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Studying the impact of the different components in data on hedging can provide valuable guidance to investors. However, the
previous multiscale hedging studies do not examine the issue from the data itself. In this study, we use the empirical mode
decomposition (EMD) method to reconstruct the crude oil futures and spot returns into three different scales: short-term,
medium-term, and long-term. ,en, we discuss the crude oil hedging performance under the dynamic minimum-CVaR
framework at different scales. Based on the daily prices of Brent crude oil futures contract from August 18, 2005, to September 16,
2019, the empirical results show that the extracted scales comprise different information of original returns, short-term in-
formation occupies the most important position, and hedging is mainly driven by short-term information. Besides, hedging
relying on long-term information has the best hedging performance. Removing some information related to short-term noise
from the original returns is helpful for investors.

1. Introduction

As “the blood of industry,” crude oil has become an im-
portant energy source that can affect economic activity and
financial markets [1–3]; over the last decades, numerous
market participants chose crude oil futures to avoid adverse
spot price fluctuations [4]. Since the futures market consists
of many participants with different trading cycles, the
resulting time series comprise different time and frequency
domain components [5]; studying the impact of these dif-
ferent components on hedging can provide valuable guid-
ance to investors. However, the previous multiscale hedging
studies ignore this important issue; in this paper, we divide
the data into short-, medium-, and long-term scales and
explore the impact of different scales on hedging.

In practice, one of the main theoretical issues in hedging
involves the determination of the optimal hedge ratio. ,e
extant studies obtain optimal hedge ratios from the per-
spective of improving the objective function. [6, 7]. For
example, the classical minimum-variance (MV) hedging

uses variance as a risk proxy [8–10]. However, variance is not
a perfect measure because it treats upside potential and
downside risk equally in risk management and investors pay
more attention to downside risk compared to upside risk.
,us, several downside risk measures have been introduced
in hedging practice, such as Value-at-Risk (VaR) [11] and
Conditional Value-at-Risk (CVaR) [12]. ,e criticism
against VaR originates from its lack of subadditivity and
convexity [13]. Besides, VaR is not easy to optimize when
calculated using scenarios [14]. For these reasons, CVaR,
which can be thought of as a coherent risk measure, has been
widely applied in the hedging field. Naturally, the impact of
different scales on hedging is mainly discussed under the
minimum-CVaR framework.

Another important issue focusing on hedging is the
dependence of the optimal hedge ratio on the data with
different frequencies. As argued by Chun et al. [15], the
frequency of data used to estimate hedge ratio is important,
and any incompatible frequencies could result in incorrect
hedge ratios, in turn impacting hedging performance and
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accuracy. Some studies have begun to take note of this
problem; for example, Colon et al. [16] use wavelet analysis
to compute the hedge ratios at different time scales; they find
that the hedging effectiveness is significantly improved with
scale increasing. Susan et al. [17] also compare different
models at different scales from the aspects of portfolio
variance and utility function; their results indicate that the
wavelet networks offer improvements over traditional
hedging models. ,ese studies focus on the hedging effec-
tiveness from the perspective of hedging horizon. ,at is,
investors may use the daily, weekly, monthly, or quarterly
data to estimate the optimal hedge ratio. However, the
impact of different scales on hedging is ignored; observing
hedging from the perspective of the data itself usually
provides more comprehensive information.

Except for the popular wavelet decomposition method
[18], empirical mode decomposition (EMD) also received
extensive attention [19]. EMD can directly decompose
original data into finite intrinsic mode functions (IMFs) and
a trend item without prior assumptions about signal modes
or system orders, which has shown outstanding advantages
in nonlinear and nonstationary signals analysis. At present,
EMD has been widely applied to decompose financial data
[20–22]. Based on these superior properties of EMD, we use
EMD to decompose futures and spot returns and further
construct three different scales. To the best of our knowl-
edge, this is the first study to apply the decomposition
method to multiscale hedging.

In this paper, we consider multiscale hedging in view of
the data itself. In detail, the EMD technology is first in-
troduced to decompose crude oil futures and spot returns;
the decomposition terms are reconstructed into three dif-
ferent scales: short-term, medium-term, and long-term.
,en, we discuss the scale dependency structure through
three key indicators: variance contribution rate, Shapley
value, and correlation coefficient. Lastly, under the mini-
mum-CVaR framework, two different hedging strategies,
constant hedging strategy and dynamic hedging strategy
using DCC-GARCHmodel, are selected to comprehensively
analyze the crude oil hedging performance at different scales.

In the empirical analysis, the daily closing prices of
spot and futures contracts of Brent crude oil were from
August 18, 2005, to September 16, 2019, and a total of
3379 price observations were collected to test in-sample
and out-of-sample hedging effectiveness. We select the
CVaR, variance, returns, and utility as the criteria to
provide an in-depth and comprehensive assessment of
the hedging performance at different scales. ,e empirical
results show that the extracted scales comprise different
information of original returns, Secondly, short-term
information occupies the most important position, and
hedging is mainly driven by short-term information.
Lastly, hedging relying on long-term information has the
best hedging performance; excluding information related
to short-term noise from the original returns is helpful
for investors. Robustness results by changing the ob-
jective function to variance validate the above conclu-
sions. ,ese findings are distinctly different from the
previous literature.

,e remainder of this paper is organized as follows:
Section 2 briefly introduces the methodology, including the
EMD technique, two downside risk measures, and the
hedging theory. Section 3 introduces the data sources. ,e
empirical results are reported in Section 4, which includes
the multiscale analysis and hedging results. ,e last section
concludes the paper.

2. Model and Methodology

In order to comprehensively analyze the hedging perfor-
mance at different scales, we used the EMD technique to
decompose the crude oil spot and futures returns and
grouped the decomposition terms into three different scales:
short-term, medium-term, and long-term. ,en, the
hedging performance is comprehensively assessed under the
minimum-CVaR framework. Figure 1 shows the basic
framework of this paper.

2.1. Empirical Mode Decomposition (EMD). ,e empirical
mode decomposition was originally proposed by Huang et al.
[19]. ,e EMD decomposes the original data into a series of
intrinsic mode functions (IMFs), and the IMFs need to satisfy
the two following conditions: First, in the whole time series, the
extremum numbers and zero-crossing points must be equal or
differ atmost by one. Second, at any point, themean value of the
envelope defined by the local maxima and the envelope defined
by the local minima is zero. With this definition, any com-
plicated data series xt(t � 1, 2, . . . , T) can be decomposed as
follows:

(1) Identify the local extrema of xt, including both
maxima and minima

(2) Calculate its upper and lower envelopes, xup,t and
xlow,t, with cubic spline interpolation

(3) Compute the point-by-point means mi from upper
and lower envelopes: mt � (xup,t + xlow,t)/2

(4) Extract the means from the time series to obtain an
IMF candidate ct � xt −mt

(5) Check the properties of ct: If ct meets the above two
conditions, then IMF is extracted and xt is replaced
with the residue rt � xt − ct. If ct is not an IMF, xt is
replaced with ct

(6) Repeat steps 1–5 until the stop criterion is satisfied
and no more IMFs can be extracted

Using this sifting procedure, the original data series xt
can finally be expressed as the sum of IMFs and a residual:

xt �∑k
j�1

cj,t + rt, (1)

where k is the number of IMFs, rt is the residual, and
cj,t(j � 1, 2, . . . , k) is the j

th IMF.

2.2. Downside Risk Measures. As the crude oil trading
increases in trading volume and liquidity, investors are
increasingly paying attention to downside risk. However,
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variance treats upside potential and downside risk equally
in risk management. As a downside risk measure, VaR
focuses on the probability not the magnitude of risk.
Generally, the 1 − α percent VaR of portfolio returns p is
expressed as

VaRp(1 − α) � −inf u: F(u)> 1 − α{ }, (2)

where F is the cumulative distribution function (CDF) of
portfolio returns p.

As VaR lacks theoretical property for coherent risk mea-
sures, an alternative risk measure that addresses this short-
coming is CVaR, which is defined as the conditional expectation
of losses exceeding VaR for continuous distributions.

CVaRp(1 − α) � −E Rp|Rp ≤ − VaRp(1 − α)[ ]
�
1

α
∫1
1−α

VaRp(x)dx.

(3)

2.3. Semiparametric Estimation for VaR/CVaR. As the evi-
dence shows that the features with the heavy-tailed and
higher kurtosis distribution exist in financial market, we use
an analytical expression for VaR derived from the Cornish-
Fisher expansion [23], which approximates the quantile of a
standardized probability distribution using the higher mo-
ments of the distribution. ,e Cornish-Fisher expansion
approximates c(α) by

c̃p α; sp, kp( ) ≈ c(α) +
1

6
c(α)2 − 1[ ]sp

+
1

24
c(α)3 − 3c(α)[ ] kp − 3( )

−
1

36
2c(α)3 − 5c(α)[ ]s2p,

(4)

where c (α) is the α percent quantile of the standard normal
distribution and sp and kp are the skewness and kurtosis of

the portfolio returns p, respectively. ,e Cornish-Fisher
approximations for VaR and CVaR are then expressed as

VaRp(1 − α) � −σpc̃p 1 − α; sp, kp( ) − μp, (5)

CVaRp(1 − α) � −σp M1 +
1

6
M2 − 1( )sp[

+
1

24
M3 − 3M1( ) kp − 3( )

−
1

36
2M3 − 5M1( )s2p] − μp,

(6)

whereMi � 1/(1 − α)∈c(1−α)
−∞ xif(x)dx, i � 1, 2, 3, . . . , and

f(.) is the standard normal probability density function.

2.4. Minimum-CVaR Hedging. Hedging is themain function
of futures markets. ,e key procedure in futures hedging is
to compute the optimal hedge ratio. Consider a portfolio
consisting of CS units of a long spot position and CF units of
a short futures position. Let St and Ft denote the natural
logarithms of spot and futures prices at the end of period t,
respectively. ,e return on the hedged portfolio over a
period, ΔPt, is given by

ΔPt � CsΔSt − CfΔFt, (7)

where ΔSt � St − St−1 and ΔFt � Ft − Ft−1.
,e optimal hedge ratio is derived by minimizing the

conditional variance of ΔPt. ,us, it is also called the
minimum-variance hedge ratio and is given by

h∗t �
Cf

Cs
�
Cov ΔSt,ΔFt|Ωt( )
Var ΔFt|Ωt( ) , (8)

where Ωt is the appropriate information set.
However, some scholars [12, 23] argue that variance is

not a good measure of portfolio risk. As an alternative, the
hedge ratios of minimum-VaR/CVaR are calculated as

...

Brent crude oil spot and futures returns 

Decompose spot and futures returns using EMD technique 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Short-term scale Medium-term scale Long-term scale

Minimum-CVaR hedging

Test the hedging effectiveness and 
robustness at different scales

Conclusion and suggestion

Multiscale analysis

Scale dependency structure

Figure 1: ,e basic framework of this paper.
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where μft is the conditional mean of futures,\beginAlign

A1 � c(α) −
1

8
c(α)3 − 3c(α)[ ],

A2 �
1

6
c(α)2 − 1[ ],

A3 �
1

24
c(α)3 − 3c(α)[ ],

A4 � −
1

36
2c(α)3 − 5c(α)[ ].

(11)

and

B1 �M1 −
1

8
M3 − 3M1[ ],

B2 �
1

6
M2 − 1[ ],

B3 �
1

24
M3 − 3M1[ ],

B4 � −
1

36
2M3 − 5M1[ ].

(12)

\endAlign
Besides, some scholars argue that the hedging model

varies over time because the factors that affect hedging
performance change over time [7]. To further confirm the
credibility of our results, two hedging strategies are con-
sidered to estimate the hedge ratios: one is a constant
hedging model without complicated technology and the
other is using the DCC-GARCH model to get the time-
varying hedge ratio. In general, the model can be expressed
as follows:

ΔSt � a0 + a1ut−1 + εs,ΔFt

� b0 + b1ut−1 + εf
εs

εf
 |Ωt−1 ∼ N 0, Ht( ), (13)

where Ht is the conditional covariance matrix.
To capture the time-variation property in matrix Ht,

Engle [24] develops a DCC model, which can be written as

Ht � GtΓGt � ρsf,t

������
hs,thf,t

√( ), (14)

where Γt � diag(q−1/2st , q−1/2ft )Qtdiag(q
−1/2
s,t , q

−1/2
ft ), and the

process of positive definite matrix Qt is given by

Qt � ρ 1 − λ1 − λ2( ) + λ1 εt−1εt−1′( ) + λ2Γt−1, (15)

where ρ is the unconditional correlation matrix of εt. ,e
parameters λ1 and λ2 are the scalars and satisfy the condition
λ1 + λ2 < 1.

3. Data Resource

We collect the spot and futures data of Brent crude oil traded
under the Intercontinental Exchange (ICE); the Brent crude
oil contract is used since it is the major futures trading
contract in crude oil market. Besides, due to the high trading
liquidity and volume, it can effectively reflect the evolution
of energy markets and has been widely used in the hedging
literature. ,e dataset comprises the daily closing prices of
3379 trading days from August 18, 2005, to September 16,
2019. All price data are collected from the wind database.

Figure 2 plots the prices and returns of crude oil spot and
futures. We can see that oil price fluctuates fiercely. Some
occasional events such as the 2008 financial crisis and the
2015 surge in US oil production can cause crashes in oil
prices. Besides, compared with the characteristics of crude
oil spot time series, the crude oil futures exhibit the con-
sistent price trend and similar volatility features in Figure 2.
,is phenomenon appears due to the fact that investors
share some common information in these relative markets.
As these two markets have similar trends by the same
economic factors, operating on them reversely can hedge the
risk.,e higher the correlation level is, the better the effect of
hedging will be. Besides, the tendency for return volatility
appears in bunches; large returns are expected to follow large
returns, and small returns are expected to follow small
returns, due to clustering of information arrivals. ,is is the
effect named volatility clustering.

4. Empirical Analysis

In this section, we first discuss the scale dependency
structure through three key indicators: variance contribu-
tion rate, Shapley value, and correlation coefficient. ,en,
under the minimum-CVaR framework, two different
hedging strategies, the constant hedging strategy and dy-
namic hedging strategy, are selected to comprehensively
analyze the crude oil hedging performance at different scales.

4.1. Multiscale Analysis. After obtaining the data, the EMD
method is used to decompose crude oil futures and spot
returns. Figure 3 shows the decomposition results for both
futures (left panel) and spot (right panel) (Figures 3(a) and
3(b)) returns. ,e EMD splits the original time series data
into a series of IMFs. ,eir cycles are from short to long;
likewise, their frequencies are from high to low. Besides, the
returns of decomposed brent spot exhibit similar patterns
(right panel) (Figure 3(b)).
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4.1.1. Descriptive Statistics for Different Scales. Since the
adjacent IMFs have similar properties, we follow the pre-
vious construction method [25] and group the IMFs from
high frequency to low frequency into short-term, medium-
term, and long-term time scales. ,e sum of first three IMFs
is called the short-term scale (abbreviated short scale), the
sum of the fourth to sixth IMFs is defined as medium-term
scale (medium scale), and the sum of the remaining de-
composition term is the long-term scale (long scale). ,e

descriptive statistics for each scale are reported in Table 1.
We can see that each pair of scales for the two returns series
has a similar feature, which indicates the rationality of
multiscale hedging theory.

Firstly, each pair of scales has a similar duration and the
difference between different scales is very obvious, indicating
completely different economic implications. In particular, short
scale, the average duration of which is 2–4 days, is identified as
the markets’ normal fluctuation, and it happens at a high
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Figure 3: ,e decomposition terms of futures (left) (a) and spot (right) (b) generated by EMD.
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Figure 2: ,e characteristics of futures (left) (a) and spot (right) (b).
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frequency. It is mainly caused by a series of factors that have
short-term effects such as short-term supply and demand
imbalance. Medium scale, the average duration of which is
about one month, is mainly caused by factors that have me-
dium-term effects. It includes the effects of minor irregular
events and some significant events such as natural disasters like
hurricanes and so forth. ,e long scale has a little tendency
towards variation and is smoother compared with the short and
medium scales. Its duration is close to one year, which reflects
the long-term trend of the markets; it is affected by some long-
term events such as the financial crisis and trade war.

Table 2 also reports other descriptive statistics for each scale.
We can see that the changes for the two returns are similar, and
the means are all close to zero for all scales. Besides, there are
lower skewness and standard deviation at a higher scale.What is
interesting is the fact that the skewness and kurtosis of spot and
futures returns change dramatically at the long scale, mainly
caused by the existence of trend term. Meanwhile, all their
kurtoses are higher than 3, implying that the returns follow a fat-
tailed distribution. ,e nonnormality of distribution is also
confirmed by the statistical rejections of the null hypothesis
based on the Jarque-Bera test. Finally, we use the Q2-statistics
(Ljung-Box statistics) to test for ARCH effects and find that they
are significant for decomposed spot and futures returns; both
the original returns and different scales have ARCH properties.
,erefore, the use of the DCC-GARCH model is appropriate.

4.1.2. Dependency Structure. To further analyze the char-
acteristics and importance of different scales, we use the
variance contribution rate, Shapley value [26], and

correlation coefficient to describe the fluctuation charac-
teristics, global importance, and trends of different scales.

,e variance contribution rate can fully extract the
fluctuation information of original data and reflect the
fluctuation characteristics of different scales. ,e relevant
results are shown in Table 2; we can see that short scale, which
is identified as the markets’ normal fluctuation (88.28% and
83.18% for the futures and spot, respectively), accounts for the
largest share of overall market fluctuations. Meanwhile, the
variance of medium scale, which represents fluctuations
caused by minor irregular and significant events, is also
relatively large, indicating that the shock of minor irregular
and significant events can cause large fluctuations. ,e long
scale representing the long-term trend of market contributes
minimally to fluctuations, indicating the long-term evolu-
tionary characteristic of crude oil market.

We also introduce the Shapley value to identify the
“contribution” or “weight” of different scales; it means to
what extent can Shapley value determine the level of risk.
Similar to the variance contribution ratio, it can be seen from
Table 2 that whether it is futures or spot, the Shapley values
of short scale are very high (61.77% and 64.18%), indicating
that the short scale determines the return risk of original
returns to a certain extent. Meanwhile, the medium scale
also contributes a high weight (26.27% and 27.45%), indi-
cating that medium scale can also determine the risk of the
original data to a certain extent.

We also use the correlation coefficients between different
scales and original data to identify which scale determines the
overall trend change of original data. We can see from Table 3
that the correlations between original data and short scale are
high (0.9268 and 0.9228). It fully shows the importance of short
scale to the original data. What is interesting is the fact that the
correlations between futures and spot are very high at the same
scale. ,ey are 0.5847 (short), 0.6327 (medium), and 0.7430
(long), respectively, which fully show the rationality of our
multiscale hedging. On the other hand, the correlation at long
scale is higher than those at other scales, mainly because the
long scale eliminates the impact of short-term volatility; it can
effectively highlight the consistency between futures and spot.

4.2. Hedging Results. In this subsection, we show the in-
sample and out-of-sample hedging results of 2 hedging
strategies under the minimum-CVaR framework, including
the constant hedging strategy and dynamic hedging strategy.

Table 1: Descriptive statistics of different scales for the futures and spot returns.

Scale Mean Sd Skewness Kurtosis Jarque-Bera Q2 (10) Duration (day)

Futures

Original 0.0017 1.5208 −0.4694 11.1475 9467.20∗∗∗ 369.26
Short 0.0257 1.4485 −0.1692 8.9098 4931.84∗∗∗ 665.65∗∗∗ 2.96

Medium −0.0019 0.5183 −0.2795 3.9026 158.66∗∗∗ 7856.96∗∗∗ 21.11
Long −0.0221 0.2209 −0.9265 6.3240 2038.38∗∗∗ 32925.20∗∗∗ 198.71

Spot

Original 0.0019 1.5409 −0.2962 10.9829 9018.84∗∗∗ 302.66∗∗∗

Short −0.0068 1.4683 −0.0961 8.7481 4655.61∗∗∗ 384.63∗∗∗ 2.96
Medium 0.0082 0.5300 −0.0381 4.8758 496.07∗∗∗ 8992.21∗∗∗ 22.67
Long 0.0005 0.2988 −1.2811 7.8007 4167.79∗∗∗ 32438.47∗∗∗ 211.13

“Original” denotes original data.,e null hypothesis of Jarque-Bera statistic is the normal distribution.,e asterisks ∗, ∗∗, and ∗∗∗ denote rejection of the null
hypothesis at 10%, 5%, and 1% significance levels, respectively. ,e duration represents the mean period of different scales.

Table 2: Variance contribution rate and Shapley value of different
scales.

Futures Spot

Short Medium Long Short Medium Long

Variance 2.0416 0.2269 0.0442 1.2733 0.1939 0.0637
%a 88.28% 9.81% 1.91% 83.18% 12.66% 4.16%
Shapleyb 61.77% 26.27% 11.96% 64.18% 27.45% 8.37%
a% denotes variance contribution rate; it is calculated based on the pro-
portion of the variance of different scale and original returns. b,e defi-
nition of Shapley value is ]i � ∑n−1k�0ck∑K⊂X\xi(μiK − μK), where

ck � (n − k − 1)!k!/n! � 1/n
k
2

( ); μ denotes risk measure; K is power.
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4.2.1. In-Sample Performance. ,e in-sample results are
estimated with the use of the entire test sample. By con-
struction, this gives the maximum reduction in CVaR.
Table 4 shows the in-sample hedging results of different
hedging strategies under the minimum-CVaR framework.
,e 95% CVaR, variance, returns, and utility are selected as
the criteria to provide an in-depth and comprehensive as-
sessment of multiscale hedging strategies; we also briefly
report the average estimated hedge ratios. Some findings are
very attractive to us.

,e optimal hedge ratios based on original returns are
always based on the short-term andmedium-term scales; the
optimal hedge ratios based on original returns are close to
those of short-term scale. ,ese results show that the
hedging performance at the short-term scale is close to using
original returns, which indicates the importance of short-
term scale. Secondly, the CVaR and variance of hedged
portfolio gradually decrease with the scale increasing. ,e
variance of hedged portfolio at the long-term scale is close to
0. ,ere are some minor differences between static and
dynamic hedging strategies. ,e constant hedging model
performs better in variance compared to the dynamic
hedging model, which indicates that the simple model may
perform better. ,e main reason is that many parameters
and assumptions of the complex models make the estima-
tion risk greater. High estimation risk can worsen hedging
performance. ,irdly, when focusing on the hedging per-
formance from the perspective of return and utility, the
overall trend of return and utility increases significantly with

the scale increasing; the returns based on medium-term and
long-term scales are significantly better than using the
original returns, which indicate that removing short-term
noise from the data can significantly improve hedging
performance. Overall, the hedging performance based on
long-term scale outperforms others in all respects.

Overall, our main findings are as follows. ,e hedging
performance differs across different scales, which implies
that the extracted scales comprise different information,
which is useful for investors. Secondly, the hedging per-
formance based on a short-term scale is similar to that based
on original returns, implying that hedging is mainly driven
by short-term information. Lastly, hedging relying on me-
dium-term or long-term information performs better than
that based on short-term information or based on all in-
formation inherent in the original returns, and hedging
relying on long-term information has the best hedging
performance.,erefore, excluding some information related
to short-term noise from the original returns is helpful for
investors.

4.2.2. Out-of-Sample Performance. ,e in-sample hedging
performance of different hedging strategies indicates their
historical performances. Since investors are concerned with
how well they can hedge their positions in the future, for this
motivation, we investigate the out-of-sample hedging in this
subsection. ,e out-of-sample results are estimated every 250
days throughout the entire sample, and the estimated hedge
ratios are then used to construct the hedge portfolio for the
following 250 days. In detail, we reserve the first 250 obser-
vations for initial estimation of hedge ratios using equations (8)
and (10), ,ese are then used to construct the hedged portfolio
for t� 251, . . ., 500. We then recompute the estimated hedge
ratios using data for the period t� 251, . . ., 500 and use these to
construct the hedged portfolio for t� 501, . . ., 750, and so on,
finally resulting in 3128 out-of-sample hedge portfolio obser-
vations. Table 5 reports the average estimated hedge ratios, the
95% CVaR, variance, returns, and utility of out-of-sample
hedged portfolio.,e overall results are similar to the in-sample
results.

Firstly, the optimal hedge ratios at long scale are close to 1
when using dynamic hedging model, which is significantly
different from the in-sample results.,e out-of-sample CVaR
and variance gradually decrease when the scale changes from
short term to long term. ,e out-of-sample CVaR and

Table 3: Correlation coefficient between different scales of futures and spot.

Futures Spot

Scale Original Short Medium Long Original Short Medium Long

Futures

Original 1.0000 0.9268 0.2879 0.1316 0.6533 0.5702 0.2405 0.1401
Short 1.0000 −0.0623 −0.0302 0.5633 0.5847 0.0236 −0.0099

Medium 1.0000 0.0443 0.2856 0.0465 0.6327 0.1222
Long 1.0000 0.1334 −0.0174 0.0170 0.7430

Spot

Original 1.0000 0.9228 0.2693 0.1447
Short 1.0000 −0.0683 −0.0339

Medium 1.0000 −0.0492
Long 1.0000

Table 4: In-sample minimum-CVaR hedging.

HR CVaR Variance Returns Utilitya

Panel A: constant hedge ratio and hedging performance
Original 0.6023 3.4572 1.3693 0.0009 −10.3706
Short 0.5020 3.3546 1.4361 −0.0197 −10.0834
Medium 0.5231 1.0589 0.1726 0.0092 −3.1674
Long 1.1938 0.3298 0.0417 0.0269 −0.9625

Panel B: dynamic hedge ratio and hedging performance
Original 0.6434 3.4132 1.3638 0.0083 −10.2313
Short 0.5881 3.3474 1.4927 0.0335 −10.0088
Medium 0.7792 0.8984 0.3062 0.2305 −2.4648
Long 0.9056 0.1838 0.0432 0.1463 −0.4050
a,e utility is calculated by equation Up � E(Rp) − 0.5A

∗CVaRp, where A
is risk aversion level; by referring to Colon et al. [5], we set a moderate risk
aversion level (A� 6).
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variance based on short-term scale and original returns are
very similar, reconfirming the point that hedging is mainly
driven by short-term information. Overall, the hedging
performance based on original returns performs better than
using short-term information, due to the fact that the original
returns also contain medium-term and long-term informa-
tion, which is critical to improving hedge performance. Lastly,
the overall trends of return and utility increase significantly
with the scale increasing; the returns based on medium-term
and long-term scales are significantly better using the original
returns. ,ese findings are consistent with the out-of-sample
CVaR and variance indicators, reconfirming the in-sample
conclusion that removing the short-term noise from the
original returns is useful for investors.

4.2.3. Hedging Performance under the Minimum-Variance
Framework. To check the robustness of our findings, we also
show the out-of-sample results under the minimum-vari-
ance framework. Table 6 presents the relevant results. For
space limitation, we only report the out-of-sample results.
,e hedging results under the minimum-variance frame-
work are consistent with minimum-CVaR hedging on the
whole trend, while there is a slight difference.When the scale
changes from short term to long term, the trends of CVaR,
variance, returns, and utility are consistent with the

minimum-CVaR hedging results, which show that our
conclusions are robust and universal. Besides, the mini-
mum-variance hedging performance is worse than the
minimum-CVaR hedging strategy in reducing the risk of
hedged portfolio. For example, when we use dynamic
hedging strategy to hedge the spot risk in original returns,
the CVaR and variance of the hedged portfolio are 3.6082
and 1.4424 under the minimum-variance framework, while
the results are 3.5904 and 1.4357 under the minimum-CVaR
framework. Undoubtedly, the minimum-CVaR hedging
strategy is a better choice for investors, since the investors’
main objective in hedging is to reduce the spot risk of crude
oil, especially the downside tail risk.

5. Conclusions

In this study, we use EMD technology to decompose crude
oil returns and study the effect of different time and fre-
quency scales on hedging. In detail, the EMD technology is
first introduced to decompose crude oil futures and spot data
and reconstruct the decomposition terms into three different
scales: short-term, medium-term, and long-term. ,en, we
discuss the scale dependency structure through three key
indicators: variance contribution rate, Shapley value, and
correlation coefficient. Lastly, under the minimum-CVaR
framework, two different hedging strategies, constant
hedging strategy and dynamic hedging strategy, using the
DCC-GARCH model, are selected to comprehensively an-
alyze the crude oil hedging performance at different scales.

In the empirical analysis, the daily closing prices of spot
and futures contracts of rent crude oil were from August 18,
2005, to September 16, 2019, and a total of 3379 price ob-
servations are collected to test in-sample and out-of-sample
hedging effectiveness. We select the CVaR, variance, returns,
and utility as the criteria to provide an in-depth and
comprehensive assessment of the hedging performance at
different scales.,e empirical results show that the extracted
scales comprise different information on original returns,
Secondly, short-term information occupies the most im-
portant position, and hedging is mainly driven by short-term
information. Lastly, hedging relying on long-term infor-
mation has the best hedging performance; excluding some
information related to short-term noise from the original
returns is helpful for investors. Robustness results by
changing the objective function to variance validate the
above conclusions.
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Table 6: Out-of-sample minimum-variance hedging.

HR CVaR Variance Returns Utilitya

Panel A: constant hedge ratio and hedging performance
Original 0.6372 3.6024 1.4443 0.0016 −4.3314
Short 0.5638 3.5192 1.4948 −0.0265 −4.5107
Medium 0.6422 1.0791 0.1782 0.0081 −0.5264
Long 1.0155 0.4072 0.0547 0.0755 −0.0887

Panel B: dynamic hedge ratio and hedging performance
Original 0.6517 3.6082 1.4424 0.0030 −4.3243
Short 0.5826 3.5481 1.4937 −0.0279 −4.5089
Medium 0.7472 1.0958 0.1819 0.0071 −0.5385
Long 0.9018 0.3619 0.0457 0.0437 −0.0934
a,e utility is calculated by equation Up � E(Rp) − 0.5A

∗varp, where A is
risk aversion level; by referring to Colon et al. [5], we set a moderate risk
aversion level (A� 6).

Table 5: Out-of-sample minimum-CVaR hedging.

HR CVaR Variance Returns Utilitya

Panel A: constant hedge ratio and hedging performance
Original 0.5999 3.5606 1.6256 0.0052 −10.6767
Short 0.5201 3.4823 1.6442 −0.0278 −10.4748
Medium 0.5972 1.0861 0.1821 0.0084 −3.2499
Long 1.1014 0.3245 0.0485 0.0657 −0.9078

Panel B: dynamic hedge ratio and hedging performance
Original 0.6433 3.5904 1.4357 0.0025 −10.7687
Short 0.5984 3.6239 1.5070 −0.0291 −10.9009
Medium 0.7796 1.0846 0.1829 0.0070 −3.2469
Long 0.9933 0.3425 0.0440 0.0537 −0.9739
a,e utility is calculated by equation Up � E(Rp) − 0.5A

∗CVaRp, where A
is risk aversion level; by referring to Colon et al. [5], we set a moderate risk
aversion level (A� 6).
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