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The scaling and surface area properties of the wrinkled surface separating turbulent from nonturbulent

regions in open shear flows are important to our understanding of entrainment mechanisms at the

boundaries of turbulent flows. Particle image velocimetry data from high Reynolds number turbulent

boundary layers covering three decades in scale are used to resolve the turbulent-nonturbulent interface

experimentally and, for the first time, determine unambiguously whether such surfaces exhibit fractal

scaling. Box counting of the interface intersection with the measurement plane exhibits power-law

scaling, with an exponent between�1:3 and�1:4. A complementary analysis based on spatial filtering of

the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of

filter width, with an exponent between�0:3 and�0:4. These results establish that the interface is fractal-

like with a multiscale geometry and fractal dimension of Df � 2:3–2:4.
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The geometry of turbulence, with visually striking eddy

motions at many scales, has fascinated observers as far

back as Leonardo da Vinci [1]. Particularly striking are

surfaces in turbulent flows that are made visible through

various means. Examples include cumulus cloud bounda-

ries [2], turbulent flames [3], and the visibly sharp and

corrugated surface separating turbulence from outer, non-

turbulent regions in shear flows such as jets and boundary

layers [4–7]. While each of these surfaces are affected by

various different physical processes, a common effect is

the uneven advection and surface deformation due to tur-

bulent eddies that tend to increase the surface area. Also

common are molecular processes that typically occur at

small diffusive scales, which tend to smooth, i.e., reduce,

the surface area. Early work in the 1980s and 1990s

emphasized the multiscale structure of interfaces as a

reflection of deformations caused by a hierarchy of eddy

sizes in the turbulent inertial range. Following proposals

that surfaces may display scale-invariant (fractal) proper-

ties [8], experimental results were reported with

evidence of such surfaces having a fractal dimension of

Df � 2:3–2:4. Early and more recent observations consis-

tent with fractal scaling included cloud boundaries [2,9],

turbulent flames in the corrugated flamelet regime

[3,10,11], and interfaces determined from isoconcentration

surfaces of passive scalars [12]. Moreover, scaling argu-

ments were provided connecting the fractal dimension to

the classical Kolmogorov scaling of turbulence. One con-

siders [13] an interface separating two regions across

which a transported quantity C exhibits a finite concentra-

tion difference �C, and one evaluates the flux across the

surface using descriptions at various coarse-graining

lengths r. The total flux is the product of the effective

diffusion coefficient, the gradient, and the total surface

area at that scale, SðrÞ. The gradient scales as �C=r

and the turbulent effective diffusivity scales as �1=3r4=3,
if r belongs to the inertial range and � is the rate of

dissipation (Kolmogorov scaling, i.e., Richardson relative

diffusivity, is assumed). Thus, the total flux scales as

f�1=3r4=3�1SðrÞ�Cg. For it to be independent of r (i.e., if

the turbulent diffusion correctly reproduces the unresolved

mixing at scales below r), the surface area must follow

SðrÞ � r�1=3. Power-law scaling of the surface area is a

hallmark of fractals, with SðrÞ � r2�Df . Hence, Df ¼ 2þ

ð1=3Þ, where the 1=3 term originates from Kolmogorov

scaling. Arguments based on the molecular fluxes eval-

uated at the diffusive scales and then invoking Reynolds

number similarity lead to the same result [12].

There has been renewed interest in the structure of

turbulence, entrainment, and transport in the vicinity of

the turbulent-nonturbulent interface (TNTI) (see e.g.,

[7,14–18], and [19,20]). Recent studies on TNTI have

focused on the question of whether the growth rate of the

turbulent region into the nonturbulent region is determined

by large-scale processes through big eddies (engulfment),

or by small-scale diffusive processes occurring at the inter-

face (viscous nibbling). Evidence for both viewpoints has

been presented. While the question has not been settled

thus far, as suggested by Ref. [14], the arguments invoking

a multiscale fractal structure of the interface [12,13] can be

used to reconcile the two views: the engulfment due to

inertial eddy structures of large and many intermediate

sizes is responsible for an increased surface area, along

which diffusive processes can act more extensively.

And yet, while the above argument appears reasonable

and consistent with traditional expectations, the direct

evidence from prior experiments and simulations for frac-

tal scaling of interfaces is inconclusive. There are consid-

erable practical difficulties associated with providing

conclusive evidence for or against fractal (power-law)
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scaling. Lack of convincing power-law scaling (e.g., curv-

ing in log-log plots) was quoted in various prior works, see,

e.g., [21–25]. Most of these previous studies used passive

scalars as surrogate markers to identify the interface, with

concomitant uncertainties of interpretation, and were in

flows with only moderately high Reynolds numbers, where

a limited range of length scales exist, thus, restricting the

length or possibly the emergence of a well-established

power-law scaling. As a result, the notion of power-law

scaling of interfaces in turbulence is not yet generally

accepted in the literature. Ideally, very high Reynolds

numbers are required in order to isolate power-law scaling

over a subrange of scales between the inner cutoff scale

(e.g., the Kolmogorov scale �) and the outer (integral)

scale, �. Here we overcome the concomitant experimental

challenges by employing one of the largest zero-pressure

gradient wind tunnels and multiple high-resolution sensors

to acquire data.

High resolution particle image velocimetry (PIV) proves

to be an effective technique to study the multiscale dynam-

ics of the interface. For example, PIV has been used in jets

at ReD ¼ 2� 103 to measure viscous enstrophy fluxes

near the TNTI [15], as well as the influence of shear and

swirl on the TNTI [16]. In this Letter, we reexamine the

fractal aspects of the TNTI using two experimental data

sets in very high Reynolds number turbulent boundary

layers, the parameters of which are summarized in Fig. 1.

In order to resolve the full range of scales, eight high

resolution cameras (each with 4008� 2672 pixels) were

used simultaneously. A merged instantaneous image across

the eight cameras provides a field of view of � 0:73 m�
0:4 m in the streamwise (x) and wall-normal (y) directions,
respectively, corresponding to 1538� 839 vectors in x and
y. The images are processed with a vector spacing of

0:64�a and 1:21�b, or 10.3 and 19.4 wall units (�=u�),

for Re� ¼ 7900 and 14 500, respectively. For each

Reynolds number, 1000 vector fields are analyzed to pro-

vide converged first and second order statistics. Further

details on the experimental setup, PIV processing details,

and the validation of the planar PIV data against prior hot-

wire anemometry measurements can be found in [26].

These data are well suited for the present analysis: they

have a large field of view (� 2� in x and 1:1� in y), and
consist of Oð103Þ vectors in each direction, resolving from
scales close to the Kolmogorov scale up to scales on the

order of � in a high Reynolds number flow, providing an

available scale range of 2�=� � 103. Such a measurement

based directly on velocity fields and a large scale range

enables us to ascertain conclusively if any power-law

scaling exists.

Various approaches have been proposed to detect the

TNTI from velocity field or visualization results, some

based on vorticity [27,28] or passive scalar markers

[7,12]. For our data, we have found that isosurfaces of

the local (and two component) kinetic energyK ¼ ð1=2Þ�
ðu2 þ v2Þ of the flow in the frame moving with the free

stream provides a very good indicator of the interface.

Compared to vorticity-based methods that depend on de-

rivatives, the kinetic energy is less susceptible to noise and

finite resolution. While the kinetic energy field is domi-

nated by the large-scale eddies, its isosurfaces contain

geometric fluctuations down to the Kolmogorov scale.

Figure 2 shows a sample PIV image and the interface

determined based on the threshold of K ¼ c0ðð1=2ÞU
2
1Þ

with c0 ¼ 1� 10�3 (thresholds of c0 ¼ 0:5� 10�3 and

2� 10�3 are also tested). In order to exclude small islands

that could be due to low-intensity pockets inside the tur-

bulent region arising from ‘‘inner intermittency’’, or from
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FIG. 1 (color online). Experimental setup for the planar PIV

measurements in the High Reynolds Number Boundary Layer

Wind Tunnel at the University of Melbourne, and table

of relevant flow properties, where � and �T are the

Kolmogorov and Taylor microscales calculated near the inter-

face and �w is the wall stress [26].
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FIG. 2 (color online). A snapshot of the velocity field relative

to the free stream at Re� ¼ 14 500 from planar PIV. Every 10th

vector is plotted in each direction. Color contours represent

kinetic energy K ¼ ð1=2Þðu2 þ v2Þ, where velocities are in a

frame moving with the free stream. The solid black line indicates

the location of the TNTI computed as an isokinetic energy

surface using a threshold of K ¼ 10�3ðð1=2ÞU2
1Þ. The inset

shows a magnified view of the TNTI, showing vectors at the

original resolution, and from 1:34< x=� < 1:39 and 0:69<
y=� < 0:74. A velocity magnitude of 8 m=s corresponds to a

length of 0:1� in the main vector map, and 0:03� in the inset.
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experimental noise in the outside region above the inter-

face, only islands with an area greater than �2
T are counted

towards the TNTI, where �T is the Taylor microscale. As

shown in Fig. 2, the results from this detection method

agree well with the interface location as it can be identified

visually in a more qualitative fashion. While the appropri-

ate threshold to be used may depend on the flow, the

level of free-stream (background) turbulence, signal noise

(� 0:2% and 1% of U1, respectively), etc., quantitatively

robust results with respect to specific choices of the thresh-

old are obtained.

In order to determine whether the data exhibit fractal

scaling, a box-counting analysis is performed by counting

NðrÞ, the number of boxes of size r required to cover the

TNTI, for a wide range of box sizes. For fractal scaling

with dimension D, one expects NðrÞ � r�D. In the analy-

sis, NðrÞ is averaged over the 1000 individual fields, and

divided by the length of the projected interface in the

x direction (Lx). The resulting number of boxes per unit

length are plotted in Fig. 3 in log-log axes for both data sets

at the two Reynolds numbers. The inset shows the ‘‘local

slope’’ obtained by evaluating the logarithmic derivative

using centered finite difference of consecutive data points.

Power-law scaling is clearly exhibited from a large-scale

cutoff near � 20% of � down to small scales where the

viscous cutoff scale, or spatial resolution of the data are

expected to begin to smooth the results. Vertical lines are

drawn at 10� where no smoothing effects of spatial reso-

lution are expected, i.e., a conservative lower limit for

determining the power-law exponent, although it is appar-

ent that fractal scaling may extend to even smaller scales.

The average slope is near �1:3, consistent with a fractal

dimension of the perimeter D � 1:3, and with Df � 2:3

for the surface embedded in three dimensions according to

the additive rule of co-dimensions for intersecting sets [8].

At the smaller scales the slope tends to one, consistent with

the expectation that fractal scaling ceases below an inner

cutoff or when approaching the spatial resolution of the

data. In terms of sensitivity to thresholding, the inset in

Fig. 3 shows no significant variation in the local slope

when using different thresholds (c0 ¼ 0:05%, 0.1%, and

0.2%); furthermore, a reduced convergence above 0:1�,
due to the reduced number of samples obtained at large r is
also observed.

An understanding of the multiscale properties of inter-

faces is particularly useful in the context of describing the

physics at various length scales. Coarse graining is com-

monly used in large eddy simulations (LES) of turbulence

[29], in which the velocity field is spatially filtered with a

smoothing kernel of characteristic scale �, according to

~uiðx; tÞ ¼
R

uiðx� x
0; tÞG�ðx

0Þd3x0. Here, ~uiðx; tÞ is the

filtered velocity that would be simulated in LES.

Experimental data from PIV can be used to study scale-

to-scale interactions in turbulence in physical space by

filtering the velocity at various scales � [30]. Here, we

examine the scale-to-scale properties of the TNTI by

coarse graining the velocity using a 2D box filter on the

PIV data (i.e., G�ðx; yÞ ¼ 1=�2 if jxj, jyj<�=2 and

G�ðx; yÞ ¼ 0 otherwise). Then the kinetic energy of the

coarse-grained velocity field is evaluated according to

K� ¼ ð1=2Þð~u2 þ ~v2Þ and the same threshold (0.1% of

ð1=2ÞU2
1, the free-stream kinetic energy in the wall-

attached frame) is used to define the interface. As before,

islands whose area is smaller than �2
T are excluded from the

TNTI. As shown in Fig. 4, when � is small, on the order of

the distance between PIV vectors, the interface is the same

as that shown in Fig. 2. For larger � (but with the same

threshold), the interface becomes progressively smoother.

The interface location shows no bias shift in position when

computed from the filtered velocity fields as shown in
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FIG. 3 (color online). Plot of the number of boxes NðrÞ needed
to cover the TNTI at a kinetic energy threshold of 0.1%. Squares:

Re� ¼ 7900 and circles: Re� ¼ 14 500. For comparison, dashed

lines show slopes of �1 and �2. Vertical lines show the limits

used for the fit for each set of data. The inset shows the local

slopes; the solid and dashed lines (c0 ¼ 0:05% and 0.2%), and

symbols (0.1%) which correspond to the TNTI detected using

different thresholds, where, K ¼ c0ðð1=2ÞU
2
1Þ.
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FIG. 4 (color online). TNTI determined from the filtered

velocity fields at a kinetic energy threshold of 0.1%, with filter

scales (a) � ¼ 0:02�, (b) � ¼ 0:08�, and (c) � ¼ 0:18�.
Color contours represent the filtered kinetic energy, K� ¼
ð1=2Þð~u2 þ ~v2Þ in logarithmic units, in a frame moving with

the free stream.
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Fig. 4, indicating that the TNTI criterion based on kinetic

energy is suitable for velocity fields at various scales, such

as those from LES.

Of particular interest is the surface area as a function of

scale. From the planar PIV data, the corresponding quan-

tity we can measure is the length LI of the TNTI as a

function of filter scale �, and for a fractal boundary one

expects LI � �1�D. The results are shown in Fig. 5(a) for

the two Reynolds number data sets and for three thresholds

(c0 ¼ 0:05%, 0.1%, and 0.2%) for the high Reynolds num-

ber case. Length and filter sizes are normalized on viscous

units, i.e., Lþ
I ¼ LIu�=� and �þ ¼ �u�=�. The dashed

lines show fits in the scaling region between 50<�þ <
300 and 100< �þ < 600 at Re� � 7900 and 14 500,

respectively. The threshold of 0.05% yields a slightly

steeper slope (�� 0:4), although at this threshold the

detected interface already appears more noisy and corre-

sponds less visibly to the TNTI. Figure 5(b) shows the

same results (only c0 ¼ 0:1% to avoid clutter), displaying

collapse when plotted in �=�. A plateau is evident in the

logarithmic derivative of the measured length of TNTI

(solid symbols), with a mean of � 0:35, consistent again
withD � 1:3–1:4 orDf � 2:3–2:4. As a caveat, due to x-y

plane data, flow anisotropy effects cannot be excluded,

especially at large scales. At inertial range and small

scales, however, the expectation of isotropy in interface

corrugation suggests our results are independent of mea-

surement plane orientation.

While the prior published evidence for power-law scal-

ing of the TNTI was inconclusive and the applicability of

fractals to describe interfaces not established, the results

introduced here provide compelling evidence that the

TNTI in turbulent boundary layers (an open shear flow)

display fractal-like power-law scaling, clearly consistent

with Df � 2:3 to 2.4. Future work will focus on implica-

tions of the present geometric analysis on entrainment

fluxes as function of scale.
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