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Multiscale Graph Sample and Aggregate Network

With Context-Aware Learning for Hyperspectral

Image Classification
Yao Ding , Xiaofeng Zhao , Zhili Zhang, Wei Cai, and Nengjun Yang

Abstract—Recently, graph convolutional network (GCN) has
achieved promising results in hyperspectral image (HSI) classifi-
cation. However, GCN is a transductive learning method, which is
difficult to aggregate the new node. Besides, the existing GCN-based
methods divide graph construction and graph classification into
two stages ignoring the influence of constructed graph error on
classification results. Moreover, the available GCN-based methods
fail to understand the global and contextual information of the
graph. In this article, we propose a novel multiscale graph sam-
ple and aggregate network with a context-aware learning method
for HSI classification. The proposed network adopts a multiscale
graph sample and aggregate network (graphSAGE) to learn the
multiscale features from the local regions graph, which improves
the diversity of network input information and effectively solves
the impact of original input graph errors on classification. By em-
ploying a context-aware mechanism to characterize the importance
among spatially neighboring regions, deep contextual and global in-
formation of the graph can be learned automatically by focusing on
important spatial targets. Meanwhile, the graph structure is recon-
structed automatically based on the classified objects as network
training, which is able to effectively reduce the influence of the ini-
tial graph error on the classification result. Extensive experiments
are conducted on three real HSI datasets, which are demonstrated
to outperform the compared state-of-the-art methods.

Index Terms—Deep contextual, graph convolutional network
(GCN), hyperspectral image classification, multiscale graph.

I. INTRODUCTION

H
YPERSPECTRAL images (HSIs) contain abundant spec-

tral information and spatial information of ground objects

simultaneously, which make it possible to distinguish the targets

with different materials [1], [2]. As a result, HSI classification,

which aims to categorize each image pixel into a certain class,

has caused wide attention in various fields, such as military target

detection, agriculture monitoring, and disaster prevention and

control.

Over the last few decades, extensive research works have been

conducted on HSIs classification, which can be summarized into
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two categories: traditional methods and deep learning methods.

The traditional algorithms mainly concentrate on exploring more

handcrafted features [3], [4] and transforming original spectral

signatures into a learned new feature space [5]–[7]. Besides,

some machine learning methods have been adopted for HSIs

classification, for instance, K-nearest neighbor [8], random for-

est [9], and support vector machine (SVM) [10]. However, tradi-

tional methods are all based on the handcrafted spectral-spatial

features that heavily depend on professional expertise and are

quite empirical [11].

To address this shortcoming, deep learning has attracted great

attention for HSI classification. Deep learning methods obtain

automatically high-level abstract representations by aggregat-

ing low-level information, which can avoid complex feature

extraction engineering [12]. Recently, recurrent neural networks

(RNNs) [13]–[15] have demonstrated their potentials in model-

ing the spectral-spatial features of HSI. In [13], RNN was first

proposed for spectral classification. Besides, Ma et al. adopt

contextual deep learning to learn the spectral-spatial features

[16]. In addition, convolutional neural network (CNN) [17]–[20]

has been widely employed in HSI classification tasks. In [19],

[21], and [22], the HSIs are classified by using different dimen-

sional convolutions. In [23], the residual blocks were employed

to improve the representation ability of CNN, which is capable

of extracting spectral signatures and spatial contexts of HSI to

improve the classification rate. In [1], a multilayer CNN was

adopted to encode spectral-spatial information. Although CNN

methods have achieved good performance in some fields, they

still suffer from some defects. First of all, CNN needs a lot of

training labels, time, and calculation. The HSI has the charac-

teristics of the small amount of label data, which is the obstacle

to the CNN network during the weight training. Afterward, the

CNN kernel is designed to perform in a regular square, so it

cannot adaptively capture the geometric variations of different

object regions in an HSI. Last but not the least, the weights of the

CNN convolution kernel are fixed. As a result, there will lead to

edge missing phenomenon in the process of feature extraction,

and misclassifications will probably happen [12].

Different from of CNNs, the graph convolutional network

(GCN) conducts semisupervised learning on graph-structured

data (social network data and graph-based representations of

molecules [1], [25], [26]) and can operate on graph signal

directly via a variant of CNNs. Sha et al. applied the graph

attention network (GAN) to hyperspectral classification [27];
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however, the network only uses the attention mechanism and

does not learn the multiscale information of the graph. In [28],

Wan et al. employed a multiscale GCN to extract multiscale

graph features; however, the attention mechanism was not used

to select multiscale features according to different tasks. Hong

et al. proposed a graph convolution classification method com-

bining graph convolution and convolution neural network [29],

which opened up new ideas for HSI classification. Nevertheless,

there still exist some common shortcomings in these GCN-based

methods. The existing methods choose GCN as the basic method

to build a graph processing network. However, GCN is a whole

graph training method, which will bring a huge amount of com-

putation. In the case of selecting some pixels in an HSI for clas-

sification, GCN whole image training method will bring huge

computational waste. In another word, the GCN-based network

will spend most of the computational power on nonclassified

pixels. Besides, the existing methods divide graph construction

and graph classification into two stages. They do not consider the

influence of constructed graph error on classification results and

do not automatically build diverse graph networks for different

classification objects. Finally, the above-mentioned methods fail

to understand the contextual information of the graph since they

consider every graph node has the same influence on a classified

node while disregarding the differences.

In response to previous problems and further boost the per-

formance of HSI classification, we propose the multiscale graph

sample and aggregate network with context-aware learning

(MSAGE-CAL) method, where global contextual information

among superpixels can be automatically learned in an end-to-

end training framework. Different from the GCN method, the

proposed network adopts the graphSAGE method, which can

reduce the amount of calculation, to solve the problem of calcu-

lation consumption. To improve the diversity of network input

information and solve the impact of initial input graph errors

on classification, the network employs a multiscale learning

method. The deep contextual and the global information of the

graph can be learned automatically by focusing on important

spatial targets via graph attention mechanism so that the network

learning is more targeted and the classification is more efficient.

When the network is trained, backpropagation can be used

to feed the error back to the graphSAGE learning network,

readjust the network coefficients, process the multiscale graph,

and reconstruct graphs for different classification targets; as a

result, different object appearances can be better represented.

To sum up, the main contributions in this article are as follows.

1) MSAGE-CAL for a semisupervised method is proposed.

2) Multiscale graphSAGE convolution is employed to ex-

tensively exploit the spatial information and reduce the

computational complexity.

3) Context-aware learning and image reconstruction are

combined to make pixel features more expressive.

II. RELATED WORK

Many researchers have published their methods to classify

HSIs. In this part, we will review some representative works

since they have a lot of relationships with our work.

A. Deep-Learning-Based HSI Classification

Deep learning has achieved great success in many appli-

cations [30]. Recently, deep learning also has a wide range

of applications in HSI classification. One main advantage is

that deep learning techniques can automatically learn effective

feature representations for a problem domain, thereby avoiding

complicated handcrafted feature engineering [11]. Chen et al.

first attempted to utilize stacked autoencoder high-level feature

extraction [31]. Subsequently, in [32], the restricted Boltzmann

machine and deep belief network were employed for HSI feature

extraction and pixel classification, which can retain the good

information containing in the original data. Meanwhile, RNN

[13]–[15] and generative adversarial networks (GAN) [33], [34]

have also begun to be applied in HSI classification. Among

these deep learning methods, CNN has demonstrated its out-

standing performance for HSI classification because it has fewer

parameters than fully connected networks with the same hidden

units. Hu et al. [19] utilized CNN to extract spectral features

and got better performance than SVM. To extract the spectral-

spatial features of hyperspectral, many CNN-based methods

have emerged. For example, in [35], a two-channel deep CNN

was used to extract spectral-spatial features of HSIs. Alterna-

tively, Slavkovikj et al. [36] proposed a two-dimensional (2-D)

CNN to processing the original hyperspectral data. Additionally,

some authors proposed 1-D+2-D CNN [37] architecture for

HSI classification. In addition to the 1-D and 2-D architecture,

3-D CNN has shown potentials for HSIs classification, which is

capable of learning to recognize more complex 3-D patterns of

HSI and needs fewer parameters and layers than 2-D+1-D CNN.

For instance, Li et al. [38] proposed to use 3-D CNN to handle

the hyperspectral cube, which is able to learn spectral-spatial

features via 3-D convolutions. Although spectra-spatial features

can be extracted by CNN-based automatically, they simply apply

the fixed convolution kernels to different regions in an HSI,

which may result in undesirable misclassifications. To deal with

this problem, people try to use different convolution kernels

according to different features. Feng et al. [39] adopted different

sizes and locations of spatial windows according to sample-

specific distribution, which brings new ideas to the classification

of CNN-based methods.

B. Graph Neural Network (GNN)

CNN has achieved great success for graph data processing.

However, the CNN algorithm is computationally expensive and

runs inefficiently on large-scale graphs. Therefore, a GNN was

first proposed by Bruna et al. [40], where the neighborhood of ev-

ery graph node is convolved and a node-level output is produced.

After that, people have conducted extensive research works on

graph convolution and achieved advanced results [41]. The graph

convolutions can be roughly divided into two groups, namely

spectral convolutions and spatial convolutions. Spectral convo-

lutions perform convolution that transforms the graph node rep-

resentations into spectral domain via graph Fourier transform.

For instance, in [42], a formulation of CNNs is proposed for

spectral graph theory. The spatial-based GNN defines the graph

convolution operator based on the neighborhood aggregation
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Fig. 1. Overview of MSAGE-CAL network. (a) Input HSI. (b) Local regions (superpixels) segmented by the SLIC algorithm. In (c), the circles and lines represent
the superpixel (graph node) and edges, different colors of the nodes represent different land cover types, and the input of the network is spectral characteristic of
each node. (c) and (d) Multiscale graph learning mechanism, where the multiscale information can be learned with SAGE mechanism automatically and pairwise
importance among the superpixels can be learned with context-aware learning mechanism. (e) Reconstructed graph, where the topological graph information is
automatically reconstructed based on contextual-aware learning and loss backpropagation.

[43]. In [26], Hamilton et al. proposed an inductive framework

called “GraphSAGE,” where the weighting function is defined

as various aggregators over neighboring nodes. Velickovic et al.

[44] presented a GAT, which can adaptively learn the weighting

function via a self-attention mechanism.

With the fast development of GNN, GNNs have attracted

much attention for many fields of application, such as semantic

segmentation [45] and natural language processing [46]. Be-

sides, GNNs have adopted for HSIs classification [28], [29].

However, all these works utilize a fixed graph and cannot pre-

cisely reflect the intrinsic relationship among the pixels.

III. PROPOSED METHOD

In this section, we will present MSAGE-CAL for HSI semisu-

pervised classification (see Fig. 1). First, simple linear iterative

clustering (SLIC) [47] algorithm is adopted to segment the entire

HSI [see Fig. 1(a)] into a small number of compact superpixels

[see Fig. 1(b)]. Then, multiple spatial levels graphs [see Fig. 1(c)]

are constructed over superpixels via graphSAGE. Subsequently,

topological graph information [see Fig. 1(d)] is automatically

reconstructed via context-aware learning. Finally, the classifica-

tion result is produced [see Fig. 1(f)] by presenting contextual

information via cross-entropy loss. In the following, we will

detail the critical steps of MSAGE-CAL by presenting the local

region segmentation technique (see Section III-A), elaborating

the SAGE-based multiscale graph learning (see Section III-B),

describing the context-aware learning and graph reconstruction

(see Section III-C), and explaining the MSAGE-CAL manipu-

lation (see Section III-D).

A. Local Region Segmentation

HSI contains a large number of pixels in the spatial dimension,

a huge amount of computation is needed to convolution and

classification, sometimes it is unacceptable. To ameliorate this

issue, we find neighbor pixels that have a large probability of

belonging to the same land cover type. Therefore, the SLIC has

adopted to segment the entire image into a small number of local

regions and the pixels consisted of regions that have a strong

spectral-spatial similarity. Concretely, SLIC conducts image

region segmentation via iteratively growing the local clusters by

Algorithm 1: GraphSAGE Embedding Generation (i.e.,

Forward Propagation) Algorithm

Input: Graph G = (V ,E) ; input features {xv, ∀v ∈ V };

the number of layers of the network K; weight

matrices W k, ∀k ∈ {1, . . . ,K}; nonlinearity σ;

mean aggregator functions AGG; neighborhood

function N : v → 2v

Output: Vector representations for all v ∈ V

1: h0← xv, ∀v ∈ V ;

2: for k = {1, . . . ,K} do

3: for v ∈ V do

4: h
k
N(v) ← AGG({hk−1

u , ∀u ∈ N(v)});

5: h
k
v ← σ(W k · CONCAT (hk−1

v ,hk
N(v)))

6: end

7: h
k
v ← h

k

v

‖hk

v‖2
, v ∈ V

8: end

Output: zv ← h
K
v , v ∈ V

employing a k-means algorithm. In this article, the local regions

are treated as the graph node, which can significantly reduce the

number of graph nodes and improve computational efficiency.

Here, the average spectral signatures of the involved pixels in the

node (local region) are taken as the feature vector of the node.

B. SAGE-Based Multiscale Graph Learning

Traditional GCN transductive learning requires all nodes to

participate in training to get node embedding and it cannot

quickly get embedding of new nodes. In other words, GCN

can only learn the information about neighboring nodes and

cannot naturally generalize to the unknown vertices. Another

major disadvantage of conventional GCN is that the graph is

fixed throughout the convolution process, which will degrade the

final classification performance if the input graph is not accurate

[26]. To ameliorate these issues, graphSAGE (SAGE) algorithm

is adopted to learn spatial scale information, which can improve

the generalization ability of the model for new nodes. The SAGE

forward propagation rule is expressed as Algorithm 1.
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Fig. 2. SAGE aggregate mechanism in the proposed method.

Fig. 3. Overview of multiscale spatial information in our method. Different
branches are used to comprise different neighborhood scales. Different colors
of the nodes represent different land cover types.

In Algorithm 1, K is the number of layers of the network and

also represents the number of hops of adjacent points that can

be aggregated at each vertex; ∀u is the eigenvector of the node

u; {hk−1
u , ∀u ∈ N(v)} denotes the embedding of the neighbor

U of the node V in the k − 1 layer; and h
k
v represents the

characteristic of all neighbors of node v at the k level. AGG

can be expressed as AGG =
∑

u∈N(v)
h

k−1

u

|N(v)| .

Multiscale information has been widely proved to be very

useful for HSI classification [48], [49] because multiscale can

get more spatial feature information. In the proposed method, the

input graph is learned by graphSAGE (SAGE), and as mentioned

above, we can adjust the number of layers of SAGE to control

the number of hops that can be aggregated. Fig. 2 demonstrates

1-hop and 2-hop neighbors of a central example A. Then, the

receptive field of A at the scale S is formed as

H
s (xi) = σ

(

H
1
(

H
s−1 (xi) ,xs

))

(1)

where S denotes the aggregate scale by SAGE, when S = 1 ,

it represents the aggregation of the central node A and adjacent

nodes, S = 2 denotes the aggregation of 2-hop neighbors and 1-

hop graph. σ is the activate function andH0 (xi) = xi, H
1(xi)

is the new node embedding of 1-hop neighbors of xi, as shown

in Algorithm 1.

Then we use different branches to comprise different neigh-

borhood scales. Fig. 3 exhibits the multiscale mechanism. The

different branches are adopted to comprise different neighbor-

hood scales, which can abstract the multiscale features from the

original graph. And then implement a summation operation on

branches. And The receptive field of xi at a different scale is

formed as

H
k
M (xi) = H

l1
1 (xi) ∪H

l2
2 (xi) (2)

Fig. 4. Graph attention mechanism.

where 12 is the branch index, l1, l2 denote aggregate scales

from the l th layer in branches 1 and 2, max (l1, l2) = K,

and M denotes the multiscale.

C. Context-Aware Learning and Graph Reconstruction

To obtain global contextual features in the graph, the graph

attention mechanism is added into the network to abstract dif-

ferent association degrees between different nodes, where the

relationship between any two nodes in the graph is calculated via

graph attention mechanism. Aiming at getting the corresponding

transformation between input and output, a weight matrix is

trained for all nodes: W ∈ R
F

′×F , which is the relationship

between the input features F and the output features F ′. Node

to node correlation can be learned through a network layer

eij =
(

LeakyReLU
(

a
T [Wxi||Wxj ]

))

. (3)

Equation (3) shows the importance of node xj to node xi ,

aT ∈ R2F is the parameter vector of the network, || denotes con-

catenation operation, and LeakyReLU(·) is a nonlinear layer.

Then normalizing and converting eij to a probability output

aij through a softmax function

aij =
exp

(

LeakyReLU
(

aT [Wxi||Wxj ]
))

∑

k∈Ni
exp (LeakyReLU (aT [Wxi||Wxj ]))

. (4)

The graph convolution output of each node can be expressed

as follows:

x
l
i = σ

⎛

⎝

∑

j∈Ni

aij ·W
T
x
l−1
i

⎞

⎠ (5)

where σ is the activate function, l denotes the network

layer, and aij is learned attention weight.

The graph attention mechanism in MSAGE-CAL is shown in

Fig. 4. Global and contextual information can be learned from

the graph via an attention mechanism. More importantly, the

network would adjust the weight parameters according to the

backpropagation loss as the network training. In other words, the

network is context-aware. At the same time, the input multiscale

graph is reconstructed that has a great influence on subsequent

classification. The illustration of graph reconstruction is shown

in Fig. 5.

D. MSAGE-CAL Manipulation

Equation (2) shows multiscale graph learning, which is the

input of the subsequent networks. Then a SAGE layer is adopted
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Fig. 5. Illustration of graph reconstruction considered by our method.

to reconstruct the multiscale graph, the reconstructed graph H
k
r

can be expressed as follows:

H
k
r (xi) = σ

[

S
(

W r ·H
k
M (xi)

)]

(6)

where S denotes SAGE mechanism (see Algorithm 1), r

means graph reconstruction, W r is the weight matrix of the

network, which can be optimized based on backpropagation

loss as network training. In the training process, the relationship

between nodes in the graphSAGE layer generated graph will

also change as the classification target changes so that we can

construct different branches graph node relationships according

to different classification targets. In concretely, the network can

adjust W r automatically to preserve the useful node features.

Then context-aware learning is conducted on the network and

the network output is expressed as follows:

O = A
(

H
k
r (xi)

)

(7)

where A is the context-aware learning mechanism and O is

the output of MSAGE-CAL. In our network, the cross-entropy

error is adopted to penalize the difference between the network

output and the labels of the original labeled examples, namely

L = −
∑

z∈yG

C
∑

f = 1

Y zf lnOzf (8)

where yG is labeled examples set, C denotes the number of

classes, and Y zf is the label matrix. The implementation details

of our MSAGE-CAL are shown in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, exhaustive experiments are conducted to val-

idate the performances of the proposed MSAGE-CAL method,

and the corresponding algorithm analyses are provided. First of

all, MSAGE-CAL is compared with state-of-the-art approaches

on three available HSI datasets, where four indices including

overall accuracy (OA), average accuracy (AA), kappa coefficient

(κ), and per-class accuracy are adopted to evaluate the proposed

performance. Then, the performance of the MSAGE-CAL with

the different number of labeled samples is analyzed on OA.

Afterward, we show that multiscale graph learning is benefi-

cial to improving performance. Finally, we demonstrate that

context-aware learning and graph reconstruction manipulation

are advantageous for better classification results.

A. Dataset Description and Implementation

Three real benchmark datasets, i.e., the University of Pavia

(PU), the Kennedy Space Center (KSC), and Salinas, are adopted

TABLE I
NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL CLASSES IN PAVIA

UNIVERSITY DATASET

Algorithm 2: Proposed MSAGE-CAL for HSI classifica-

tion

Input: Input image; number of epoch T;learning rate =
0.0005; dropout = 0.2; Adam gradient descent; python =
3.7; pytorch = 1.6.0.

1: Segment the whole image into local regions via SLIC

algorithm;

2: Extract the superpixels features and construct the

graph;

3: // Train the MSAGE-CAL model

4: for t = 1 to T do

5: // SAGE-based multiscale graph learning

6: Extract the local region features and construct the

local region graph by Eq. (1);

7: Bach normalization, dropout and relu;

8: Construct the multiscale graph by (2);

9: // Context-aware learning and graph reconstruction

10: Reconstruct contextual graph by (6);

11: Bach normalization, dropout and relu;

12: Perform context-aware learning by (7);

13: Calculate the error term according to (8) and update

the weight matrices using adam gradient descent;

14: end for

15: Conduct label prediction based on the trained network;

Output: Predicted label for each pixel.

to evaluate the performance of the MSAGE-CAL method. The

PU dataset is employed to validate the algorithm’s ability to

classify details, the KSC dataset is to verify the classification

ability of isolated small objects, and the Salinas dataset is to

evaluate the algorithm’s ability to classify objects of the different

land cover types with a similar spectrum. The three datasets will

be described as follows.

1) University of Pavia (PU): The first dataset PU is a part of

hyperspectral data of the image of Pavia City, Italy, which was

acquired by airborne reflection optics spectral imaging system

(ROSIS) in 2003. The dataset contains 610 × 340 pixels and

103 bands, including a large number of background pixels, and

42 776 pixels can be applied to classification. The whole map

contains nine kinds of features. The amount of data used for

training and testing is given in Table I.
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TABLE II
NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL CLASSES

IN KSC DATASET

TABLE III
NUMBERS OF LABELED AND UNLABELED PIXELS OF ALL CLASSES

IN SALINAS DATASET

2) Kennedy Space Center: The second dataset KSC was

acquired by a 224-band airborne visible/infrared imaging spec-

trometer (AVIRIS) over the Kennedy Space Center, Florida,

on March 23, 1996. After removing water absorption and low

SNR bands, 176 bands were used for the analysis. This dataset

contains 614 × 512 pixels and discrimination of land cover is

difficult due to the similarity of spectral signatures for certain

vegetation types. For classification purposes, 13 classes repre-

senting the various land cover types were defined for the site.

The amount of data for training and testing is given in Table II.

3) Salinas: The third dataset Salinas was collected by the

224-band AVIRIS sensor over the region of Salinas Valley, CA,

USA. The Salinas cover comprises 512 lines by 217 samples.

After discarding 20 bands that cannot be reflected by water, 204

bands remain. These pixels are divided into 16 categories. The

amount of data for training and testing is given in Table III .

B. Experimental Settings

In the experiments, the proposed MSAGE-CAL algorithm

is conducted via Pytorch with Adam’s [50] optimizer. For all

the three HSI datasets described in Section IV-A, we randomly

TABLE IV
ARCHITECTURE DETAILS OF PROPOSED NETWORK

selected 30 labeled pixels in each class for network training, and

the remaining unlabeled pixels are used for network testing. Re-

garding network details, two neighborhood scales are employed

to construct the multiscale graph. In concretely, branch 1 is a

1-scale aggregation graph and branch 2 is a 2-scale aggregation

graph. The hyperparameters selection in our MSAGE-CAL is

shown in Algorithm 2.

In order to validate the performance of MSAGE-CAL, the

other five recent image classification methods are employed

to conduct a comparison. Specifically, our network is com-

pared with one CNN-based method, i.e., diverse-region-based

deep CNN (DR-CNN) [51], and two GCN-based methods, i.e.,

spectral-spatial graph convolutional network (S2GCN) [53] and

spectral-spatial graph attention network networks (S2GAT) [27].

Meanwhile, two traditional machine learning methods are also

adopted, namely RBF-SVM and joint collaborative represen-

tation and SVM with decision fusion (JSDF) [52]. The value

of γ (the spread of the RBF kernel) and C (controlling the

magnitude of penalization during the model optimization) in

RBF-SVM is optimized in the range of γ = 2−3 , 2−2, . . . , 24

and C = 2−2 , 2−1, . . . , 24. The architecture details of the

proposed network is given in Table VI.

C. Classification Results

In this section, to demonstrate the effectiveness of the pro-

posed MSAGE-CAL, here we quantitatively and qualitatively

evaluate the classification performance by comparing MSAGE-

CAL with the aforementioned methods.

1) Results on the PU Dataset: The quantitative results

achieved by different methods on the PU dataset are given in

Table V, where the highest value in each row is highlighted in

bold. From the table, we can observe that the proposed MSAGE-

CAL achieves better results compared with other models in OA,

AA, and κ , which validates the effectiveness of the proposed

multiscale graphSAGE network with context-aware learning. It

is also notable that DR-CNN performs better than RBF-SVM,

JSDF, and the nonlocal GCN method. This is because multiscale

region-based inputs are exploited in DR-CNN and MDGCN

MSAGE-CAL, which can improve the classification accuracy
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TABLE V
ACCURACY COMPARISONS FOR THE PAVIA UNIVERSITY SCENE

Bold numbers indicate the best performance.

Fig. 6. Classification maps obtained by different methods on Pavia University dataset. (a) False color image. (b) Ground-truth map. (c) DR-CNN. (d) RBF-SVM.
(e) JSDF. (f) Nonlocal GCN. (g) S2GCN. (h) MSAGE-CAL.

of the HSIs containing many boundary regions. Although the

DR-CNN model has achieved a good result, its classification

accuracy in C8 (self-blocking bricks) is significantly lower than

MSAGE-CAL, which indicates that our proposed method has

good adaptation for HSI classification details.

Fig. 6 shows a visual comparison of the classification results

yielded by the mentioned methods above on the Pavia University

dataset. As presented in Fig. 6, we can conclude that the proposed

MSAGE-CAL method shows fewer misclassifications and get

a smoother visual effect when compared with the ground-truth

map. Meanwhile, due to the lack of a context-aware learning

mechanism, the detailed results produced by compared methods

contain many misclassifications.

2) Results on KSC Dataset: As given in Table VI, the ex-

perimental results of six methods on the KSC dataset have

great improvement compared with the performances on the

PU dataset. Because the KSC dataset contains less noise and

higher spatial resolution than the PU dataset, which is more

suitable for landscape classification, it is worth noting that our

proposed method gets outperforming results than the compared
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TABLE VI
ACCURACY COMPARISONS FOR THE KSC SCENE

Bold numbers indicate the best performance.

Fig. 7. Classification maps obtained by different methods on KSC dataset. (a) False color image. (b) Ground-truth map. (c) DR-CNN. (d) RBF-SVM. (e) JSDF.
(f) S2GCN. (g) MSAGE-CAL.

method and it also validates the performance of MSAGE-CAL.

Besides MSAGE-CAL, RBF-SVM misclassifications that occur

in the fourth class (Slash pine) are lower than the other method.

However, the classification indices of RBF-SVM are the worst.

This because RBF-SVM and MSAGE-CAL can extract local

features effectively, which is important for local small objects

classification. Furthermore, the performances of GCN-based

methods present no advantage over other methods. This is due

to the transductive learning mechanism adopted by GCN, which

is unprofitable for isolated small object detection as KSC. Fig. 7

visualizes the classification results produced by all methods,

where some critical regions are enlarged for better performance

presentation. We notice that the proposed MSAGE-CAL gets

better classification results on these small and difficult regions,

which indicate that MSAGE-CAL is suited for small objects

classification.

3) Results on Salinas Dataset: Table VII provides the quan-

titative results of different methods on the Salinas dataset. As

demonstrated in the table, the classification results in C8 (Grapes

untrained) and C15)Vineyard untrained(are lower than the other

class because the two land cover types have similar spectral

signatures with other classes. Besides, it is also notable that

JSDF gets top-level performance among all the methods in

terms of AA, which is different in PU and KSC. However, the
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TABLE VII
ACCURACY COMPARISONS FOR THE SALIANS SCENE

Bold numbers indicate the best performance.

performance on OA and kappa are lower than MSAGE-CAL,

which indicate that it is an imbalance among different classes

classification. Furthermore, our proposed MSAGE-CAL has

archive better performance than the GCN-based method. It is

not only because of the shortcoming of the transductive learning

mechanism, but also it shows that multiscale input futures have

contributed to improving classification accuracy. As a visual

comparison demonstrated in Fig. 8, we can observe that our pro-

posed MSAGE-CAL yields smoother visual effectiveness than

the other five competitors, which further shows the advantage of

MSAGE-CAL. All results show that our proposed method has

a good performance on objects of the different land cover types

with a similar spectrum.

D. Analysis of the Performance of the MSAGE-CAL With

Different Number of Labeled Samples

In this experiment, the classification performances of the six

algorithms with different numbers of labeled examples (i.e.,

pixels) for training are investigated. We vary the number of

labeled examples per class from 5 to 30 with an interval of

5 and report the OA performance acquired by six algorithms

on PU, KSC, and Salina datasets. The experimental results are

demonstrated in Fig. 9. From the results, we can find that the

performances on PU, KSC, and Salinas datasets are significantly

improved with the increase of labeled examples; besides, the

proposed MSAGE-CAL model performs better than the contrast

algorithms from beginning to end, which shows the effectiveness

of multiscale spatial information on HSI classification. Further-

more, the proposed MSAGE-CAL allows to automatically learn

global contextual features and reconstruct the graph based on

the classified land cover, which is more robust than using a

precomputed fixed graph. It is also worth mentioning that the

TABLE VIII
OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT MODEL

SETTINGS ON PAVIA UNIVERSITY DATASET

TABLE IX
OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT MODEL

SETTINGS ON KSC DATASET

OA of the proposed MSAGE-CAL is stable with the numbers

of labeled examples changing. All these results illustrate the

stability and effectiveness of our proposed MSAGE-CAL.

E. Ablation Study

Our proposed MSAGE-CAL employed SAGE-based multi-

scale graph learning and context-aware learning mechanism to

improve the illustrative ability of the model. In this experiment,

we investigate the ablative effect of SAGE-based multiscale

graph learning and context-aware learning. For the sake of com-

parison, we record the classification results produced without

using multiscale graph learning information and context-aware

learning mechanism, respectively, and the simplified model is

denoted as “SAGE-CAL” and “and MSAGE.” And the experi-

mental setting is kept identical to Section IV-B. The comparative

results are demonstrated in Tables VIII–X. As illustrated in
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Fig. 8. Classification maps obtained by different methods on Salinans dataset. (a) False color image. (b) Ground-truth map. (c) DR-CNN. (d) RBF-SVM.
(e) JSDF. (f) S2GCN. (g) Nonlocal GCN. (h) MSAGE-CAL.

Fig. 9. Overall accuracies of various methods under different numbers of labeled examples per class. (a) PU dataset. (b) KSC dataset. (c) Salinas dataset.

tables, SAGE-based multiscale graph learning and context-

aware learning play an important role in the improvement of

learning efficiency.

F. Running Time

Table XI demonstrates the running time of different deep

methods, including DR-CNN, S2GCN, S2GAT, and our pro-

posed MSAGE-CAL on three datasets (i.e., the PU, the KSC,

and the Salinas), where the number of labeled pixels per class

is kept identical to the experiments presented in Section Ⅵ-B.

The results are reported on a server with a 3.70G Intel i9-10900K

CPU and a GeForce GTX 1080Ti 11G GPU. From the results,

we can get the conclusion that our proposed model is more

efficient than the comparison methods, which is owing much to

the employment of segmentation operation. The segmentation

operation effectively reduces the number of graph nodes and

reduces the number of model calculations.
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TABLE X
OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT MODEL

SETTINGS ON SALINAS DATASET

TABLE XI
RUNNING TIME COMPARISON (IN SECONDS) OF DIFFERENT METHODS

“PU" denotes the University of Pavia dataset.

V. CONCLUSION

In this article, we propose a novel multiscale graph sample

and aggregate network with a context-aware learning method for

HSI classification. The network adopts a multiscale graphSAGE

convolution to extensively exploit the spatial information. And

the context-aware learning mechanism is employed. Therefore,

the network can extract global and contextual information from

HSI, which helps to find accurate feature representations more

effectively. Meanwhile, the graph structure is reconstructed

based on backpropagation as network training, which can ef-

fectively reduce the influence of the initial graph error on the

classification result. The experimental results on three real HSI

datasets show that the proposed MSAGE-CAL is able to yield

better performance when compared with various HSI classifica-

tion methods.
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