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Summary. In this paper, we study a multiscale finite element method for
solving a class of elliptic problems with finite number of well separated
scales. The method is designed to efficiently capture the large scale be-
havior of the solution without resolving all small scale features. This is
accomplished by constructing the multiscale finite element base functions
that are adaptive to the local property of the differential operator. The con-
struction of the base functions is fully decoupled from element to element;
thus the method is perfectly parallel and is naturally adapted to massively
parallel computers.Wepresent the convergenceanalysis of themethodalong
with the results of our numerical experiments. Some generalizations of the
multiscale finite element method are also discussed.

Mathematics Subject Classification (1991):65N30

1 Introduction

Multiscale problems occur in many scientific and engineering disciplines,
such as material science, earth and environmental science, petroleum engi-
neering, just to name a few. These problems are characterized by the great
number of spatial and time scales. They are difficult to analyze theoretically
or solve numerically.
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When a standard finite element or finite difference method is applied to
the multiscale problems, the degrees of freedom of the resulting discrete
system can be extremely large due to the necessary resolution for achieving
meaningful (convergent) results. Limited by computing resources, many
practical problems are still beyond the reach of direct simulations. On the
other hand, the large scale features of the solutions are often of the main
interest. Thus, it is desirable to have a numerical method that can capture
the effect of small scales on large scales without resolving the small scale
details.

Here we analyze the multiscale finite element method (MsFEM) intro-
duced in [13] for solving elliptic problems with oscillatory coefficients.
The method has been successfully applied to flows and transport in random
porous media [11,12]. Similar methods for transport problems in oscilla-
tory velocity fields and wave propagation through random media are also
developed and will be reported separately. The purpose of this paper is to
further establish the mathematical foundation of MsFEM. In particular, we
provide estimates for MsFEM when it is applied to elliptic problems with
finite number of well separated scales.

The idea of multiscale finite element method is to capture small scale
information through the base functions constructed in the elements whose
sizes are much larger than the the small scales of the problem and much
smaller than the characteristic large scale of the problem. This is achieved
by solving the finite element base functions from the leading order of homo-
geneous elliptic equation. In this way, the information at scales smaller than
the mesh size is built into the base functions. These base functions are in
general oscillatory. We remark that special base functions in finite element
methods have been used by several authors in capturingmultiscale solutions
of PDE’s. In particular, the works presented in [17,5,7,14] aremost relevant
to the multiscale finite element method [13].

The advantage of MsFEM is its ability to reduce the size of a large
scale computation. This offers significant savings in computer memory. For
example, letN be the number of elements in each spatial direction, and
letM be the number of subcell elements in each direction for solving the
base functions. Then there are total(MN)n (n is the dimension) elements
at the fine grid level. For a traditional FEM, the computer memory needed
for solving the problem on the fine grid isO(MnNn). In contrast, MsFEM
requires onlyO(Mn+Nn) amount of thememory. More discussions about
the computational features of MsFEM can be found in [11].

In practice, many problems may have multiple scales ranging over a
large interval. For example, in ground-water transport problems the scales
can range from fine clay10−4mm to the coarse sand 1mm or gravels up
to 60mm. Other problems may have continuous scales. In this paper, we
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analyze theMsFEMfor theproblemswithmultiplebutwell separatedscales.
The latter problems are more difficult to analyze. We hope the present work
could bridge the gap between the analyses of problems with and without
scale separations.

Let εk (k = 1, . . . , n) be a sequence of decreasingwell separated scales.
Weanalyze the convergence rate ofMsFEM for different choicesof themesh
sizes,h. Thus,h � εn corresponds towell-resolveddirect calculation,while
1 � h � ε1 corresponds to the other extreme where only the largest scale
feature are retained in the final solution. Inmost cases, however,h is between
two neighboring small scalesεk andεk+1.We establishH1 andL2 estimates
for these three cases. For the most generic case withεk � h � εk+1, the
leading orderH1 norm error of MsFEM isC1

√
εk+1/h + C2h/εk. The

first term in the estimate is due to the capturing the scales smaller than
εk+1 through the multiscale base functions, the second term is the error of
resolving scales larger thanεk with the homogenized part of the multiscale
base functions.

As it can be noticed from theH1 error estimate, a straightforward im-
plementation of multiscale finite element method would fail if themesh size
is close to the small scales in the physical solution. This is an important
phenomenon common in other upscaling methods, i.e., the resonance be-
tween the mesh scale and small physical scales. The improvement of the
resonance error requires a new method of capturing the small scale effect
[12,9]. The second part of the error can also be improved. By changing the
boundary conditions of the multiscale base functions, the homogenized part
of the base function becomes higher order polynomials. Thus, we can obtain
better convergence of orderh + (h/εk)m +

√
εk+1/h with integerm > 1.

For the analysis of MsFEM we use theH1 estimates for the first order
correctorsofpartiallyhomogenizedsolutionsofproblemswithfinitenumber
of well separated scales. We present these estimates in the paper as they
are not available in the literature. We would like to mention that in [2]
a convergence result of homogenization (without estimate of convergence
rate) has been obtained for the case with infinite number of scales.

We also present theL2 estimates for MsFEM. The structure of the esti-
mates are similar to that of theH1 norm estimates. Because of some small
terms in theH1 estimate, which cannot be expressed through theL2 norm
of the source term of the problem, theL2 norm estimate we derived in the
Aubin-Nitsche fashion contains some overestimated terms. These terms,
however, contain no resonance effect. Therefore, ourL2 estimate of the
resonance error is tight. Moreover, the overestimated terms can indeed be
eliminated by using the method introduced in [13], which compares the
solution and its numerical counterpart at discrete nodal points.
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Our error estimates are confirmed by our numerical experiments. The
computations are extremely large and are done on parallel computers, e.g.,
the Intel Paragon computer. Even so, we can only test two scale problems.
We confirm theL2 estimate when the mesh size is between the physical
scalesε1 andε2, i.e.ε1 � h � ε2. The computations encounter difficulties
because memory limitation prevents us from choosing well separated small
scales in the tests. Consequently, it is difficult to separately verify each
resonance error in theL2 estimates, i.e.,C1h

2/ε21 andC2ε2/h. But different
numerical examples demonstrate that in some cases either one of them can
be dominating, whereas in other cases both may be important. Results for
h � ε2 � ε1 are also presented.

The rest of the paper is organized as follows: The formulations of the
2-D problem andmultiscale finite elementmethod are introduced in the next
section. In Sect. 3 we estimate the first order correctors for partially homog-
enized solutions. In Sects. 4 and 5 we deriveH1 andL2 error estimates for
MsFEM. The numerical results are presented in Sect. 6. The higher order
MsFEM and other possible generalizations are discussed in the concluding
remarks.

2 Formulations

In this section we introduce the model problem and the multiscale finite
element method. In the paper the Einstein summation convention is used:
summation is taken over repeated indices. Throughout the paper, we use the
L2(Ω) based Sobolev spacesHk(Ω) equipped with norms and seminorms:

‖u‖k,Ω =


∫

Ω

∑
|α|≤k

|Dαu|2



1/2

,

|u|k,Ω =


∫

Ω

∑
|α|=k

|Dαu|2



1/2

.

H1
0 (Ω) consists of those functions inH1(Ω) that vanish on∂Ω. H−1(Ω)

is dual space ofH1
0 (Ω), i.e. the set of all continuous linear functionals on

H1
0 (Ω). We defineH1/2(∂Ω) as the trace on∂Ω of all functions inH1(Ω)

with the norm‖v‖1/2,∂Ω = inf ‖u‖1,Ω where the infimum is taken over all
u ∈ H1(Ω) with the tracev. In the paper the spaceCk(Ω), continuous
functions along with theirkth derivatives is equipped with the norm

‖u‖Ck(Ω) =
k∑

α=0

max
Ω

|Dαu|.
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Throughout,C (withorwithout subscripts) denotesageneric constant,which
is independent ofε andh (mesh size), unless otherwise stated andC +C =
C,C ·C = C. When no confusion is possible the same symbol may denote
different constants in different places.

Consider the following elliptic model problem

Lεu = f in Ω, u = 0 on∂Ω,(2.1)

whereLε = ∇ia
ij
ε ∇j is the linear elliptic operator,ε is a small parameter,

andaεij is symmetric and satisfiesα|ξ|2 ≤ ξia
ε
ijξj ≤ β|ξ|2 for all ξ ∈ R2

with 0 < α < β < ∞, andf ∈ C0(Ω).
Furthermore, we assume thataε(x) has the form:

aij
ε = aij

(
x

ε1
,
x

ε2
, . . . ,

x

εn

)
(2.2)

whereε1 � ε2 � · · · � εn is a set of n ordered length scales, which all
depend on a single parameterε. For example,εi, i = 1, . . . , n are some
powers ofε, εpi with p1 < p2 < · · · < pn. Moreover, for simplicity we
assumeaij(y1, y2, . . . , yn) to be sufficiently smooth periodic functions inyi
(i = 1, . . . , n) in aunit cubeY (e.g.,aij ∈ C1). This smoothnessassumption
is convenient but not crucial for our analysis here.WehaveanalyzedMsFEM
for the problems with discontinuous coefficients in [10]. In the following,
we assumeΩ = (0, 1) × (0, 1) ⊂ R2.

Variational problem of (2.1) is to seeku ∈ H1
0 (Ω) s.t.

a(u, v) = f(v), ∀v ∈ H1
0 (Ω),(2.3)

where

a(u, v) =
∫
Ω
aij
ε

∂u

∂xi

∂v

∂xj
dx, f(v) =

∫
Ω
fvdx.(2.4)

It is easy to see that the bilinear forma(·, ·) is elliptic and continuous.
A finite element method is obtained by restricting the weak formulation

(2.3) to a finite dimensional subspace ofH1
0 (Ω). For 0 < h ≤ 1, letKh

be a partition ofΩ of rectanglesK with diameter lessh, which is defined
by an axi-parallel rectangular mesh. In each elementK ∈ Kh, we define
a set of nodal basis{φiK}, i = 1, . . . , d, with d(= 4) being the number of
nodes of the element. We will neglect the subscriptK when working in one
element. In our multiscale method,φi satisfies

Lεφ
i = 0 in K ∈ Kh.(2.5)

Let xj ∈ K (j = 1, . . . , d) be the nodal points ofK. As usual we
requireφi(xj) = δij . One needs to specify the boundary condition ofφi for
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the well-poseness of (2.5). We will assume that the base functions are linear
on each side of on the boundary (unless otherwise stated). So we have:

V h = span{φiK ; i = 1, . . . , d, K ⊂ Kh} ⊂ H1
0 (Ω).

In the following we study the approximate solution of (2.3) inV h, i.e.,
uh ∈ V h such that

a(uh, v) = f(v), ∀v ∈ V h.(2.6)

3 Estimates for first order correctors

In this section we review the homogenization theory of (2.1) [6,2] and
estimate thefirst order correctors, namely thedifferencebetween thesolution
and itsH1 approximater. The main difficulty in this estimate is to express
theH1 norm of the first order corrector through right-hand side of (2.1), i.e.
‖f‖0,Ω. This is essential for the use of Aubin-Nitsche trick in theL2 analysis
of MsFEM. In Lemma 3.1 we prove such a result for smooth domains.
However, for convex polygons we could not obtain the similar estimate. As
shown later, this leads to a slightly overestimatedL2 norm error.

We consider the case with two scale cases:

∇ia
ij
(
x

ε1
,
x

ε2

)
∇juε = f in Ω, uε = 0 on∂Ω(3.1)

wheref ∈ L2(Ω) andε1 � ε2. For further conveniencewe takey = x
ε1
and

z = x
ε2
. Fixing x

ε1
= λ as a parameter we consideraij( x

ε1
, x
ε2

) as a family of
functionsaij(λ, z) whereλ is a parameter. By the assumption made in the
previous section,a(λ, z) isz periodic for anyλ andα|ξ|2 ≤ ξia

ij(λ, z)ξj ≤
β|ξ|2 for all ξ ∈ R2 with 0 < α < β < ∞. Then the family of operators,

Aε
λ =

∂

∂xi
aij
(
λ,

x

ε2

)
∂

∂xj
,(3.2)

can be homogenized by the standard homogenization rule,λ being a param-
eter. Furthermore we homogenizeAε

λ with respect toε1. Thus

∂

∂xi
aij
(
x

ε1
,
x

ε2

)
∂

∂xj
,(3.3)

is homogenized in two steps by the reiterated homogenization. More specif-
ically, we defineχk

λ(z) on Z = (0, 1) × (0, 1) as the periodic solution
of

∂

∂zi
aij(λ, z)

∂(χk
λ(z) + zk)
∂zj

= 0,(3.4)
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such that
∫
Z χk

λ(z) = 0. Then the homogenized operator forAε
λ is given by

Aλ =
∂

∂xi
aij
λ

∂

∂xj
(3.5)

where

aij
λ =

1
|Z|

∫
Z
akl(λ, z)

∂(χi
λ + zi)
∂zk

∂(χj
λ + zj)
∂zl

dz.(3.6)

Now taking into account thatλ = y = x
ε1
,Aλ can be homogenized as

A0 =
∂

∂xi
aij

0
∂

∂xj

where

aij
0 =

1
|Y |

∫
Y
akl(y)

∂(χi + yi)
∂yk

∂(χj + yj)
∂yl

dy(3.7)

andχj is the periodic solution ofAλ(χj − yj) = 0, such that
∫
Y χj = 0.

Remark 3.1.The reiterated homogenization procedure can be used for the
n-scale case. DenotingH as the partial homogenization operator we have

a0 = H ◦ H ◦ · · · ◦ H ◦ a
(
x

ε1
,
x

ε2
, . . . ,

x

εn

)
.

Following the homogenization steps represented above we can approx-
imate the solution of (3.1) as

uε = uλ0 + ε2χ
m
λ

(
x

ε2

)
∇mu

λ
0 + θε(3.8)

whereuλ0 is the solution of

Aλu
λ
0 = f in Ω, uλ0 = 0 on∂Ω.(3.9)

Lemma 3.1. Letθε be the solution of (3.8), then under the assumption that
∂Ω is sufficiently smooth we have

‖θε‖H1(Ω) ≤
(
C1ε

1/(2+η)
2 + C2

ε2
ε1

)
‖f‖0,Ω(3.10)

whereη > 0 is an arbitrary positive number.
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Proof. The proof of this lemma uses the notations introduced earlier. De-
notingu1

ε = uλ0 + ε2χ
m
λ ( x

ε2
)∇mu

λ
0 we can writea

ij
ε ∇ju

1
ε as:

aij
ε ∇ju

1
ε = (aij

ε + aik
ε ∇z

kχ
j
λ)∇ju

λ
0 + ε2a

ij
ε χ

m
λ ∇j∇mu

λ
0

= aij
λ∇ju

λ
0 + gji∇ju

λ
0 + ε2a

ij
ε χ

m
λ ∇j∇mu

λ
0

(3.11)

wheregji = aij
ε + aik

ε ∇z
kχ

j
λ − aij

λ with ∇z
k denoting∂/∂zk. Using (3.4) and

the fact that∇ia
ij
λ∇j is a partially homogenized operator for (3.3) we have∫

Z
gji dz = 0 and

∂

∂zi
gji = 0.(3.12)

Thus,gki is aperiodic solenoidal vectorwith averagezero. It canbeexpressed
as [15]

gki =
∂

∂zj
αk
ij(y, z)

whereαk
ij = −αk

ji andα
k
ij ∈ (L2(Y ), H1(Z)). Using this representation

we can write (3.11) as

aij
ε ∇ju

1
ε = aij

λ∇ju
λ
0 + ε2

∂

∂xj

(
αk
ij (y, z)

∂

∂xk
uλ0

)
− ε2
ε1

∂

∂yj

(
αk
ij

∂

∂xk
uλ0

)

−ε2α
k
ij (y, z)

∂2

∂xj∂xk
uλ0 + ε2a

ij
ε χ

m
λ ∇j∇mu

λ
0 .(3.13)

Denoting the last two terms on the r.h.s. byriε, from (3.1), (3.8), and (3.9)
we have

∇ia
ij
ε ∇jθε = −div rε in Ω,

θε = ε2χ
m
λ

(
x

ε2

)
∇mu

λ
0 on ∂Ω.

(3.14)

Equation (3.14) along with the regularity properties for the solution of the
elliptic PDE gives

‖θε‖H1(Ω) ≤ C‖div rε‖−1,Ω + C‖ε2χm
λ

(
x

ε2

)
∇mu

λ
0‖H1/2(∂Ω).(3.15)

Furthermore using the fact that‖div p‖−1,Ω ≤ C‖p‖0,Ω for anyp ∈ L2(Ω)
we have

‖div rε‖−1,Ω ≤ C‖rε‖0,Ω ≤ C

∥∥∥∥ε2αk
ij(y, z)

∂2

∂xj∂xk
uλ0

∥∥∥∥
0,Ω

+ C‖ε2aij
ε ∇j∇mu

λ
0‖0,Ω

≤ Cε2|uλ0 |2,Ω ≤ C
ε2
ε1

‖f‖0,Ω.

(3.16)
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In the last step we have used

|uλ0 |2,Ω ≤ C

ε1
‖f‖0,Ω(3.17)

which can be shown following [16].
To estimate of the second term on the r.h.s. of (3.15) we use∥∥∥∥ε2χm

λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
H1/2(∂Ω)

= inf ‖φ‖1,Ω,(3.18)

where theinf is over allφ satisfyingφ = ε2χ
m
λ ( x

ε2
)∇mu

λ
0 on the boundary

∂Ω. For the construction of the continuation ofε2χm
λ ( x

ε2
)∇mu

λ
0 on toΩ

we introduce a family of boundary functionsτ ε satisfying the following
conditions [15].

1. τ ε ∈ C∞
0 (Ω), 0 ≤ τ ε ≤ 1, τ ε = 1 outside theε2 neighborhood of∂Ω.

2. ε2|∇τ ε| ≤ C in Ω, where the constantC does not depend onεi (i=1,2).
Such functions can be constructed for any domain with Lipschitz bound-
ary. Then we have

∥∥∥∥ε2χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
H1/2(∂Ω)

≤
∥∥∥∥(1 − τ ε) ε2χm

λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
H1(Ω)

≤ C

∥∥∥∥(1 − τ ε) ε2χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
0,Ω

+C

∥∥∥∥(∇τ ε) ε2χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
0,Ω

+C

∥∥∥∥(1 − τ ε) ε2∇χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
0,Ω

+C

∥∥∥∥(1 − τ ε) ε2χm
λ

(
x

ε2

)
∇∇mu

λ
0

∥∥∥∥
0,Ω

≤ Cε2‖uλ0‖1,Ω + C

∥∥∥∥(∇τ ε) ε2χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
0,Ω

+C

∥∥∥∥(1 − τ ε) ε2∇χm
λ

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
0,Ω

+ Cε2‖uλ0‖2,Ω

≤ Cε2‖uλ0‖1,Ω + ‖ε2∇τ ε‖L2+η(Ω)|uλ0 |W 1,2+4/η(Ω)

+C‖1 − τ ε‖L2+η(Ω)|uλ0 |W 1,2+4/η(Ω) + Cε2|u0|2,Ω(3.19)
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whereη > 0. Furthermore using the inequalities

‖uλ0‖2,Ω ≤ C

ε1
‖f‖0,Ω,

‖ε2∇τ ε‖L2+η(Ω) ≤ Cε
1/(2+η)
2

‖1 − τ ε‖L2+η(Ω) ≤ Cε
1/(2+η)
2 ,

‖∇uλ0‖L2+4/η(Ω) ≤ C‖f‖0,Ω(3.20)

we conclude (3.10). Note that the last inequality follows from Theorem 4(i)
of [3]. ��
Remark 3.2.For convex polygon domains we assume thatuε (or any par-
tially homogenized part of it) is inC2(Ω) for the fixedε and

‖uε‖C1(Ω) ≤ C, ‖uε‖C2(Ω) ≤ C

εn
(3.21)

whereεn is the smallest scale in (2.2) (or in the partially homogenized
problem). This assumptions is true for fixedεi (i = 1, . . . , n) under the
compatibility conditions stated in [4]. Under the assumptions (3.21), for
convex polygonal domains we have

‖θε‖H1(Ω) ≤ C
ε2
ε1

+ C1
√
ε2.(3.22)

In the analysis of MsFEM the assumptions (3.21) will be used. In the last
section of the paper we present the error analysis for MsFEMwithout using
the assumptions (3.21).

Remark 3.3.For further convenience the quantities which depend onεi
εi−1

with 2 ≤ i ≤ n andεi, i ≥ 1, we denoteO(ε). It indicates thatO(ε) is an
asymptotically small quantity independent of the mesh size.

The above procedure can be applied for homogenization of many scale
problems. Instead of (3.8), using the reiterated homogenization we find

uε = u0

(
x,

x

ε1
, . . . ,

x

εm

)
+ u1

ε + θε,(3.23)

whereu0 is the partially homogenized part ofuε over the scalesεm+1, . . . ,
εn, u1

ε is given by

(3.24)

u1
ε =

n−m+1∑
i=1


 ∑

mk,m<m1≤···≤mi≤n

εmiχ
ki

(
x

εmi

)
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×
(
εmi−1∇ki

χki−1

(
x

εmi−1

))
. . .

(
εm1∇k2χ

k1

(
x

εm1

))
∇k1u0


 ,

andθε is the remaining part. The details of the derivation of (3.24) is omitted
here. Furthermore, it can be shown that for smooth domainsΩ

‖θε‖H1(Ω) ≤ O(ε)‖f‖0,Ω

with

O(ε) = C1ε
1/(2+η)
m+1 + C2 max

i≥m+1

εi
εi−1

(η > 0).

For convex polygonal domains, under the assumptions (3.21) the estimate
for θε is similar to (3.22),

‖θε‖H1(Ω) ≤ C1ε
1/2
m+1 + C2 max

i≥m+1

εi
εi−1

.(3.25)

4H1 estimates

For simplicity, we first present the estimates for problems with two scales
in detail. The multiscale case can be analyzed in a similar manner.

4.1H1 estimates for two scale case

In this section we analyze the MsFEM for three different cases: (1)ε1 �
h � ε2, (2) h � ε1 � ε2, and (3)ε1 � ε2 � h. As in the standard FEM
we have Cea’s Lemma [13]:

Lemma 4.1. Letu anduh be the solutions of (2.1) and (2.6) respectively.
Then

‖u − uh‖1,Ω ≤ C
β

α
‖u − v‖1,Ω, ∀v ∈ V h(4.1)

Next we formulate two lemmas which will be used in the analysis of
MsFEM. In the formulations of these lemmas the domainK is a finite
element (e.g., rectangular),K ∈ Kh, whose diameter is of orderh.

Lemma 4.2. For anyf ∈ H1(K) we have

‖f‖L2(∂K) ≤ Ch1/2|f |H1(K) + Ch−1/2‖f‖L2(K).(4.2)

This lemma can be derived from the standard trace inequality [1] using the
scaling argument. We omit the proof of the lemma.

The next lemma is an interpolation inequality (see e.g. [8]):

Lemma 4.3. If u ∈ H1
0 (K)

⋂
H2(K), then

‖∇u‖L2(K) ≤ Ch‖∆u‖L2(K).
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4.1.1 Case 1:ε1 � h � ε2

Theorem 4.4. Letuε anduhε be the solution and MsFEM solution of (2.1)
respectively. Then

‖uε − uhε ‖1,Ω ≤ C1
h

ε1
+ C2

(ε2
h

)1/2
.(4.3)

Proof. Definevhε ∈ V h such that in eachK ∈ Kh

vhε (x) = (Iku)(x) =
d∑

j=1

αjφ
j(x)(4.4)

with αj = u0(xj) whereu0 is the partially homogenized part ofuε over the
scaleε2 andxj are the nodal points ofK. Then in any elementK ∈ Kh we
have

∇ia
ij
ε ∇j(uε − vhε ) = f inK,(4.5)

wherevhε on ∂K is a piecewise linear function whose values at the nodal
points areu0(xj).

We divide the solution of (4.5) into two parts:(uε − vhε ) = (uε − vhε )1 +
(uε − vhε )2, where(uε − vhε )1 and(uε − vhε )2 satisfy

∇ia
ε
ij∇j(uε − vhε )1 = f inK,

(uε − vhε )1 = 0 on∂K;
(4.6)

∇ia
ij
ε ∇j(uε − vhε )2 = 0 inK,

(uε − vhε )1 = (uε − vhε ) on∂K;
(4.7)

respectively.(uε − vhε )1 can be estimated from (4.6) using the Lemma 4.3,

‖(uε − vhε )1‖H1(K) ≤ Ch‖f‖L2(K).(4.8)

As for (uε − vhε )2, using the expansion over the scaleε2, uε = u0 +
ε2χ

m
λ ∇mu0 + θε, and (4.7) we have∥∥∥(uε − vhε

)
2

∥∥∥
H1(K)

≤ ‖uε − vhε ‖H1/2(∂K)

≤ C

∥∥∥∥u0 + ε2χ
m
λ

(
x

ε2

)
∇mu0 − vhε

∥∥∥∥
H1/2(∂K)

+ C‖θε‖H1/2(∂K)

≤ C‖u0 − vhε ‖H1/2(∂K) + C

∥∥∥∥ε2χm
λ

(
x

ε2

)
∇mu0

∥∥∥∥
H1/2(∂K)
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+C‖θε‖H1(K).(4.9)

Combination of (4.8) and (4.9) gives

‖uε − vhε ‖H1(K) ≤ C1h‖f‖0,K + C‖u0 − vhε ‖H1/2(∂K)

+C‖ε2χm(
x

ε2
)∇mu0‖H1/2(∂K) + C‖θε‖H1(K).(4.10)

The third term on the r.h.s. of this inequality can be estimated as

(4.11)∥∥∥∥ε2χm

(
x

ε2

)
∇mu0

∥∥∥∥
H1/2(∂K)

≤
∥∥∥∥ε2χm

(
x

ε2

)
∇mu0

∥∥∥∥
1/2

L2(∂K)

∥∥∥∥ε2χm

(
x

ε2

)
∇mu0

∥∥∥∥
1/2

H1(∂K)

≤ Cε
1/2
2 ‖∇u0‖1/2

L2(∂K)

(
‖∇u0‖1/2

L2(∂K) + ε
1/2
2 |∇u0|1/2H1(∂K)

)
= Cε

1/2
2 ‖∇u0‖L2(∂K) + Cε2‖∇u0‖1/2

L2(∂K)|∇u0|1/2H1(∂K)

≤ Cε
1/2
2 ‖∇u0‖L2(K)h

−1/2 + C (ε2h)1/2 |∇u0|H1(K) + C
ε2

ε
1/2
1

h1/2.

In the last stepwe have used Lemma4.2 for the first term and the assumption
that‖u0‖C2(Ω) ≤ C/ε1 (see (3.21)) for the second term.

For the second term on the r.h.s. of (4.10) we can write

‖u0 − vhε ‖H1/2(∂K) = inf
φ|∂K=u0−vh

ε

‖φ‖H1(K).(4.12)

Sincevhε is the linear function on∂K we can extend it as a bilinear function
ṽhε ontoK. Noticing the fact that because of (4.4)u0 andṽhε coincide at the
nodal points we have

‖u0 − vhε ‖H1/2(∂K) ≤ ‖u0 − ṽhε ‖H1(K) ≤ Ch|u0|2,K .(4.13)

Combining (4.11) and (4.13) we have

‖uε − vhε ‖1,K ≤ Ch‖f‖0,K + Ch|u0|2,K + Cε
1/2
2 h−1/2‖∇u0‖L2(K)

+Cε
1/2
2 h1/2|∇u0|H1(K) + C

ε2

ε
1/2
1

h1/2 + C‖θε‖H1(K).(4.14)

Summing (4.14) over allK ⊂ K and using Cea’s lemma we get

‖uε − uhε ‖1,Ω ≤ Ch‖f‖0,Ω + Ch|u0|2,Ω + Cε
1/2
2 h−1/2‖∇u0‖L2(Ω)

+Cε
1/2
2 h1/2|∇u0|H1(Ω) + C

ε2

ε
1/2
1 h1/2

+ C4‖θε‖H1(Ω)
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≤
(
Ch + C

h

ε1
+ C2

√
ε2
h

+ C3

√
ε2h

ε1

)
‖f‖0,Ω

+C
ε2√
ε1h

+ C
ε2
ε1

+ C
√
ε2.(4.15)

In the last step we have used (3.17) and the estimate for‖θε‖H1(Ω) (see
(3.22)). Note in (4.15)

√
ε2h/ε1, ε2/

√
ε1h, and

√
ε2 are much smaller than√

ε2/h, andε2/ε1 � h/ε1. Thus, dropping the lower order terms and using
Cea’s lemma we get (4.3). ��

4.1.2 Case 2:h � ε1 � ε2

Theorem 4.5. Letuε anduhε be the solution and MsFEM solution of (2.1)
respectively. Then

‖uε − uhε ‖1,Ω ≤ C1h + C2

(ε1
h

)1/2
+ C3

ε2
ε1
.(4.16)

Proof. We definevhε as in (4.4) withu0 denoting the fully homogenized
solution over the scalesε1 and ε2. Using the partitionuε − vhε = (uε −
vhε )1 + (uε − vhε )2 as in case 1, and taking into account the inequality (4.8)
for (uε − vhε )1 and the expansion ofuε over the scalesε1 andε2,

uε = u0 + ε1χ
m

(
x

ε1

)
∇mu0 + ε2χ

m
λ

(
x

ε2

)
∇mu0

+ε2χ
m
λ

(
x

ε2

)(
ε1∇mχ

l

(
x

ε1

)
∇lu0

)
+ θ

′
,

we have

(4.17)

‖uε − vhε ‖H1(K)

≤
∥∥∥(uε − vhε

)
1

∥∥∥
H1(K)

+
∥∥∥(uε − vhε

)
2

∥∥∥
H1(K)

≤ Ch‖f‖0,K + C‖uε − vhε ‖H1/2(∂K)

≤ C‖f‖0,Ω + C

(
‖u0 − vhε ‖H1/2(∂K) +

∥∥∥∥ε1χm

(
x

ε1

)
∇mu0

∥∥∥∥
H1/2(∂K)

+
∥∥∥∥ε2χm

λ

(
x

ε2

)
∇mu0

∥∥∥∥
H1/2(∂K)

+
∥∥∥∥ε2χm

λ

(
x

ε2

)(
ε1∇mχ

l

(
x

ε1

)
∇lu0

)∥∥∥∥
H1/2(∂K)

+ ‖θ′‖H1(K)

)
.
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Treating the third, fourth, and fifth terms on the r.h.s of (4.17) similarly as
in (4.11) (i.e., applying the interpolation inequality and Lemma 4.2), we get

‖uε − vhε ‖H1(K)

≤ Ch‖f‖0,K + C‖uε − vhε ‖H1/2(∂K) + Cε1h
−1/2‖∇u0‖0,K

+Cε
1/2
1 h1/2|∇u0|1,K + Cε1h

1/2 + C

√
ε2
h

‖∇u0‖0,K

+Cε
1/2
2 h1/2|∇u0|1,K + Cε2h

1/2 + C‖θ′‖1,K .(4.18)

For the second term on the r.h.s. of (4.18), sincevhε is a linear function on
∂K we can continue it as a bilinear functioñvhε ontoK. Noticing that the
values ofu0 andṽhε coincide at the nodal points we have

‖u0 − vhε ‖H1/2(∂K) ≤ ‖u0 − ṽhε ‖H1(K) ≤ Ch‖u0‖2,K(4.19)

Finally, summing (4.18) overK ∈ Kh and using (3.21), (4.19), and the fact
|u0|2,Ω ≤ C‖f‖0,Ω we get

‖uε − vhε ‖1,Ω ≤ C

(
h +

√
ε1
h

+ (ε1h)1/2 +
√

ε2
h

+ (ε2h)1/2
)

‖f‖0,Ω

+Cε1h
−1/2 + Cε2h

−1/2 + C
ε2
ε1

+ C
√
ε1.(4.20)

Here we have used the estimate (3.25) for‖θ′‖1,Ω. In (4.20) wemay neglect√
ε1h, ε1/

√
h, and

√
ε2 since they are lower order comparing with

√
ε1/h.

Thus, (4.16) follows from (4.20) and Cea’s lemma. ��

4.1.3 Case 3:ε1 � ε2 � h

Theorem 4.6. Letuε anduhε be the solution and MsFEM solution of (2.1)
respectively. Then

‖uε − uhε ‖1,Ω ≤ C
h

ε2
‖f‖0,Ω(4.21)

Proof. Definevhε as in (4.4) and takeαj to be the nodal value ofuε atxj .
Using the partition ofuε − vhε we obtain

‖uε − vhε ‖H1(K) ≤ Ch‖f‖0,K + ‖uε − vhε ‖H1/2(∂K).(4.22)

The continuation ofvhε from∂K onto K as a bilinear interpolant ofuε inK,
ṽhε , yields

‖uε − vhε ‖H1/2(∂K) ≤ ‖uε − ṽhε ‖H1(K) ≤ Ch‖uε‖2,K .(4.23)

Summing (4.22) over allK, using (4.23), (3.17), and Cea’s lemma we get
(4.21). ��
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4.2H1 error estimates for many scale case

Assuming the order ofh is between the scalesεm+1 andεm form ∈ [1, n],
i.e.,

ε1 � · · · � εm � h � εm+1 · · · � εn

we have the following result.

Theorem 4.7. Letuε anduhε be the solution and MsFEM solution of (2.1)
respectively. Then

‖uε − uhε ‖1,Ω ≤ C1
h

εm
+ C2

(εm+1

h

)1/2
+ C3 max

i≥m+1

εi
εi−1

.(4.24)

Proof. The proof of this theorem is similar to the proof of the Theorem 4.4.
First we definevhε as in (4.4) withαj = u0(xj)whereu0 is the partially ho-
mogenized part ofuε over the scalesεm+1, . . . , εn. In this case the expansion
of uε is given by (3.23),

uε = u0(x, x/ε1, · · · , x/εm) + u1
ε + θ,

whereu1
ε is defined by (3.24). Furthermore for‖uε − vhε ‖H1(K) we have

(4.25)

‖uε − vhε ‖H1(K)

≤ Ch‖f‖0,K + C‖uε − vhε ‖H1/2(∂K)

≤ Ch‖f‖0,K + C‖u0 − vhε ‖H1/2(∂K) + C‖u1
ε‖H1/2(∂K) + C‖θ‖1,K

≤ Ch‖f‖0,K + Ch|u0|2,K + C‖u1
ε‖H1/2(∂K) + C‖θ‖1,K .

In the last step we extendedvhε on toK as the bilinear interpolant ofu0.
This gives us the following estimate

‖u0 − vhε ‖H1/2(∂K) ≤ Ch|u0|2,K .(4.26)

Next to estimate the third term on the r.h.s. of (4.25) we use the following
inequality

|u1
ε |1,∂K ≤ C‖∇u0‖0,∂K + Cεm+1|∇u0|1,∂K .(4.27)

In fact, by (3.24)u1
ε can be written in the form ofCε(x) ·∇u0, whereCε(x)

contains the linear combinations of products ofχk( x
εk

) (k = m+1, . . . , n)
and their gradients. Furthermore, it can be verified that

max
x

|∇Cε(x)| ≤ C + max
i≥m+1

(εi/εi−1) ≤ C and
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max
x

|Cε(x)| ≤ Cεm+1,

and hence∇u1
ε is bounded. Therefore,

‖∇u1
ε‖0,∂K ≤ ‖∇Cε(x) · ∇u0‖0,∂K + ‖Cε(x) · ∇2u0‖0,∂K

≤ max
x

|∇Cε(x)|‖∇u0‖0,∂K + max
x

|Cε(x)|‖∇2u0‖0,∂K

≤ C‖∇u0‖0,∂K + Cεm+1|∇u0|1,∂K .

From (4.27), the interpolation inequality, the trace inequality (4.2), and
(3.21) it follows that

‖u1
ε‖H1/2(∂K)

≤ ‖u1
ε‖1/2

L2(∂K)‖u1
ε‖1/2

H1(∂K)

≤ Cε
1/2
m+1‖∇u0‖1/2

L2(∂K)

(
‖∇u0‖1/2

L2(∂K) + ε
1/2
m+1|∇u0|H1(∂K)

)
≤ Cε

1/2
m+1‖∇u0‖L2(∂K) + Cεm+1εm

−1/2h1/2

≤ Cε
1/2
m+1h

−1/2‖∇u0‖0,K + Cε
1/2
m+1h

1/2|∇u0|1,K
+Cεm+1h

1/2ε−1/2
m .(4.28)

Substituting (4.28) into (4.25)and thensumming (4.25)overallK ∈ Kh,
we have

‖uε − vhε ‖1,Ω ≤ C

(
h +

√
εm+1

h
+

h

εm
+

ε
1/2
m+1h

1/2

εm

)
‖f‖0,Ω

+C
εm+1√
εmh

+ C‖θε‖1,Ω

≤ C

(
h +

√
εm+1

h
+

h

εm
+

ε
1/2
m+1h

1/2

εm

)
‖f‖0,Ω

+C
εm+1√
εmh

+ C max
i≥m+1

εi
εi−1

.(4.29)

The estimate (4.24) follows from (4.29), (3.25) (estimate of‖θε‖1,Ω), and
Cea’s lemma. The lower order terms withh (� h/εm) and with

√
εm+1h/

εm, εm+1/
√
εmh, and

√
εm+1 (which are asymptotically smaller than√

εm+1/h) are neglected. ��
Remark 4.1.The estimate (4.24) shows that the error becomes larger ash
approaches eitherεm orεm+1. This is the resonance phenomenonmentioned
in the introduction. Furthermore, we see from (4.29) that both resonance
errors dominate whenh ∼ εm or h ∼ εm+1.
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5 L2 estimates

In this section we derive theL2 estimates using theH1 estimates along with
the duality argument. Because some terms in theH1 estimate (4.29) can
not be expressed through‖f‖0,Ω, the estimates we obtain from the duality
argument is not optimumwhenh is not comparable with the physical scales.
The estimates do capture the correct order of the resonance error, which
are the leading order error whenh is comparable with the physical scales.
Employing the method introduced in [13], which compares the discrete
values of the solution and the numerical solution, we can show that the order
of the method is not affected by those small terms not expressed through
‖f‖0,Ω. The present approach, however, is more concise to present. We use
the following abstract lemma.

Lemma 5.1. Let u anduh be the solutions of (2.3) and (2.6) respectively
with V h consisting of conforming base functions. If

‖u − uh‖1,Ω ≤ C1γ‖f‖0,Ω + C2δ(5.1)

whereγ andδ are small positive quantities,C1 ≥ 0, C2 ≥ 0, then

‖u − uh‖0,Ω ≤ C3γ
2‖f‖0,Ω + C4

√
γδ‖f‖0,Ω + C5δ

Proof. We use Aubin-Nitshe trick as follows: Letw be the solution of (2.3)
with f = u − uh, i.e.w ∈ H1

0 (Ω) satisfies

a(w, v) = (u − uh, v), ∀v ∈ H1
0 (Ω).(5.2)

Letwh ∈ V h be the interpolant ofw. Then (5.1) implies

‖w − wh‖1,Ω ≤ C1γ‖u − uh‖0,Ω + C2δ.(5.3)

Choosingv = u − uh in (5.2) we have

‖u − uh‖2
0,Ω = a(u − uh, w)

= a(u − uh, w − wh)
≤ β‖u − uu‖1,Ω‖w − wI‖1,Ω

≤ β(C1γ‖f‖0,Ω + C2δ)(C1γ‖u − uh‖0,Ω + C2δ)

≤ ‖u − uh‖0,Ω(C1γ
2‖f‖0,Ω + C2δγ) + Cδγ‖f‖0,Ω

+C1δ
2.(5.4)

Therefore,

‖u − uh‖0,Ω ≤ |C1γ
2‖f‖0,Ω + C1δγ|
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+
√

(C1γ2‖f‖0,Ω + C1δγ)2 + 4(Cδγ‖f‖0,Ω + C1δ2)

≤ Cγ2‖f‖0,Ω + C1δγ + Cγ2‖f‖0,Ω + C1δγ

+C2

√
δγ‖f‖0,Ω + C3δ

≤ Cγ2‖f‖0,Ω + C1

√
γδ‖f‖0,Ω + C3δ.(5.5) ��

In ourH1 estimatesγ contains the resonance errors which may become
O(1)dependingon themesh sizeh. On theother hand,δ is an asymptotically
small quantity independent of the mesh size. In particular,γ = C(h +
ε
1/2
m+1/h

1/2 + h/εm + ε
1/2
m+1h

1/2/εm) andδ = Cεm+1ε
−1/2
m h−1/2 + O(ε)

for our problem (see (4.29)). Note that whenh becomes comparable with
any physical scaleγ is of order one whileδ remains asymptotically small.
Consequently, the term

√
γδ is an asymptotically small quantity which does

not resonate at any scale of the problem, i.e.
√
γδ = O(ε) (see Remark 3.3).

Thusγ2 is the dominating resonanceerrorwhenhbecomes comparablewith
thephysical scales. It isworth tonote that some terms inγ andδ (see(4.29)) in
our problem do not changewhenwe decrease themesh size and the physical
scales at the same time but remain asymptotically negligible. These terms
can be called lower order resonance terms.

Applying Lemma 5.1 to the cases analyzed in Sect. 4 we have the fol-
lowing resonance errors:

Theorem 5.2. Letuε anduhε be the solution and MsFEM solution of (2.1)
respectively. Then we have the following resonance errors in theL2 error
estimates:

1. Caseε1 � h � ε2.

‖uε − uhε ‖0,Ω ≤ C1

(
h

ε1

)2

+ C2
ε2
h

(5.6)

2. Caseh � ε1 � ε2.

‖uε − uhε ‖0,Ω ≤ C1h
2 + C2

ε1
h

(5.7)

3. Caseε1 � ε2 � h.

‖uε − uhε ‖0,Ω ≤ C
(ε2
h

)2
(5.8)

4. Caseε1 � · · · � εm � h � εm+1 · · · � εn.

‖uε − uhε ‖0,Ω ≤ C1

(
h

εm

)2

+ C2
εm+1

h
(5.9)
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6 Numerical experiments

In this section we study the convergence and the accuracy of the multiscale
method through numerical experiments. The model problem is solved by
using the multiscale method with the base functions defined by (2.5) and
the linear boundary conditions. Since it is very difficult to construct a test
problem with both exact solution and sufficient generality, we use resolved
numerical solutions in place of exact solutions. The numerical results are
compared with the theoretical analysis.

The implementations of the multiscale method has been given in [11].
Here we outline the implementation and define some notations to be used
below. All computations are performed on a unit square domain, i.e.,Ω =
(0, 1) × (0, 1). Let N be the number of elements inx andy directions.
The mesh size is thush = 1/N . To compute the base functions, each
element discretized intoM × M subcell elements with size ofhs = h/M .
Rectangular elements are used in all numerical tests.

To solve the subcell problem, we use the standard linear finite element
method. After solving the base functions, the local stiffness matrix and
the right hand side are computed using numerical quadrature rules. We
compute thegradientsof abase functionat thecenter of a subcell elementand
use two-dimensional centered trapezoidal rule for the volume integration.
This procedure ensures that the entries of the stiffness matrix are computed
with second order accuracy. In our computations, we only solve three base
functions, i.e.,φi (i = 1, 2, 3). The fourth one is obtained fromφ4 =
1 − φ1 − φ2 − φ3.

In all examples below, the resolved solutions are obtained using linear
FEM. Given the wave length of small scalesε1 andε2, we solve the model
problem twice on twomeshes with onemesh size being twice of other. Then
theRichardson extrapolation is used to approximate the exact solutions from
numerical solutions on twomeshes. Throughout our numerical experiments,
both of the mesh sizes used to compute the well resolved solution are less
thanε/8, so that the error of the extrapolated solutions is less that10−6.

The main difficulty in our tests is that the choices of well separated
physical small scales for test problems are severely limited by the available
computer memory. Our parallel implementation of the multiscale method
on an Intel Paragon computer with 512 processors enables us to test the
two scale problem. Even so, we are limited to testing the cases withε1 �
h � ε2 andε1 � ε2 � h. The case withh � ε1 � ε2 with small mesh
sizeh requires the value ofε2 to be very small in order for the resonance
error to be noticeable in numerical tests (recall that except the resonance
errors there are errors associated withε2/ε1, see (4.20) and (5.5)). This
(the smallness ofε2) makes it impossible to calculate the fully resolved
(benchmark) solution in the whole domain using the traditional FEM with
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our computer resources. Thus, it is difficult calculate the numerical error or
the convergence of MsFEM.

The case withh in between the two physical scales is generic and im-
portant for practical purposes. As indicated by Theorem 6.2, theL2 norm
error is given by

C1

(
h

ε1

)2

+ C2
ε2
h
,(6.1)

which consists of two resonance error. One would expect that whenh is
close toε1 the first term dominates and whenh is close toε2 the second term
dominates. This asymptotic observation, however, is not always reflected by
the numerical results shown below. There are two reasons. Firstly, the con-
stants,C1 andC2, may differ by a large factor which is problem dependent.
Secondly, it is difficult to choose well separatedε1 andε2 in the numerical
computations. Therefore, the two error may interact with each other. Instead
of verifying each of them, in the following, we show that the numerical error
does follow the estimate in whole. Furthermore, we use a least square fitting
to obtain the constantsC1 andC2 in (6.1). These constants indicate the rel-
ative magnitude of the two terms. More discussions along with numerical
examples can be found in [10].

Again due to limitation of computing resources, in all tests below,ε1 and
ε2 are fixed during the tests and we only allowh to vary.

Example 1. In this example, we solve (2.1) withf = −1, u|∂Ω = 0, and

aij =
δij

3 + sin(2πx
ε1

) + cos(2πy
ε2

)
,(6.2)

whereδij are the Kroneker’s symbols.
First we present the numerical examples to demonstrate the convergence

rate (6.1). The error estimate (6.1) corresponds to the caseε1 � h � ε2.
In our numerical examples we fix the values ofε1 and ε2, ε1 = 0.5 and
ε2 = 0.005, and varyh betweenε1 andε2. In the Table 6.1 we compare the
discretel2 errors between theMsFEM solution and the refined solution. The
presence of bothh2/ε21 andε2/h can be observed from this table. Indeed
if h is close toε1 the convergence rate of the method is the second order
with respect toh, and ifh is close toε2 the convergence rate of the method
is negative first order (see (6.1)). Notice that because there are lower order
errors (see (4.15) and (5.5)) except the leading resonance errors we observe
some deviation from (6.1). Furthermore, in Fig. 6.1 we try to find the best
fit in the form of (6.1) to thel2 errors given in the Table 6.1. Using the least
square method we compute the values ofC1 andC2 in (6.1) for this best
fit. The computed values ofC1 = 5e − 4 andC2 = 1.5e − 3 indicate that
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Fig. 6.1.

Table 6.1. ‖uε − uh
ε ‖l2 for ε1 � h � ε2

h l2 rate

1/8 9.42e-4
1/16 1.61e-4 2.5
1/32 1.87e-4
1/64 5.08e-4 -1.44
1/128 9.77e-4 -0.94
1/256 2.01e-3 -1.04

Table 6.2. ‖uε − uh
ε ‖l2 and‖uε − uh

ε ‖l∞ for h � ε2 � ε1

h l2 rate l∞ rate

1/32 1.10e-3 2.04e-3
1/64 3.22e-4 1.77 5.89e-4 1.79
1/128 8.40e-5 1.98 1.52e-4 1.95
1/256 2.09e-5 2.00 3.79e-5 2.00
1/512 4.90e-6 2.09 8.93e-6 2.08
1/1024 1.22e-6 2.00 2.22e-6 2.00

the second term in (6.1) has larger weight than the first term. Recall that the
second term in (6.1) is due to capturing the small scales on the large scales.
The discrepancy between the best fit in the form (6.1) and the discretel2
errors in the Fig. 6.1 is due to the lower order errors in theL2 error estimate.

The result of the numerical experiments for the caseh � ε2 � ε1 is
shown in Table 6.2. In this table we compare the discretel2 errors between
the MsFEM solution and the refined solution for fixed values ofε1 andε2,
ε1 = 0.2 andε2 = 0.08. The theoretical results of the previous sections
predict the second order convergence rate inh for the resonance error. As
it can be observed that the convergence rate of MsFEM is the second order
with respect toh.
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Table 6.3. ‖uε − uh
ε ‖l2 for ε1 � h � ε2

h l2 rate

1/8 2.15e-3
1/16 5.28e-4 2.02
1/32 3.28e-4
1/64 1.75e-4
1/128 1.60e-4

Example 2. In our next example, we consider the equation (2.1) withf = 0
and linear boundary conditions,u|∂Ω = x, and

aij =
(

2 + sin(2πx/ε1)
2 + cos(2πy/ε1)

+
2 + cos 2π(y/ε1)
2 + sin(2πx/ε1)

)

×
(

2 + sin(2πx/ε2)
2 + cos(2πy/ε2)

+
2 + cos(2πy/ε2)
2 + sin(2πx/ε2)

)
δij(6.3)

whereδij are Kronoker’s symbols.
As in the first example we fixε1 = 0.125 andε2 = 0.0078125 and vary

the mesh sizeh betweenε1 andε2. In the Table 6.3 the discretel2 errors
between the computed solution using MsFEM and the refined solution are
presented.Aswesee from this table the resonanceerrorε2/hdoesnot appear
explicitly for themesh sizeh = O(ε2). The reason for this is the largeweight
of C1 in (6.1) which suppresses the termε2/h. As in the previous example
using the least square method we find the best fit in the form (6.1) to the
discretel2 error data given in the Table 6.3. The constantsC1 andC2 for this
best fit areC1 = 2.1×10−3 andC2 = 2.0×10−4. Consequently, theh2/ε21
term in (6.1) has larger weight than theε2/h term. The fitted curve as well
as the data points for the numerical error are plotted in Fig. 6.2. It shows that
the error varies consistently with the estimate (6.1). The deviation between
the computedl2 errors and the best fit of the form (6.1) is due to the lower
order errors in theL2 error estimate (see (4.15) and (5.5)).

Example 3. In our last example we takef = −1, andu|∂Ω = 0 while
definingaij by (6.3). In the Table 6.4wepresent the discretel2 error between
the refined solution and the solution computed with the use of MsFEM for
the fixedε1 = 0.125 andε2 = 0.0078125. As in the previous examples the
mesh sizeh varies betweenε1 andε2. As we can see from this table that the
presence of bothh2/ε21 andε2/h terms (see (6.1)) appear ash becomes close
to ε1 andε2, respectively. Using the least square method we can compute
the values ofC1 andC2 (C1 = 0.79 × 10−4,C2 = 0.29 × 10−4) for which
the expression (6.1) approximates thel2 error data given in the Table 6.4.
The discretel2 error data between the solution computed usingMsFEM and
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Table 6.4. ‖uε − uh
ε ‖l2 for ε1 � h � ε2

h l2 rate

1/8 8.25e-5
1/16 1.92e-5 2.10
1/32 1.77e-5
1/64 1.17e-5
1/128 3.04e-5 -1.38

Table 6.5. ‖uε − uh
ε ‖l2 and‖uε − uh

ε ‖l∞ for h � ε2 � ε1

h l2 rate l∞ rate

1/64 1.14e-5 2.84e-5
1/128 2.81e-6 2.02 5.79e-6 2.29
1/256 7.13e-7 1.97 1.56e-6 1.89
1/512 1.69e-7 2.07 3.91e-7 2.00
1/1024 3.33e-8 2.35 1.01e-7 1.95

the refined solution for the caseh � ε2 � ε1 is shown in Table 6.5, where
the second order convergence of MsFEM can be observed.

7 Concluding remarks and generalizations

The purpose of the multiscale method is to provide a systematic approach
to capture the small scale effect on large scales when we cannot afford to
resolve all the small scale features in the physical solution. Our study shows
that MsFEM is a robust method for practical multiple scale problems. In
particular, the method works for multiple scale problems and the mesh size
can be chosen to be between the two physical scales. We note that there are
two types of resonance error, one from resolving the large scales, the other
from capturing the small scales. The second type of error is caused by the
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artificial boundary layers in our base functions. This important issue and
its numerical resolution, e.g., the over-sampling method, has been analyzed
for problems with one small scale [9]. They will be further studied in the
multiple scale cases in our subsequent work.

The first type of resonance error is common among traditional finite
difference and finite element methods. The traditional approaches, however,
cannot capture the small scales. To reduce this error, a natural idea is to
generalize MsFEM to higher order in the sense that the large scales are
more accurately resolved. The idea is to construct base functions such that
their homogenized parts consist of higher order polynomials than linear
(bilinear) functions. This can be achieved by changing the linear boundary
condition of the base functions to higher order polynomials.

DenotingSh as a finite dimensional subspace ofH1
0 (Ω) such that for

any

b(u, v) =
∫
Ω
bij(x/ε1, . . . , x/εk)∇iu∇jvdx

with bij(y1, . . . , yk) are sufficiently smooth periodic functions inyi (i =
1, . . . , k) in a unit cube,α|ξ|2 ≤ bijξiξj ≤ β|ξ|2, andε1 � ε2 � · · · �
εk � h we have

‖u − uh‖1,Ω ≤ C

(
h

εk

)n

,(7.1)

whereu ∈ H1
0 (Ω) is the solution ofb(u, v) = (f, v) for anyv ∈ H1

0 (Ω)
anduh ∈ Sh is the solution ofb(uh, vh) = (f, vh) for anyvh ∈ Sh. For
exampleSh can be the space spanned by high order polynomials of degree
n [8]. In each elementK ∈ Kh we denoteP i

K ∈ Sh (i = 1, . . . , d) a set of
nodal basis ofSh. Then the high order multiscale base functions are given
by φiK (i = 1, . . . , d), which satisfy (2.5) and the boundary conditions

φiK |∂K = P i
K |∂K .(7.2)

It can be shown that with these high order multiscale base functions we have

‖uε − uhε ‖1,Ω ≤ Ch + C

(
h

εm

)n

+ C3

√
εm+1

h
+ C max

i≥m+1

εi
εi−1

(7.3)

instead of (4.24). The outline of the proof is the following. We continuevhε
on toK as in (4.26). The nodal values of the interpolantαi in (4.4) can be
definedas thoseofuh satisfying (7.1). Then taking into account theestimates
for u1

ε andθ of Sect. 4.2 we can conclude (7.3). We noteSh needs not to be
a subspace ofH1, e.g.,Sh can consists of nonconforming multiscale base
functions.
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The estimate (7.3) can also be obtained for the smooth domainsΩ. Note
that in this casewehave thesmoothnessofuε (andanypartiallyhomogenized
part of it) for fixedε. Thedifficulty in derivingH1 normestimate forMsFEM
in this case is in the calculation of the multiscale base functions near the
boundary∂Ω. There are various ways to treat curve boundaries in the finite
element methods. In fact, following the triangulation ofΩ in [18] and using
the nodal base functions constructed in that paper to provide the boundary
conditions for the multiscale base functions, we can show that (7.3) holds
on the smooth domain.

Finally we would like to note that the assumption (3.21) which requires
some compatibility conditions for the problem is not necessary for deriving
theH1 estimates. Without this assumption it can be shown that

‖uε − uhε ‖1,Ω

≤ C

(
h +

h

εm
+
(εm+1

h

)1/2−1/p
+

√
p
ε
1/2−1/p
m+1 h1/2+1/p

εm

)

×‖f‖0,Ω + ‖θε‖1,Ω(7.4)

wherep > 2 is an arbitrary constant. Because of the insufficient smoothness
of the homogenized parts of the solution near the corner points of the domain
Ω, the rateof convergenceof‖θε‖1,Ω to zeroasε → 0deterioratesdepending
on the parameters of the problem.

In order to show the estimate (7.4) we only need to reestimate
‖u1

ε‖H1/2(∂K) in (4.25),

‖uε − vhε ‖H1(K) ≤ Ch‖f‖0,K + Ch|u0|2,K + C‖u1
ε‖H1/2(∂K)

+C‖θ‖1,K .(7.5)

Here we derive this estimate only for the two scale caseε1 � h � ε2. The
derivation for the generaln scale case is similar. In the caseε1 � h � ε2,
u1
ε = ε2χ

m( x
ε2

)∇mu
λ
0 .

Introducing the family of boundary functionτε in K as in Sect. 3 with
the properties 1 and 2 we have

‖u1
ε‖H1/2(∂K) =

∥∥∥∥ε2χm

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
H1/2(∂K)

≤
∥∥∥∥ε2 (1 − τε)χm

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
H1(K)

≤
∥∥∥∥ε2 (1 − τε)χm

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
L2(K)

+
∥∥∥∥ε2∇τεχ

m

(
x

ε2

)
∇mu

λ
0

∥∥∥∥
L2(K)
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+
∥∥∥∥ε2 (1 − τε)∇

(
χm

(
x

ε2

))
∇mu

λ
0

∥∥∥∥
L2(K)

+
∥∥∥∥ε2 (1 − τε)χm

(
x

ε2

)
∇∇mu

λ
0

∥∥∥∥
L2(K)

.(7.6)

Denoting the support of1−τε byS we havemeas(S) ≤ Cε2h. Furthermore
taking into account that|ε2∇χ| ≤ C and|ε2∇τ | ≤ C we can estimate the
r.h.s of (7.6) as

‖u1
ε‖H1/2(∂K) ≤ Cε2|u0|H1(K) + C|u0|H1(S)

+C|u0|H1(S) + Cε2|u0|H2(K).(7.7)

For the estimate of‖∇u0‖L2(S) we use the following inequalities [19]:

‖v‖L2(S) ≤ (meas(S))1/2−1/p‖v‖Lp(S), p > 2,

and

‖v‖Lp(K) ≤ Ch−1+2/p‖v‖L2(K) + Ch2/p√p|v|H1(K), p ≥ 1.

Then

|u0|H1(S) ≤ C(ε2h)1/2−1/p‖∇u0‖Lp(S)

≤ C(ε2h)1/2−1/p
(
h−1+2/p‖∇u0‖L2(K) + h2/p√p|∇u0|H1(K)

)
≤ C(ε2/h)1/2−1/p‖∇u0‖L2(K)

+C(ε2h)1/2−1/ph2/p√p|∇u0|H1(K).(7.8)

Furthermore combining the estimates (7.7) and (7.8) we have

‖u1
ε‖H1/2(∂K) ≤ C

(
(ε2/h)1/2−1/p‖∇u0‖L2(K)

+(ε1/2−1/p
2 h1/2+1/p√p + ε2)|u0|H2(K)

)
.(7.9)

Finally summing (7.5) over allK we obtain (7.4). As we see the estimate
(7.4) is slightly weaker than (4.29). Note thatε1/2−1/p

2 h1/2+1/p√p/ε1 is
asymptotically small.
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