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Abstract The multiscale finite-volume (MSFV) method

has been developed to solve multiphase flow problems

on large and highly heterogeneous domains efficiently.

It employs an auxiliary coarse grid, together with its

dual, to define and solve a coarse-scale pressure prob-

lem. A set of basis functions, which are local solutions

on dual cells, is used to interpolate the coarse-grid

pressure and obtain an approximate fine-scale pres-

sure distribution. However, if flow takes place in pres-

ence of gravity (or capillarity), the basis functions are

not good interpolators. To treat this case correctly,

a correction function is added to the basis function

interpolated pressure. This function, which is similar

to a supplementary basis function independent of the

coarse-scale pressure, allows for a very accurate fine-

scale approximation. In the coarse-scale pressure equa-

tion, it appears as an additional source term and can

be regarded as a local correction to the coarse-scale

operator: It modifies the fluxes across the coarse-cell

interfaces defined by the basis functions. Given the

closure assumption that localizes the pressure problem

in a dual cell, the derivation of the local problem that

defines the correction function is exact, and no addi-

tional hypothesis is needed. Therefore, as in the original
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MSFV method, the only closure approximation is the

localization assumption. The numerical experiments

performed for density-driven flow problems (counter-

current flow and lock exchange) demonstrate excellent

agreement between the MSFV solutions and the corre-

sponding fine-scale reference solutions.

Keywords Gravity · Counter-current flow ·

Lock-exchange problem · Multiscale methods ·

Finite-volume methods · Multiphase flow in porous
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1 Introduction

Modeling flow and transport in geological porous

media is of great importance for practical applications,

such as sustainable management of water resources,

optimal exploitation of hydrocarbon reservoirs, risk

assessment of hazardous waste repositories, or geologi-

cal sequestration of carbon dioxide. Common to all

these problems is the necessity of dealing with large

highly heterogeneous formations that exhibit a hier-

archy of heterogeneity scales, such as aquifers and

reservoirs. A full description of all these scales is com-

putationally expensive and may even exceed current

computational capabilities.

To overcome these difficulties, a number of upscal-

ing techniques have been developed in the last 30 years

to coarsen the simulation grid (see, e.g., [14]). The basic

idea is to replace a heterogeneous medium by an equiv-

alent homogeneous medium that adequately describes

the large-scale effects of the small-scale heterogeneity.

The price paid to reduce the computational costs is

the loss of the fine-scale information. Although these
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approaches have proved reliable for many practical

problems, there is evidence that applications to contam-

inant transport or multiphase flow may be problematic.

In these cases, the fine-scale structure can have a strong

effect on flow and transport at much larger scales,

which makes fine-scale information essential to obtain a

realistic estimate of quantities of practical interest, such

as contaminant distribution or oil recovery.

To avoid this loss of information, a flourishing

activity in multiscale modeling of aquifers and reser-

voirs has been developed. In contrast to upscaling, the

focus is not simply on capturing the large-scale behavior

of the system, but on solving the problem with the

original resolution. The goal is to find a compromise

between accuracy and efficiency, i.e., to develop algo-

rithms providing solutions that can be compared with

the fine-scale solution in terms of accuracy while keep-

ing the computational costs low – ideally comparable

with flow-based upscaling methods. In the context of

reservoir modeling, three major families of methods

have been introduced: the multiscale finite-element

method [8], which results in a velocity field that is

not conservative in general and poses difficulties for

modeling transport; the mixed multiscale finite-element

method [1–6], which is conservative but involves more

degrees of freedom; and the multiscale finite-volume

(MSFV) method [9, 10], which provides a locally con-

servative velocity field with the same number of degrees

of freedom for the global problem as the multiscale

finite-element method.

The MSFV method employs an auxiliary coarse grid,

together with its dual, to define and solve a coarse-

scale pressure problem. A set of basis functions, which

are local solutions on dual cells, is used to interpolate

the coarse-grid pressure and obtain an approximate

fine-scale pressure distribution. In contrast to other

multiscale methods, it has the advantage of being based

on the solution of mass-balance equations, which guar-

antees conservative velocity fields and makes it easier

to incorporate additional physics. After having recently

modified the MSFV algorithm to model compressible

flow [12], in this paper, we continue the effort of adapt-

ing the MSFV method to deal with problems involv-

ing complex physical processes. In the following, we

present an explicit analytical treatment of gravity and

capillary forces, and we numerically test the algorithm

for density-driven flow problems, i.e., counter-current

flow due to buoyancy effects and recirculation induced

by density gradients. The main problem here is that

these forces cannot be easily included in the basis func-

tions, as they do not scale with the coarse pressure.

Moreover, gravity effects cannot be naively added to

the coarse-pressure equation, because the resulting

basis-function interpolation would be inaccurate, which

would result in inaccurate fine-scale fluxes. We show

that a correct rigorous treatment of gravity and capil-

larity can be achieved by adding a correction function

to the basis-function interpolated pressure.

2 Mathematical model of multiphase flow

We consider the flow of m incompressible phases in a

rigid porous medium, such that, for each phase α, we

have a mass-balance equation of the form

φ
∂

∂t
Sα + ∇ · uα + qα = 0 α ∈ [1, m], (1)

where φ [m3/m3] is the porosity of the medium;

Sα [m3/m3] the phase saturation; qα [1/s] the source

term (positive when extracted); and

uα = −λαk (∇pα − ρα g) , (2)

[m/s] the Darcy velocity (volumetric flux per unit area)

of the α-phase. As the flow is incompressible and the

porosity constant, in the following, the terms “velocity”

and “flux” will be used synonymously. In Eq. 2, λα =

krα/μα [m s/kg] is the α-phase relative mobility, i.e., the

ratio of relative permeability, krα ∈ [0, 1], to dynamic

viscosity, μα (kg/m s); k (m2) is the intrinsic perme-

ability, which is fluid independent; g (m/s2) the gravity

acceleration vector; pα (kg/ms2) and ρα (kg/m3) the

pressure and the density of the α-phase, respectively.

The m mass-balance equations can be manipulated

to obtain an equation for the pressure of a reference

phase ω, p = pω, and m − 1 transport equations for

the saturations, S = (S1, S2, ..., Sm−1). Indeed, defining

the macroscopic capillary pressure of the α-phase with

respect to the ω-phase,

pcαω = pα − pω, (3)

and introducing the constitutive relationships, krα(S)

and pcαω(S), and the constraint

m
∑

α=1

Sα = 1, (4)

a complete system of equations in the variables p

and S is obtained. The pressures of the other phases,

pα �=ω, and the saturation of the m-th phase, Sm, can be

obtained from Eqs. 3 and 4, respectively. The pressure

equation has the form

∇ · u + q = 0, (5)

where we have defined the total velocity, u =
∑m

α=1 uα ,

which can be written as

u = −λk (∇p + Pc − G) . (6)
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In Eq. 5, λ =
∑m

α=1 λα is the total mobility;

G =
∑

fαρα g, (7)

(kg/s2 m2) the modified gravity, which represents the

gravity force per unit volume acting on the phase

mixture;

Pc =
∑

fα∇ pcαω, (8)

(kg/s2m2) the modified capillary force per unit volume;

and fα = λα/λ (−) the fractional flow function of the

α-phase. Once Eq. 5 is solved for pressure, the veloci-

ties of m − 1 phases can be computed from Eq. 2 or, in

a fractional flow formulation, as

uα = fα

⎧

⎨

⎩

u+λk

m
∑

β=1

fβ
[

∇
(

pcβω− pcαω

)

−g
(

ρβ −ρα

)]

⎫

⎬

⎭

.

(9)

The phase velocities are then used in the correspond-

ing m − 1 transport equations, which have the form

of Eq. 1. Mass conservation is guaranteed by the

constraint
∑m

α=0 fα = 1.

3 Multiscale finite-volume method

The MSFV method was developed to solve elliptic

(homogeneous) equations on large and highly hetero-

geneous domains efficiently [9]. An auxiliary coarse

grid is imposed and, together with its dual, used to

define and solve a coarse-pressure problem. The MSFV

method employs a set of basis functions, which are

local solutions of the elliptic homogeneous equation, to

relate the coarse-grid pressure to the fine-scale pressure

distribution. The MSFV method has been applied for

multiphase-flow problems with simplified physics, i.e.,

incompressible flow with negligible gravity and capil-

lary effects [10]. In the multiphase-flow framework, the

main ideas of the MSFV method deal with the solution

of the elliptic pressure equation (5), whereas the phase-

transport equations (1) are solved by a standard Schwartz

overlap method, which is very efficient for hyperbolic

problems and matches the block-based data structure

of the MSFV algorithm. As mobility depends on satu-

ration, the basis functions have to be updated. To keep

the MSFV method efficient, the basis functions are

updated adaptively, i.e., only in regions where mobility

changes exceed a specified threshold [10]). This allows

reusing most basis functions for the successive step.

Recently, the MSFV method has been modified to

provide a suitable framework to describe additional

physical processes. This modification has been applied

to solve the parabolic pressure equation arising in the

case of compressible flow [12]. The modified algorithm

consists of three main steps: computation of an approxi-

mate pressure solution, which includes the computation

of the basis functions to extract effective coarse-scale

transmissibilities and the solution of the coarse-scale

pressure equation; construction of conservative fine-

scale fluxes; and solution of the transport equations.

The pressure approximation is defined by means of

the dual grid and consists of a juxtaposition of local

solutions computed on the dual cells. The flux approxi-

mation is defined as a juxtaposition of local solutions

computed on the coarse cells with appropriate bound-

ary conditions that guarantee mass conservation. The

most important difference compared to the original

MSFV method is that the modified algorithm does

not use a second set of basis functions to construct

the fine-scale fluxes, but solves local problems with

full physics. In this framework, the effects of gravity

(and capillarity) can be easily included in the fine-

scale flux construction, whereas a correction function

has to be introduced to obtain an accurate pressure

approximation.

4 Pressure approximation

4.1 Finite-volume discretization scheme

The cell-centered finite-volume discretization scheme

for the homogeneous elliptic equation,

∇ · λk∇p = 0, (10)

can be derived as a special case of the more general

weighted residual method, which is based on a weak

integral form of the differential equation, i.e.,
∫

	
w∇ ·

λk∇ p dx = 0. Depending on the choice of the test

functions, w, and on the approximation of p, different

discretization schemes can be derived (finite-volume,

standard finite-elements, etc.).

Let us consider a grid with M nodes and N cells,

which defines a partition of the domain, 	, into N con-

trol volumes, 	i ⊂ 	. To derive a set of discrete mass-

conservation equations, we integrate Eq. 10 over 	i,

which corresponds to w(x) = 1 if x ∈ 	i and w(x) = 0

elsewhere. Applying the Gauss’ theorem (or diver-

gence theorem), for the cell 	i we obtain

∫

	i

∇ · λk∇p dx =

∫

∂	i

λk∇p · η ds ≈
∑

j

Tij
pij = 0,

(11)
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where η is the unit vector orthogonal to ∂	i point-

ing outwards. To obtain the discrete transmissibilities,

Tij, a choice has to be made to relate the continuous

gradient, ∇p, to the discrete potential drop, 
pij =

pi − pj, between the two cells 	i and 	 j. In the

standard cell-centered finite-volume method, a piece-

wise linear interpolation is used and flux continuity is

enforced at the interface; in the MSFV method local

solutions of the elliptic equation (basis functions) are

used as pressure interpolators.

4.2 Basis functions and transmissibilities

The MSFV method employs an auxiliary coarse grid,

together with its dual, to solve Eq. 10. Given the do-

main 	, a coarse grid with M nodes and N cells is

constructed, which defines a partition, 	i∈[1,N]. A dual

coarse grid is constructed such that each dual coarse

cell, 	̃e∈[1,M], contains exactly one node of the coarse

grid in its interior. The dual coarse grid has N nodes,

x j∈[1,N], exactly one in the interior of each coarse cell

(Fig. 1).

The MSFV method relies on the possibility of ap-

proximating the fine-scale pressure by a juxtaposition

of local solutions of Eq. 10 computed in the dual cells,

	̃e, and on the representation of these solutions as

p|	̃e
=

∑

j

ϕ̃e
j pj, (12)

where the basis functions, ϕ̃e
j , are local solutions of

the flow problem independent of the parameters pj.

Fig. 1 The coarse grid (solid line) together with its dual (dashed

line)

The accuracy of the method depends on the ability of

the boundary conditions assigned on ∂	̃e to approxi-

mate the actual fine-scale flow conditions.

In the original implementation of the MSFV, it is

required that

∇⊥ · u = 0 on ∂	̃e, (13)

where the subscript ⊥ denotes the projection in the

direction normal to ∂	̃e, i.e., ∇⊥ = η(η · ∇). The use of

Eq. 13 to localize the flow problem was first proposed

in the multiscale finite-element context [8], and it was

demonstrated that it provides accurate MSFV solutions

for numerous numerical test cases [9, 10, 12], although

some problems may arise for large anisotropy or as-

pect ratios [13]. As the velocity is divergence free and

∇ · u = ∇⊥ · u + ∇‖ · u = 0, Eq. 13 is equivalent to as-

signing the solution of the reduced problem ∇‖ · u = 0

as Dirichlet boundary conditions on ∂	̃e. It is further

assumed that the parameters, pj, represent the pressure

values at the nodes of the dual grid, x j∈[1,N], i.e.,

p(x j) = pj, (14)

such that the approximate fine-scale pressure is the

solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ · λk∇p = 0 in 	̃e

∇⊥ · λk∇p = 0 on ∂	̃e

p(xi) = pi

. (15)

As the system (15) has to be satisfied for any value

of the nodal pressure and the basis functions are inde-

pendent of pj, the latter must be solutions of the local

problems

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ · λk∇ϕ̃e
j = 0 in 	̃e

∇⊥ · λk∇ϕ̃e
j = 0 on ∂	̃e

ϕ̃e
j(xi) = δij

. (16)

Note that these basis functions satisfy Lagrange’s

interpolation condition, ϕ̃e
j(xi) = δij, and the mass-

conservation constraint,
∑

j ϕ̃
e
j = 1. For cartesian grids,

which are considered in the following, we have a set of

2d basis functions per dual cell, ϕ̃e
j∈[1,2d]

, where d is the

number of dimensions.

The coarse-scale pressure equation is derived by

integration of the fine-scale equation on the con-

trol volumes defined by the coarse-grid cells, Eq. 11,

and by using the approximate fine-scale pressure,

Eq. 12, to compute the fluxes across the control-volume

boundaries, i.e., λk∇p · η ≈
∑

j pjλk∇ϕ̃e
j · η on ∂	i.
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Thus, a system of N algebraic mass-balance equations is

obtained,

3d
∑

j=1

Tij pj = 0, i ∈ [1, N], (17)

where

Tij = −

2d
∑

e=1

∫

∂	i∩	̃e

λk∇ϕ̃e
j · η ds (18)

is the coarse-scale transmissibility pertinent to the node

x j. Equation 18 represents the contribution to the flow

across ∂	i for a unit-pressure signal applied at the node

x j. It defines the flux across the boundary extracted

from all basis functions computed in dual cells that

are adjacent to the node x j and intersect the inter-

face. Note that this results in a 3d-point stencil and

that from the property
∑

j ϕ̃
e
j = 1 directly follow that

Tii = −
∑

j�=i Tij.

4.3 Local correction to the coarse-scale operator

If the flow of m incompressible phases in presence of

gravity and capillary forces is considered, the pressure

equation takes the form

∇ · λk (∇p + Pc − G) = 0, (19)

and can be regarded as an inhomogeneous elliptic

equation in the variable p with source term −∇ ·

λk (Pc − G). If the pressure equation is not homo-

geneous, the basis functions defined in the previous

section are inaccurate pressure interpolators. (The situ-

ation here is similar to the one encountered in modeling

wells, which has been solved by introducing an addi-

tional basis function defined on a well domain [15]).

The problem can be easily demonstrated considering

a single phase in a heterogeneous medium at hydro-

static conditions. In this case, the pressure is a linearly

increasing function of the depth. However, the shape

of the basis functions is always dictated by the hetero-

geneous permeability distribution, and no combination

of basis functions exists, which reproduces the correct

linear pressure distribution. Therefore, the pressure

approximation given by Eq. 12 has to be modified and

adapted to the inhomogeneous elliptic problem.

Instead of modifying the basis functions, ϕ̃e
j , we in-

troduce a local correction function, ϕ̃e
∗, in the definition

of the approximate fine-scale pressure, i.e.,

p|	̃e
=

∑

j

ϕ̃e
j pj + ϕ̃e

∗. (20)

This correction describes the effects of the inhomoge-

neous part of the equation. In other words, given the

basis functions defined in the previous section, Eq. 16,

an appropriate correction function is introduced such

that the approximate pressure satisfies the flow prob-

lem, Eq. 19, in the dual cell with appropriate boundary

conditions, Eq. 13 and Eq. 14. Note that we do not

attempt here to improve the boundary conditions used

to localize the flow problem. On the contrary, we show

how the correction function must be defined such that

Eqs. 13 and 14 are still satisfied.

Using Eq. 20, the local problem in a dual cell takes

the form
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ · λk
(

∑

j pj∇ϕ̃e
j + ∇ϕ̃e

∗ + Pc − G
)

= 0 in 	̃e

∇⊥ · λk
(

∑

j pj∇ϕ̃e
j + ∇ϕ̃e

∗ + Pc − G
)

= 0 on ∂	̃e ,

∑

j pjϕ̃
e
j(xi) + ϕ̃e

∗(xi) = pi

(21)

and with the definition of the basis functions, Eq. 16, we

obtain the following local problem
⎧

⎪

⎨

⎪

⎩

∇ · λk
(

∇ϕ̃e
∗ + Pc − G

)

= 0 in 	̃e

∇⊥ · λk
(

∇ϕ̃e
∗ + Pc − G

)

= 0 on ∂	̃e

ϕ̃e
∗(xi) = 0

, (22)

which defines ϕ̃e
∗. Note that no additional hypothesis

has been made: The derivation of Eq. 22 is exact and

unique, i.e., no other correction function exists that is

consistent with Eqs. 13, 14, and 16.

The coarse-pressure equation can be obtained by

integrating the differential equation, Eq. 19, over the

coarse cells, 	i, and applying Gauss’ theorem (or diver-

gence theorem), which yields
∫

∂	i

λk∇p · η ds = −

∫

∂	i

λk (Pc − G) · η ds. (23)

Using the approximate pressure, Eq. 20, we obtain a

set of discrete coarse-scale pressure equations,

3d
∑

j=1

Tij pj =

2d
∑

e=1

∫

∂	i∩	̃e

λk∇ϕ̃e
∗ · η ds

+

∫

∂	i

λk (Pc − G) · η ds i ∈ [1, N], (24)

where transmissibilities are still defined by Eq. 18. The

terms on the r.h.s. represent two surface source terms

on ∂	i. As the coarse-scale operator, Tij, does not

include capillary and gravity effects, this operator gives

incorrect fluxes across ∂	i for a given pressure drop

between grid nodes. The first term on the r.h.s., which

contains ϕ̃e
∗, represents a correction to these inaccurate

fluxes and can be regarded as a local correction to the



342 Comput Geosci (2008) 12:337–350

Fig. 2 The coarse grid used
for numerical tests consists
of 9 × 9 blocks, 	i, each of
which contains 6 × 6 fine cells

coarse-scale operator independent of the coarse-scale

pressure.

5 Adaptivity

The computational efficiency of the MSFV method

relies on the fact that most basis functions can be reused

at successive time steps. To avoid computationally ex-

pensive recalculations, an adaptivity criterion based

on total-mobility changes has been introduced. Rigor-

ously, the basis functions should be recomputed every

time that total mobilities vary in their local support,

	̃e, due to changes in saturation; in practice, they are

updated only if the condition

1

1 + ǫλ

<
λ̃|	̃e

λ|	̃e

< 1 + ǫλ, (25)

is violated [10]. In Eq. 25, ǫλ > 0 is a user-defined

threshold, and λ̃ is the total mobility used to compute

the current basis functions, i.e., the mobility at the last

update.

This strategy can be easily extended to problems

in which gravity is important. In general, however,

the criterion above is not sufficient to guarantee an

accurate correction function, as it can be easily un-

derstood by considering the case of linear permeabil-

ities and equal viscosities: As λ = 1 independently of

the pressure, Eq. 25 is always satisfied, and the cor-

rection function is never updated. The source term

in Eq. 22, i.e., Q= −∇ · λk(Pc−G), varies with the

saturation and requires the correction function to be

recomputed. For this reason, an additional criterion is

introduced, i.e.,

1

1 + ǫ∗

<
Q̃|	̃e

Q|	̃e

< 1 + ǫ∗, (26)

where ǫ∗ > 0 is a second user-defined threshold and Q̃

is the source term used to compute the current correc-

tion function. If Eq. 25 is violated, we set λ̃|	̃e = λ|	̃e

and Q̃|	̃e = Q|	̃e and recompute all basis functions and

the correction function pertinent to the dual cell, 	̃e; if

only Eq. 26 is violated, instead, we set Q̃|	̃e = Q|	̃e and

recompute only the correction function. In the latter

case, the total-mobility field used to compute the cor-

rection function is not updated, which guarantees that

the total-mobility fields used for basis and correction

functions are always identical. Note that there is only

one correction function per dual cell, hence, only one

problem per dual cell has to be solved when only Q

changes significantly.
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Fig. 3 Natural logarithm of the 2D permeability field. The geo-
metric mean of the permeability is kg = 1.3 10−9 m2; the variance

of the log-permeability is σ 2
lnk

= 2.52
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Table 1 Phase properties used for the numerical simulations;
porosity is φ = 0.2

μα (Pa s) ρα (kg/m3) kα (−) pcα (Pa)

Water 10−3 1,000 S2
α 0

Oil 10−2 500 S2
α 0

Dummy phase 10−2 500 S2
α 0

6 Flux approximation

The approximate pressure field cannot be used directly

to compute the fine-scale fluxes. Indeed, the corre-

sponding fluxes are, in general, discontinuous at the

dual-cell interfaces and would lead to severe mass-

balance errors [9]. For this reason, the approximate

fluxes are constructed as a juxtaposition of fluxes ob-

tained from local pressure solutions of Eq. 19 com-

puted on the coarse cells, 	i. The Neuman boundary

conditions assigned on ∂	i are extracted from the ap-

proximate pressure solution, Eq. 20, which guarantees

local mass conservation. Therefore, the fine-scale total

velocity can be written as

u|	i
= −λk∇(ψi + Pc − G), (27)

where ψi is the solution of the local problem

{

∇ · λk∇(ψi + Pc − G) = 0 in 	i

∇ψi · η = ∇
(
∑

j ϕ̃
e
j pj + ϕ̃e

∗

)

· η on ∂	i ∩ 	̃e
.

(28)

7 Phase-transport equations and coupling

Once the approximate total velocity field has been com-

puted, the phase velocity can be obtained from Eq. 9

and used in the fine-scale phase-transport equations.

A Schwartz overlap method is applied: The transport

problem is solved locally in each coarse volume with

boundary conditions from the adjacent cells. Saturation

at the boundary is matched by iteration. More precisely,

a system of m − 1 equations of the form
⎧

⎨

⎩

φ


t

(

Sν
α − Sn

α

)

+ ∇ · uα(Sν) = 0 in 	i

uα(Sν−1) on ∂	i

(29)

is solved. The superscripts ν and n denote the current

iteration level and the old time step, respectively. In

general, the phase velocity is a nonlinear function of

saturation, and therefore, the linearization

uα(Sν)≈uα(Sν−1)+

m−1
∑

β=1

duα

dSβ

∣

∣

∣

S=Sν−1

(

Sν
β −Sν−1

β

)

, (30)

is used and Eq. 29 is solved by a Newton–Raphson

method. The resulting saturation distribution deter-

mines a new total mobility field and a new source term

for the pressure equation. Coupling between pressure

and saturation equations is achieved through a second

iteration loop, which yields a sequential fully implicit al-

gorithm [11]. The solution algorithm is outlined below:

Algorithm: Solution algorithm for flow and transport

n=0
do

ζ = 0, Sζ = Sn

do

S = Sζ

if Eq. 25 is not fulfilled then
update ϕ̃e

j∈[1,2d]
and ϕ̃e

∗ (Eqs. 16 and 22)

else if Eq. 26 is not fulfilled then
update ϕ̃e

∗ (Eq. 22)
extract coarse-grid transmissibilities (Eq. 18)
solve coarse-grid pressure equation (Eq. 24)
construct flux approximation (Eq. 28)
ν = 0, Sν = S

do
ν = ν + 1

solve phase-transport equations (Eq. 29)
until maxα |Sν

α − Sν−1
α |∞ < ǫ

ζ = ζ + 1, Sζ = Sν

until maxα |S
ζ
α − S

ζ−1
α |∞ < ǫ

Sn+1 = Sζ

n=n+1
until simulation is done
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Fig. 4 Counter-current flow in the homogeneous permeability
field. Vertical water-saturation profile of the MSFV solution
(crosses) and fine-scale solution (solid line) at dimensionless
times a 0.16, b 0.32, c 0.8, and d 1.6. The time-step size is 1.6 10−2
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Fig. 5 Counter-current
flow in the heterogeneous
permeability field.
a Fine-scale reference
solution for saturation
(black corresponds to
Sw = 0, white to Sw = 1);
b MSFV solution;
c saturation error, i.e.,

S = SMSFV − Sref,
isoline are drawn at

S=−0.3, −0.1, −0.05, 0.05,

0.1, 0.3; d fine-scale reference
solution (solid line) and
MSFV solution (dashed line)
for pressure. Shown are the
results at dimensionless time
0.2; the time-step size
is 2 10−3
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8 Numerical results

In this section, the accuracy of the MSFV method for

density-driven flow is investigated by comparison with

reference solutions obtained solving the same problem

on the fine grid. We consider two types of problems:

counter-current and lock-exchange flow. The former

test deals with a situation in which the different phases

can flow in opposite directions and raises mass-balance

issues for a three-phase system. However, the total

velocity is zero under purely counter-current flow con-

ditions (homogeneous medium with vertical density

variations), such that the phase flow is only dictated by

local density differences. The lock-exchange problem is

more severe, as the horizontal density gradient yields a

nonzero total velocity and induces recirculation. Note

that, although the flow is purely gravity induced, the

phase behavior is determined by the competition be-

tween the local gravity effects and the global pressure

distribution that is far from being hydrostatic and dic-

tates the total velocity.

The numerical simulations are performed on a 2D

discrete domain of size L × L that is represented on

a 54 × 54 cell fine grid. The coarse grid employed for

the MSFV method consists of 9 × 9 cells (Fig. 2). No-

flow boundary conditions apply to all four sides of the

domain. Two permeability fields are considered: a ho-

mogeneous field with k = 10−9 m2 and a heterogeneous

field (Fig. 3), which has been extracted from the top

layer of the second model of the SPE10 Comparative

Solution Project [7]. The geometric mean of the het-

erogeneous field is k = 1.3 10−9 m2, and the variance of

the log-normal permeability is σ 2
ln k = 2.52.

We consider a three-phase system consisting of wa-

ter, oil, and a dummy phase, which has the same prop-

erties of the oil phase (the parameters used in the

simulations are given in Table 1). Capillary forces are

neglected. Two transport equations are solved, one for
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Fig. 6 Lock-exchange
problem in the homogeneous
permeability field.
Water-phase saturation
contour lines (0.001, 0.25,
0.50, 0.75, and 0.999) of the
fine-scale solution (solid

contours) and the MSFV
solution (dashed contours)
at dimensionless times a 0.08,
b 0.24, c 0.58, and d 0.8.
The time-step size is 4 10−3
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water and one for oil, whereas the saturation of the

third phase is obtained from Eq. 4. The saturation

of the dummy phase, which is initially zero, is moni-

tored to check material balance. In all the numerical

simulations, ǫ = 10−4 is used as convergence criterion;

ǫλ = 0.1 and ǫ∗ = ∞ are used for adaptivity. With these

thresholds, the correction function is updated only if

the basis functions are updated. Typically, less than

20% of the basis functions are recomputed at each time

step (2% per iteration loop). Few details about the

material-balance error and the selective basis-function

update are given in Appendix 1 and the implementation

details in Appendix 2.

8.1 Counter-current flow

In the counter-current flow problem, oil initially fills

the lower half of the domain, while water occupies the

upper part. At time zero, both phases begin to move

due to buoyancy effects. The evolution of the vertical

water-saturation profile in the homogeneous perme-

ability field is shown in Fig. 4. Note that gravity does not

contribute to the total velocity in this case and that the

profile is asymmetric due to the relatively large viscosity

ratio, μo/μw = 10. It can be observed that the MSFV

solution and the reference solution are almost identical.

In Fig. 5, the MSFV solution and the reference solu-

tion are compared for the heterogeneous permeability

field. The results at the dimensionless time t/τ = 0.2

[where τ = φL(μw + μo)/kg
ρ] are shown. It can be

seen that, also in the heterogeneous case, the MSFV

solution is in excellent agreement with the reference.

8.2 Lock-exchange problem

In the lock-exchange problem, water initially occupies

the left half of the domain, while oil fills the right

part. Due to the density difference, recirculation is
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Fig. 7 Lock-exchange
problem in the heterogeneous
permeability field.
Water-phase saturation
contour lines (0.001, 0.25,
0.50, 0.75, and 0.999) of the
fine-scale solution (solid

contours) and the MSFV
solution (dashed contours)
at dimensionless times
a 1.6 10−2, b 3.2 10−2,
c 4.8 10−2, and d 8 10−2.
The time-step size is 8 10−4
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induced. The lock-exchange problem is more challeng-

ing because, in contrast to the counter-current flow

problem, gravity significantly contributes to the total

velocity and localization is more critical. Indeed, an

accurate global information about pressure is needed

to correctly capture the density-current flow induced in

the horizontal direction.

The evolution of the saturation distributions for

the homogeneous and the heterogeneous permeability

fields is compared in Figs. 6 and 7, respectively. Shown

are the water-saturation contour lines for the MSFV so-

lution and the reference solution at four different times.

Note the sharp drainage front (oil invasion) and the ex-

pansion wave behind the wetting front (water invasion)

due to the viscosity difference. The two solutions are in

excellent agreement even after large simulation times,

which proves that the velocities of the two invading

fronts are accurately captured.

Finally, in Fig. 8b, the MSFV pressure is compared

with the pressure obtained by superposition of the

basis functions without correction, i.e., from Eq. 12.

Shown are the results obtained for the heterogeneous

permeability field at dimensionless time t/τ = 8 10−2. It

can be observed that, without correction, the pressure

is much more irregular and strongly dictated by the

heterogeneity. With the correction function, the pres-

sure becomes smoother, and the agreement with the

reference pressure is excellent (Fig. 8a). Note that the

correction is zero at the horizontal dual-cell boundaries

(Fig. 8d). Indeed, as gravity is perpendicular to these

boundaries, the condition at ∂	̃e in Eq. 22 is equivalent

to a reduced problem without source term, which re-

sults in no correction along the horizontal boundaries.

Note also that the correction is effective in regions

where only one phase is present. This is due to the

fact that the basis functions are inaccurate pressure

interpolators also for single-phase flow if gravity is not

negligible, as discussed at the beginning of Section 4.3

for the hydrostatic solution. Numerical simulations

(not presented here) have shown that the approximate
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Fig. 8 Lock-exchange
problem in the heterogeneous
permeability field.
a Fine-scale reference
pressure (solid line) and
MSFV pressure (dashed line);
b MSFV pressure (dashed

line) and pressure obtain by
superimposition of the basis
function without correction
(solid line); c fine-scale
solution for saturation (black

corresponds to Sw = 0, white

to Sw = 1); d correction
function. Shown are the
results at dimensionless time
8 10−2; the time-step size
is 8 10−4
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pressure with correction function can exactly reproduce

the hydrostatic pressure solution for single- and multi-

phase flow in heterogeneous permeability fields.

9 Conclusions

An accurate treatment of density-driven flow in the

MSFV method has been achieved by adding a correc-

tion function to the basis-function interpolated pres-

sure. This correction, which can be interpreted as

a supplementary basis function independent of the

coarse-scale pressure, appears in the coarse-grid pres-

sure equation as an additional source term. It can be

regarded as a local correction to the coarse-scale op-

erator, which modifies the fluxes between coarse cells

generated by the basis-function interpolated pressure.

The derivation of the local problem that defines the

correction function does not require any additional

assumption. As in the original MSFV, the only approx-

imation is the localization of the pressure equation to

compute basis and correction functions.

Introducing the correction function yields a very

accurate fine-scale pressure field for multiphase flow

with gravity. The numerical experiments performed for

density-driven flow problems (counter-current flow and

lock-exchange) demonstrate that the MSFV solutions

for pressure and saturation are in excellent agreement

with the corresponding fine-scale reference solutions.

This proves that the solution of the reduced problems

on the cell boundaries provides a good estimate of the

actual fine-scale flow conditions even in presence of

gravity. From a computational view point, it is impor-

tant to observe that basis and correction functions can

be updated adaptively, which makes the MSFV method

very efficient for large problems.

Similar results are expected for problems with cap-

illary effects, whose treatment in terms of correction

function has been presented, but has not been tested

numerically. Indeed, capillarity and gravity have similar

effects on the structure of the pressure equation, as they

both appear as saturation-dependent source terms. The

correction function presented here provides a frame-

work that can be generalized for all those cases dealing
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with inhomogeneous elliptic equations, e.g., due to the

presence of distributed sources or accumulation terms

as for compressible flow.

Acknowledgements We thank S. H. Lee, C. Wolfsteiner, and
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Appendix

Appendix 1: Material balance and adaptivity

All numerical simulations are performed for a three

phase system. The saturation of the third phase, which

is initially zero (dummy phase), is computed as Sd =

1 − Sw − So and used to check the material balance.

The maximum saturation, maxx∈	{Sd(x)}, and the total

mass per unit volume,
∫

	
Sd(x)dx/

∫

	
dx, of the refer-

ence solution and of the MSFV solution are compared

in Fig. 9a and b, respectively. Shown are the solutions

of the lock-exchange problem in the homogeneous per-

meability field. The maximum saturation of the dummy

phase reaches a value about ten times larger than

the value used for the convergence criterion, ǫ = 10−4.

Note that the behaviors of the MSFV solution and

the reference solution are quantitatively very similar.

Additional numerical simulations (not presented here)

have shown that the error can be arbitrarily reduced

by reducing ǫ. The other numerical simulations pre-

sented in these paper exhibit similar behaviors, the sim-

ulations performed in the heterogeneous permeability

field showing some fluctuations.

The fraction of update basis and correction functions

per time step, Ft, is defined as the number of dual cells

in which these functions are updated, Mu, divided by

the number of dual cells, M, and it is shown in Fig. 9c.

Typically, the basis functions have to be updated in

less than 20% of the dual cells. Figure 9d shows the

Fig. 9 Lock-exchange
problem in the homogeneous
permeability field.
a Maximum saturation of the
dummy phase, maxx∈	 Sd,
and b total dummy-phase
mass per unit volume,
∫

	
Sddx/

∫

	
dx, for the

fine-scale (solid line) and the
MSFV solutions (crosses) as a
function of the dimensionless
time; fraction of recomputed
basis functions per time
step (c) and per iteration
loop (d) as a function
of dimensionless time
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fraction of basis functions update per iteration loop,

Fζ = Ft/nζ , where nζ is the number of iterations. The

percentage of recomputed basis and correction func-

tions is similar for the other numerical tests performed.

Appendix 2: Implementation details

Throughout the paper, a continuous notation has been

employed for problems to be solved at fine scale. In

the numerical simulations, however, these problems

have been solved on a discrete grid (the original fine-

scale grid) with a cell-centered finite-volume method.

In this section, we present few details about the

discretization used.

2.1 Fine-scale reference solution

Given two fine-scale cells of a cartesian grid, 	′
i and 	′

j,

the discrete fluxes across the interface ∂	′
ij = 	̇′

i ∪ 	̇′
j

directed from 	′
i to 	′

j can be written in the form

Aij[u]ij, where

[u]ij = − [λ]U
ij

[

k
]H

ij

{

p(x j) − p(xi)

|x j − xi|
− gij

m
∑

α=1

[

fα
]U

ij
ρα

}

.

(31)

is the total velocity evaluated at the interface; Aij is the

area of the interface; x j and xi the coordinates of the

cell centers; and gij = g · (x j − xi)/|x j − xi| the com-

ponent of the gravity perpendicular to the interface.

Square brackets, [ ]ij, indicate that the corresponding

quantities are evaluated at the interface; the super-

scripts A and H denote arithmetic and harmonic mean

of the corresponding cell quantities, respectively. The

superscript U indicates that a phase-by-phase upwind

scheme is employed; e.g., for the mobility

[

λα(Sα)
]U

ij
= λα

(

[

Sα

]U

ij

)

=

{

λα(Si) if [uα]ij > 0

λα(S j) if [uα]ij < 0
.

(32)

Therefore, we have [λ]U
ij =

∑m
β=1

[

λβ

]U

ij
and

[

fα
]U

ij
=

[λα]U
ij /[λ]U

ij , which satisfies the constraint
∑m

α=1

[

fα
]

ij
=

1 and guarantees the conservation of mass.

2.2 MSFV method

When computing basis, ϕ̃e
l , and correction functions, ϕ̃e

∗,

the total velocity at the interface is evaluated as

[u]ij = − [λ]A
ij

[

k
]H

ij

ϕ̃e
l (x j) − ϕ̃e

l (xi)

|x j − xi|
, (33)

and

[u]ij = − [λ]A
ij

[

k
]H

ij

{

ϕ̃e
∗(x j) − ϕ̃e

∗(xi)

|x j − xi|
− gij

m
∑

α=1

[

fα
]A

ij
ρα

}

,

(34)

respectively. Note that a central scheme is used for the

phase mobility, such that these functions are indepen-

dent of the coarse-scale pressure. When computing the

approximate fluxes in a coarse cell, 	l, the velocity at

the interface is evaluated as

[u]ij = − [λ]U
ij

[

k
]H

ij

{

[


p


x

]

ij

− gij

m
∑

α=1

[

fα
]U

ij
ρα

}

, (35)

where the discrete pressure gradient is

[


p


x

]

ij

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[λ]A
ij

[λ]U
ij

p|	̃e(x j) − p|	̃e(xi)

|x j − xi|
if ∂	′

ij ⊂ ∂	l

ψl(x j) − ψl(xi)

|x j − xi|
otherwise

.

(36)

2.3 Phase transport

In the transport equation, the phase velocity at the

interface is evaluated as

[uα]ij = − [λα]U
ij

[

k
]H

ij

{

[


p


x

]

ij

− gijρα

}

. (37)

where the discrete pressure drop is given by Eq. 36. In

Eq. 37, λα is the only function of saturation, such that

the transport equation can be linearized substituting

[

λα

(

Sν
α

)]U

ij
≈

[

λα

(

Sν−1
α

)]U

ij
+

[

dλα

dSα

∣

∣

∣

Sα=Sν−1
α

(

Sν
α−Sν−1

α

)

]U

ij

,

(38)

where [ ]U
ij denotes the usual phase-by-phase upwinding

(see Eq. 32).
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