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Abstract: Remote sensing image change detection is widely used in land use and natural disaster
detection. In order to improve the accuracy of change detection, a robust change detection method
based on nonsubsampled contourlet transform (NSCT) fusion and fuzzy local information C-means
clustering (FLICM) model is introduced in this paper. Firstly, the log-ratio and mean-ratio operators
are used to generate the difference image (DI), respectively; then, the NSCT fusion model is utilized
to fuse the two difference images, and one new DI is obtained. The fused DI can not only reflect the
real change trend but also suppress the background. The FLICM is performed on the new DI to obtain
the final change detection map. Four groups of homogeneous remote sensing images are selected for
simulation experiments, and the experimental results demonstrate that the proposed homogeneous
change detection method has a superior performance than other state-of-the-art algorithms.

Keywords: remote sensing image; change detection; NSCT; FLICM; difference image

1. Introduction

The application of remote sensing images is more and more extensive in the cur-
rent research. These applications include image fusion [1–6], image classification [7–11],
change detection [12–17], etc. In particular, remote sensing image change detection is to
calculate the changed region from the images obtained in two different periods, and this
method plays a significant role in the change observation of land use change, flood disaster,
earthquake, and fire.

Many remote sensing image change detection methods have been proposed to de-
tect the changed information, and these methods can be divided into two components:
supervised and unsupervised algorithms [18,19]. Because the corresponding classifier in
supervised change detection method usually needs to be trained with available labeled
data, its acquisition usually takes time and is costly. Compared with the supervised method,
the unsupervised method does not need labeled reference images for training; in general,
the multi-temporal remote sensing images we obtained do not have reference images,
which matches the practical applications. Remote sensing image change detection mainly
contains three steps: preprocessing (e.g., geometric registration or denoising); difference
image generation; and analyzing the difference image to obtain the change detection map.

The thresholding-based, segmentation-based, and clustering-based methods are widely
used in unsupervised change detection approaches [15]. In terms of the thresholding-
based methods, the Kittler-Illingworth minimum-error thresholding method [20], the Otsu
method [21], and likelihood ratio method [22] are used. Gong et al. [23] introduced
a synthetic aperture radar (SAR) image change detection method based on a neighborhood-
based ratio (NR) operator and the generalization of Kittler and Illingworth thresholding
(GKIT) model. Xu et al. [24] proposed SAR image change detection method using a modi-
fied neighborhood-based operator and iterative Otsu model. Geetha et al. [25] proposed
multi-temporal SAR image change detection using a Laplacian pyramid and Otsu model.
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For the segmentation-based methods, Celik et al. [26] proposed a remote sensing image
change detection method based on an undecimated discrete wavelet transform and Chan–
Vese segmentation model. The clustering-based methods are most popular in the image
change detection, e.g., Celik et al. [27] introduced one remote sensing image change de-
tection method using a principal component analysis and K-means clustering (PCAKM)
model. Li et al. [28] proposed an unsupervised SAR change detection using gabor wavelet
and fuzzy C-means clustering. Chen et al. [29] introduced the nonsubsampled contourlet
transform-Hidden Markov Tree model (NSCT-HMT) model and fuzzy local information
c-means (FLICM) into the remote sensing image change detection. The aforementioned
change detection methods have made some achievements in the field of remote sensing
change detection.

In recent studies, the deep learning methods have been successfully applied to remote
sensing change detection. These methods include principal component analysis network
(PCANet) [30], channel weighting-based deep cascade network [31], convolutional-wavelet
neural networks [32], multiscale capsule network [33], transferred deep learning [34], deep
pyramid feature learning networks [35], attention-based deeply supervised network [36],
etc. Because the methods based on deep learning use training samples for training, the ac-
curacy of the final change detection results is also relatively high.

In this paper, we present a novel remote sensing image change detection method
based on a multiscale geometric analysis fusion and FLICM model. Simulation experiments
on four groups of remote sensing images verify the practicability and effectiveness of the
proposed algorithm.

2. Methodology

This section introduces the proposed remote sensing image change detection method,
and we assume that multi-temporal remote sensing images are registered. The main
contents include the difference image (DI) calculated by log-ratio operator (LR) and mean-
ratio operator (MR), respectively; the fused difference image generated by NSCT fusion;
and the final change detection map computed by FLICM model. The structure of the
proposed algorithm is shown in Figure 1.

2.1. Multiscale Geometric Analysis

Multiscale geometric analysis includes ridgelet, curvelet, contourlet, and shearlet
transform, etc. [37]. These transforms have been widely used in image processing, such as
image denoising and image fusion. Nonsubsampled contourlet transform (NSCT) is the
optimization model of contourlet [38], and it is a translation invariant, multiscale, and mul-
tidirectional transformation. NSCT is constructed by a nonsubsampled pyramid (NSP)
and nonsubsampled directional filter bank (NSDFB). Firstly, NSP decomposes the input
image into high-pass and low-pass parts, and then NSDFB decomposes the high-frequency
sub-band into multiple directional sub-bands, and the low-frequency part continues to be
decomposed, as above. Liu et al. [39] introduced the image fusion based on NSCT and
sparse representation model.

2.2. Difference Image Generation

In the process of remote sensing image change detection, the difference image (DI)
generation is an important step. It is assumed that there are registered and corrected remote
sensing images X and Y, and the difference images computed by the log-ratio operator
(LR) [40] and mean-ratio operator (MR) [41] are described as follows:

LR =

∣∣∣∣log
Y
X

∣∣∣∣ = |logY− logX|, (1)

MR = 1−min
(

µ1

µ2
,

µ2

µ1

)
, (2)
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where µ1 and µ2 show the local mean values of the remote sensing images X and
Y, respectively.

Figure 1. The structure of the proposed remote sensing image change detection algorithm.

The background information generated by the log-ratio image is relatively flat, and the
change area information reflected by the mean-ratio image is relatively consistent with
the real change trend of the remote sensing image. Therefore, the log-ratio image and
mean-ratio image can be integrated into one new difference image with complementary
information. Compared with single difference image computed by the log-ratio or mean-
ratio operator, the fused difference image can not only reflect the real change trend but also
suppress the background.

In order to achieve more useful information, we integrate the two difference images
through NSCT transformation. The main step of the NSCT-based fusion can be concluded
as follows.

Step 1: The LR and MR images are decomposed by NSCT into low-frequency (LF)
and high-frequency (HF) components, respectively. We define them as

{
DILR

LF , DIMR
LF
}

and{
DILR

HF, DIMR
HF
}

.
Step 2: Fuse the low- and high-frequency components using the average rule and

Gaussian weighted local area energy rule, respectively.

DI f use
LF =

(
DILR

LF + DIMR
LF

)
/2, (3)

DI f use
HF (i, j) =

{
DILR

HF(i, j), ELR
HF(i, j) ≤ EMR

HF (i, j)

DIMR
HF (i, j), ELR

HF(i, j) > EMR
HF (i, j)

, (4)
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where EHF(i, j) shows the Gaussian weighted local area energy coefficient, and it is com-
puted by

EHF(i, j) = ∑p
h=−p ∑p

t=−p gh,t[DIHF(i + h, j + h)]2, (5)

where gh,t shows the element of the rotationally symmetric Gaussian low-pass filter g of
size (2p + 1)× (2p + 1) with standard deviation σ = 1.

Step 3: The fused difference image DI f inal is calculated by the inverse NSCT perform-
ing on fused low-frequency DI f use

LF and high-frequency DI f use
HF .

In this section, the NSCT decomposition level is one, and it has one low-frequency sub-
band and two high-frequency sub-bands. This ensures the running time of the algorithm
and achieves good fusion effect. Subsequently, the fused difference image will be analyzed
by the FLICM model.

2.3. FLICM Model

In the fuzzy local information c-means (FLICM) clustering model, the fuzzy factor Gki
is defined as follows [42]:

Gki = ∑j∈NI

1
dij + 1

(
1− ukj

)m
‖xj − vk

2‖, (6)

where the ith pixel represents the center of the local window, the jth pixel depicts the
neighboring pixels falling into the window around the ith pixel, and dij presents the spatial
Euclidean distance between pixels i and j. vk shows the prototype of the center of cluster
k, and ukj shows the fuzzy membership of the gray value j with respect to the kth cluster.
‖xj − vk

2‖ shows the Euclidean distance between object xj and cluster center vk.
According to the previously defined function Gki, the objective function of the FLICM

model is calculated by

Jm = ∑N
i=1 ∑c

k=1

[
um

ki‖xi − vk
2‖+ Gki

]
, (7)

where vk and uki have the same meaning as in Equation (6). N and c represent the number of
the data items and clusters, respectively. ‖xi − vk

2‖ shows the Euclidean distance between
object xi and cluster center vk. The uki and vk are defined as follows:

uki =
1

∑c
j=1

(
‖xi−vk‖2+Gki
‖xi−vj‖2+Gji

)1/(m−1)
, (8)

vk =
∑N

i=1 um
ki xi

∑N
i=1 um

ki

. (9)

3. Experimental Results and Discussion

In this section, two groups of SAR images and two groups of optical images are used
to simulate. In order to evaluate the detection accuracy of the proposed algorithm more
accurately, subjective and objective evaluations are adopted. Some state-of-the-art change
detection methods are compared, such as PCAKM [27], Gabor wavelet and two-level clus-
tering (GaborTLC) [28], LMT [43], PCANet [30], NRELM [44], neighborhood-based ratio
and collaborative representation (NRCR) [45], and convolutional-wavelet neural networks
(CWNN) [32]. Meanwhile, the false negative (FN) [32], false positive (FP) [32], overall error
(OE) [32], percentage correct classification (PCC) [32], kappa coefficient (KC) [32,46,47],
and F1-score (F1) [18] are used as the objective evaluation metrics. Figures 2–5 show the
remote sensing images for simulating.
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Figure 2. Ottawa data set. (a) Image acquired in May 1997; (b) image acquired in August 1997;
(c) reference.

Figure 3. Wenchuan data set. (a) Image acquired on 3 March 2008; (b) image acquired on 16 June 2008;
(c) reference.

Figure 4. Mexico data set. (a) Image acquired in April 2000; (b) image acquired in May 2005;
(c) reference.

Figure 5. Yambulla data set. (a) Image acquired on 1 October 2015; (b) image acquired on 6 February 2016;
(c) reference.
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3.1. Experimental Data

The first data utilized in the experiment is the Ottawa data set with the size
290 × 350 pixels. The original images were obtained in May and August 1997, respec-
tively, which are shown in Figure 2a,b. The corresponding ground-truth image is depicted
in Figure 2c.

The second data is the Whenchuan data set with the size 442 × 301 obtained by
ESA/ASAR on 3 March 2008 and 16 June 2008, respectively, which are shown in Figure 3a,b.
The corresponding reference image is shown in Figure 3c.

The third data is the Mexico data set of optical images with the size 512× 512 captured
in April 2000 and May 2005, respectively. The two original images and the reference image
are depicted in Figure 4.

The fourth data is the Yambulla data set consists of two optical images with the size
of 500 × 500 pixels (as shown in Figure 5); they were acquired on 1 October 2015 and
6 February 2016 over the area of the Yambulla State Forest (Australia), respectively. More
details of the data sets are concluded in Table 1.

Table 1. The description of the four data sets used in the experiment.

Scenario
(Data Set) Location Data Event Size Satellite Sensor Type

1 Ottawa, Canada May 1997
August 1997 Flood 290 × 350 Radarsat-1 SAR

2 Wenchuan, China 3 March 2008
16 June 2008 Earthquake 442 × 301 Radarsat-2 SAR

3 Mexico April 2000
May 2005 Fire 512 × 512 Landsat-7 Optical

4 Yambulla, Australia 1 October 2015
6 February 2016 Bushfire 500 × 500 Landsat-8 Optical

3.2. Analysis of the Difference Image

In this subsection, we discuss the difference images generated by different methods
and the change detection results generated by FLICM model. In Figure 6, we can see
the difference images computed by the log-ratio operator (LR), mean-ratio operator (MR),
and NSCT fusion, respectively.

The performance of the difference images (DIs) computed by the LR, MR, and NSCT
fusion models are evaluated by the empirical receiver operating characteristics (ROC)
curves (as shown in Figure 7), which are plotted by utilizing the true positive (TP) rate
(TPR) versus the false positive (FP) rate (FPR). Moreover, two quantitative criteria derived
from the ROC curve can be calculated: the area under the curve (AUC) [48] and the diagonal
distance (Ddist) [48], as well as the corresponding metrics, are shown in Table 2. For the
two metrics, the larger the criterion, the better the detection. From Table 2, we can denote
that the NSCT fusion model performs better than the LR and MR operators.

Table 2. The quantitative criteria AUC and Ddist of different operators on remote sensing image
data sets.

Methods
Ottawa Wenchuan Mexico Yambulla

AUC Ddist AUC Ddist AUC Ddist AUC Ddist

LR 0.9573 1.2829 0.9618 1.2701 0.9877 1.3467 0.9954 1.3815
MR 0.9969 1.3828 0.9665 1.2953 0.9937 1.3689 0.9987 1.3980

NSCT 0.9980 1.3857 0.9729 1.3063 0.9938 1.3681 0.9990 1.3986
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Figure 6. The difference images with different methods. (a) Log-ratio operator; (b) mean-ratio
operator; (c) NSCT fusion.

Figure 8 shows the change detection results of the difference images with the FLICM
model on Ottawa data set, and the corresponding metrics data are shown in Table 3.
Figure 8a has the high alarm missing rate; in other words, FN value is too large; Figure 8b
has the high false detection rate, and the FP is large; Figure 8c is the best change detection
result, with the highest values of PCC, KC, and F1; at the same time, the balanced FN and
FP values are generated, and it has the lowest OE value. This also shows that the result of
fused difference image computed by the proposed method is better than that of single LR
and MR images.

Table 3. The objective evaluations of change detection on Ottawa in Figure 8.

FN FP OE PCC (%) KC (%) F1 (%)

LR_FLICM 2588 224 2812 97.23 88.93 90.54
MR_FLICM 340 896 1236 98.78 95.49 96.21

NSCT_FLICM 658 366 1024 98.99 96.18 96.78
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Figure 7. The ROC curves of operators generated DIs. (a) Ottawa; (b) Wenchuan; (c) Mexico;
(d) Yambulla.

Figure 8. The change detection results with FLICM model. (a) LR_FLICM; (b) MR_FLICM;
(c) NSCT_FLICM.
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3.3. Experimental Comparison

The change detection results generated by the proposed remote sensing image change
detection algorithm, as well as seven comparative approaches, are depicted in Figures 9–12
and Tables 4–7.

Figure 9. The results of different methods on Ottawa data set. (a) PCAKM; (b) GaborTLC; (c) LMT;
(d) PCANet; (e) NRELM; (f) NRCR; (g) CWNN; (h) proposed method; (i) reference.

Table 4. The objective evaluations of change detection on Ottawa in Figure 9.

FN FP OE PCC (%) KC (%) F1 (%)

PCAKM 1901 582 2483 97.55 90.49 91.93
GaborTLC 2531 253 2784 97.26 89.07 90.66

LMT 5266 23 5289 94.79 77.43 80.31
PCANet 1011 839 1850 98.18 93.12 94.21
NRELM 1157 578 1735 98.29 93.48 94.50
NRCR 739 1900 2639 97.40 90.51 92.07
CWNN 399 1208 1607 98.42 94.17 95.12

Proposed 658 366 1024 98.99 96.18 96.78
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Figure 10. The results of different methods on Wenchuan data set. (a) PCAKM; (b) GaborTLC;
(c) LMT; (d) PCANet; (e) NRELM; (f) NRCR; (g) CWNN; (h) proposed method; (i) reference.

Table 5. The objective evaluations of change detection on Wenchuan in Figure 10.

FN FP OE PCC (%) KC (%) F1 (%)

PCAKM 7111 939 8050 93.95 76.27 79.73
GaborTLC 8155 688 8843 93.35 73.27 76.98

LMT 9333 635 9968 92.51 69.11 73.19
PCANet 5284 1437 6721 94.95 81.04 84.01
NRELM 6492 873 7365 94.46 78.52 81.71
NRCR 7638 713 8351 93.72 75.02 78.56
CWNN 9720 578 10298 92.26 67.80 71.97

Proposed 3612 2117 5729 95.69 84.51 87.09

Figure 11. Cont.
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Figure 11. The results of different methods on Mexico data set. (a) PCAKM; (b) GaborTLC; (c) LMT;
(d) PCANet; (e) NRELM; (f) NRCR; (g) CWNN; (h) proposed method; (i) reference.

Table 6. The objective evaluations of change detection on Mexico in Figure 11.

FN FP OE PCC (%) KC (%) F1 (%)

PCAKM 5543 759 6302 97.60 85.11 86.42
GaborTLC 8515 296 8811 96.64 77.73 79.49

LMT 5855 640 6495 97.52 84.53 85.87
PCANet 4946 713 5659 97.84 86.77 87.95
NRELM 3702 943 4645 98.23 89.43 90.41
NRCR 3734 1252 4986 98.10 88.72 89.76
CWNN 4491 1053 5544 97.89 87.23 88.39

Proposed 3316 1223 4539 98.27 89.80 90.75

Figure 12. Cont.
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Figure 12. The results of different methods on Yambulla data set. (a) PCAKM; (b) GaborTLC;
(c) LMT; (d) PCANet; (e) NRELM; (f) NRCR; (g) CWNN; (h) proposed method; (i) reference.

Table 7. The objective evaluations of change detection on Yambulla in Figure 12.

FN FP OE PCC (%) KC (%) F1 (%)

PCAKM 2956 116 3072 98.77 92.86 93.54
GaborTLC 6105 34 6139 97.54 84.83 86.15

LMT 4571 60 4631 98.15 88.90 89.91
PCANet 3979 134 4113 98.35 90.27 91.17
NRELM 7325 33 7358 97.06 81.37 82.93
NRCR 6348 31 6379 97.45 84.16 85.53
CWNN 2629 153 2782 98.89 93.58 94.20

Proposed 1782 227 2009 99.20 95.44 95.89

Figure 9 shows the change maps on Ottawa data set. From the results, it can be seen
that the LMT method generates the worst performance, and it has the highest FN value.
The PCAKM and GaborTLC methods have high missed detection, losing some detail
information. The NRCR method has more false detection, exhibiting many isolated spots
with the highest FP values. The PCANet and NRELM algorithms give a similar perfor-
mance, but these two methods still have some missed detection with high FN value. The
visual performance obtained by CWNN technique is better than the previously mentioned
six algorithms, while it has some false detection with high FP value. For the proposed
change detection model, it achieves the best performance compared to other state-of-the-art
approaches, and the change map is closer to the reference image. Table 4 gives the FN,
FP, OE, PCC, KC, and F1 values for the different image change detection algorithms on
the Ottawa data set, respectively. The proposed method achieves the best OE, PCC, KC,
and F1 values, and these values are consistent with the visual effect of the experiment.

Figure 10 shows the change results on Wenchuan data set, and the corresponding
quantitative evaluation is given in Table 5. From the results, it can be observed that the
PCAKM, GaborTLC, LMT, PCANet, NRELM, NRCR, and CWNN methods have high
missed detection, and they have high FN values, especially in the CWNN model, and the
FN is the highest. Compared to other approaches, the change detection result obtained
by the proposed method is the best, the balanced FN and FP values are generated, it
matches the reference image best. From Table 5, we can conclude that the FN, OE, PCC, KC,
and F1 values achieved by the proposed technique are the best, and the FP value generated
by the CWNN model is the best. KC is a more comprehensive evaluation metric, and the
KC value of the proposed method is 8.24%, 11.24%, 15.40%, 3.47%, 5.99%, 9.49%, and 16.71%
ahead of PCAKM, GaborTLC, LMT, PCANet, NRELM, NRCR, and CWNN, respectively.

Figure 11 and Table 6 give the results on Mexico data set. From the results, it can
be seen that the PCAKM, GaborTLC, LMT, and PCANet approaches have high missed
detection, the corresponding FN values are high, and the FN value achieved by GaborTLC
is the highest. The NRELM, NRCR, and CWNN techniques achieve better performance
compared to aforementioned four methods. The result generated by the proposed technique
has the highest visual effect advantage compared to the state-of-the-art methods. From the
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data as shown in Table 6, we can see that the FN, OE, PCC, KC, and F1 values generated
by our method are the best, and the FP value achieved by the GaborTLC method is the
best. The KC value of the proposed algorithm is 4.69%, 12.07%, 5.27%, 3.03%, 0.37%, 1.08%,
and 2.57% ahead of PCAKM, GaborTLC, LMT, PCANet, NRELM, NRCR, and CWNN,
respectively. Qualitative and quantitative evaluations of this group of experiments have
achieved consistency.

Figure 12 depicts the change maps on Yambulla data set. From the results, it can
be seen that the GaborTLC, LMT, NRELM, and NRCR techniques suppress the noise,
and the false detection rate is reduced, while they have high missed detection. The PCAKM,
PCANet, and CWNN methods generate better performance, but the missed detection
rate is still high. Compared with other seven algorithms, the change map generated
by our method is the best, and it has the lowest missed detection rate. From the data
as shown in Table 7, the values of FN, OE, PCC, KC, and F1 achieved by the proposed
method are the best. The KC value of the proposed method is 2.58%, 10.61%, 6.54%, 5.17%,
14.07%, 11.28%, and 1.86% ahead of PCAKM, GaborTLC, LMT, PCANet, NRELM, NRCR,
and CWNN, respectively. The qualitative and quantitative evaluations of this group of data
are consistent, which proves the superiority of our algorithm.

In order to verify the effectiveness and superiority of the proposed algorithm more
accurately, we take the average value of the simulation experimental data of four groups of
remote sensing images, as shown in Table 8. The index value distribution fluctuation line
of each group of data and comparison algorithms are shown in Figure 13, and the average
values are given in the legend. From Table 8, we can denote that the scores of FN, OE,
PCC, KC, and F1 generated by the proposed method are the best. The effectiveness of the
proposed algorithm is objectively proved.

Table 8. The average objective evaluations of change detection on the four data sets.

FN FP OE PCC (%) KC (%) F1 (%)

PCAKM 4378 599 4977 96.97 86.18 87.91
GaborTLC 6327 318 6644 96.20 81.22 83.32

LMT 6256 340 6596 95.74 79.99 82.32
PCANet 3805 781 4586 97.33 87.80 89.33
NRELM 4669 607 5276 97.01 85.70 87.39
NRCR 4615 974 5589 96.67 84.60 86.48
CWNN 4310 748 5058 96.86 85.69 87.42

Proposed 2342 983 3325 98.04 91.48 92.63

Figure 13. Cont.
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Figure 13. Objective performance of the methods on different data sets. (a) FN; (b) FP; (c) OE;
(d) PCC; (e) KC; (f) F1.

4. Conclusions

In this paper, a novel remote sensing image change detection method based on NSCT
fusion and FLICM model is proposed. The background information computed by the
log-ratio image is relatively flat, and the change area information reflected by the mean-
ratio image is relatively consistent with the real change trend of the remote sensing image.
Therefore, the log-ratio image and mean-ratio image can be integrated into one new dif-
ference image with complementary information. Based on these analysis, the difference
images generated by log-ratio and mean-ratio operators are fused by the NSCT model,
and the fused difference image is obtained. Then, the FLICM model is used to generate
the final change detection map. We carried out simulation experiments on four groups of
remote sensing images. The experimental results verify the effectiveness of our algorithm
by qualitative and quantitative evaluations with other algorithms. Our method can be
effectively applied to land cover, flood, earthquake, and forest fire monitoring. In our
experiment, we only simulate and verify the change detection in homogeneous remote
sensing images. In future work, we will explore and improve the proposed algorithm for
change detection in heterogeneous remote sensing images.
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Abbreviations

NSCT Nonsubsampled contourlet transform
FLICM Fuzzy local information C-means clustering
DI Difference image
SAR Synthetic aperture radar
NR Neighborhood-based ratio
GKIT Generalization of Kittler and Illingworth thresholding
PCAKM Principal component analysis and K-means clustering
NSCT-HMT Nonsubsampled contourlet transform-Hidden Markov Tree
PCANet Principal component analysis network
LR Log-ratio
MR Mean-ratio
NSP Nonsubsampled pyramid
NSDFB Nonsubsampled directional filter bank
LF Low-frequency
HF High-frequency
GaborTLC Gabor wavelet and two-level clustering
LMT Logarithmic mean-based thresholding
NRELM Neighborhood-based ratio and extreme learning machine
NRCR Neighborhood-based ratio and collaborative representation
CWNN Convolutional-wavelet neural networks
FN False negative
FP False positive
OE Overall error
PCC Percentage correct classification
KC Kappa coefficient
F1 F1-score
ROC Receiver operating characteristics
TPR True positive rate
FPR False positive rate
AUC Area under the curve
Ddist Diagonal distance
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