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Gaussian network model (GNM) and anisotropic network model (ANM) are some of the most
popular methods for the study of protein flexibility and related functions. In this work, we propose
generalized GNM (gGNM) and ANM methods and show that the GNM Kirchhoff matrix can be
built from the ideal low-pass filter, which is a special case of a wide class of correlation functions
underpinning the linear scaling flexibility-rigidity index (FRI) method. Based on the mathematical
structure of correlation functions, we propose a unified framework to construct generalized Kirchhoff
matrices whose matrix inverse leads to gGNMs, whereas, the direct inverse of its diagonal elements
gives rise to FRI method. With this connection, we further introduce two multiscale elastic network
models, namely, multiscale GNM (mGNM) and multiscale ANM (mANM), which are able to
incorporate different scales into the generalized Kirchhoff matrices or generalized Hessian matrices.
We validate our new multiscale methods with extensive numerical experiments. We illustrate that
gGNMs outperform the original GNM method in the B-factor prediction of a set of 364 proteins.
We demonstrate that for a given correlation function, FRI and gGNM methods provide essentially
identical B-factor predictions when the scale value in the correlation function is sufficiently large.
More importantly, we reveal intrinsic multiscale behavior in protein structures. The proposed mGNM
and mANM are able to capture this multiscale behavior and thus give rise to a significant improvement
of more than 11% in B-factor predictions over the original GNM and ANM methods. We further
demonstrate the benefits of our mGNM through the B-factor predictions of many proteins that fail the
original GNM method. We show that the proposed mGNM can also be used to analyze protein domain
separations. Finally, we showcase the ability of our mANM for the analysis of protein collective
motions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936132]

I. INTRODUCTION

Under physiological conditions, proteins undergo con-
stant motions, ranging from atomic thermal fluctuation, side-
chain rotation, residue swiveling, to domain swirling. Protein
motion strongly correlates with protein functions, including
molecular docking,11 drug binding,1 allosteric signaling,6 self
assembly,33 and enzyme catalysis.14 The range of protein
motions in a cellular environment depends on the structure’s
local flexibility, an intrinsic property of a given protein
structure. Protein flexibility is reflected by the Debye-Waller
factor (B-factor), i.e., the atomic mean-square displacement,
obtained in structure determination by x-ray crystallography,
NMR, or single-molecule force experiments.9 However,
the B-factor cannot absolutely quantify flexibility—it also
depends the crystal environment, solvent type, data collection
condition, and structural refinement procedure.19,24

The flexibility of a biomolecule can be assessed by molec-
ular dynamics (MD),34 normal mode analysis (NMA),5,16,26,45
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graph theory,21 and elastic network models (ENMs),2–4,18,28,43

including Gaussian network model (GNM)3,4 and anisotropic
network model (ANM).2 NMA can be regarded as time-
independent MD37 and diagonalizes the MD potential to
obtain a set of eigenvalues and eigenvectors, where the first
few eigenvectors predict the collective, global motions, which
are potentially relevant to biomolecular functionality. NMA
with only the elasticity potential, which is a leading term
in the MD potential, was introduced by Tirion46 and was
extended to the network setting in ANM.2 Here, network
refers to the connectivity between particles regardless of their
chemical bonds.13 Yang and Chng60 demonstrated that due to
its network setting, GNM is about one order more efficient than
most other flexibility approaches in computational complexity.
In terms of B-factor prediction, GNM is typically more
accurate than ANM.35,37 Therefore, GNM has been widely
used in the study of biomolecular structure, dynamics,
and functions.7,32,41,60 It has demonstrated its utilities in
stability analysis,31 docking simulation,15 viral capsids39,42 and
domain motions of hemoglobin,58 F1 ATPase,8,63 chaperonin
GroEL,23,62 and the ribosome.44,49

In traditional elasticity network models, i.e., ENM, GNM,
and ANM, the connectivity is determined by a fixed cutoff
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distance. All atoms within the cutoff distance are treated
equally with no consideration given to effects which scale
with distance. In this manner, the behavior of these methods
typically depends on the cutoff distance used. Many modified
models are proposed to improve the hard cutoff distance
practice by the incorporation of distance information.60 Hinsen
has changed the spring constant to a distance-dependent
Gaussian function.18 Riccardi et al. have used an inverse 6th
power function of distance as the spring coefficient in their
elastic network model.40 A parameter-free ANM has been
introduced by using the inverse 2nd power square distance for
spring constant.59

A common feature of all the aforementioned approaches is
that they all depend on the mode decomposition of the potential
matrix, which typically has the computational complexity of
O(N3), where N is the order the potential matrix. To bypass
the matrix diagonalization, researchers explore the flexibility
properties using the local packing density. Many elegant
methods and algorithms have been proposed, including the
local density model (LDM) by Halle,17 the local contact
model (LCM) by Zhang and Brüschweiler,61 weighted contact
number (WCN) by Lin and others.20,27,30

Recently, we have proposed a few mode-decomposition
free methods for flexibility analysis, namely, molecular
nonlinear dynamics,54 stochastic dynamics53 and flexibility-
rigidity index (FRI).35,52 Among them, the FRI method is of
O(N2) in computational complexity and has been accelerated
to O(N) by using the cell lists algorithm without loss of
accuracy.35 The essential idea of the FRI method is to evaluate
the rigidity index or the compactness of the biomolecular
(network) packing by the total correlation, a function of
inter-atomic distance. Then, the flexibility index is defined as
the inverse of the rigidity index.

Although the original motivation for FRI comes from the
design of continuum elasticity with atomic rigidity (CEWAR),
FRI shares a similarity with the LDM, LCM, and WCN. To
be more specific, all of these methods make use of local
packing information and are free from matrix diagonalization.
However, significant distinction exists between our FRI
methods and other local density based methods and it can
be summarized as the following. First, other than the discrete
flexibility index and discrete rigidity index, our FRI methods
delivers a continuous flexibility function and a continuous
rigidity function.35,52 The continuous rigidity function, which
can be regarded as the density distribution function (density
estimator) of a biomolecule, plays many important roles
beyond the scope of flexibility study.55 For instance, it can
be used to generate biomolecular surface representations,56,57

which reduce to the Gaussian surface if an appropriate kernel
is used. In fact, rigidity function can be applied to decipher
the atomic information from the experimental electron density
data.47,51,57 Second, protein multiscale collective motions can
be captured by using multiple kernels in our FRI method,
called multiscale FRI or multikernel FRI (mFRI).36 This
approach significantly improve the accuracy of FRI B-
factor predictions. Third, we proposed an anisotropic FRI
(aFRI) model for the evaluation of biomolecular global
motions. Different from traditional normal mode analysis
or ANM, our aFRI allows adaptive representations, ranging

from a completely global description to a completely local
representation.35

The objective of the present work is twofold. First, we
propose a unified framework to construct generalized GNMs
(gGNMs). We reveal that the GNM Kirchhoff matrix can
be constructed from the ideal low-pass filter (ILF), which is
the limiting case of admissible FRI correlation functions. We
demonstrate that FRI and gGNM are asymptotically equivalent
when the cutoff value in the Kirchhoffmatrix or the scale value
in the correlation function is sufficiently large. This finding
paves the way for understanding the connection between
the GNM and FRI methods. To clarify this connection,
we introduce a generalized Kirchhoff matrix to provide a
unified starting point for the gGNM and FRI methods, which
elucidates the similarity and difference between gGNM and
FRI. Based on this new understanding of the gGNM working
principle, we propose infinitely many correlation function
based gGNMs. We show that gGNM outperforms the original
GNM for the B-factor prediction of a set of 364 proteins.
Both gGNM and FRI deliver almost identical results when
the scale parameter is sufficiently large. Our approach sheds
light on the construction of efficient gGNMs. Additionally,
we propose two new methods, multiscale GNM (mGNM)
and multiscale ANM (mANM), to account for the multiscale
features of biomolecules. Most biomolecules, particularly
large macromolecules and protein complexes, have multiple
characteristic length scales ranging from covalent bond,
residue, secondary structure, and domain dimensions, to
protein sizes. Even for small molecules, due to the influence
of crystal structure, multiscale effects play a significant role in
atomic thermal fluctuations. Consequently, GNM and ANM,
which are typically parametrized at a single cutoff distance,
often do not work well in characterizing the flexibility of
molecules involving multiscale behaviors. Our essential idea
is to generalize original GNM and ANM into a multikernel
setting so that each kernel can be parametrized at a given
characteristic length. This generalization is achieved through
the use of a FRI assessment, which predicts the involvement
of different scales, followed by an appropriate constructions of
multikernel GNM or multikernel ANM. This approach works
because for a diagonally dominant matrix, the direct inverse
of the diagonal element can be approximated by the diagonal
element of the inverse matrix. We demonstrate that the
proposed mGNM and mANM are able to successfully capture
the multiscale properties of the protein and significantly
improve the accuracy of protein flexibility prediction.

The rest of this paper is organized as the follows. Section II
is devoted to methods and algorithms. We first propose
a concise formulation of gGNMs using FRI correlation
functions in Section II A. We show that there are infinitely
many new gGNMs that reduce to the original GNM at
appropriate limits of their parameters. To establish notation,
we further present a brief review of our mFRI formalism
in Section II B. Based on the connection between FRI and
GNM, we propose mGNM in Section II C. Specifically,
parameters learned from mFRI are used to construct the
multiscale Kirchhoff matrix in mGNM. We discuss two
types of realizations of mGNMs. As an extension of our
mGNM, the mANM method is introduced in Section II D.
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We validate the proposed gGNM, mGNM, and mANM by
extensive numerical experiments in Section III. We illustrate
that the intrinsic multiscale properties of biomolecules are
successfully captured in our mGNM and mANM. Finally, in
Section IV, we demonstrate the utility of mGNM and mANM
for protein flexibility analysis, protein domain separation,
and collective motion study. The present work offers a new
strategy for the design and construction of accurate, efficient,
and robust methods for biomolecular flexibility analysis. This
paper ends with a conclusion.

II. METHODS AND ALGORITHMS

A. gGNMs

To establish notation and facilitate new development, let
us present a brief review of the GNM and FRI methods.
Consider an N-particle coarse-grained representation of
a biomolecule. We denote {ri |ri ∈ R

3, i = 1,2, . . . ,N} the
coordinates of these particles and ri j = ∥ri − r j∥ the Euclidean
space distance between ith and jth particles. In a nutshell, the
GNM prediction of the ith B-factor of the biomolecule can be
expressed as3,4

BGNM
i = a

�
Γ
−1�

ii
,∀i = 1,2, . . . ,N, (1)

where a is a fitting parameter that can be related to the thermal
energy and

�
Γ
−1
�
ii

is the ith diagonal element of the matrix
inverse of the Kirchhoff matrix,

Γi j =



−1, i , j and ri j ≤ rc

0, i , j and ri j > rc

−

N

j, j,i
Γi j, i = j

, (2)

where rc is a cutoff distance. The GNM theory evaluates the
matrix inverse by

�
Γ
−1
�
ii
=
N

k=2 λ
−1
k

�
ukuT

k

�
ii

, where T is the
transpose and λk and uk are the kth eigenvalue and eigenvector
of Γ, respectively. The summation omits the first eigenmode
whose eigenvalue is zero.

The FRI prediction of the ith B-factor of the biomolecule
can be given by35,52

BFRI
i = a

1
N

j, j,i w jΦ(ri j; η)
+ b,∀i = 1,2, . . . ,N, (3)

where a and b are fitting parameters, f i =
1

N
j, j,i

w jΦ(ri j;η)

is the ith flexibility index and µi =
N

j, j,i w jΦ(ri j; η) is the
ith rigidity index. Here, w j is an atomic number depended

weight function that can be set to w j = 1 for a Cα network, and
Φ(ri j; η) is a real-valued monotonically decreasing correlation
function satisfying the following admissibility conditions:

Φ(ri j; η) = 1 as ri j → 0, (4)

Φ(ri j; η) = 0 as ri j → ∞, (5)

where η is a scale parameter. Delta sequences of the positive
type50 are good choices. Many radial basis functions are also
admissible.35,52 Commonly used FRI correlation functions
include the generalized exponential functions

Φ(ri j; η, κ) = e−(ri j/η)
κ

κ > 0, (6)

and generalized Lorentz functions

Φ(ri j; η,υ) =
1

1 +
�
ri j/η

�υ , υ > 0. (7)

A major advantage of the FRI method is that it does not resort
to mode decomposition and its computational complexity can
be reduced to O(N) by means of the cell lists algorithm used in
our fast FRI (fFRI).35 In contrast, the mode decomposition of
NMA and GNM has the computational complexity of O(N3).

To further explore the theoretical foundation of GNM, let
us examine the parameter limits of generalized exponential
functions (6) and generalized Lorentz functions (7),

e−(ri j/η)
κ

→ Φ(ri j; rc) as κ → ∞, (8)

1

1 +
�
ri j/η

�υ → Φ(ri j; rc) as υ → ∞, (9)

where rc = η and Φ(ri j; rc) is the ILF used in the GNM
Kirchhoff matrix

Φ(ri j; rc) =


1, ri j ≤ rc

0, ri j > rc
. (10)

Relations (8) and (9) unequivocally connect FRI correlation
functions to the GNM Kirchhoff matrix. It is important to
examine whether the ILF is still a FRI correlation function.
Mathematically, the ILF is a special real-valued monotonically
decreasing correlation function and also satisfies admissibility
conditions (4) and (5). In fact, all FRI correlation functions are
low-pass filters as well. Therefore, both GNM and FRI admit
low-pass filters in their constructions. Indeed, GNM is very
special in the sense that there is only one unique ILF, while,
there are infinitely many other low-pass filters. Figure 1
illustrates the behavior and relation of the above low-pass
filters or correlation functions. Clearly, the ILF is completely

FIG. 1. Illustration of admissible cor-
relation functions. (a) Correlation func-
tions approach the ILF as κ→∞ or υ
→∞ at η = 7 Å. (b) Effects of varying
scale value η. Local correlation is ob-
tained with large υ and small η values.
Whereas, nonlocal correlation is gener-
ated by small υ and large η values.
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localized for any given cutoff value. In general, generalized
exponential function and generalized Lorentz function are
delocalized and the former decays faster than the latter for a
given power. The combination of a low power value and a
large scale gives rise to nonlocal correlations. Our earlier test
indicates that υ = 3 and η = 3 Å provide a good flexibility
analysis for a set of 364 proteins.35

To further bring to light the mathematical foundation
of the GNM and FRI methods, we consider a generalized
Kirchhoff matrix53,54

Γi j(Φ) =



−Φ(ri j; η), i , j

−

N

j, j,i
Γi j(Φ), i = j

, (11)

where Φ(ri j; η) is an admissible FRI correlation function. The
generalized Kirchhoffmatrix includes the Kirchhoffmatrix as
a special case. It is important to note that each diagonal element
is a FRI rigidity index: µi = Γii(Φ). Therefore, the generalized
Kirchhoff matrix provides a unified starting point for both the
FRI and gGNM methods. However, the striking difference
between the gGNM and FRI methods is that to predict
B-factors, the gGNM seeks a matrix inverse of Kirchhoff
matrix (2), whereas, the FRI takes the direct inverse of the
diagonal elements of generalized Kirchhoff matrix (11).

B. mFRI

Due to the widely existed multiscale in biomolecules,
especially large macromolecules and protein complexes,
the mFRI method is proposed to better capture nonlocal
collective motions.36 In this approach, two or three correlation
kernels that are parametrized at multiple scales are employed
simultaneously to characterize protein multiscale properties.
The flexibility index can be expressed as,

f ni =
1

N
j, j,i w

n
j
Φn(ri j; ηn)

,∀i = 1,2, . . . ,N, (12)

where wn
j
,Φn(ri j; ηn), and ηn are the corresponding quantities

associated with the nth kernel. The essence of the mFRI is to
minimize of the following form:

Minan,b





i

������



n

an f ni + b − Be
i

������

2
, (13)

where Be
i

are the experimental B-factors for the ith particle.
We choose kernels with various scale parameters and obtain
the optimized fitting coefficients.

Specifically, for a coarse-grained network model with
only Cα atoms, we can set wn

j
= 1 and choose a single type of

kernel function parametrized at different scales. The predicted
B-factors can be expressed as

BmFRI
i = b +



n=1

an

N
j, j,iΦ(ri j; η

n)
,∀i = 1,2, . . . ,N. (14)

Unlike the scheme in Eq. (12) where various types of kernels
can be chosen, we only select one type of kernels in Eq. (14).
In this way, the multiscale nature in biomolecules can be
clearly demonstrated. Some commonly used kernel functions

include generalized Lorentz kernel,

Φ(∥r − r j∥; ηn) =
1

1 +
�
∥r − r j∥/ηn

�3 , (15)

and the generalized exponential kernel,

Φ(∥r − r j∥; ηn) = e
−
∥r−r j ∥

ηn . (16)

These kernels define a continuous multiscale rigidity function
by using the fitting coefficients from the minimization process
as following:

µn(r) =

N


j=1

wn
jΦ(∥r − r j∥; ηn). (17)

This expression can be used to construct new protein surfaces.
Similarly, we can also construct a continuous multiscale
flexibility function,

f (r) = b +


n=1

an

N
j=1 w

n
j
Φ(∥r − r j∥; ηn)

. (18)

One can map this continuous multiscale flexibility function
onto a molecular surface to analyze the flexibility of the
molecule.

C. mGNM

The essential component for our mGNM is to build
a multiscale Kirchhoff matrix, which incorporates various
scales instead of a single one. Due to the intrinsic relation
between FRI and gGNM discussed in Section II A, we make
use of the coefficients approximated from our FRI to construct
a multiscale Kirchhoff matrix. In this section, we present two
types of algorithms to construct mGNM.

1. Type-1 mGNM

First, we assume that the multiscale Kirchhoff matrix
takes the form

Γ =


n

an
Γ
n, (19)

where an and Γn =
(

Γi j(Φ
n(ri j; ηn

j
))
)

are the fitting coefficient
and generalized Kirchhoff matrix associated with the nth
kernel Φn(ri j; ηn)) parametrized at an appropriate scale ηn.
We use our mFRI to evaluate coefficients {an}. Basically, we
have multiscale rigidity index µi =



n an
Γ
n
ii

. Then, {an} are

determined via the minimization Min


i
���

1
µi
− Be

i

���
2
, which is

equivalent to

Minan





i

������



n

an
Γ
n
ii −

1
Be
i

������

2
, (20)

assuming that Be
i
> 0. With the multiscale Kirchhoff matrix

given in Eq. (19), we carry our routine GNM analysis as
described in Eq. (1).

2. Type-2 mGNM

Another algorithm for constructing mGNM is to make
use of fitting coefficients from mFRI directly via the relation
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ALGORITHM 1. Type-2 mGNM multiscale Kirchhoff matrix.

Input: Γii, i = 1,2, . . .,N ◃ Diagonal terms are calculated from mFRI.
for j← 2,N do ◃ For the first row and first line of multiscale Kirchhoff matrix.
Γ1 j =

Γ11
N−1 ◃We equally distribute the diagonal terms into non-diagonal parts.

Γj1= Γ1 j ◃ Use the symmetry property.
end for

for i← 2,N −1 do

sum= 0
for k← 1, i−1do

k1= k

k2= k +1
sum= sum+Γk1k2 ◃ Summarize over terms already determined from previous iterations.

end for

for j← i+1,N
Γi j =

Γii−sum
N−i

◃We equally distribute the diagonal terms into non-diagonal parts.
Γj i = Γi j ◃ Use the symmetry property.

end for

end for

between biomolecular local packing density and its flexibility.
Basically, we choose several kernels parametrized at various
scales and evaluate the best fitting coefficients, i.e., {an} and
b, with the experimental B-factors using Equation (13). The
resulting multiscale flexibility index is then used to construct
the generalized Kirchhoff matrix as following:



n

an f ni + b =
1
Γii

,∀i = 1,2, . . . ,N. (21)

With the relation f n
i
= 1

µn
i
,∀i = 1,2, . . . ,N , the above

expression can be rewritten as

Γii =
1



n
an

µn
i
+ b

,∀i = 1,2, . . . ,N. (22)

Usually, we can use two or three kernels parametrized at
different scales. For instance, if we use two kernels, we can
further rewrite the above expression as

Γii =
µ1
i
µ2
i

a1µ2
i
+ a2µ1

i
+ bµ1

i
µ2
i

,∀i = 1,2, . . . ,N. (23)

Now the problem is to determine the non-diagonal terms of
our multiscale Kirchhoff matrix. One simple approach is to
subdivide either of the two rigidity indices. For example, we
can choose to use the rigidity index for the first kernel. Since
we have µn

i
=
N

j, j,i w
n
j
Φ

n(ri j; ηn), n = 1,2, diagonal term of
our mGNM matrix can also be expressed as

Γii =


j, j,i

{w1
j
Φ

1(ri j; η1)}µ2
i

a1µ2
i
+ a2µ1

i
+ bµ1

i
µ2
i

,∀i = 1,2, . . . ,N. (24)

In this way, the full multiscale Kirchhoff matrix can be
expressed as

Γi j =



−

{w1
j
Φ

1(ri j; η1)}µ2
i

a1µ2
i
+ a2µ1

i
+ bµ1

i
µ2
i

, i , j

−

N

j, j,i
Γi j, i = j

. (25)

The problem with the matrix in Eq. (25) is that the resulting
multiscale Kirchhoffmatrix is not symmetric, which may lead
to computational difficulty. To avoid non-symmetric matrix,
we further propose an alternative construction to preserve the
symmetry of the matrix.

Our basic idea is to determine the diagonal terms Γii from
Eq. (22) and then on each row, equally distribute the diagonal
term into the non-diagonal parts, under condition that the
resulting matrix remains symmetric. To this end, we propose
an iterative scheme as shown in Algorithm 1.

It also should be noticed that in the construction of
our Type-2 mGNM, only the diagonal terms are fixed and
determined from the mFRI. In B-factor prediction, the non-
diagonal values can be very flexible as long as they satisfy the
network constraint that the summation of their values equals
to the diagonal term. We believe this is due to the fact that the
success of mGNM in B-factor prediction is determined mostly
by the packing information stored in the diagonal terms of its
Kirchhoffmatrix. In the following discussion, we only use the
symmetric scheme in Algorithm 1 as our Type-2 mGNM.

D. mANM

In our mANM, the generalized local 3 × 3 Hessian matrix
Hn

i j
associated with the nth kernel can be written as

Hn
i j = −

Φ
n(ri j; ηn)

r2
i j



(x j − xi)(x j − xi) (x j − xi)(y j − yi) (x j − xi)(z j − zi)

(y j − yi)(x j − xi) (y j − yi)(y j − yi) (y j − yi)(z j − zi)

(z j − zi)(x j − xi) (z j − zi)(y j − yi) (z j − zi)(z j − zi)


∀ i , j. (26)
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FIG. 2. Work flow of basic procedure
in mGNM and mANM.

Note that Hinsen18 has proposed a special case, Φn(ri j; ηn)

= e
−

(

ri j

ηn

)2

. We further take the diagonal parts as Hn
ii

= −


i, j Hn
i j
,∀i = 1,2, . . . ,N . Basically, it is the summation

of all the non-diagonal local matrices.
The key component of our mANM is to construct a

multiscale Hessian matrix. Essentially, we employ several
Hessian matrices parameterized at different scales and
determine their coefficients in the final multiscale Hessian
matrix by using our mFRI. It should be noticed that for
B-factor prediction, each 3 diagonal terms from the inverse
Hessian matrix are summarized together. Therefore, in our
Hessian matrix based mFRI, our rigidity index associated
with the nth kernel is constructed as the summation of the
diagonal terms,

µni =


i, j

Φ
n(ri j; ηn)

r2
i j

[(x j − xi)
2 + (y j − yi)

2 + (z j − zi)
2]

=


i, j

Φ
n(ri j; ηn),∀i = 1,2, . . . ,N. (27)

It is seen that the rigidity index of mANM defined above
is the same as our mFRI rigidity index. Therefore, as far
as B-factor prediction is concerned, the mFRI approach for
constructing mGNM should work for constructing mANM as
well.

We adopt the approach used in Type-1 mGNM to
construct mANM. We propose a multiscale Hessian matrix
as H =



n anHn, and the coefficients an should be evaluated
from

Minan





i

������



n

anµni −
1
Be
i

������

2
. (28)

Again, different matrices {Hn} should be parametrized at
different scales.

To clarify the proposed multiscale Gaussian network
model and multiscale anisotropic network model, we
present a flow chart to illustrate their basic procedure in
Fig. 2.

III. VALIDATIONS

A. The performance of generalized Gaussian network
models

1. Comparison between gGNM and FRI

Based on the analysis in Section II A, it is straightforward
to construct correlation function based gGNMs via the matrix
inverse of generalized Kirchhoff matrix (11), which leads to
infinitely many new gGNMs, including the original GNM as a
special limiting case. It is also possible to construct the FRI by
using the Kirchhoff matrix, which gives rise to a unique FRI.
Questions arise as what are the relative performance of these
correlation function based gGNM and FRI methods. Another
question is whether there is any further relation between
these two distinguished approaches. Specifically, what is the
relation between the diagonal elements of the gGNM matrix
inverse and the FRI direct inverse of the diagonal elements,
for a given generalized Kirchhoff matrix? To answer these
questions, we select two representative correlation functions,
i.e., the Lorentz (υ = 3) and ILF functions to construct
generalized Kirchhoff matrix (11). The Lorentz function is
a typical example for many correlation functions studied
in our earlier work.35 In contrast, the ILF function is an
extreme case of FRI correlation functions. Resulting two
generalized Kirchhoffmatrices (11) can be used for calculating
the gGNM matrix inverse or the inverse diagonal elements
of the FRI matrix. This results in possible combinations
or methods, namely, FRI-Lorentz, FRI-ILF, GNM-Lorentz,
and GNM-ILF. Performances of these methods are carefully
analyzed.

To answer the above mentioned questions, we first employ
a protein from pathogenic fungus Candida albicans (Protein
Data Bank ID: 2Y7L) with 319 residues as shown in Fig. 3(a)
to explore the aforementioned four methods. We consider the
coarse-grained Cα representation of protein 2Y7L. We denote
BGNM−ILF, BFRI−ILF, BGNM−Lorentz, and BFRI−Lorentz, respectively
the predicted B-factors of GNM-ILF, FRI-ILF, GNM-Lorentz,
and FRI-Lorentz methods. The experimental B-factors from
X-ray diffraction, BExp, are employed for a comparison.
The Pearson product-moment correlation coefficient (PCC)
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FIG. 3. Illustration of protein 2Y7L.
(a) Structure of protein 2Y7L having
two domains; (b) correlation map gen-
erated by using GNM-Lorentz indicat-
ing two domains; (c) comparison of
experimental B-factors and those pre-
dicted by GNM-Lorentz (η = 16 Å);
(d) comparison of experimental B-
factors and those predicted by FRI-ILF
(rc = 24 Å).

is used to measure the strength of the linear relationship
or dependence between each two sets of B-factors. To
evaluate the performance of four methods, we compute
the PCCs between predicted B-factors and experimental B-
factors. Since performance of these methods depends on
their parameters, i.e., the cutoff distance (rc) in the ILF or
the scale value (η) in the Lorentz function, the theoretical
B-factors are computed over a wide range of rc and η

values.
Figure 4 depicts PCCs between various B-factors for

protein 2Y7L. As shown in Fig. 4(a), the cutoff distance
rc of the ILF is varied from 5 Å to 64 Å. The PCCs
between BGNM−ILF and BExp, and between BFRI−ILF and BExp,
indicate that both GNM-ILF and FRI-ILF are able to provide
accurate predictions of the experimental B-factors. Their
best predictions are attained around rc = 24 Å, which is

significantly larger than the commonly used GNM cutoff
distance of 7-9 Å.

2. Intrinsic behavior of gGNM at large cutoff distance

It is interesting to observe that GNM-ILF and FRI-
ILF provide essentially identical predictions when the cutoff
distance is equal to or larger than 20 Å. This phenomenon
indicates that when the cutoff is sufficiently large, the diagonal
elements of the gGNM inverse matrix and the direct inverse of
the diagonal elements of the FRI correlation matrix become
linearly dependent. To examine the relation between GNM-
ILF and FRI-ILF, we compute PCCs between BGNM−ILF

and BFRI−ILF over the same range of cutoff distances. As
shown in Fig. 4(a), there is a strong linear dependence
between BGNM−ILF and BFRI−ILF for rc ≥ 10 Å. To understand

FIG. 4. PCCs between various B-
factors for protein 2Y7L. (a) Correla-
tions between BGNM−ILF and BExp, be-
tween BFRI−ILF and BExp, and between
BGNM−ILF and BFRI−ILF; (b) correla-
tions between BGNM−Lorentz and BExp,
between BFRI−Lorentz and BExp, and be-
tween BGNM−Lorentz and BFRI−Lorentz.
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FIG. 5. PCCs between various B-
factors averaged over 364 proteins. (a)
Correlations between BGNM−ILF and
BExp, between BFRI−ILF and BExp,
and between BGNM−ILF and BFRI−ILF;
(b) correlations between BGNM−Lorentz

and BExp, between BFRI−Lorentz and
BExp, and between BGNM−Lorentz and
BFRI−Lorentz.

this dependence at large cutoff distance, we consider an
extreme case when the cutoff distance is equal to or even
larger than the protein size, so all the particles within
the network are fully connected. In this situation, we can
analytically calculate ith diagonal element of the GNM inverse
matrix

�
Γ
−1(Φ(ri j; rc → ∞))

�
ii
=

N − 1
N2

, (29)

and the FRI inverse of the ith diagonal element

1
N

j, j,iΦ(ri j; rc → ∞)
=

1
N − 1

. (30)

These results elucidate the strong asymptotic correlation
between BGNM−ILF and BFRI−ILF in Fig. 4(a). They also
explain why predictions of the original GNM and FRI-ILF
deteriorate as rc is sufficiently large because all the predicted
B-factors become identical, i.e., either N−1

N2 or 1
N−1 . And

two methods deliver very similar results, especially when

the total number is very large, as we have
N−1
N2
1

N−1
→ 1 when

N → ∞.
The performance and comparison between GNM-Lorentz

and FRI-Lorentz are illustrated in Fig. 4(b) for the scale value
η from 0.5 Å to 64 Å. First, it is seen that the GNM-Lorentz is
a successful new approach. In fact, it outperforms the original
GNM for the peak PCCs. A comparison of the predicted B-
factors and the experimental B-factors is plotted in Figs. 3(c)
and 3(d) for GNM-Lorentz and FRI-ILF, respectively. It is
seen that BFRI−ILF more closely matches the experimental
B-factors than BGNM−Lorentz does due to the different fitting
schemes employed by two methods as shown in Eqs. (1) and
(3), respectively.

As shown in Fig. 4(b), the predictions from GNM-Lorentz
and FRI-Lorentz become identical as η ≥ 5 Å. A strong
correlation between BGNM−Lorentz and BFRI−Lorentz is revealed
at an even smaller scale value. This behavior leads us to
speculate a general relation

�
Γ
−1(Φ(ri j; η))

�
ii
−→

c
N

j, j,iΦ(ri j; η)
, η → ∞, (31)

where c is a constant. Relation (31) means that the correlation
function based gGNM is equivalent to the FRI for a given
admissible correlation function when the scale parameter
is sufficiently large. This relation is certainly true for
the ILF as analytically proved in Eqs. (29) and (30).

Relation (31) is a very interesting and powerful result not
only for sake of understanding GNM and FRI methods
but also for the design of accurate and efficient new
methods.

It should be noticed that our findings are consistent with
the previous finding38 that the local packing density described
by the direct inverse of the diagonal terms represents only the
leading order but not the entire set of the dynamics described
by gGNM. Our results reveal an interesting connection
between FRI and gGNM when the characteristic distance
is sufficiently large.

3. Validation of gGNM with extensive
experimental data

It remains to prove that the above findings from a
single protein are translatable and verifiable to a large class
of biomolecules. To this end, we consider a set of 364
proteins, which is a subset of the 365 proteins utilized and
documented in our earlier work.35 The omitted protein is
1AGN, which has been found to have unrealistic experimental
B-factors. We carry out systematic studies of four methods
over a range of cutoff distances or scale values. For each
given rc or η, the PCCs between two sets of B-factors are
averaged over 364 proteins. Figure 5 illustrates our results.
Figure 5(a) plots the results of the ILF implemented in both
GNM and FRI methods with the cutoff distance varied from
4 Å to 23 Å. Figure 5(b) depicts similar results obtained
by using the Lorentz function implemented in two methods.
The scale value is explored over the range of 0.5 Å–10 Å.
We summarize these results from several aspects as fol-
lowing.

First, the proposed new method, GNM-Lorentz, is very
accurate for the B-factor prediction of 364 proteins as shown
in Fig. 5(b). The best GNM-Lorentz prediction is about 10.7%
better than that of the original GNM shown in Fig. 5(a). In
fact, GNM-Lorentz outperforms the original GNM over a wide
range of parameters for this set of proteins, which indicates that
the proposed generalization is practically valuable. Similarly,
FRI-Lorentz is also about 10% more accurate than FRI-ILF
in the B-factor prediction. Since the ILF is a special case and
there are infinitely many FRI correlation functions, there is
a wide variety of correlation function based gGNMs that are
expected to deliver more accurate flexibility analysis than the
original GNM does.
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FIG. 6. The average PCCs over 362
proteins for Type-1 mGNM. (a) Two
ILF kernels and their cutoff distances
are systematically changed from 5 Å to
31 Å. (b) Two exponential kernels and
their scales η are systematically varied
in the range of [1 Å, 26 Å ].

FIG. 7. The average PCCs over 362
proteins for Type-2 mGNM. (a) Two
ILF kernels and their cutoff distances
are systematically changed from 5 Å to
31 Å. (b) Two exponential kernels and
their scales η are systematically varied
in the range of [1 Å, 26 Å ].

Additionally, the FRI-Lorentz method is able to attain the
best average prediction for 364 proteins among four methods
as shown in the zoomed in parts in Fig. 5(b). However, for
a given correlation function, the difference between FRI and
gGNM predictions is very small.

Moreover, for a given admissible FRI function, gGNM
and FRI B-factor predictions are strongly linearly correlated
and reach near 100% correlation when rc > 9 Å or η

> 0.5 Å for 364 proteins as demonstrated in Fig. 5. This
finding offers a solid confirmation of Eq. (31). Therefore,
correlation function based gGNMs, including the original
GNM as a special case, is indeed equivalent to the
corresponding FRI methods in the flexibility analysis for
a wide range of commonly used scale values.

Furthermore, it has been shown that the fast FRI is a
linear scaling method,35 while gGNM scales as O(N3) due to
their matrix inverse procedure. As a result, the accumulated
CPU times for the B-factor predictions of 364 proteins at
rc = 7 or η = 3 are 0.88, 1.57, 5071.32, and 4934.79 s,
respectively, for the FRI-ILF, FRI-Lorentz, GNM-ILF, and
GNM-Lorentz. The test is performed on a cluster with 8 Intel
Xeon 2.50 GHz CPUs and 128 GB memory. In fact, gGNM
methods are very fast for small proteins as well. Most of the
accumulated gGNM CPU times are due to the computation of
three largest proteins (i.e., 1F8R, 1H6V, and 1QKI) in the test
set.

Finally, it is worth mentioning that the earlier FRI rigidity
index includes the contribution from the self correlation,
i.e., the diagonal term.35,52 The present findings do not change
if the summation in generalized Kirchhoff matrix (11) is
modified to include the diagonal term and then the calculation
of gGNM matrix inverse is modified to include the contribution
from first eigen mode, i.e.,

�
Γ
−1
�
ii
=
N

k=1 λ
−1
�
ukuT

k

�
ii

. In fact,

this modification makes the generalized Kirchhoff matrix less
singular and faster converging.

B. The performance of multiscale Gaussian
network models

1. Type-1 mGNM

We validate our two types of mGNM with various
parameter values over a set of 362 proteins. Two largest
proteins, i.e., 1H6V and 1QKI, are removed from our earlier
data set of 364 proteins35 due to the limited computational
resources. Two kinds of kernels, i.e., ILF and exponential,
are employed. To explore the multiscale behavior, we use
two kernels of the same type but with different characteristic
distances in our mGNM schemes. For ILF kernel based test,
the cutoff distances in both kernels vary from 5 Å to 31 Å.
For exponential kernel based test, we set κ = 1 and vary η in
both kernels within the range of [1 Å, 26 Å ]. The PCCs with
experimental B-factors are averaged over 362 proteins. The
results for Type-1 mGNM are demonstrated in Figures 6(a)
and 6(b). When two ILF kernels are used in Figure 6(a), we can
seen that the largest average PCCs are concentrated around the

TABLE I. The best average PCCs with experimental B-factors. Results for
GNM and mGNM are averaged over 362 proteins. Results for ANM and
mANM are averaged over 300 proteins.

Kernel GNM
Type-1
mGNM

Type-2
mGNM Kernel ANM mANM

ILF 0.567 0.607 0.614 ILF 0.490 0.531
Exponential 0.608 0.629 0.642 Gaussian 0.518 0.546
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TABLE II. 64 large-sized proteins in the 364-protein data set35 but not included in our mANM test due to limited
computational resource.

1F8R 1GCO 1H6V 1IDP 1KMM 1QKI 1WLY 2A50 2AH1 2BCM
2COV 2D5W 2DPL 2E10 2ETX 2FN9 2I49 2O6X 2OKT 2POF
2PSF 2Q52 2VE8 2W1V 2W2A 2XHF 2Y7L 2YLB 2YNY 2ZCM
2ZU1 3AMC 3BA1 3DRF 3DWV 3G1S 3HHP 3LG3 3MGN 3MRE
3N11 3NPV 3PID 3PTL 3PVE 3PZ9 3SRS 3SZH 3TDN 3UR8
3W4Q 4AM1 4B6G 4B9G 4DD5 4DKN 4DQ7 4ERY 4F01 4G5X
4G6C 4J11 4J78 4JYP

region where two kernels have dramatically different cutoff
distances, i.e., one being around 7 Å and the other ranging
from 14 to 20 Å. Our results indicate that in this set of proteins
there is a multiscale property that is better described by
mGNM parametrized at different cutoff distances. Moreover,
the best PCC is distributed around cutoff distance 7 Å, which is
consistent with the optimal cutoff distance (7 Å) recommended
for the traditional GNM method. Similar multiscale behavior
can also be observed for exponential kernel based mGNM as
demonstrated in Figure 6(b).

2. Type-2 mGNM

The results of Type-2 mGNM with ILF kernels and
exponential kernels are demonstrated in Figures 7(a) and 7(b),
respectively. The multiscale property is observed for both
cases. Compared with Type-1 mGNM, Type-2 mGNM is able
to achieve better average PCCs with respect to experimental
B-factors. For two ILF kernels, the best average PCC for
traditional GNM is 0.567. Type-1 mGNM has significantly
improved it to 0.607. Additionally, Type-2 mGNM further
achieves the best average PCC of 0.614. Similar results are
observed in exponential kernel models. For generalized GNM,
the best average PCC is about 0.608. This has been enhanced
to 0.629 in Type-1 mGNM and further improved to 0.642
in Type-2 mGNM. Detailed comparisons are summarized in
Table I.

C. The performance of multiscale anisotropic network
models

To study the performance of the multiscale anisotropic
network model, we use 300 proteins obtained from the dataset
with 364 proteins by removing the largest 64 proteins listed

in Table II. It should be noticed that the Hessian matrix
used in mANM is 3N × 3N , which is 9 times larger than the
correspondent Kirchhoff matrix in gGNM. This poses more
challenges as the computational time grows exponentially
with the size of the Hessian matrix.

We consider ILF kernel and Gaussian kernel (κ = 2) based
mANM methods in our test study. The results are plotted in
Figure 8. First of all, one can still see the multiscale effect in
this set of proteins. The best average PCC values for mANM
are achieved at the combination of a relatively small cutoff
distance (7 Å) and a relatively large cutoff distance. These
values are much higher than those on the diagonal, which are
the average PCC values of the traditional (single kernel) ANM.
For Gaussian kernel based mANM we see a similar pattern.
However, it achieves better predictions than those of the ILF
kernel based mANM. This results are also listed in Table I.
Although the ANM methods are not as accurate as the GNM
methods, they are able to offer unique collective motions that
otherwise cannot be obtained by the GNM methods.

IV. APPLICATIONS

Having demonstrated the ability of mGNM and mANM
for capturing protein multiscale behavior and improving B-
factor predictions, we consider a few applications to showcase
the proposed methods. First, we take on a set of proteins that
fail the original GNM in various ways. This analysis might
shed light on why the proposed mGNM works better than
the original GNM. Additionally, GNM and ANM can provide
domain information of a protein structure. It is well known
that GNM eigenvectors can be used to indicate the possible
divisions of domains and domain-domain interactions. Finally,
ANM eigenvectors are widely used to predict the collective

FIG. 8. The average PCCs over 300
proteins for mANM. (a) Two ILF ker-
nels and their cutoff distances are sys-
tematically changed from 5 Å to 31 Å.
(b) Two Gaussian kernels (κ = 2) and
their scales η are systematically varied
in the range of [1 Å, 26 Å ].
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FIG. 9. The comparison between Type-2 mGNM with exponential kernel and traditional GNM for the B-factor prediction of protein 1CLL. Two scales,
i.e., η1= 3 Å and η2= 25 Å, are employed in mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cutoff distance 7 Å. (b) Molecular
surface colored by B-factors evaluated by our Type-2 mGNM. (c) Molecular surface colored by multiscale flexibility function in Equation (18). (d) B-factors
predicted by traditional GNM with cutoff distances 7 Å (GNM7) and 20 Å (GNM20). (e) B-factors predicted by mGNM.

FIG. 10. The comparison between Type-2 mGNM with exponential kernel and traditional GNM for protein 1V70 B-factor prediction. Two scales, i.e., η1

= 3 Å and η2= 25 Å, are employed in mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cutoff distance 7 Å. (b) Molecular surface
colored by B-factors evaluated by our Type-2 mGNM. (c) Molecular surface is colored by multiscale flexibility function in Equation (18). (d) B-factors predicted
by traditional GNM with cutoff distances 7 Å (GNM7) and 20 Å (GNM20). (e) B-factors predicted by mGNM.

motions of a protein near its equilibrium. These issues are
investigated in this section.

A. B-factor prediction of difficult cases using mGNM

It is well known that the traditional GNM does not work
well in the B-factor prediction for certain proteins for various
reasons.36,37 Park et al. have shown that GNM PCCs with
experimental B-factors can be negative.37 In this work, we
demonstrate that the present mGNM is able to deliver good
B-factor predictions by capturing multiscale features. To this
end, we consider four proteins, i.e., 1CLL, 1V70, 2HQK,

and 1WHI. The Type-2 mGNM with two exponential kernels
is utilized in our study. As depicted in Figure 7(b), there
is a wide range of scale parameters that deliver accurate
B-factor predictions. We simply choose κ = 1, η1 = 3 Å and
κ = 1, η2 = 25 Å in our studies. To draw a comparison, the
traditional GNM, i.e., GNM-ILF, is employed with different
cutoff distances, namely, 7 and 20 Å, which are denoted as
GNM7 and GNM20, respectively.

Figures 9–12 illustrate our results. In each figure, protein
surfaces are colored by B-factor values predicted by GNM7,
mGNM, and the flexibility function in Eq. (18), respectively,
in insets (a)–(c). The comparisons of B-factors predicted
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FIG. 11. The comparison between Type-2 mGNM with exponential kernel and traditional GNM for protein 2HQK B-factor prediction. Two scales, i.e., η1

= 3 Å and η2= 25 Å, are used in mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cutoff distance 7 Å. (b) Molecular surface colored
by B-factors evaluated by our Type-2 mGNM. (c) Molecular surface is colored by multiscale flexibility function in Equation (18). (d) B-factors predicted by
traditional GNM with cutoff distances 7 Å (GNM7) and 20 Å (GNM20). (e) B-factors predicted by mGNM.

by GNM7 and GNM20 with those of experiments are
demonstrated in inset (d). Similarly, the comparisons of the
predicted B-factors by mGNM with those of experiments are
plotted in inset (e). A summary of related PCC values are
listed in Table I.

Flexible hinges are important to protein function but may
not be easily detected by GNM type of methods.12,22 As shown
in Figure 9, the original GNM parametrized at cutoff distance
7 or 20 Å does not work well for the hinge located around
residues 65-85. In fact, the GNM method cannot predict the
flexible hinge at any given cutoff distance. Whereas, our
two-kernel mGNM is able to capture the hinge behavior.

Protein 1V70 shown in Figure 10 is another difficult case
for the traditional GNM method. At cutoff distance 7 Å, it
severely over-predicts the B-factors of the first 12 residues.
However, its prediction improves if a larger cutoff distance
is used. In contrast, our two-kernel mGNM provides a very
good prediction.

Figure 11 illustrates one more interesting situation. The
tradition GNM with cutoff distance 7 Å over-predicts the
B-factors for residues near number 58. However, at a large
cutoff distance of 20 Å, it is able to offer accurate results.
In this case, our mGNM is able to further improve the
accuracy.

FIG. 12. The comparison between Type-2 mGNM with exponential kernel and traditional GNM for protein 1WHI B-factor prediction. Two mGNMs are used.
The first one, mGNM_K2, has two exponential kernels with κ = 1, η1= 3 Å, and η2= 25 Å. The second mGNM, mGNM_K3, has an extra exponential kernel
with κ = 1 and η3= 10 Å. (a) Molecular surface colored by B-factors predicted by GNM with cutoff distance 7 Å. (b) Molecular surface colored by B-factors
evaluated by our Type-2 mGNM. (c) Molecular surface is colored by multiscale flexibility function in Equation (18). (d) B-factors predicted by traditional GNM
with cutoff distances 7 Å (GNM7) and 20 Å (GNM20). (e) B-factors predicted by two mGNMs, i.e., mGNM_K2 and mGNM_K3.
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TABLE III. Case study of B-factor prediction for four proteins in three
different schemes, i.e., GNM7, GNM20, and mGNM. In the case of 1WHI,
we use mGNM with two kernels and three kernels (value in parentheses).

PDB ID GNM7 GNM20 mGNM

1CLL 0.261 0.235 0.763
1V70 0.162 0.548 0.750
2HQK 0.365 0.781 0.833
1WHI 0.270 0.370 0.484(0.766)

The case of 1WHI given in Figure 12 is difficult. The
GNM with two different parameterizations does not work well.
However, our two-kernel mGNM does not work well either.
Its PCC of 0.484 is just a minor improvement of GNM values
0.270 (obtained at rc = 7 Å) and 0.370 (obtained at rc = 20 Å).
It should be noticed that our mGNM can simultaneously
incorporate several scales. Therefore, we employ an extra
kernel with κ = 1, η3 = 10 Å to deal with this protein. As
shown in Table III and Figure 12, our three-kernel mGNM is
able to deliver a good PCC of 0.766.

B. Domain decomposition using mGNM

Mathematically, the first smallest nonzero eigenvalue is
called algebraic connectivity or Fiedler value and the related
eigenvector is called Fiedler vector. It is known that the Fiedler
vector can be used to decompose a protein into two domains.
The way to subdivide a protein is quite natural. As each
particle in the protein is assigned with a value (element) from

the Fiedler vector, one simply groups these particles according
to their positive or negative signs. More specifically, all atoms
with positive values are in the same group and those with
negative values are in other group. The ones with zero values
can be classified into either groups as their are usually the link
region between two domains.

To test the performance of our mGNM schemes, we
adopt two test proteins, i.e., 1ATN (chain A) and 3GRS,
used by Kundu et al.25 We compare the performance of
our two types of mGNM. In Type-1 mGNM, we use the two
exponential kernels with κ = 1, η1 = 3 Å and κ = 1, η2 = 25 Å.
In Type-2 mGNM, we use three exponential kernels with an
extra kernel parametrized as κ = 1, η3 = 10 Å. Our results are
depicted in Figures 13 and 14, respectively. It can be seen
that Type-1 mGNM delivers a great decomposition, which is
also consistent with the prediction from traditional GNM.25

However, the Type-2 mGNM does not produce a reasonable
result. This is due to the fact that Algorithm 1 is designed to
construct the symmetric Kirchhoff matrix with the required
diagonal elements. Its non-diagonal elements do not properly
reflect the protein connectivity.

However, we should notice that the PCCs of Type-1
mGNM for 1ATN and 3GRS are 0.460 and 0.658, respectively.
Whereas, the PCCs of Type-2 mGNM for 1ATN and 3GRS
are 0.660 and 0.666, respectively. These results indicate
that the B-factor values are mainly dictated by the diagonal
matrix elements, while the domain separation is determined
by non-diagonal matrix elements, which reflect the protein
connectivity in Type-1 mGNM, but have little to do with the
packing geometry in Type-2 mGNM.

FIG. 13. Protein domain decomposi-
tion with Type-1 mGNM. The first
eigenvector (Fiedler vector) is used to
decompose the protein into two do-
mains. (a) Protein 1ATN (chain A); (b)
protein 3GRS.

FIG. 14. Protein domain decomposi-
tion with Type-2 mGNM. The first
eigenvector (Fiedler vector) is used to
decompose the protein into two do-
mains. (a) Protein 1ATN (chain A); (b)
protein 3GRS. It can be seen that Type 2
mGNM fails in protein domain decom-
position.
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FIG. 15. The collective motions of pro-
tein 1GRU (chain A). The seventh,
eighth, and ninth modes calculated from
our mANM are demonstrated in (a)–(c),
respectively.

FIG. 16. The collective motions of pro-
tein 1URP (chain A). The seventh,
eighth, and ninth modes calculated from
our mANM are demonstrated in (a)–(c),
respectively.

C. Collective motion simulation using mANM

GNM is an isotropic model which quantifies the atomic
scalar fluctuations in molecule. In contrast, ANM is designed
to describe the anisotropic properties, such as collective
motions of a molecule near the equilibrium. Typically,
the first six modes, corresponding to six zero (or near
zero) eigenvalues, represent the trivial translational and
rotational modes of a complex biomolecule. Global modes
that are unique to the biomolecular structure are described
by eigenvectors associated with the nonzero (next smallest)
eigenvalues. Due to its simplicity, ANM is widely used to
study the dynamics of biomolecules.

In the present work, we have designed our mANM
to maintain the aforementioned properties. To validate our
mANM for anisotropic mode analysis, we use two test
proteins, i.e., 1GRU (chain A) and 1URP (chain A). The
protein 1GRU is chaperonin GroEL, a benchmark test for
ANM.48,62 We employ our mANM with two Gaussian kernels
(κ = 2) with η = 5 Å and η = 20 Å. We compute eigenvectors
associated with the first three nonzero eigenvalues. As
illustrated in Figure 15, our mANM results are in an excellent
agreement with those of ANM for chaperonin GroEL.48,62

To further validate our mANM, we examine another test
case, 1URP. It is a ribose-binding protein and its anisotropic
motions have been studied in the literature.29 We utilize
the same set of parameters described above. Figure 16
demonstrates mANM results. Our results are in a close
agreement with the traditional ANM analysis.29

V. CONCLUSION

GNM and ANM are popular methods for macromolecular
flexibility analysis. Alternative methods, FRI35,52 and aFRI,35

have been introduced to achieve better accuracy and more
adaptivity in our recent work. Most recently, we have
further proposed mFRI36 to capture the multiscale behavior in
macromolecules. Our mFRI utilizes multiple kernels which are
parametrized at different scales to describe macromolecular
multiscale connectivity. We have shown that mFRI is about
20% more accurate than GNM in the B-factor prediction of
a set of 364 protein.36 Motivated by these achievements, we
propose a few FRI based generalizations of GNM and ANM
in this work.

First, we construct a series of gGNMs. We show that the
original Kirchhoff matrix used in GNM can be constructed
by using the ILF, which is a special case of a family of
admissible correlation kernels (or functions) used in FRI.
Based on this connection, we propose a unified framework
to construct generalized Kirchhoff matrices for both GNM
and FRI. More specifically, the inverse of the generalized
Kirchhoff matrices leads to infinitely many gGNMs and the
direct inverse of the diagonal terms gives rise to FRI. We reveal
the identical behavior between gGNM and FRI at a large cutoff
distance or characteristic scale for B-factor protein predictions.
Additionally, we propose mGNMs based on the relationship of
GNM and FRI. Essentially, we develop a two-step procedure
to construct mGNMs. In the first step, we utilize mFRI to
come up with an optimal combination of multiscale kernels.
In the second step, we try to implement the same combination
of multiscale kernels in the generalized Kirchhoffmatrices for
mGNMs. However, this step is not unique because for a given
Kirchhoff matrix, GNM and FRI are connected only through
diagonal elements. Two types schemes, Type-1 mGNM and
Type-2 mGNM, are proposed in this work. Moreover, we
propose mANMs based on the similarity between ANM and
GNM and the connection between GNM and FRI. Since ANM
is typically less accurate than GNM in B-factor prediction,35,37
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its main utility is for collective motion analysis. We therefore
have developed mANMs to maintain the physical connectivity
of protein atoms in the Kirchhoff matrix.

We have carried out intensive numerical experiments to
validate the proposed gGNM, mGNM, and mANM methods
for B-factor predictions. The gGNM method is examined
over a set of 364 proteins. It is found that the proposed
gGNM is about 10% more accurate than GNM in B-factor
prediction. For mGNM, we use only a set of 362 protein
due to limited computer resource. We show that mGNM
can achieve about 13% improvement over GNM. Similarly,
the proposed mANM is about 11% more accurate than its
counterpart, ANM, in B-factor prediction over a set of 300
proteins. Further, we consider three types of applications
of the proposed mGNM and mANM methods. One type
of application is to analyze the flexibility of proteins that
fail the original GNM method in various ways. We employ
four proteins to demonstrate the advantage of the proposed
mGNM in flexibility analysis. Another application is the study
of protein domain separations. The first nontrivial eigenmode
of the multiscale Kirchhoff matrix is used. We found from the
analysis of two proteins that Type-1 mGNM does a good job in
domain analysis while Type-2 mGNM does not work for this
purpose. The other application concerns the protein collective
motions. Our mANM is found to offer similar results as those
of the original ANM method.

It is worth pointing out that our mGNM and mANM
methods are not unique. How to design optimal new mGNM
and mANM methods is still an open problem. Essentially, we
hope these new methods are efficient, accurate, and robust.
More specifically, high accuracy in B-factor prediction is a
main criterion. Additionally, having the ability to provide
correct protein domain analysis is a desirable property as
well. For mANM, the capability of offering correct motion
analysis is a major requirement. The quality of both domain
and motion analyses depends on how to design non-diagonal
matrix elements so as to properly reflect the physical
connectivity among particles. In the future, we will carefully
consider the present mANM for other interesting applica-
tions, namely, anisotropic B-factors10 and conformational
changes.43
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