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Multiscale Gradient Watersheds of Color Images

Iris Vanhamel, loannis PratikakiMember, IEEEand Hichem SahliAssociate Member, IEEE

Abstract—We present a new framework for the hierarchical Hierarchical approaches are often used among segmentation
segmentation of color images. The proposed scheme comprises anethods. These approaches focus on the use of a hierarchical
nonlinear scale-space with vector-valued gradient watersheds. Our 45ta structure representing the image at a number of scales.

aim is to produce a meaningful hierarchy among the objects in . .
the image using three image components of distinct perceptual sig- Each level of the hierarchy corresponds to a condensed version

nificance for a human observer, namely strong edges, smooth seg-Of the image at the previous level. This can be achieved by re-
ments and detailed segments. The scale-space is based on a vectoflucing the resolution of the image, leading to a regular hier-
valued diffusion that uses the Additive Operator Splitting numer-  archical structure [23] or by merging segments in the image,
ical scheme. Furthermore, we introduce the principle of the dy- |eading to an irregular hierarchical structure [6], [7], [24]. Hi-

namics of contours in scale-space that combines scale and.con'erarchical segmentation can be achieved in two ways by using
trast information. The performance of the proposed segmentation

scheme is presented via experimental results obtained with a wide eit_her top-down an.aIySiS or bOttom'u_p analy§i§. Top-down anal-
range of images including natural and artificial scenes. ysis segments the image by successively refining the result from
Index Terms—Anisotropic diffusion, color segmentation, dy- the previous coarse level, e.g., in [23]. In bottom-up methods,

namics of contours, scale-space, vector-valued gradient, watershedthe segmentation is achieved.b.y SUCCGSSiV_eb’ merging segments
segmentation. at each level until some conditions are satisfied [6], [24].

The analysis of multiscale watersheds [5], [8] resulted in a
range of hierarchical segmentation methods varying from mor-
phological pyramids [25]-[28] to multiscale hierarchies [6], [7],

MAGE segmentation is an important task in computer visioj22]. In the case of multiscale watersheds hierarchies, the du-

that aims to partition the image into physically meaningfudlity between the watershed segments and regional minima of
regions. Furthermore, it is an ill-defined problem, since whate gradient is exploited to either find markers for the water-
is really a physically meaningful region is often context depeghed transformation or to establish a hierarchy between the wa-
dent. It is difficult to construct a general region model that igersheds using either the deep image structure individually [7]
based on image information such as grey-level, color, or texr the integration of both the superficial and deep image struc-
ture. In spite of many considerable attempts, finding a methegte [6], [18].
that can produce meaningful segments in a large variety of natin this paper, we strive toward an improved color segmentation
ural images remains a difficult task. In part this is due to th&heme. Our method is based on the segmentation algorithm
complexity of images. Image segments (regions) may differ ftesented in [6], [29]. It uses the multiscale structure built by
properties and these differences can be observed in some,\Ri¢ghor-valued nonlinear diffusion filtering [30] to measure and
often not in all scales. _ o incorporate various perceptual properties such as the dynamics

~Segmentation algorithms for intensity images, may k& contours [31], smooth segments and detailed segments. This

divided into five broad categories: intensity thresholding [1}esyitsin a hierarchy among segments produced by the color gra-
clustering [1], region growing [1], split and merge [1], angjient watershed, and detects meaningful segments in a variety of
variational and Partial Differential Equation (PDE)-baseflayral and artificialimages. The proposed hierarchical segmen-
approaches [2], [3], [4]. Approaches combining the last WQyion scheme is addressed within the framework of nonlinear
categories have been also proposed by [5]-[8]. Even if many @i sion filtering. Unlike linear diffusion filtering, anisotropic

these approaches have been extended to color images [9-[}¢4 sjon filtering is guided by additional information that leads

the literature is not as rich as for grey-level images [1], [14], exs intraregion smoothing and edge enhancement [32]—[34]. To

Ee;l]ally th n vlve r(ejfear to s_egmentf;mor: algogthrr;s 'ngraztg%%al with vector-valued data, such as color images, we propose a
oth superficial and deep image structure [5], [7], [15]-{ ector-valued diffusion scheme [30], as an extension to the reg-

Segmentation algorithms that entail diffusion filtering, Oﬂe'@llarized version of the anisotropic diffusion proposed by Perona

employ the linear scale-space to address the multiscale frame-, . .
work [6], [7], [21], [22]. Nonlinear diffusion, on the other handr,g.ﬁd Malik [32], [33]. Moreover, the numerical model that was

is in general used as a preprocessing (enhancement) stepgi‘ven in [32] is replaced by the more efficient Additive Operator

r
subsequent image segmentation [4], [15]. o

I. INTRODUCTION

Splitting (AOS method [35]. Our segmentation scheme consists
of two modules, the Salient Measure Module and the Hierar-
chical Levels Retrieval Module. The Salient Measure Module
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namely contrast, homogeneity and scale. We demonstrate tl |
quality of our segmentations taking into account the following
aspects: i) the scale-space generator and the linking scheme; (*
the evolution of the dynamics of contours in scale-space; iii) the
hierarchy among the gradient watersheds obtained in the case
using the superficial image structure, the deep image structur
as well as the integration of both (the dynamics of contours ir /v
scale-space); and iv) the hierarchical levels retrieval and th | Saliant
optimal hierarchical level selection. e -
This paper is organized as follows. Section Il is dedicatec
to a detailed description of the segmentation scheme. In Segr1. Schematic diagram for the proposed hierarchical segmentation scheme
tion II-A, the gradient watershed transformation for color imfer color images.
ages is summarized. Section II-B deals with the scale-space
generation. The Salient Measure Module is described in SecThe proposed hierarchical segmentation scheme, depicted in
tion II-C. This module embodies the scheme for linking inforFig. 1, consists of two basic modules. The first mod@elient
mation across the scale-space stack (Section 1I-C2) and expla#easure Module-Section 1I-C) is dedicated to attribute a
the multiscale feature used for contour valuation (Sections II-Galiency measure to each contour arc at the localization scale
and II-C3). The Hierarchical Levels Retrieval Module is detaking into account the whole scale-space stack. The entire
scribed in Section II-D. A comparative study of t@@aussian process to retrieve the saliency measure for the color gradient
based and thanisotropicdiffusion-based multiscale segmentawatersheds requires three stepsdale-space stack generation
tion scheme is given and illustrated with experimental resultsliy vector-valued nonlinear diffusion filteringSection 11-B).
Section Ill. Finally, conclusions concerning the performance @j Linking (Section 1I-C2). At each scale the color gradient of
the proposed segmentation method and the continuation of thg image is estimated. At the localization scale, the watershed

Down Projection Ranking

&
Contour Valuation

Parent-Child
Linking

research are given in Section IV. transformation is performed to identify the position of all the
contours in the image. At the higher scales, the duality between
Il. HIERARCHICAL MULTISCALE SEGMENTATION the regional minima of the color gradient and the catchment

| Iasins of the watershed is exploited to make a robust region

gradient watersheds that preserves the topology of the ised pa:jrent-ghﬂf “nSkm% SCTIE(T; ' i_?r? ntgur val'uatiofn by
tershed lines at thiocalization scale(the finest scale in the ownward projection(Section II-C3). The dynamics of con-

scale-space stack) and extracts homogeneous objects of a Iag’é’[’ls in scale-space are used to valuate the contours detected

! ) : the localization scale
scale. Let us first define what we mean by a hierarchy. L ' . .
PY = {S,, Sy, ..., Sy} be the initial partitioning of the image The second moduléHjerarchical Levels Retrieval Modue

at the localization scale after the application of the color gr§_ection ”'[?) ideqtifies .the'different .hierarchical levels through
dient watershed transformation.terarchical level k (H L) & NYPothesis testing criterion. Starting from the watershed seg-
is defined as the partitioning* = {S*, Sk, ..., 55”} which mgntamon at the Iocallgatlon sca_le, a successive merging oper-
preserves the inclusion relationshipf O P*-1, implying atlon.|s performed until a stolpplng criterion is satlsfle_d._The
that each segment of the st is a disjoint union of segments Merging of adjacent regions is based upon a color similarity
from the setP*—1. A hierarchy of partitions is defined as a measure. While the merging sequence (order) is given by the
family which consists of all the hierarchical levell. ,, where valuation (dynamics of contours in scale-space) of the contours.

k € [0, K]. It corresponds to aierarchy of Region Adja- .
cenc;g Gra]phs Gr(Pk, AF), that are generated by applyingA' Color Gradient Watersheds
successive mergings. The watershed transformation is a morphological tool ded-
Different approaches exist in the literature for constructingated to image segmentation. It can be considered as a topo-
a hierarchy of partitions defined on the basis of the watershgtaphic region growing method. In the watershed transforma-
transformation that retrieve information from the superficidion, pixel values are considered as topographic data character-
image structure. Hierarchical approaches emanating fronistcs of a relief, thus, the value of each pixel denotes the eleva-
Mathematical Morphology (MM) framework consist of i) thetion of the point [36], [40]. The basic idea of the watershed con-
waterfall algorithm [36], ii) the dynamics of minima [37], iii) Struction is to create an influence zone for each regional minima
extinction value [38] and iv) the dynamics of contours [31Jof the image [41]. In that respect, a one-to-one mapping is at-
This enumeration corresponds to the chronological order wibuted between the regional minima and the catchment basin.
their appearance in the literature. Essentially, this hierarchyln the case of segmentation, the watershed transformation is
can be interpreted as a set of region adjacencies, whereinofien applied on the gradient magnitude of an image in order to
ordering is determined by a valuation, which can be controllgiide the watershed lines to follow the crest lines and the real
by the relative altitudes of the minima (dynamics of minimayoundaries of the objects. Therefore, from now on, we will refer
and dynamics of contours) or by the relative heights of the wi gradient watershedghus explicitly implying that we have
tershed lines (waterfall). The extinction value introduces areetrieved the watershed lines from the modulus of the gradient
to the concept of dynamics. Comparisons of these approacheage. In grey level images, the modulus of the gradient is a
can be found in [24], [31], and [39]. scalar function of the coordinates and expresses the distance

Our main goal is to create a hierarchy among the co
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between neighboring pixels with respect to their intensity. In the v
case of color images, the modulus of the gradient expresses th
color distance in the chosen color space using a certain metric.
Approaches that estimate the color gradient can be classified
into three main categories: i) fusion methods; ii) statistics-based
methods; and iii) gradient tensor or gradient vector methods.
The first class of methods estimate the gradient of each color
component separately and fuse the results [10], [42]. The seconc
category of methods use statistical features to estimate color dif-
ferences [43]. The above mentioned approaches do not conside
color images asector-valuedunctions for the gradient estima-
tion. In the third set of methods an explicit formulation of the
vector-tensor is given [44], [45]. This allows interaction among
the c_:olor Channel.s al.qd reSU|ts. In & more accurate d(_escrlptlorhcsfz_ Scale-space stackYUVcolor-space. TopSaussiarscale-space stack
the first order derivatives. In this work, the color gradient, in thgym ieft 1o right withs = 0, 3, 9, 18, 317, = 0.3, andér = 0.1. Bottom:
YUV color space, is estimated using fheZenzo vector-valued CLMC stack from left to right withs = 0, 5, 10, 15, 177, = 2.10, and
gradient[44] in conjunction with the Sobel operators for the es?” = 0-1-
timation of the partial derivatives of each color component.
vector-valued images. Whitaket al. introduced the general
B. Scale-Space Generation framework for vector-valued diffusion in [30]. The latter is a
The purpose of segmentation is the partitioning of an imag&aightforward extension of the work presented in [32] to a
into meaningful objects. Since real-world objects are meagystem of coupled diffusion equations. Each channel is diffused
ingful only in a certain range of scale [46], it is therefore naturg@eparately using a diffusion tensor which is estimated using
to include the multiscale nature of images in the segmentatitfiormation of all channels. Chambok al. [49] present some
process. In controlled circumstances the scale of the objectIgliminary results concerning color images by comparing the
the scene is known, contrary to most natural scene images [46j¢ of coupled diffusion equations with a not coupled system.
[47]. For these images it makes sense to analyze the imaye application of the latter can be found in [14], where the
at all scales simultaneously; the analysis of the deep imadg&inance and chromatic information are diffused separately.
structure. The multiscale nature of images can be representé®iro et al. estimate an anisotropic flow based upon the
in various ways. Scale-space theory has a firm mathematig&dient in vector-valued images [44]. In their approach the
foundation and all known scale-space models can be derivdtiusion is perpendicular to the direction of the maximal rate
from the diffusion equation of change [50], [51].
) In this paper, we use an anisotropic diffusion for colorimages,
bpu = div(DVu) (1) which was initially described in [32] for gray level images and
wheret is the scale parametar,is the scale-space image of arvhich was modified byCatté, Lions, Morel, and Coll [33] to
imagef, andD is the diffusion tensor. ensure well-posedness. This filter will be referred taCasmC
1) Gaussian Scale-Spacén linear scale-space methodsthroughout the rest of paper. For our scheme, we use a system
D is a scalar value and is referred to as diffusivity. Thefcoupled diffusion equations where the diffusion tensor is esti-
linear scale-space is commonly used in segmentation [B)ated using the Euclidean distance between the color vectors of
[7], [21]-[23], [48]. The scale-space image is obtained byeighboring pixels. We use the Additive Operator Splitting nu-
convolving the original image wittGaussiankernels of in- merical schemeAOS [35]. It has an increased efficiency com-
creasing width. The kernel sizg) and the sca|e_paramete|'pared to the explicit scheme [32] and is easier to solve than the
(t) are related by = \/2t. Linear scale-spaces exhibit usefusemi-implicit scheme in higher dimensions [33].
properties such as the semi-group property, which results in fastet 2 := (0, by)x---x(0, bys) be aM-dimensional image
methods and scale-invariance [34]. The Gaussian diffusion fé¢main and consider a vector-valued imadges a bounded
vector-valued images is performed in each channel separaté¢pping from<2 into the real vectoR™; with M = 2 and
Fig. 2 shows an example of the Gaussian scale-space stacks 3 in the case of a color image. Then t8&MCfilter ob-
applied to a color image. tains a filtered image(x, ¢) of f(x) as the solution of (1), for
2) Anisotropic Diffusion: The inherent problems of thewhich the original imagé is the initial statea(x, 0), and for
linear scale-space methods led to the investigation of th#jhich reflecting boundary conditions are assumed on the image
nonlinear counterparts. In the nonlinear methods, extra ipoundary {,u = 0 on 6<2). The diffusion tensoD is a func-
formation is added to guide the diffusion process. Perofig@n that favors wide regions over smaller ones and is described
and Malik introduced an anisotropic diffusion filtering foras follows:
scalar images that avoids blurring and ensures well-localized
edges [32]. In later works, it was spatially regularized to
guarantee well-posedness [33], [34]. In the literature, many
works report on the use of anisotropic diffusion for scalawhereo, is the size of the Gaussian kernel used for the spa-
images, however there is not much reported on diffusion faal regularization and was set to 0.5 during all our experiments.

1

D = D(|V(u,,)]") = —xmF
|+ W0l

)
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The constanfA > 0 is a contrast parameter that separates for- 3) Scale-Space Samplingrthe sampling of the scale-space
ward (low contrast) from backward (high contrast) diffusiorstack provides a natural sampling and ensures scale invariance
The value of) is problem dependent and is determined exer the linear scale-space. It follows a linear and dimensionless
perimentally for most applications. In this work, an automatiscale parameteir, which is related to the size of the Gaussian
estimation of the contrast parameter is proposed: We assukeenelo by [34]

that pixels, for whichV(u,,)|*> > 10% of the maximum of

the corresponding histogram, are edge pixels. Subsequently the o5 =TT (7)
amount of diffusion at those pixels should be as small as pos-

sible, e.g..e = 0.01. The contrast parameter is obtained a¥heres denotes the scale quantization level and= o7 /2.

follows: For the nonlinear scale-space there is no global scale parameter
because the amount of diffusion changes locally. Nevertheless,
)= S 3) since|D;(|Vu}, |*)| < 1, we can apply the same scheme. In
l—e¢ this case, the time stepin (4) and (6) is retrieved as follows:
where L denotes 10% of the maximum of the histogram of
IV (u,,)[2. T =t s
The majority of the numerical schemes are explicit and use _ et (27 — 1), )
finite differences. For a vector-valued image and considering 2

a vector-matrix notation, the explicit numerical scheme is thg,, |ocalization scales(), which is derived fromr, [(7) and

following: (8)], should contain all information in the image with a min-
u§+1 = (I + 7. A(V(ut )it 4) imal gmount of noise. Furthermore, the application_of the color
" gradient watershed should resultin accurate detection of the wa-
wherew; is a color channel] € R is the unit matrix and tersheds. In this work, the localization scale is determined em-
7 is the time step. The matrid(|V(ul, )|?) = [axx,], which pirically.
contains the diffusion values, is defined as follows:
C. Salient Measure Module

D;(|Vug, 7) (x; € N(x)) _ _ _ _
The aim of this module is to valuate the arcs of the Region
e, =4 T > Du(lVul ) (x;=x) (5) Adjacency GraphRAG), Go(P°, A°), at the localization scale
’ xn €N (x) (s0)- Go is obtained after the application of the color gradient
0 (otherwise) watershed transformation, with® = {S;, Ss, ..., S, } the

segments (regions), and € A° the arcs separating pairs of

adjacent segmentss;, S;).

. . The proposed valuation relies on the concept of the dynamics

X t |2

tEhgaS(?ﬁ asr?d_tW(aetst)_ ZT aesstq#;:(g dl?;tici?é ﬂg?g' )arlsj of contours in scale-space [6], which incorporates a region

A, Ju |]tu Wi yut (x F;'X :t (%) ' denotes the Learelstryr;eighbolrinking that has been advocated by a study of the topological
g WMl = Bl W ) h f the critical point confi tioninli le-

difference. The valued; (V. |?) are calculated by apply'nggl anges of the critical point configuration in linear scale-space

: ! 7], [29]. The main motivation for the cooperation of the
(2) to the Eucll_dean_ difference between the col_c_)r vectors f:]axtershed analysis and the scale-space is the duality of the
the corresponding pixels andx;. To ensure stability for the

. . . catchment basins of the watershed with their respective minima
discrete scheme [(4)], the time stép) has to be irj0, 1/4[. in the gradient image and the simplification process, which

Hence, the whole filtering process becomes rather time Colcurs during the evolution of the scale-space stack

suming. In the case of the semi-implicit numerical method, the 1) Dynamics of ContoursThe principle olynamics of con-

time step is not restricted but the scheme is difficult to solve t urs[31] uses the principle of dynamics of minima [37] as an
hlghedr tdlmel_r:stlr:)ns. Thgref?r?[, W?;]Ckftt al. [3431’. [35] pro- | initial information for the common contour valuation of adjacent
pos;:l 0sp Id i N sem;]lmp It ltme od ingoone-dimensiona regions. The additional information that is used, is based upon
problems and fo sum [ne results the tracking of the flooding history. In such a way, a contour val-

wherex andx; are pixels, NV (x) is the neighborhood of pixel
x and contains the pixels; with j = N(orth), S(outh),

1 & ut uation can be found by comparing the dynamics of minima be-
uf“ = - Z 7 "N L Tul 2 (6) tween the segments, which have reached the contour of interest
3 1=1 (I = &rA([Vug, 7)) during a flooding. The dynamics of a minimuty, is easily de-

where¢ denotes the number of directions related to the typi'ed With a flooding scenario. Lét be the altitude of the flood
of the grid connectivity used. In this work, a 4 connectivity?nen for the first time a catchment basin with a deeper min-
was chosen, hence = 2. A4;(|Vul, |?) consist of the diffu- Imumms, (ms < my) is reached. The dynamics of; is then

sion coefficients, as defined in (5), Using a neighborh&igk) equal toh — altitude(m%). Ea(_:h ca_tc_hment basin is attributed
in the corresponding directioh In our experiments, the time the value of the dynamics of its minimum. The contour valua-
step ) never exceeds 5. This way, we avoid visible errors i}l]on which is attributed to each common border of the segments
the approximation of the diffused image [35]. An example df denoted as [31]
the scale-space stack, obtained using the pres&it8C dif- )

% amep DC(S:, §;) = min max {f(a) ~ f(a)}  (9)

fusion, is shown in Fig. 2. 4 a,€B,
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wherea denotes the lower point (saddle point) of the common
border between segmerfisandsS;, f is the function on which
the flooding is applied, anf}, denotes an open connected com-
ponent that belongs to the topological open Bet(a) which

is defined as

Bas(a) := {b|3v, ¥(0) = a, (1) = b,
f(v(1) < f(a) VI €]0, 1]} (20) (@ (b)

Scale s,

regional minima in the gradient through the scale-space. The
linking process is applied using the approach proposed in [29].
Here, the linking of the minima for successive scales is applied (©)

by using theproximity criterion [46]. This criterion is limited

for projected minima of scale quantization levglinside the Fig. 3. Linking of the regional minima between successive scales.
same geodesic influence zonez’j*'(B,) of a connected
component3, of B in A at scale quantization leve];

Linking Scheme:The linking scheme aims to track the / / /°\ O\
[ ] | o

Scale s;

tization levels; 1, will be linked with the regional minimum
mgq *'. The projected minimum of the sétn*:} € iz "' (B,),
which is the closest to the minimum;i“, is considered as
the father. The rest of the projected minima onto the same influ-
ence zone are considered annihilated. Closeness is defined with
respect to the topographic distance which is a natural distariig 4. Down projection and Contour valuation [the linkage Aigt5:, S;)].
measure following the steepest gradient path inside the catch-
ment basin. We have to mention that we urseerse ordered  2) Contour Valuation by Down-Projection, Dynamics of
gueueso guide all regional minima of the sétn*: } toward the Contours in Scale-SpaceThe next step is to valuate the gra-
set{m®+1}. This way, we avoid problems caused by the pregdlient watersheds at the localization scaleFor each segment
ence of plateaus. couple(Sf\(S”’SJ’)m? S;\(S“Sj)”), appearing at the braneh
Fig. 3 illustrates the linking of the regional minima betweefscale quantization leved,,,) of the linkage listA(S;, S;),
successive scales. In Fig. 3(a), the regional minima at scale compute the dynamics of contouBCj\”(Si;Sj)m [see
guantization levels; that are spatially projected on the leveFig. 4(b)]. DC_T(I(S“ s,).. €xpresses how much contrasted the
si+1, are shown. Furthermore, the watershed lines that delimaiijacent region&S;, S;) are at the scale quantization lewg).
the influence zones at scale quantization leye| are depicted. Finally, the dynamics of contours in scale-spad€§ for the
Fig. 3(b) shows the regional minima at scale quantization levadijacent region couplésS;, S;) is defined as the sum for all
si+1. The linking between the regional minija:® }, at scale vaIuationsDCj(l(Sh S5 )m during the evolution in scale-space
quantization levek;, and the minimg 5+ }, at scale quanti-

»
A
v

iZXH(B(I) = {p €A Vje [17 k’]/{q} %sﬁ# %SA pcd
> > 4
da(p, By) < da(p, Bj)}. (11) Js 4 3, ,
£ 2 .~DC
Any regional minimum of the seftm*: }_, that is spatially pro- gsz e g N
jected on the geodesic influence zar&** (B, ) at scale quan- S 3 »DC'
3

Scale

»
A
\l

(b)

zation levels; 1, is given in Fig. 3(c). Note that, at each scale =
quantization level, after the linking stage, we attribute a label DCS(Si, S5) = 2_:0 DCA(Si,SJ-)m (12)

to the minima with respect to their linking ability: i) Either the
minimum is annihilated/merged and will not be considered MhereN denotes the branch of the linkage IstS;, S;) where
the linking of the next levels or ii) it does not interact with othethe contour formed by the region couglg;, S;) is annihilated.
singularities and takes up the role of the father label for all tHéhe differenceds = sy — s is the corresponding scale-space
minima situated at the same influence zone. lifetime (SLT).

At the end of the linking step, for each couple of neighboring As output of the Salient Measure Module, the aics=
segments(S;, S,) that share a common border at the locakS:, S;) € A°, of the RAGGy(P°, A°), are ranked according
ization scale, a linkage lisk(S;, S;) is constructed. Fig. 4(a) to their saliencyDCS(S;, S;).
shows such a list fof; = A andS; = B. This list provides
the following information: Segmerft is attributed to &Rootfor
segmentst andB ats,. This has occurred because ikat seg- Having as inputs the initial RAGj,, and the ranked saliency
mentA has been linked to segment, which has been linked values {DCS(S;, S;)}, this module provides a hierarchy
to segmentl” at s, and, ii) ats;, segmentB has been linked Gy, G4, ..., Gk, .., Gx of Region Adjacency Graphs. Each
to segment’, which ats3, has been linked to segmefit The hierarchical levelG, (P*, A*), for k > 0, is retrieved by suc-
latter has been linked to segmdntat s,. cessively merging adjacent regionséf_,, until the violation

D. Hierarchical Levels Retrieval Module
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of a stopping criterion. This criterion uses tHetteling’'s 7>
hypothesis test [17], while the merging, of adjacent regions,
is based on theMahalanobisdistance between their color
distributions (homogeneity constraint).
For our problem, the hypothesis test is defined as

HE: Two adjacent regions at level- 1 belong to the same

region at levek;

H¥: Two adjacent regions at levkel- 1 belong to different

regions at levek;
whereH¥ is thenull hypothesis and/} denotes thalternative
hypothesis. The consecutive hierarchical levels are constructec
based on the ability of each merged couple to satisfy the null hy-
pothesis, during the hypothesis testing, as we sequentially scar

the ranked saliency values. Fig. 5. Segmented scale-space stack after the projection of the regional

Let S’f_l andS]’.“_l two adjacent regions at level— 1, with  minima. Top:Gaussiandiffusion, from left to right:s = 0, 3, 9, 18, 31 with

T k—1 k—1 —1 456, 157, 43, 14, and 2 segments. Bott@hMC diffusion.s = 0, 5, 10, 15,
cardinalitiesn; " andn; ™", and mean color vectoyg ! and 17 with 176, 71, 31, 16, and 13 segments.

151, respectively. Additionally we denote g ! U S¥71) g
the merged region at levél with cardinalitynfj and color co-
variance matrix2;;. We formulate our hypothesis testing as
Hotteling’s T? test, which is the generalization of thé test
approach for multivariate analysis

dynamics of contours in scale-spad@ds), as well as using
the scale-space lifetimes[T) alone; and iv) the hierarchical
levels retrieval and the optimal hierarchical level selection.
i) Two scale-space generators have been analyzed, namely
HE: p(zij)k < F(g.nk._4)(04) = P(i, j) = true thg Gaus;ian_ sca_le—space and tht_e regularized Perona and Malik
- P anisotropic diffusion CLMC). In Fig. 2 the scale-space stack
Hy: Fipe > Fa,u8,—a)(@) = P(i, j) = false. (13) produced by both generators, is shown. Through all our exper-
iments thelocalizationscale is determined empirically. In the
P(i, j)is adecision function which s true if the updated regions; ge ofGaussiandiffusion, we have chosen, = 0.3 that en-
i and; belongs to the same region at lexelwhile otherwise it gyred a good localization of the color gradient watersheds. Un-

is false. The statistic like the Gaussiartiffusion, theCLMC diffusion does not suffer
o nk 4 (Mi‘cfl _ ul@'*l)tziﬁl(ui‘cfl — b from the edge dislocation problem. Therefore, the localization
F(,L-j)k = 3(n; gy J; +’ T ] (14) scale has been set at a larger scaje= 2.10) that has an op-

ij T timal noise reduction whilst retaining all image features. The

segmentation results at the localization scale are shown in the
Sirst column of Fig. 5. It is clearly shown that, ti@&MC diffu-
sion exhibits less oversegmentation.
To treat the scale-space as a single entity we apply a linking
. T . scheme (Section 1I-C2) that enables the correspondence of
probablhty_of rej_ec_:t_mg _th_e nu_ll_hypotheS|s. segmented regions at successive scales. Furthermore, linking
Up_o_n this definition it is critical to say th_at_for every IeVelavoids the problem of dislocation of borders that is inherent to
transition, fromk — 1 to k, we update the statistic [(14)] used t%e Gaussian scale-space. To provide the information reduction

fortrrtmlgththe r&ytpr)]othegs n (1t3). Dur(;nt% our expenmemi . rﬁ)garding the number of regions that occurs in scale-space,
SELio ©.95, and the mean vectors and the covariance matrix, produced segmentations after the projection of the linked

thg merged regions are computgd using the statistics of the CPéb_ion entities at the localization scale, are shown in Fig. 5. Fur-
stituent partitions (from the localization scale). As a last note, it - rmore Fig. 6 shows the amount of linked regional minima
has to be mentioned that, to ensure meaningful statistics befggea func'tion .of the scale-space stack. As it can be seen, the
applying the hierarchical levels retrieval, small regions at the IEs'aussian diffusion reduces the amount of information fas’ter.
calization scale are merged with their most coherent neighb, Lvertheless. for theeLMC diffusion significant features

A most coherent neighbor is defined as the one that shares ¢ S ain longer in scale-space. This can be seen in Fig. 5 that
boundary (arc) with the lowe§iICSvalue. Fig. 9 shows the ob- shows the longer in time preservation of the “girl” eyes.

tained hierarchical levels for the image in Fig. 2. if) We present a study for three different representative types
of contours (Fig. 7) about their evolution in scale-space taking
into account the following: dynamics of contout®"?), the

In this Section, we analyze the proposed segmentatigrey value of the regional minima and the corresponding saddle
scheme focusing on the following: i) the scale-space generapmint for the color gradient. Our aim is not only to show the be-
and the linking scheme; ii) the evolution of the dynamics dfavior of the dynamics of contours during evolution but also to
contours in scale-space; iii) the hierarchy among the gradiet@monstrate the behavior of the corresponding regional minima
watersheds obtained in the case of using the principle afid saddle points that contribute to this valuation. The first con-
dynamics of contours at the localization scale((*°), the tour is a strong one, situated between the background and the

is based on theMahalanobisdistance and used to decid
whether or not to merge the adjacent regiafis, ;) («) is the
critical value of the Fisher distribution, witfvn, [) degrees
of freedom, at significance level. The value ofa is the

I1l. EXPERIMENTAL RESULTS
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Fig. 7. Evolution of the Dynamics of Contours in scale-spaceG@)ssian
diffusion and (b)CLMC diffusion in the case of (first row) a strong contour, ] )
(second row) a small but salient contour, and (third row) a weak contour. iii) To illustrate the robustness of the dynamics of contours

in scale-space a comparison among hierarchies is presented via
The second contour is small but salienv,]? saliency maps shown in Fig. 8. These maps are obtained

separating the left eye from the face. The third contour is ve |n% (a) the dypgmps of contours at the localization scale
weak separating two segments in the background. (DC” = superficial image structure), (b) the scale-space
As it can be seen in Fig. 7(c), the weak contours disappddftime (SLT" = deep image structure), and (c) the dynamics
quickly for both diffusions. In the case of salient contour8f cONtours in scale-spacBCs. _ _
[Fig. 7(a), (b)], we can observe their preservation for longer For all three saliency maps, the results obtained using the
periods along with their enhancement (increase of dynamfe&MC diffusion are, as expected, more meaningful. Further-
of contours) for theCLMC diffusion. FurthermoreCLMC More, the integration of the superficial with the deep image
diffusion attempts to smooth out the region’s interior beforétructure using th&®CS principle allows refinement and opti-
removing the contour. This explains the decrease of the fgization of the hierarchy.
gional minima’s level and the corresponding increase in theNote that, the saliency map obtained using only the super-
dynamics of contours. In contrary a fast decrease occurs for flgéal image structure [Fig. 8(a)] resembles the segmentation
Gaussiardiffusion that is related to the fact that the level of thenethod presented in [31] while the one obtained using the scale-
corresponding saddle point is decreasing while the level of thpace lifetime [Fig. 8(b)] in the case Gfaussiandiffusion re-
regional minima increases. sembles the segmentation method presented in [7].

right leg of the girl.
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Fig. 10. Segmentation evaluation measure of the hierarchical levels.

iv) The hierarchical level retrievaimodule identifies a set of
segmented images with different levels of abstraction. Fig. 9  pg
illustrates the obtained hierarchical levels using ei(haussian
or CLMC diffusion. In these figures, the set of the produced
hierarchical levels is shown. As it can be seen, in the case of
using theCLMC diffusion, less and more relevant hierarchical
levels are obtained.

T_he proposed_SEQm_entatlon scheme enff‘bles an aummat'(n;—'@.e'll. Optimal hierarchical level selection. Left column: original images.
lection of an optimal hierarchical level (optimal segmentatiom)iddle column:Gaussiardiffusion. Right columnCLMC diffusion.
using a segmentation quality measure inspired byetraua-
tion measureproposed by Liu and Yang in [11]. It relies on
i) intra-segment uniformity, ii) inter-segment contrast, and iii)

TABLE |
SEGMENTATION RESULTS

smoothness of the boundaries between segments. It is given-=

Number of Optimal Number
hierarchical hierarchical of
GLY(f, Pk) = /Ny Z Z d%(f(xj)v Pk(xj)) (15) levels level segments
SkePk x; €Sk Image | Gauss. | CLMC | Gauss. | CLMC | Gauss. | CLMC
i J 7
girl 12 7 9 4 13 17
. . ko . hand 8 8 6 7 6 6
where f is the color image,P" is the partitioning at the . 1 6 6 3 126 349
hierarchical levelk, n; denotes the number of segments &8 |gp, 3 8 5 3 77 301
level k, anddg(., .) is the Euclidean distance. The tergmi  plane 9 8 7 6 192 91
is a global measure which penalizes segmentations with t toys 8 10 5 5 30 26

many segments. The terfp, dg?® is a local measure which
penalizes segments with a large color error. Eq. (15) expresses
the trade-off between the suppression of heterogeneity and the
preservation of detail. The smaller the valueg2)Y(f, P), Watershed-driven segmentation is a powerful tool in morpho-
the better the segmentation result is, as it is shown in Fig. 10logical segmentation once we can deal with the oversegmenta-
In Fig. 11, the optimal level in the hierarchical tree accordingon. The proposed multiscale method to deal with this problem
to theGLY evaluation criterion is shown for a number of tesis very versatile. It employs a key characteristic of the color gra-
images. For these images, we provide Table | that illustrates ttient watershed and integrates the deep image structure with the
number of hierarchical levels and the number of regions in tiseperficial image structure. In this paper, we demonstrated that
optimal hierarchical level in the case Gfaussianand CLMC the use of an anisotropic scale-space is beneficial when dealing
diffusion. with small but salient features and when boundary location is
Our experiments have shown that the optimal hierarchioaiitical.
level using theCLMC diffusion often contains more segments In future work, we intend to improve the numerical scheme
compared to the number of segments obtained using theusing a version of thelO.S numerical scheme that relaxes
Gaussiandiffusion. However, the segmentation scheme bas#te quality restriction on the time-step [52]. The scale-space
on theCLMC diffusion leads to a more accurate segmentati@tack generation shall be automated by adding a module that
with high detail and improved visual quality. detects convergence and by using a scale selection method for

IV. CONCLUSIONS
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the localization scale [53]. Furthermore, a theoretical study of20]
the evolution of the top-points of a color gradient@.MC
scale-space shall be carried out and a better estimation of the
gradient for the diffusivity shall be investigated [50]. These car21]
lead to improvements of the scale sampling (scale selection) and
the parent-child linking process. Additionally, the use of other[22]
color spaces and scale-spaces, methods for the integration of
the scale-information and other salient measures will be invest't-%gl
gated. Furthermore, as the proposed multiscale method contains
several hierarchies among the gradient watershed, it is useful te4]
investigate methods to combine multiple hierarchies [24] to im-

prove the extraction of the relevant hierarchical levels.
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