.8le-6 2.02 5.79e-6 2.29
1/256  7.13e-7 197 1.56e-6 1.89
1/512 1.69e-7 2.07 3.9le-7 2.00
1/1024 3.33e-8 2.35 1.01le-7 1.95

the refined solution for the cage< ¢; < €7 is shown in Table 6.5, where
the second order convergence of MSFEM can be observed.

7 Concluding remarks and generalizations

The purpose of the multiscale method is to provide a systematic approach
to capture the small scale effect on large scales when we cannot afford to
resolve all the small scale features in the physical solution. Our study shows
that MsFEM is a robust method for practical multiple scale problems. In
particular, the method works for multiple scale problems and the mesh size
can be chosen to be between the two physical scales. We note that there are
two types of resonance error, one from resolving the large scales, the other
from capturing the small scales. The second type of error is caused by the
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artificial boundary layers in our base functions. This important issue and
its numerical resolution, e.g., the over-sampling method, has been analyzed
for problems with one small scale [9]. They will be further studied in the
multiple scale cases in our subsequent work.

The first type of resonance error is common among traditional finite
difference and finite element methods. The traditional approaches, however,
cannot capture the small scales. To reduce this error, a natural idea is to
generalize MSFEM to higher order in the sense that the large scales are
more accurately resolved. The idea is to construct base functions such that
their homogenized parts consist of higher order polynomials than linear
(bilinear) functions. This can be achieved by changing the linear boundary
condition of the base functions to higher order polynomials.

DenotingS” as a finite dimensional subspacef ({2) such that for
any

b(u,v) = / Vi(x/er,. .., x/e)ViuV vde
2

with b (yy, ..., yx) are sufficiently smooth periodic functions in (i =
1,...,k) in aunit cubep|¢]? < bIEE; < BIE)?, ander > e > - >
€x > h we have

h, n
(7.1) Ju—ul10 < C () :
€k

whereu € H}($2) is the solution ob(u,v) = (f,v) for anyv € H} ()
andu € S" is the solution of(u", v") = (f,v") for anyv" € S*. For
exampleS* can be the space spanned by high order polynomials of degree
n [8]. In each elemenk € K" we denoteP:- € S (i = 1,...,d) a set of
nodal basis of”. Then the high order multiscale base functions are given
by ¢% (i = 1,...,d), which satisfy (2.5) and the boundary conditions

(7.2) dllor = Pilox.

It can be shown that with these high order multiscale base functions we have

€m h i>m+1 €;1

(7.3) lue —ulf1,0 < Ch+c< . ) +Cyy/ ™ 1 € max

instead of (4.24). The outline of the proof is the following. We continfie
on to K as in (4.26). The nodal values of the interpolanin (4.4) can be
defined as those af* satisfying (7.1). Then taking into account the estimates
for ! andd of Sect. 4.2 we can conclude (7.3). We nSteneeds not to be

a subspace off!, e.g.,S" can consists of nonconforming multiscale base
functions.
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The estimate (7.3) can also be obtained for the smooth domaiNste
thatinthis case we have the smoothness ¢dnd any partially homogenized
part of it) for fixede. The difficulty in derivingH ' norm estimate for MSFEM
in this case is in the calculation of the multiscale base functions near the
boundaryo (2. There are various ways to treat curve boundaries in the finite
element methods. In fact, following the triangulationfdfn [18] and using
the nodal base functions constructed in that paper to provide the boundary
conditions for the multiscale base functions, we can show that (7.3) holds
on the smooth domain.

Finally we would like to note that the assumption (3.21) which requires
some compatibility conditions for the problem is not necessary for deriving
the H' estimates. Without this assumption it can be shown that

lue = ug e

_ 1/2—=1/py1/2+41/p
h m+1\1/2-1/p € h
§C<h++<6 “) + /et >

€m, h €m,

(7.4) X[ fllo,2 4 110c|l1,02

wherep > 2 is an arbitrary constant. Because of the insufficient smoothness
of the homogenized parts of the solution near the corner points of the domain
(2, therate of convergence . ||, » to zeroas — 0O deteriorates depending
on the parameters of the problem.

In order to show the estimate (7.4) we only need to reestimate

[ uéll 1172 (o) 0 (4.25),

lue = vl i1 (xy < Chllfllo.x + Chluola, i + Clludll gz or)
(7.5) +C6|

Here we derive this estimate only for the two scale case- h > ¢,. The
derivation for the general scale case is similar. In the case> h > e,
ul = egxm(é)vmug‘.

Introducing the family of boundary function in K as in Sect. 3 with
the properties 1 and 2 we have

T
vz o) = [Jeax™ <) V)
€2

1L,K-

HY/2(3K)

IN

T
ea (1 — 1) x™ <62> Vmué

H(K)

IN

T
ea (1 —7e) x™ <62> Vmué

La(K)

+

T
V1™ <62> Vmué

La(K)
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e (1—7)V <Xm <6"’;>> Vo tid

ea (1 — 7)) x™ <6x2> vaué

+

La(K)

(7.6) +

La(K)

Denoting the support df— 7. by S we have meds$) < Cexh. Furthermore
taking into account thdta Vx| < C and|ea V7| < C we can estimate the
r.h.s of (7.6) as

luell /2 ary < Cealuolm k) + Cluola(s)
(7.7) +C’|u0]H1 + C€2‘UO|H2

For the estimate of Vuol|1,(s) we use the following mequalities [19]:

V]l Lys) < (Meags)) > P |ol|s), p>2

and

0]l 2, (x) < ChT 2P 0]l Ly i) + CRP /Blol iy, p > 1

Then

luol sy < Cle2h) > 2| Vgl s)
< Cleah) 2718 (W22 V| 1) + WP/l V ol i )
< Clea/n) >~ V| o )

(7.8) +C(eh) Y EHYPRAP DIV ug| g .-

Furthermore combining the estimates (7.7) and (7.8) we have

oy < C<(€2/h)1/2_1/”HVUOIILz(K)

(7.9) +(6;/2—1/ph1/2+1/p\/f,Jr 62)|U0H2(K))-

Finally summing (7.5) over alkk we obtain (7.4). As we see the estimate
(7.4) is slightly weaker than (4.29). Note tr@lﬂ*l/phl/“”?’\/ﬁ/q is
asymptotically small.
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