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Abstract—We present a new framework for the hierarchical
segmentation of color images. The proposed scheme comprises a
nonlinear scale-space with vector-valued gradient watersheds. Our
aim is to produce a meaningful hierarchy among the objects in
the image using three image components of distinct perceptual sig-
nificance for a human observer, namely strong edges, smooth seg-
ments and detailed segments. The scale-space is based on a vector-
valued diffusion that uses the Additive Operator Splitting numer-
ical scheme. Furthermore, we introduce the principle of the dy-
namics of contours in scale-space that combines scale and con-
trast information. The performance of the proposed segmentation
scheme is presented via experimental results obtained with a wide
range of images including natural and artificial scenes.

Index Terms—Anisotropic diffusion, color segmentation, dy-
namics of contours, scale-space, vector-valued gradient, watershed
segmentation.

I. INTRODUCTION

I MAGE segmentation is an important task in computer vision
that aims to partition the image into physically meaningful

regions. Furthermore, it is an ill-defined problem, since what
is really a physically meaningful region is often context depen-
dent. It is difficult to construct a general region model that is
based on image information such as grey-level, color, or tex-
ture. In spite of many considerable attempts, finding a method
that can produce meaningful segments in a large variety of nat-
ural images remains a difficult task. In part this is due to the
complexity of images. Image segments (regions) may differ in
properties and these differences can be observed in some, but
often not in all scales.

Segmentation algorithms for intensity images, may be
divided into five broad categories: intensity thresholding [1],
clustering [1], region growing [1], split and merge [1], and
variational and Partial Differential Equation (PDE)-based
approaches [2], [3], [4]. Approaches combining the last two
categories have been also proposed by [5]–[8]. Even if many of
these approaches have been extended to color images [9]–[14],
the literature is not as rich as for grey-level images [1], [14], es-
pecially when we refer to segmentation algorithms integrating
both superficial and deep image structure [5], [7], [15]–[20].
Segmentation algorithms that entail diffusion filtering, often
employ the linear scale-space to address the multiscale frame-
work [6], [7], [21], [22]. Nonlinear diffusion, on the other hand,
is in general used as a preprocessing (enhancement) step for
subsequent image segmentation [4], [15].
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Hierarchical approaches are often used among segmentation
methods. These approaches focus on the use of a hierarchical
data structure representing the image at a number of scales.
Each level of the hierarchy corresponds to a condensed version
of the image at the previous level. This can be achieved by re-
ducing the resolution of the image, leading to a regular hier-
archical structure [23] or by merging segments in the image,
leading to an irregular hierarchical structure [6], [7], [24]. Hi-
erarchical segmentation can be achieved in two ways by using
either top-down analysis or bottom-up analysis. Top-down anal-
ysis segments the image by successively refining the result from
the previous coarse level, e.g., in [23]. In bottom-up methods,
the segmentation is achieved by successively merging segments
at each level until some conditions are satisfied [6], [24].

The analysis of multiscale watersheds [5], [8] resulted in a
range of hierarchical segmentation methods varying from mor-
phological pyramids [25]–[28] to multiscale hierarchies [6], [7],
[22]. In the case of multiscale watersheds hierarchies, the du-
ality between the watershed segments and regional minima of
the gradient is exploited to either find markers for the water-
shed transformation or to establish a hierarchy between the wa-
tersheds using either the deep image structure individually [7]
or the integration of both the superficial and deep image struc-
ture [6], [18].

In this paper, we strive toward an improved color segmentation
scheme. Our method is based on the segmentation algorithm
presented in [6], [29]. It uses the multiscale structure built by
vector-valued nonlinear diffusion filtering [30] to measure and
incorporate various perceptual properties such as the dynamics
of contours [31], smooth segments and detailed segments. This
results in a hierarchy among segments produced by the color gra-
dient watershed, and detects meaningful segments in a variety of
natural and artificial images. The proposed hierarchical segmen-
tation scheme is addressed within the framework of nonlinear
diffusion filtering. Unlike linear diffusion filtering, anisotropic
diffusion filtering is guided by additional information that leads
to intraregion smoothing and edge enhancement [32]–[34]. To
deal with vector-valued data, such as color images, we propose a
vector-valued diffusion scheme [30], as an extension to the reg-
ularized version of the anisotropic diffusion proposed by Perona
and Malik [32], [33]. Moreover, the numerical model that was
given in [32] is replaced by the more efficient Additive Operator
Splitting (AOS) method [35]. Our segmentation scheme consists
of two modules, the Salient Measure Module and the Hierar-
chical Levels Retrieval Module. The Salient Measure Module
uses the dynamics of multiscale gradient watersheds, which in-
tegrates both the superficial and deep image structure, to valuate
the contours. The Hierarchical Levels Retrieval Module uses a
bottom-up hierarchical analysis. The merging at each level of the
hierarchy is performed based on a color homogeneity criterion.
The proposed integration embodies three perceptual features,
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namely contrast, homogeneity and scale. We demonstrate the
quality of our segmentations taking into account the following
aspects: i) the scale-space generator and the linking scheme; ii)
the evolution of the dynamics of contours in scale-space; iii) the
hierarchy among the gradient watersheds obtained in the case of
using the superficial image structure, the deep image structure,
as well as the integration of both (the dynamics of contours in
scale-space); and iv) the hierarchical levels retrieval and the
optimal hierarchical level selection.

This paper is organized as follows. Section II is dedicated
to a detailed description of the segmentation scheme. In Sec-
tion II-A, the gradient watershed transformation for color im-
ages is summarized. Section II-B deals with the scale-space
generation. The Salient Measure Module is described in Sec-
tion II-C. This module embodies the scheme for linking infor-
mation across the scale-space stack (Section II-C2) and explains
the multiscale feature used for contour valuation (Sections II-C1
and II-C3). The Hierarchical Levels Retrieval Module is de-
scribed in Section II-D. A comparative study of theGaussian-
based and theanisotropicdiffusion-based multiscale segmenta-
tion scheme is given and illustrated with experimental results in
Section III. Finally, conclusions concerning the performance of
the proposed segmentation method and the continuation of our
research are given in Section IV.

II. HIERARCHICAL MULTISCALE SEGMENTATION

Our main goal is to create a hierarchy among the color
gradient watersheds that preserves the topology of the wa-
tershed lines at thelocalization scale(the finest scale in the
scale-space stack) and extracts homogeneous objects of a larger
scale. Let us first define what we mean by a hierarchy. Let

be the initial partitioning of the image
at the localization scale after the application of the color gra-
dient watershed transformation. Ahierarchical level ( )
is defined as the partitioning which
preserves the inclusion relationship , implying
that each segment of the set is a disjoint union of segments
from the set . A hierarchy of partitions is defined as a
family which consists of all the hierarchical levels , where

. It corresponds to ahierarchy of Region Adja-
cency Graphs, , that are generated by applying
successive mergings.

Different approaches exist in the literature for constructing
a hierarchy of partitions defined on the basis of the watershed
transformation that retrieve information from the superficial
image structure. Hierarchical approaches emanating from a
Mathematical Morphology (MM) framework consist of i) the
waterfall algorithm [36], ii) the dynamics of minima [37], iii)
extinction value [38] and iv) the dynamics of contours [31].
This enumeration corresponds to the chronological order of
their appearance in the literature. Essentially, this hierarchy
can be interpreted as a set of region adjacencies, wherein an
ordering is determined by a valuation, which can be controlled
by the relative altitudes of the minima (dynamics of minima,
and dynamics of contours) or by the relative heights of the wa-
tershed lines (waterfall). The extinction value introduces area
to the concept of dynamics. Comparisons of these approaches
can be found in [24], [31], and [39].

Fig. 1. Schematic diagram for the proposed hierarchical segmentation scheme
for color images.

The proposed hierarchical segmentation scheme, depicted in
Fig. 1, consists of two basic modules. The first module (Salient
Measure Module—Section II-C) is dedicated to attribute a
saliency measure to each contour arc at the localization scale
taking into account the whole scale-space stack. The entire
process to retrieve the saliency measure for the color gradient
watersheds requires three steps: i)scale-space stack generation
by vector-valued nonlinear diffusion filtering(Section II-B).
ii) Linking (Section II-C2). At each scale the color gradient of
the image is estimated. At the localization scale, the watershed
transformation is performed to identify the position of all the
contours in the image. At the higher scales, the duality between
the regional minima of the color gradient and the catchment
basins of the watershed is exploited to make a robust region
based parent-child linking scheme. iii)Contour valuation by
downward projection(Section II-C3). The dynamics of con-
tours in scale-space are used to valuate the contours detected
at the localization scale.

The second module (Hierarchical Levels Retrieval Module—
Section II-D) identifies the different hierarchical levels through
a hypothesis testing criterion. Starting from the watershed seg-
mentation at the localization scale, a successive merging oper-
ation is performed until a stopping criterion is satisfied. The
merging of adjacent regions is based upon a color similarity
measure. While the merging sequence (order) is given by the
valuation (dynamics of contours in scale-space) of the contours.

A. Color Gradient Watersheds

The watershed transformation is a morphological tool ded-
icated to image segmentation. It can be considered as a topo-
graphic region growing method. In the watershed transforma-
tion, pixel values are considered as topographic data character-
istics of a relief, thus, the value of each pixel denotes the eleva-
tion of the point [36], [40]. The basic idea of the watershed con-
struction is to create an influence zone for each regional minima
of the image [41]. In that respect, a one-to-one mapping is at-
tributed between the regional minima and the catchment basin.

In the case of segmentation, the watershed transformation is
often applied on the gradient magnitude of an image in order to
guide the watershed lines to follow the crest lines and the real
boundaries of the objects. Therefore, from now on, we will refer
to gradient watersheds, thus explicitly implying that we have
retrieved the watershed lines from the modulus of the gradient
image. In grey level images, the modulus of the gradient is a
scalar function of the coordinates and expresses the distance
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between neighboring pixels with respect to their intensity. In the
case of color images, the modulus of the gradient expresses the
color distance in the chosen color space using a certain metric.

Approaches that estimate the color gradient can be classified
into three main categories: i) fusion methods; ii) statistics-based
methods; and iii) gradient tensor or gradient vector methods.
The first class of methods estimate the gradient of each color
component separately and fuse the results [10], [42]. The second
category of methods use statistical features to estimate color dif-
ferences [43]. The above mentioned approaches do not consider
color images asvector-valuedfunctions for the gradient estima-
tion. In the third set of methods an explicit formulation of the
vector-tensor is given [44], [45]. This allows interaction among
the color channels and results in a more accurate description of
the first order derivatives. In this work, the color gradient, in the
YUVcolor space, is estimated using theDi Zenzo vector-valued
gradient[44] in conjunction with the Sobel operators for the es-
timation of the partial derivatives of each color component.

B. Scale-Space Generation

The purpose of segmentation is the partitioning of an image
into meaningful objects. Since real-world objects are mean-
ingful only in a certain range of scale [46], it is therefore natural
to include the multiscale nature of images in the segmentation
process. In controlled circumstances the scale of the objects in
the scene is known, contrary to most natural scene images [46],
[47]. For these images it makes sense to analyze the image
at all scales simultaneously; the analysis of the deep image
structure. The multiscale nature of images can be represented
in various ways. Scale-space theory has a firm mathematical
foundation and all known scale-space models can be derived
from the diffusion equation

(1)

where is the scale parameter,is the scale-space image of an
image , and is the diffusion tensor.

1) Gaussian Scale-Space:In linear scale-space methods,
is a scalar value and is referred to as diffusivity. The

linear scale-space is commonly used in segmentation [6],
[7], [21]–[23], [48]. The scale-space image is obtained by
convolving the original image withGaussiankernels of in-
creasing width. The kernel size and the scale-parameter

are related by . Linear scale-spaces exhibit useful
properties such as the semi-group property, which results in fast
methods and scale-invariance [34]. The Gaussian diffusion for
vector-valued images is performed in each channel separately.
Fig. 2 shows an example of the Gaussian scale-space stack
applied to a color image.

2) Anisotropic Diffusion: The inherent problems of the
linear scale-space methods led to the investigation of their
nonlinear counterparts. In the nonlinear methods, extra in-
formation is added to guide the diffusion process. Perona
and Malik introduced an anisotropic diffusion filtering for
scalar images that avoids blurring and ensures well-localized
edges [32]. In later works, it was spatially regularized to
guarantee well-posedness [33], [34]. In the literature, many
works report on the use of anisotropic diffusion for scalar
images, however there is not much reported on diffusion for

Fig. 2. Scale-space stack inYUVcolor-space. Top:Gaussianscale-space stack
from left to right withs = 0, 3, 9, 18, 31,� = 0:3, and�� = 0:1. Bottom:
CLMC stack from left to right withs = 0, 5, 10, 15, 17,� = 2:10, and
�� = 0:1.

vector-valued images. Whitakeret al. introduced the general
framework for vector-valued diffusion in [30]. The latter is a
straightforward extension of the work presented in [32] to a
system of coupled diffusion equations. Each channel is diffused
separately using a diffusion tensor which is estimated using
information of all channels. Chambolleet al. [49] present some
preliminary results concerning color images by comparing the
use of coupled diffusion equations with a not coupled system.
An application of the latter can be found in [14], where the
luminance and chromatic information are diffused separately.
Sapiro et al. estimate an anisotropic flow based upon the
gradient in vector-valued images [44]. In their approach the
diffusion is perpendicular to the direction of the maximal rate
of change [50], [51].

In this paper, we use an anisotropic diffusion for color images,
which was initially described in [32] for gray level images and
which was modified byCatté,Lions,Morel, andColl [33] to
ensure well-posedness. This filter will be referred to asCLMC
throughout the rest of paper. For our scheme, we use a system
of coupled diffusion equations where the diffusion tensor is esti-
mated using the Euclidean distance between the color vectors of
neighboring pixels. We use the Additive Operator Splitting nu-
merical scheme (AOS) [35]. It has an increased efficiency com-
pared to the explicit scheme [32] and is easier to solve than the
semi-implicit scheme in higher dimensions [33].

Let be a -dimensional image
domain and consider a vector-valued imageas a bounded
mapping from into the real vector ; with and

in the case of a color image. Then theCLMC filter ob-
tains a filtered image of as the solution of (1), for
which the original image is the initial state , and for
which reflecting boundary conditions are assumed on the image
boundary ( on ). The diffusion tensor is a func-
tion that favors wide regions over smaller ones and is described
as follows:

(2)

where is the size of the Gaussian kernel used for the spa-
tial regularization and was set to 0.5 during all our experiments.
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The constant is a contrast parameter that separates for-
ward (low contrast) from backward (high contrast) diffusion.
The value of is problem dependent and is determined ex-
perimentally for most applications. In this work, an automatic
estimation of the contrast parameter is proposed: We assume
that pixels, for which % of the maximum of
the corresponding histogram, are edge pixels. Subsequently the
amount of diffusion at those pixels should be as small as pos-
sible, e.g., . The contrast parameter is obtained as
follows:

(3)

where denotes 10% of the maximum of the histogram of
.

The majority of the numerical schemes are explicit and use
finite differences. For a vector-valued image and considering
a vector-matrix notation, the explicit numerical scheme is the
following:

(4)

where is a color channel, is the unit matrix and
is the time step. The matrix , which

contains the diffusion values, is defined as follows:

(

(5)

where and are pixels, is the neighborhood of pixel
and contains the pixels with (orth), (outh),

(ast) and (est) on a square lattice. is
the diffusivity at pixel estimated for orientation , and

denotes the nearest neighbor
difference. The values are calculated by applying
(2) to the Euclidean difference between the color vectors of
the corresponding pixels and . To ensure stability for the
discrete scheme [(4)], the time step has to be in .
Hence, the whole filtering process becomes rather time con-
suming. In the case of the semi-implicit numerical method, the
time step is not restricted but the scheme is difficult to solve in
higher dimensions. Therefore, Weickertet al. [34], [35] pro-
posed to split the semi-implicit method intoone-dimensional
problems and to sum the results

(6)

where denotes the number of directions related to the type
of the grid connectivity used. In this work, a 4 connectivity
was chosen, hence . consist of the diffu-
sion coefficients, as defined in (5), using a neighborhood
in the corresponding direction. In our experiments, the time
step ( ) never exceeds 5. This way, we avoid visible errors in
the approximation of the diffused image [35]. An example of
the scale-space stack, obtained using the presentedCLMC dif-
fusion, is shown in Fig. 2.

3) Scale-Space Sampling:The sampling of the scale-space
stack provides a natural sampling and ensures scale invariance
for the linear scale-space. It follows a linear and dimensionless
scale parameter , which is related to the size of the Gaussian
kernel by [34]

(7)

where denotes the scale quantization level and .
For the nonlinear scale-space there is no global scale parameter
because the amount of diffusion changes locally. Nevertheless,
since , we can apply the same scheme. In
this case, the time stepin (4) and (6) is retrieved as follows:

(8)

The localization scale ( ), which is derived from [(7) and
(8)], should contain all information in the image with a min-
imal amount of noise. Furthermore, the application of the color
gradient watershed should result in accurate detection of the wa-
tersheds. In this work, the localization scale is determined em-
pirically.

C. Salient Measure Module

The aim of this module is to valuate the arcs of the Region
Adjacency Graph (RAG), , at the localization scale
( ). is obtained after the application of the color gradient
watershed transformation, with the
segments (regions), and the arcs separating pairs of
adjacent segments .

The proposed valuation relies on the concept of the dynamics
of contours in scale-space [6], which incorporates a region
linking that has been advocated by a study of the topological
changes of the critical point configuration in linear scale-space
[7], [29]. The main motivation for the cooperation of the
watershed analysis and the scale-space is the duality of the
catchment basins of the watershed with their respective minima
in the gradient image and the simplification process, which
occurs during the evolution of the scale-space stack.

1) Dynamics of Contours:The principle ofdynamics of con-
tours [31] uses the principle of dynamics of minima [37] as an
initial information for the common contour valuation of adjacent
regions. The additional information that is used, is based upon
the tracking of the flooding history. In such a way, a contour val-
uation can be found by comparing the dynamics of minima be-
tween the segments, which have reached the contour of interest
during a flooding. The dynamics of a minimum is easily de-
fined with a flooding scenario. Let be the altitude of the flood
when for the first time a catchment basin with a deeper min-
imum , ( ) is reached. The dynamics of is then
equal to . Each catchment basin is attributed
the value of the dynamics of its minimum. The contour valua-
tion which is attributed to each common border of the segments
is denoted as [31]

(9)
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where denotes the lower point (saddle point) of the common
border between segmentsand , is the function on which
the flooding is applied, and denotes an open connected com-
ponent that belongs to the topological open set which
is defined as

(10)

Linking Scheme:The linking scheme aims to track the
regional minima in the gradient through the scale-space. The
linking process is applied using the approach proposed in [29].
Here, the linking of the minima for successive scales is applied
by using theproximity criterion [46]. This criterion is limited
for projected minima of scale quantization levelinside the
same geodesic influence zone of a connected
component of in at scale quantization level

(11)

Any regional minimum of the set , that is spatially pro-
jected on the geodesic influence zone at scale quan-
tization level , will be linked with the regional minimum

. The projected minimum of the set ,
which is the closest to the minimum , is considered as
the father. The rest of the projected minima onto the same influ-
ence zone are considered annihilated. Closeness is defined with
respect to the topographic distance which is a natural distance
measure following the steepest gradient path inside the catch-
ment basin. We have to mention that we useinverse ordered
queuesto guide all regional minima of the set toward the
set . This way, we avoid problems caused by the pres-
ence of plateaus.

Fig. 3 illustrates the linking of the regional minima between
successive scales. In Fig. 3(a), the regional minima at scale
quantization level that are spatially projected on the level

, are shown. Furthermore, the watershed lines that delimit
the influence zones at scale quantization level are depicted.
Fig. 3(b) shows the regional minima at scale quantization level

. The linking between the regional minima , at scale
quantization level , and the minima , at scale quanti-
zation level , is given in Fig. 3(c). Note that, at each scale
quantization level, after the linking stage, we attribute a label
to the minima with respect to their linking ability: i) Either the
minimum is annihilated/merged and will not be considered in
the linking of the next levels or ii) it does not interact with other
singularities and takes up the role of the father label for all the
minima situated at the same influence zone.

At the end of the linking step, for each couple of neighboring
segments that share a common border at the local-
ization scale, a linkage list is constructed. Fig. 4(a)
shows such a list for and . This list provides
the following information: Segment is attributed to aRootfor
segments and at . This has occurred because i) at, seg-
ment has been linked to segment, which has been linked
to segment at and, ii) at , segment has been linked
to segment , which at , has been linked to segment. The
latter has been linked to segmentat .

Fig. 3. Linking of the regional minima between successive scales.

Fig. 4. Down projection and Contour valuation [the linkage list�(S ; S )].

2) Contour Valuation by Down-Projection, Dynamics of
Contours in Scale-Space:The next step is to valuate the gra-
dient watersheds at the localization scale. For each segment
couple , appearing at the branch
(scale quantization level ) of the linkage list ,
we compute the dynamics of contours [see
Fig. 4(b)]. expresses how much contrasted the
adjacent regions are at the scale quantization level.
Finally, the dynamics of contours in scale-space (DCS) for the
adjacent region couple is defined as the sum for all
valuations during the evolution in scale-space

(12)

where denotes the branch of the linkage list where
the contour formed by the region couple is annihilated.
The difference is the corresponding scale-space
lifetime (SLT).

As output of the Salient Measure Module, the arcs
, of the RAG , are ranked according

to their saliency .

D. Hierarchical Levels Retrieval Module

Having as inputs the initial RAG, , and the ranked saliency
values , this module provides a hierarchy

of Region Adjacency Graphs. Each
hierarchical level , for , is retrieved by suc-
cessively merging adjacent regions of , until the violation



622 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 6, JUNE 2003

of a stopping criterion. This criterion uses theHotteling’s
hypothesis test [17], while the merging, of adjacent regions,
is based on theMahalanobisdistance between their color
distributions (homogeneity constraint).

For our problem, the hypothesis test is defined as

: Two adjacent regions at level belong to the same
region at level ;

: Two adjacent regions at level belong to different
regions at level ;

where is thenull hypothesis and denotes thealternative
hypothesis. The consecutive hierarchical levels are constructed
based on the ability of each merged couple to satisfy the null hy-
pothesis, during the hypothesis testing, as we sequentially scan
the ranked saliency values.

Let and two adjacent regions at level , with
cardinalities and , and mean color vectors and

, respectively. Additionally we denote by
the merged region at level, with cardinality and color co-
variance matrix . We formulate our hypothesis testing as a
Hotteling’s test, which is the generalization of the test
approach for multivariate analysis

(13)

is a decision function which is true if the updated regions
and belongs to the same region at level, while otherwise it

is false. The statistic

(14)

is based on theMahalanobis distance and used to decide
whether or not to merge the adjacent regions. is the
critical value of the Fisher distribution, with degrees
of freedom, at significance level . The value of is the
probability of rejecting the null hypothesis.

Upon this definition it is critical to say that for every level
transition, from to , we update the statistic [(14)] used to
formulate the hypothesis in (13). During our experimentsis
set to 0.05, and the mean vectors and the covariance matrix for
the merged regions are computed using the statistics of the con-
stituent partitions (from the localization scale). As a last note, it
has to be mentioned that, to ensure meaningful statistics before
applying the hierarchical levels retrieval, small regions at the lo-
calization scale are merged with their most coherent neighbor.
A most coherent neighbor is defined as the one that shares the
boundary (arc) with the lowestDCSvalue. Fig. 9 shows the ob-
tained hierarchical levels for the image in Fig. 2.

III. EXPERIMENTAL RESULTS

In this Section, we analyze the proposed segmentation
scheme focusing on the following: i) the scale-space generator
and the linking scheme; ii) the evolution of the dynamics of
contours in scale-space; iii) the hierarchy among the gradient
watersheds obtained in the case of using the principle of
dynamics of contours at the localization scale ( ), the

Fig. 5. Segmented scale-space stack after the projection of the regional
minima. Top:Gaussiandiffusion, from left to right:s = 0, 3, 9, 18, 31 with
456, 157, 43, 14, and 2 segments. Bottom:CLMC diffusion.s = 0, 5, 10, 15,
17 with 176, 71, 31, 16, and 13 segments.

dynamics of contours in scale-space (DCS), as well as using
the scale-space lifetime (SLT) alone; and iv) the hierarchical
levels retrieval and the optimal hierarchical level selection.

i) Two scale-space generators have been analyzed, namely
the Gaussian scale-space and the regularized Perona and Malik
anisotropic diffusion (CLMC). In Fig. 2 the scale-space stack
produced by both generators, is shown. Through all our exper-
iments thelocalizationscale is determined empirically. In the
case ofGaussiandiffusion, we have chosen that en-
sured a good localization of the color gradient watersheds. Un-
like theGaussiandiffusion, theCLMCdiffusion does not suffer
from the edge dislocation problem. Therefore, the localization
scale has been set at a larger scale ( ) that has an op-
timal noise reduction whilst retaining all image features. The
segmentation results at the localization scale are shown in the
first column of Fig. 5. It is clearly shown that, theCLMCdiffu-
sion exhibits less oversegmentation.

To treat the scale-space as a single entity we apply a linking
scheme (Section II-C2) that enables the correspondence of
segmented regions at successive scales. Furthermore, linking
avoids the problem of dislocation of borders that is inherent to
the Gaussian scale-space. To provide the information reduction
regarding the number of regions that occurs in scale-space,
the produced segmentations after the projection of the linked
region entities at the localization scale, are shown in Fig. 5. Fur-
thermore, Fig. 6 shows the amount of linked regional minima
as a function of the scale-space stack. As it can be seen, the
Gaussian diffusion reduces the amount of information faster.
Nevertheless, for theCLMC diffusion, significant features
remain longer in scale-space. This can be seen in Fig. 5 that
shows the longer in time preservation of the “girl” eyes.

ii) We present a study for three different representative types
of contours (Fig. 7) about their evolution in scale-space taking
into account the following: dynamics of contours ( ), the
grey value of the regional minima and the corresponding saddle
point for the color gradient. Our aim is not only to show the be-
havior of the dynamics of contours during evolution but also to
demonstrate the behavior of the corresponding regional minima
and saddle points that contribute to this valuation. The first con-
tour is a strong one, situated between the background and the
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Fig. 6. Information reduction: Number of linked regional minima in
scale-space.

Fig. 7. Evolution of the Dynamics of Contours in scale-space: (a)Gaussian
diffusion and (b)CLMC diffusion in the case of (first row) a strong contour,
(second row) a small but salient contour, and (third row) a weak contour.

right leg of the girl. The second contour is small but salient,
separating the left eye from the face. The third contour is very
weak separating two segments in the background.

As it can be seen in Fig. 7(c), the weak contours disappear
quickly for both diffusions. In the case of salient contours
[Fig. 7(a), (b)], we can observe their preservation for longer
periods along with their enhancement (increase of dynamics
of contours) for theCLMC diffusion. Furthermore,CLMC
diffusion attempts to smooth out the region’s interior before
removing the contour. This explains the decrease of the re-
gional minima’s level and the corresponding increase in the
dynamics of contours. In contrary a fast decrease occurs for the
Gaussiandiffusion that is related to the fact that the level of the
corresponding saddle point is decreasing while the level of the
regional minima increases.

Fig. 8. Saliency maps for theGaussiandiffusion (top) and theCLMCdiffusion
(bottom) using (a)DC , (b) SLT, and (c)DCS.

Fig. 9. Hierarchical LevelsP in YUVcolor-space. Top:Gaussiandiffusion,
from left to right:k = 0, 1, 8, 9, 10 with 457, 437, 17, 13, and 7 segments.
Bottom: CLMC diffusion, k = 0, 1, 3, 4, 5 with 176, 157, 129, 17, and 7
segments.

iii) To illustrate the robustness of the dynamics of contours
in scale-space a comparison among hierarchies is presented via
the saliency maps shown in Fig. 8. These maps are obtained
using (a) the dynamics of contours at the localization scale
( superficial image structure), (b) the scale-space
lifetime ( deep image structure), and (c) the dynamics
of contours in scale-space (DCS).

For all three saliency maps, the results obtained using the
CLMC diffusion are, as expected, more meaningful. Further-
more, the integration of the superficial with the deep image
structure using theDCSprinciple allows refinement and opti-
mization of the hierarchy.

Note that, the saliency map obtained using only the super-
ficial image structure [Fig. 8(a)] resembles the segmentation
method presented in [31] while the one obtained using the scale-
space lifetime [Fig. 8(b)] in the case ofGaussiandiffusion re-
sembles the segmentation method presented in [7].
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Fig. 10. Segmentation evaluation measure of the hierarchical levels.

iv) The hierarchical level retrievalmodule identifies a set of
segmented images with different levels of abstraction. Fig. 9
illustrates the obtained hierarchical levels using eitherGaussian
or CLMC diffusion. In these figures, the set of the produced
hierarchical levels is shown. As it can be seen, in the case of
using theCLMC diffusion, less and more relevant hierarchical
levels are obtained.

The proposed segmentation scheme enables an automatic se-
lection of an optimal hierarchical level (optimal segmentation)
using a segmentation quality measure inspired by theevalua-
tion measureproposed by Liu and Yang in [11]. It relies on
i) intra-segment uniformity, ii) inter-segment contrast, and iii)
smoothness of the boundaries between segments. It is given by

(15)

where is the color image, is the partitioning at the
hierarchical level , denotes the number of segments at
level , and is the Euclidean distance. The term
is a global measure which penalizes segmentations with too
many segments. The term is a local measure which
penalizes segments with a large color error. Eq. (15) expresses
the trade-off between the suppression of heterogeneity and the
preservation of detail. The smaller the value of ,
the better the segmentation result is, as it is shown in Fig. 10.

In Fig. 11, the optimal level in the hierarchical tree according
to the evaluation criterion is shown for a number of test
images. For these images, we provide Table I that illustrates the
number of hierarchical levels and the number of regions in the
optimal hierarchical level in the case ofGaussianandCLMC
diffusion.

Our experiments have shown that the optimal hierarchical
level using theCLMC diffusion often contains more segments
compared to the number of segments obtained using the
Gaussiandiffusion. However, the segmentation scheme based
on theCLMC diffusion leads to a more accurate segmentation
with high detail and improved visual quality.

Fig. 11. Optimal hierarchical level selection. Left column: original images.
Middle column:Gaussiandiffusion. Right column:CLMC diffusion.

TABLE I
SEGMENTATION RESULTS

IV. CONCLUSIONS

Watershed-driven segmentation is a powerful tool in morpho-
logical segmentation once we can deal with the oversegmenta-
tion. The proposed multiscale method to deal with this problem
is very versatile. It employs a key characteristic of the color gra-
dient watershed and integrates the deep image structure with the
superficial image structure. In this paper, we demonstrated that
the use of an anisotropic scale-space is beneficial when dealing
with small but salient features and when boundary location is
critical.

In future work, we intend to improve the numerical scheme
by using a version of the numerical scheme that relaxes
the quality restriction on the time-step [52]. The scale-space
stack generation shall be automated by adding a module that
detects convergence and by using a scale selection method for
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the localization scale [53]. Furthermore, a theoretical study of
the evolution of the top-points of a color gradient inCLMC
scale-space shall be carried out and a better estimation of the
gradient for the diffusivity shall be investigated [50]. These can
lead to improvements of the scale sampling (scale selection) and
the parent-child linking process. Additionally, the use of other
color spaces and scale-spaces, methods for the integration of
the scale-information and other salient measures will be investi-
gated. Furthermore, as the proposed multiscale method contains
several hierarchies among the gradient watershed, it is useful to
investigate methods to combine multiple hierarchies [24] to im-
prove the extraction of the relevant hierarchical levels.
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