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Wavelet-Domain Hidden Markov Models
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Abstract—We introduce a new image texture segmentation partitions the image into regions. that maximize the likeli-
algorithm, HMTseg, based on wavelets and the hidden Markov hood f(z.|c) over the regions. Maximura posteriori(MAP)

tree (HMT) model. The HMT is a tree-structured probabilistic — gegmentation in addition weights the likelinoods by the prior
graph that captures the statistical properties of the coefficients .
probability of eache.

of the wavelet transform. Since the HMT is particularly well ) . .
suited to images containing singularities (edges and ridges), it  1he two key ingredients to any segmentation scheme are 1) a
provides a good classifier for distinguishing between textures. description of the possible image regiansand 2) a set of joint
Utilizing the inherent tree structure of the wavelet HMT and its  pixel pdfs{f(z.|c):c =1, 2,...,N.}.

fast training and likelihood computation algorithms, we perform The primary difficulty in image segmentation arises because

texture classification at a range of different scales. We then fuse th imolv t ibl . h ditis i
these multiscale classifications using a Bayesian probabilistic €re are Simply 100 many PosSIDIE region Shapes, and Itis in-

graph to obtain reliable final segmentations. Since HMTseg works tractable to specify the joint pixel pdf for each possibility. More-
on the wavelet transform of the image, it can directly segment over, even if the joint density could be specified for each pos-
wavelet-compressed images without the need for decompressionsiple region shape, the cost of computing the optimal ML or
into_the space domain. We demonstrate the performance of map segmentation would be prohibitive. In practice, we must
HMTseg with synthetic, aerial photo, and document image . S .

impose structures on both the possible image regions and on the

segmentations. )
) ) pixel pdfs.
Index Terms—Hidden Markov tree, segmentation, texture mod-
eling, wavelets. B. Multiscale Image Segmentation
Many segmentation algorithms employ @assification
|. INTRODUCTION windowof some size in the hope that all pixels in the window
A. Image Segmentation belong to the same class. A typical segmentation then con-

. . . . sists of classifying each window of pixels followed by some
N IMAGE segmentation algorithm aims to assignlass ost-processing.

label to each pixel of an image based on the properties gy the size of the classification window is crucial. A

of the plxe.l and its relatlonsh|p W'th Its qelghbors: A “go_Od'iarge window usually enhances the classification reliability (be-
segmentation separates an image into S|mp!‘e regloTs with gy se many pixels provide rich statistical information) but si-
mogeneous properties, each with a different “texture” [1]. 1, xaneously risks having pixels of different classes inside the
Recently, many authors have applied Bayesian statistiGal,qow, Thus, a large window produces accurate segmentations
techniques to jointly estimate the region shapes and determi'Hf'arge, homogeneous regions but poor segmentations along the
their classes [2]-[4]. Bayesian techniques regard a samplgg,hqaries between regions. A small window reduces the pos-
Imagez as a reallze_mon of a ra.ndo_m fielkt W't,h d|st|n§:t and sibility of having multiple classes in the window but sacrifices
consistent stochastic behavior in different regioitsan image - |5 qsification reliability due to the paucity of statistical informa-

regionX, C X of classc, the pixels are assumed distributedioy Thys, a small window is more appropriate near the bound-
with joint probability density function (pdfy(z,|c). In these aries between regions.

terms, the image segmentation problem can be rephraseqrO capture the properties of each image region to be seg-

as: given an image, esumatg for.each pixel a class Iabe’nented, both the large and small scale behaviors should be uti-
¢ € {1,2,..., N.}. Thelabeling fieldC records the class ji,oq to properly segment both large, homogeneous regions and
label of each pixel. Maximum likelihood (ML) segmentatioryaaijed boundary regions. multiscale segmentatiofs], [6]
the results of many classification windows of different sizes are
Manuscript received October 26, 1999; revised May 31, 2001. This wogombined to obtain an accurate segmentation at fine scales.
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Fig. 1. (a) Imager divided into dyadic square&’ at different scales. Each dyadic square can be associated with a subtree of Haar wavelet coefficients.
(b) Quad-tree structure of dyadic squares. The dyadic sql;@r;esplits into four child squares at scale
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Fig. 2. (a) Parent—child dependencies of the three 2-D wavelet transform subbands: Each arrow points from a parent wavelet coefficient ttlresrfad thodi
next finer scale. (b) More detailed view of the quad-tree structure for one subband. Each black node corresponds to a wavelet coefficient.I3thidlfigtreees

our tree indexing notatior¥; is the subtree of coefficients rooted at nadandp(:) is the parent of nodé (c) A 2-D wavelet hidden Markov tree (HMT) model for
one subband. We model each wavelet coefficient (black node) as a Gaussian mixture controlled by a hidden state variable (white node). To aajdterdbe pe
across scale property of wavelet transforms, we connect the states vertically across scale in Markov-1 chains.

j by dj (with ¢ an abstract index enumerating the squares &havelet coefficient node in the wavelet quad-tree corresponds
this scale). At the two extremedg (root of the tree) is the to a wavelet supported exactly on the corresponding dyadic
entire imager, and eachl; (leaf of the tree) is an individual image square.
pixel. Given a random field imag¥, the dyadic squares are In combination, the multiscale singularity detection property
also random fields, denotel?!. In the sequel, when we speakand tree structure imply that image singularities manifest them-
of a generic square, we will often drop tfie selves as cascades of large wavelet coefficients through scale
With this structure for representing regions, we will segmemnlong the branches of the quad-tree [7]. Conversely, smooth re-
images by estimating the class lalaefior each dyadic square gions lead to cascades of small coefficients.
d;. This estimation requires a pixel pdf model for each class This multiscale singularity characterization makesthe wavelet
that is suited to the dyadic squares. Help is close at hand witbmain natural for modeling texture images. A number of statis-
the dyadic wavelet decomposition and wavelet-based statistitiehl models have been developed for modeling textures [8]-[11];

models. here we concentrate on tiédden Markov treéHMT) model
) o of Crouseet al. [12]. The HMT approximates both the mar-
C. Multiscale Statistical Models and Wavelets ginal and jointwavelet coefficient statistics. The HMT associates

Models of different image textures play a fundamental rolith each wavelet coefficient a (hidden) state variable that con-
in image classification and segmentation, since the compldtels whether it is “large” or “small.” The marginal density of
joint pixel pdf is typically overly complicated or unavailableeach coefficientis then modeled as a two-density Gaussian mix-
in practice. Transform-domain models are based on the ideige, using a large variance Gaussian for the large state and a
that often a linear, invertible transform will “restructure” arsmall variance Gaussian for the small state. This Gaussian mix-
image, leaving transform coefficients whose structure is sinure closely matches the nonGaussian wavelet coefficient mar-
pler to model. Most real-world images, especially gray-scafgnal statistics observed in natural images [9], [10], [13]. The
texture images, are well characterized by te@gularity(edge HMT captures the persistence across scale of large/small coeffi-
and ridge) structure. The wavelet transform provides a powerftients using Markov-1 dependencies between the hidden states
transform domain for modeling singularity-rich images [7].  that chain across scale in a tree structure that parallels that of the

The wavelet transform can be interpreted as a multiscal@velet coefficients and dyadic squares [see Fig. 2(c)]. Grouping
edge detector that represents the singularity content of twe model parameters (Gaussian mixture variances and Markov
image at multiple scales and three different orientationstate transition probabilities) into a vect®t, the HMT can be
Wavelets overlying a singularity yield large wavelet coefviewedasahigh-dimensionalyethighly structured Gaussianmix-
ficients; wavelets overlying a smooth region yield smature modelf(w|AM) that approximates the overall joint pdf of
coefficients. Four wavelets at a given scale nest inside onetla wavelet coefficient$V.
the next coarser scale, giving rise to a quad-tree structure offhe computational efficiency of the wavelet transform carries
wavelet coefficients that mirrors that of the dyadic squares [seeer to HMT-based processing. The HMT model parameters
Fig. 2(a)]. In particular, with thélaar wavelet transformmeach can be estimated using the iterative expectation-maximization
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Fig. 3. HMTseg applied to a synthetic testimage. (&)I& x 512 grass texture image [14]. (b) A2 x 512 wood texture image [14]. (c) A4 x 64 grass/wood
mosaic testimage to be segmented. (d) Raw HMT-based multiscale classificatignsof = for 8 x 8,4 x 4, 2 x 2, and pixel-sized dyadic squares. Classification
accuracy increases with block size (toward coarser scales), because more statistical information is available for the class label decigiahidmvegs at a
cost of reduced boundary resolution. (e) Final segmentaéiins. using Bayesian context-based interscale fusion.

(EM) algorithm at a cost 0f)(n) computations per iteration parametersi .. Now, given the wavelet transforrg of an
[12]. More importantly, given the wavelet transfoiinof a test imagez consisting of a montage of these textures, applying the
imagez and a set of HMT parametesst, computation of the above multiscale likelihood calculation to each HMT yields
likelihood f(w|AM) thatw is a realization of the HMT model the likelihoodsf(d;|M..), ¢ € {1, 2,..., N..} for each dyadic
requires only a simpl€(n) upsweep through the HMT treesubimaged;. With the multiscale likelihoods at hand, the

from leaves to root [12]. simplest ML classification
The HMT has a convenient nesting structure that matches that
of the dyadic squares. Each subtree of the HMT is itself an HMT, ML -
with the HMT subtree rooted at nodenodeling the statistical G T8 cc[lfélf??i N.} F(dij M) (1)

behavior of the wavelet coefficients corresponding to the dyadic

squared;. Serendipitously, the partial likelihood calculationshen informs us of the most likely labé}™ for each dyadic

obtained at intermediate scales of the HMT tree as part of thebimagel;. This classification process, which we call tasv

leaves-to-root upsweep give the likelihoofgl;|AM) of each ML segmentationcan be completed in jugi(n) computations

dyadic subsquare of the imagader the HMT model (more de- for ann-pixel image. It yields a set of different segmentations

tails in Section 1V-B). aq,J = 0,1,...,J — 1, one for each different scalg of
These tools enable a simple multiscale image classiyadic square.

fication algorithm. Suppose that for each texture classFig. 3 illustrates the process. After training HMT models on

c e {1, 2,...,N.} we have specified or trained an HMT withthe grass and wood textures from Fig. 3(a) and (b), we per-
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formed the multiscale classification (1) on the test image (c) &bility to describe large scale behavior. MRF’'s can be improved

obtain the raw segmentations (d) at various scales. by incorporating more neighboring pixels, but this rapidly
increases their complexity. More recently, there have been
D. Interscale Decision Fusion attempts to approximate MRFs using tree structured models

5], [22].

Scaling Coefficient ModelsMultiscale autoregressive
odels approximate the multiscale statistics of gualing
L/gzcl):fﬁcients rather than wavelet coefficients [5]. While the

While quick and easy, as Fig. 3(d) attests, the raw ML sebl-
mentations suffer from the classical “blockiness versus robugt
ness” tradeoff that leaves no singtg; desirable. To obtain a
high-quality segmentation, clearly we should combine the m

tiscale results to benefit from both the robustness of large blogk, . ' - 1\ Jice of the classification window size, the di-
sizes and the resolution of small block sizes.

Si P le dvadi t insid \é/%ﬁe-and-conquer segmentation algorithm of [5] (and a similar
ince finer scale dyadic squares nest inside coarser scgle . [23]) still requires a proper choice.

squares, the dyadic squares will be statistically Olel:)enomn‘l\/aveIet—Domain FeaturesWavelet-domain features are not
across scale for images consisting of fairly large, homogeneog@/
Xtr

1ain advantage of multiscale image segmentation is to avoid

) H iabl le inf i hould to texture classification and segmentation. In [24], Unser
regions. nience, (reliable) coarse-scale information Shou acts parameters at different wavelet scales to facilitate tex-
able to help guide (less reliable) finer-scale decisions.

If the dvadi i lassifiod s then it i ture classification. Let al. [25] employ wavelet coefficient sta-
€ gyadic square; ~ was classiied as classnen LIS - yiqtic 1o classify different textures in document images. Gross

quite likely that its f_our chllq_ren squares at scaleelong to the et al.[26] use a neural network to model the textural features of
same class, especially whgrs large (at fine scales). Hence, W&, avelet coefficients for classification pUTPOSES.
will guide the classification decisions for the child squares base Multiscale Decision Algorithms:The multiscale labeling

on the decision made for their parent square. This will tend Kodel of Boumaret al. [4], [16], [17] does not use an explicit

make the class labels of the four children the same unless tnﬁgdel for the image pixels. Rather it indirectly models the

I|keI|EoodfvaI_ue|s str_(f)_ngJI[y mdg:ate; ott:_err\]/\tnse,tthltj)s tr_eduglngr;[%.xel pdf using a multiscale model of the class labels only. The
number of misclassiications due to slight perturbations in chi chnique in [4] is a general systematic method for combining

likelihood values. In addition to the parent square, we can al ltiscale information. However, because it considers only

u;e_the nelghbors of _th_e parent to guide the decision PrOCER%: phehavior of the class labels across scale without actually
Similar multiscale decision ideas have been successfully appl sidering the joint statistics of the image pixels (it assumes

o docume_nt segmentatloq in [6]. _ that the pixels are independent given the class label), the
To exploit thg pare_nt—chlld dependencies between the dyaé]‘@orithm is useful only for certain types of images (such as
squares, we W.'" build yet anothgr Free-st(uctured propab'l'i}‘le SAR images considered in [4]) in which pixel values can
model, theabeling t'ree(more details in Section IV'C)_' Akin to be considered independent. The algorithms recently proposed
the HMT’ the labeling tree quels the dependenmes betwg n[16], [17] generalize [4] further. However, because these
dyad!c squares across.scale in a Markov-1 fashion, where Gorithms still do not perform direct modeling and decision
dyadic squares at scajeare assumed to depend only on th%f class labels at multiple scales, they require complicated sta-

squares at scalg— 1. (Dependencies between squares W'th'f?stical learning methods based on manually prepared training

the same scalg are captured through the squares COMMAtL. Furthermore, they still model the wavelet coefficients as
ancestors.) Using tree-based modeling,

we gain tremend%e endent, which is not accurate for singularity-rich data
“economies of scale” [4], [12], [15]-[17]. P ’ g 4

such as textures, because of the strong residual correlations

, fMar_kov rfnc;}decljlng dlleads us to ahS|mpIe sclale;ecursl\j/e claSstween wavelet coefficients. In followup work to [25], Li
sification of the dyadic squares, where we clasdffjoased on et al. [6] propose a divide-and-conquer multiscale decision

Its I|ke!|h(_)od and gu'daf“?e from_ the previous scale 1. Th|s algorithm that incorporates deterministic context information.
Baye5|ar|nterscalﬁfpemsmn fusioomputes a MAP estimate /e inwitively appealing, their proposed decision rules are
of t_he class Ia‘be&i O_f each dyadic squardg._ §topplng the deterministic and presented with little justification.
fusion at sc_alg, we obtam the MAP_s_egmeman TAD: A,S we As far as we know, HMTseg is the first attempt to combine
see from Fig. 3(€), multiscale decision fusion greatly improves, .2 metric wavelet-domain statistical modeling, direct likeli-
the robu;tpess and accuracy of the segmentahon. hood calculation, and multiscale Bayesian decision fusion (via
Co_mbmmg the ?b.o"e tools result_s ina ro_bust and accuraig, labeling tree, which is inspired by [4], [16], and [17]). We
yet simple and efﬂ_ment segmentation algorithm that we Caﬂlelieve that these features give HMTseg several distinct advan-
HMTseg[18]. It relies on three separate tree struqtures: t §ges over existing segmentation techniques. In particular, since
wavelet transform quad-tree, the HMT, and the labeling tree., o ,ptain the multiscale likelihoods and classifications directly
through the HMTs, the multiscale information fusion simplifies

E. Related Work considerably. As a result, unlike the algorithms in [16], [17], we
We group related work in texture classification and segmefit€ able to extract the labeling tree parameters from the given
tation into four broad classes. image to be segmented, without additional training data.

Markov Random FieldsMarkov random fields (MRFs) L
[19]-[21] have been extensively applied to model the pixel pfif Paper Organization
f(x). However, while they enable spatially local processing, In Sections Il and Ill, we study two of the basic ingredients
they capture only local interactions and thus have only a limited HMTseg: the wavelet transform and the wavelet HMT model.
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We describe the third basic element, the labeling tree, and caneancestorscoefficients on the paths to the leaves @escen-
struct the algorithm in Section IV. Section V demonstrates tluents If we terminate the iterated filtering at a scale- 0, then
performance of HMTseg through a number of examples. Weere will be more than one coarsest scale wavelet coefficient in
conclude in Section VI by pointing to some remaining issuesach subband, leading to a forest of quad-trees in each subband

and suggesting directions for further research. [12].
To keep the notation manageable in the sequetyldenote
Il. WAVELET TRANSFORM the collection of all wavelet coefficients, and tef-H, wH,

wHH denote the collections of all coefficients in the respective
subbands. Lety; denote a generic wavelet coefficient, with the
The wavelet transform represents the singularity content @fibband under consideration determined by context. In our sta-
an image at multiple scales. There are several different interpfigtical modeling framework, we will regard; as a realization
tations; we will find the pyramidal multiscale construction fObf the random variabl&V; andw as a realization of the wavelet
discrete images cleanest for our purposes [27]. random fieldW . Define by./(:) the scale of coefficientin the
We will focus on the simplest wavelet transform, thaubband quad-tree. Defipé:) as the parent of tree nodeln a
of Haar. The construction of Haar wavelet coefficients Qfiven subband, defin; as the subtree of wavelet coefficients

an image can be explained using four 2-D wavelet filyith root nodei; that is,7; contains coefficients; and all of its
ters: the local smoothehr, = 1/2(; 1), horizontal descendents [see Fig. 2(b)].
edge detectorgLy = 1/2(_] _7), vertical edge de-  Withthe 2-D Haar wavelet transform, there is an obvious cor-
tector g1, = 1/2(11 :11) and diagonal edge detectorrespondence between the wavelet coefficients and the dyadic
gun = 1/2(_1 71). squares [recall Fig. 1(a)], which are obtained by iteratively di-
To compute the wavelet transform c2éx 27 discrete image Viding the image into equal-size quadrants. Recall dade-
x, first setuy[k, 1] := =[k, 1], 0 < k, 1 < 27 — 1. Next, notes adyadic square at scg/evith ¢ an abstract index for the
convolveu; with the filtershrr, gru, gur., andgur and dis-  square. (In the sequel, superscript_s WiII_aI\_Nays denote §qale and
card every other sample in both theand! directions. The re- subscripts will always denote position within a scale.) Ed{cis
sulting subbandimages—.y_1, wgﬁl, wI}EP ande}EI, re- obtained by dividing a square at scgle1 (the “parent” square,
spectively—are each of sizZ ~! x 2/~!. The 4-pack can be df)(’i)l) into four quadrants (the “child” squares). To each dyadic

A. Wavelet Transform and Dyadic Squares

compactly stacked back into2d x 27 matrix square of pixeld; there corresponds a unique set of wavelet co-
efficients with a special property: all wavelet coefficients in the
HL . .
Us-1 Wy, subtree’; rooted atw; depend exclusively on the pixel values
wiE,  HE |7 ind
J—1 J—1 7 -

o ) . The same procedure of wavelet transform construction can be
The filtering and downsampling process can now be continugfpjieq to other wavelet systems besides the Haar. While larger
on theu,_, image and the procedure iterated up'times [see yaye|et filters are more appropriate for representing smooth im-
Fig. 2(a)]. » _ . ages, the Haar system is more appropriate for our purpose of
The scaling coefficienmatricesu;, 0 < j < J — 1 aré (agsifying dyadic squares, due to its direct connection with the
progressively smoothed versions of the original imageThe  qyagic squares. We will see that the Haar system is more than
wavelet coefficienatricesw] ™, wi'", andwj'" are high-and ;gequate for the HMTseg algorithm.

, i i °
band-pass filtereddge-detectedersions of the image thatre-  gecause each wavelet coefficient is computed locally, the

spond strongly to edges in the horizontal, vertical, and diagorgl,e|et transform efficiently represents with large coefficients

orientations, respectively. For example, the wavelet coef“ficie&my the edges of images, resulting in a very sparse and compact
wil [k, 1,0 < k1 < 2771 — 1, is large if the2 x 2 image : : itrichi
U L ' representation of singularity-richimages [7], [12], [28]. Further-

block more, the approximate decorrelation of wavelet coefficients [7],
x[2k, 21] z[2k, 21 + 1] [12] enables us to use very simple local modeling of joint sta-
o2k 41,2 =2k +1, 2 + 1]} tistics between wavelet coefficients.
contains a horizontal edge and small otherwise. l1l. Two-DIMENSIONAL HIDDEN MARKOV TREE MODEL

The iterative computation of each Haar wavelet coefficient

from a2 x 2 block in a finer-scale image leads naturally t hth G . inal pdfs of th | ffici
a quad-tree structure on the wavelet coefficients in each s h the nonGaussian marginal pdfs of the wavelet coefficients

band, as illustrated in Fig. 2(a) and (b) [28]. First assume tre{ﬂ‘?' the p(_arsistence of large/small coefficients across scale. As
we carry out the iterated filtering to scale= 0, and consider 'ndicated in [12], HMT models can be developed for wavelet
only theLH subband. Then the root of the tree liesdt'[0, 0] transforms of any dimensionality; here we focus on 2-D images
and the leaves ab;" [k, 1,0 < k, I < 27 — 1. As we move and thus quad trees.

down the tree, we move from coarse to fine scale, adding de- _ ) o

tails as we go. More specifically, eaphrentwavelet coefficient A- Modeling the Marginal Distribution

wiH[k, 1] analyzes the same region in the original image as itsThe energy compaction property [7], [12], [27] of the wavelet
four childrenw !, [2k, 21], w}, [2k, 21+ 1], w}}! [2k+1, 2], transform implies that the transform of most real-world images

andw}fl[% + 1, 21 + 1]. Coefficients on the path to the rootconsists of a small number of large coefficients and a large

The wavelet hidden Markov tree (HMT) [12], [29] models
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number of small coefficients. We can consider the populatidfig. 2(c)]. Denoting the parameter vectors for the three sub-
of large coefficients as outcomes of a pdf with a large variandeand HMTs as®@™H, ®@HL and ®HH, respectively, we have
Similarly, we can consider the collection of small coefficients ast := {®@-H ©HL @HH} The HMT is thus a parametric
outcomes of a pdf with a small variance. Hence, the fidf;) model (multidimensional Gaussian mixture) for the joint pdf
of each wavelet coefficient is well approximated by a two-demf the wavelet coefficients. Under the subband independence
sity Gaussian mixture mod¢9], [10], [12], [13].2 assumption, we can write

To each wavelet coefficien®;, we associate a discrete
hidden states; that takes on the values = S, L, signifying  f(w|M) := f(w'"O") f(w" 0" f(wH|@"H). (3)
the small and large variance, with probability mass function
(pmf) ps. (m). Conditioned onS; = m, W, is Gaussian with In addition to modeling the wavelet coefficients, we can sep-
meang; ., and variancer? . Thus, the overall pdf oW, is arately model the scaling coefficients—using a mixture den-

i, m*

given by sity, for example [12]. However, for HMTseg, we will inten-
tionally ignore the scaling coefficients. Since the scaling coef-
flw;) = Z ps,(m) f(wi]S; = m) (2) ficients equal local pixel averages, we thus build into our statis-
m=3,L tical modeling independence to the local brightness level. This
wheref(wiS; = m) ~ N(tti. m, Ui ) andps, (S)+ps, (L) = is a desirable feature for many segmentation applications, be-

gause even in regions of homogeneous statistical properties, the
local brightness often varies in different parts of the region.
As it stands, the HMT has a large number of parameters (ap-
B. Modeling Across-Scale Dependencies proximately4n for an n-pixel image). This can make model
Working in the Gaussian mixture marginal distributiorgrammg difficult when only a small number of training images

framework, we can characterize the dependencies between%eeava”able' Fortunately, wavelet coefficients at the same scale

wavelet coefficients by specifying the joint pmf of the hiddeﬁend to exhibit similar statistical characteristics [12], [30]; thus
g can use just one set of parameters for each scale. This nodal

states. Thanks to the approximate decorrelating power of f d th ber of i derably (t
wavelet transform [7], the most important correlations are tﬁ%rmgir:]e turefj fer nu;n erlo trp«’:l]rimr?ners :ciglsr: etrha z E(o fp'
parent—child interactions due to magnitude persistence acrsgimately or a J-scale transform), avoiding the risk o
scale [12F overfitting the model [12], [31].

To capture the scale persistence of coefficient magnitudes,

we connect the hidden states in a directed Markov-1 prob- V- MULTISCALE SEGMENTATION USING HMT MODELS
abilistic graph [12]. For each parent—child pair of hidden We now describe the HMTseg algorithm’s HMT training, fast
states{S,(;), S:}, the state transition probabilitie§;™ for HMT-based likelihood calculation, and multiscale Bayesian de-
m, m’ = S, L represent the probability fé#; to be small/large cision fusion.

when its parentV,;y is small/large. For each we thus have

1. In Fig. 2(c) we depict the wavelet coefficients using blac
nodes and their associated hidden states using white nodes.

the state transition probability matrix A. Training the HMT Models
ef(;):s ef(f)’s ef(é):s 1_ 65(;)73 Before we begin, we must acquire training data representa-
9 . = T N tive of each texture and train an HMT model for each. We typi-
p(i), L p(i),L S OR p(i),L . . ) L
s €L €1 €L cally obtain training images either by picking homogeneous re-

gions from the given image or from completely different im-

ages having homogeneous regions representative of the candi-

date textures. For each clasg {1, ..., N.}, we train a 2-D
wavelet HMT modelM.. using the iterative expectation-maxi-

C. The 2-D HMT Model , mization (EM) algorithm [12], [31], [32].

A complete 2-D image wavelet transform comprises three The EM algorithm finds the locally optimal (in the ML sense)
subbands with three parallel quad-tree structures [as dpt of model parameterst for a given set of training data. In
Fig. 2(b)]. In particular, node in the LH, HL, andHH quad  gach iteration, the E step defines a likelihood surface based on
trees corresponds to the same dyadic sqdaiie the image. the current parameters. The M step then updates the parame-
While the three subbands are clearly dependent on each otfgk 1o maximize the likelinood that the training data came from

For typical gray-scale images, we expef )% and ez(]f)’L to
be large due to the persistence property.

for tractability reasons, we assume the following. the model [31], [32]. The EM algorithm derived for 1-D HMT
Subband Independence Assumptidre three subbands of models in [12] applies with little modification in 2-D if we in-
the 2-D wavelet transform are statistically independent. terpret the parent—child relations between nodes appropriately

The complete 2-D wavelet HMT modeM consists of for quad-trees. In the HMT, each EM iteration consists of an
three HMT's [one for each wavelet subband as shown {ih/down sweep through the tre@(n) cost forn wavelet coef-

2We can use more than two mixture densities to provide a fit to the actJé‘F'ents]-
f(w;) with any desired fidelity. In practice, however, we have seen no real per-
formance benefit to using more than two. 4The only necessary change is in [12, p. 900, Eq. (22)], where the product
3While the HMT focuses on across-scale dependencies, it does not ignoosv covers four child coefficients on the quad tree rather than two children
within-scale dependencies. Correlations between coefficients at the same sealéhe binary tree. For more information on probabilistic graphs and training
are modeled through their mutual ancestors in the HMT quad tree. algorithms, see [32].
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To maximize the spatial shift invariance of HMTseg, we can Direct block-by-block comparison of the likelihoods (1) com-
either use intra-scale tying (using the same mixture variangagted using (5) yields the ML raw segmentations at a range of
and state transition matrices for all wavelet coefficients at tlseales [recall Fig. 3(d)]. (We discuss how to carry this down to
same scale) as proposed in [12] or prepare a training set cpixel-sized blocks in Section IV-D.) We refer to this block-by-
taining different shifts of the training textures. In our experiblock classification as “raw,” because we do not exploit any pos-
ments, we have found only minimal performance reduction (bsible relationships between the classifications at different scales.
significant parameter reduction) using intra-scale tying. Fuwe expectthe raw decisions to be more reliable at coarser scales
thermore, in all of our experiments, reliable HMT training refwhere we have more image pixels per block) but more finely
quired fewer than ten training images. localized at finer scales (where the blocks are smaller). Clearly

Givenm training images of. pixels each, the total computa-it is in our best interests to overcome this blockiness versus ro-
tional cost per EM iteration i€ (mn). While the total training bustness tradeoff by folding the coarse-through-fine likelihoods
cost can be enormous for large andn, we have several av- into our final segmentation recipe.
enues for reducing the amount of computation. First, intra-scale
tying significantly reduces both the number of parameters € Context-Based Interscale Fusion

train and the number of required training imamecond, we We can improve the raw Segmentation Considerab|y by con-
note that coarse-scale wavelet coefficients correspond to lagggering the dependencies between the class decisions at dif-
dyadic squares that likely contain a number of different textur&grent scales. We will do this by modeling the multiscale depen-
Since these squares supply little information for segmentatigfencies between the dyadic blocks. Our approach is inspired by
we can clip the upper scales from the HMT, creating a forest gfe Bayesian multiscale segmentation framework of Bouetan
smaller HMTs. These smaller HMT’s naturally share the samg [4].
parameters and thu_s feduce_the sizef our required training 1) Bayesian Segmentatiodn a Bayesian segmentation
images (more on this in Section IV-E). framework, we treat each class lakglas a random variable
While EM training is notorious for its slow convergence, inc; taking a value from{1, 2, ..., N.}. Given the posterior
our experiments (incluc_iing the two examples_ in Sgction \_/) Wéistributionp(c;|z) of C; given the imageX, the MAP classi-
reached convergence in fewer than twenty iterations using ftion of dyadic square; corresponds to the class label that
intelligent parameter initialization. maximizes the posterior distribution

B. Multiscale Likelihood Computation eMAT .= arg max p(ci|z). (6)

Given a set of 2-D HMT model parametesst and the e 2 Ve
wavelet transformw of a test image, it is straightforward toBy Bayes rule, the posterior is given by
compute thdikelihood f(iw|M) that the image was generated
by the model [12]. Furthermore, thanks to the dyadic multiscale p(ci|z) = M
structure of the wavelet transform and the HMT, we can obtain f(x)
the likelihoods of all dyadic squares of the imagenultane-
ously in a single upward sweep through the tree [a st)

()

Letd := {d/} denote the collection of all dyadic squares at
scalej; note that eacld’ contains complete information on the

algorithm]. ; ; . X
Consider first the likelihood calculation for a subtrégof imagez. A posterior equivalent to (7) is thus
wavelet coefficients rooted at; in one of the subbands [12]. i f(djlcg)p(cf)
Suppose this subband has HMT parame@rGiven the con- plgld) = — == (8)

4
ditional likelihoodsg;(m) = f(7;|S; = m, @) obtained by 1)
sweeping up the quad-tree from the leaves to ng@dee [12]), Since computation and maximization of (8) is intractable in
the likelihood of the coefficients if; can be computed as practice, we will perform a succession of manipulations and
simplifications to arrive at a practical MAP classifier. Just as
f(7:]|®) = Z Bi(m)p(S; = m|®) (4)  the HMT models the pdfg(w) and f(x) by echoing the struc-
m=8,L ture of the wavelet coefficient quad tree, we will construct a
probabilistic tree to model the posterior (8) based on the dyadic
square quad tree of Fig. 1(b). The resultiageling treemodel
ill capture the interscale dependencies between dyadic blocks
and their class labels and enablenaltiscale Bayesian deci-
g,ion fusion There are many ways to capture these multiscale
endencies [4], [6], [16], [17]; here we outline one possible
ggproach that balances accuracy with tractability.
2) Image Model with Hidden Class Label&ather than
odeling the joint statistics of the dyadic squafesdirectly,
f(d;| M) = F(TH @) £(THL | @) £ (7| @), (5) we will model the statistics of the associated class laligls
We assume that class lalb@] controls the textural properties
Using (5), we can compute the likelihood under each textuoé squareD;; that is, eaclD; is generated based on the distri-
model of each dyadic square down2c 2 block scale. bution f(d;|c;) independently of all othef;, anddy,, & # <. Let

with p(S; = m|®) state probabilities obtained directly froé
(or computed during training).

Now recall the connection with the dyadic squares. It is ea:
to see that the wavelet coefficients of the squBireonsist of the
triple {Z.M, 7HL 7HH} "each a subtree of one of the thre
wavelet subband quad-trees. Using three HMT upsweeps,
can easily compute the likelihood (4) for each of these subtre
Then, using the subband independence assumption, we havr%
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vy

/Y/p, (b)

Fig. 4. (a) Context, class label, and dyadic square form a Markov-1 chair> C; — D;. (b) Context labeling tree. The context of the child square is
determined by the decision results of its parent plus eight neighbors.

Cl = {Cf} denote the collection of all class labels at scale tion of thec’ 1. Letw’ be the collection of all contexts at scale
Then, givenC? = ¢/, all D] are independent g
o o The choice of a good context model is crucial to the perfor-
f(d&)e) = H JICALDE (9) mance of HMTseg. We have a trade-off between the complexity
i of the context and the accuracy of the model. Among many can-

The class labels play a role analogous to the hidden stategiﬂate contexts, we can determine the effective contexts based

the HMT (recall that given the values of the states, all wavel@f known training data. In some sense, the decision-tree based
coefficients are independent [12], [31], [32]). algorithm in [16] is a general form of the context-based fusion

Under the conditional independence of #fs givenc’, our algorithm applicable when sufficient training data is available

MAP classification problem transforms to maximizing the podor reliable estimation of the decision parameters.
terior f(c!|d’) [recall (8)], the marginal of Contexts allow us to write

51 G\ J ) = J |
Fd | p(e () = [ pleiler). (12)
& ’
) SinceD; is independent of; givenC; (by the Markov-1 prop-

Here we have used (9). Unfortunately, marginalizing (10) to ok¥ty), conditioning (10) on the contexts yields
tain (8)—integrating out al;, £ # i—for the MAP decision

p(e|d) =

) _ ple’) i1

statistic is difficult in general, unless the joint distributiofe’) p(c7|dj, ,,J’) - w
has a special structure. f(dv7)

3) Multiscale Prior and ContextsiTo simplify the deter- _ 1 H [f(dﬂcﬁp(cﬂzﬂ)} (13)
mination and marginalization of the joint prior distribution f(d |v9) L

p(cf|dj) in (10), we assume that the joint distribution of the o ,
class label€ at scalej is completely determined by ti/~  @nd the marginalized, context-based posterior
at the previous coarser scale. Combined with the‘as_sumptlon f(c§|d{, U{) ~ f(d{|c§)p(c§|vf). (14)
that D; is conditionally independent of all’y, k # i given
C;, we have thatC? ™', ¢/, and D; form a Markov chain: This is a greatly simplified version of the MAP posterior (7) for
{¢J7'} — ¢, — D;. This heuristic models the interscaleuse in the MAP equation (6). Here, tHféd;|c;) are the likeli-
dependencies between the class labels that we motivatechawds of the dyadic squatk given the different class values
Section I-D. Thus, givel®’ ! = ¢/ 1, theC/s at scalg/ are C;, which are computed using an HMT likelihood upsweep on
independent, and we can write thiiltiscale prior distribution each texture model. The pripfc;|v;) supplies information on
o o the ¢/ provided by they 's throughw;.
p@ld™) =[] p(ld™). (11)  4) Context Labeling TreeThe interscale dependency
P modeling between the class labels (11) yields a tree of class
Due to the high dimensionality of the conditioning vectolabels, where the dependencies march down the tree in a
¢~1, estimating the marginalized class prior distributiofarkov fashion. Compared with dependency modeling at
p(c|¢=1) still requires a prohibitive amount of training data®ach individual scale (with, say, a MRF), causal tree-based
Contextsprovide a useful further simplification of (11) [33]. Todependency modeling is both simple and effective.
each dyadic squar®’ with hidden class label, we assign ~ While each context; is potentially a function of alo] ™ at
the (deterministic) context vectar, which is formed from Scalej — 1, here we will employ a simplified tree organization:
information about the’ 1. ) eachw! at scalej will receive information from nine scalg— 1
The triplew; — C; — D; forms a Markov-1 chain [see class labels, the parent Iab%/l(’i)l plus the parent’s eight nearest
Fig. 4(a)]. That isw; encodes sufficient information regardingweighboringCJki_1 [see Fig. 4(b)]. We term this context organ-
¢/~! such that, given its value, we can tregt andD; as in- ization thecontext labeling treeThe limit of coarser scale in-
dependent of all othef}, andDy. If v; is chosen as a discreteformation to just nine blocks is easily justified by noting tat
vector of small dimension, then it simplifies the modeling conwill receive information from a region of pixels centered around
siderably. In the multiscale prior model (11), wedg¢te afunc- and 36 times larger than its squake
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While the context choice is very general and we may needHMT likelihood computations. Note thaic;|v;) is chosen in
very complex context to accurately summarize the informatidghe ML sense by averaging over the entire image (15).
conveyed by th€’~!, over-complicated contexts run the risk of The EM algorithm again comes to our rescue; in fact, we can
context dilution especially with insufficient training data [16], use it to compute and maximize the posterior (14) directly. We
[17], [33]5 do not specifyp(c;|v;) directly, but rather specify(v;|c;) and

Inspired by the success of hybrid tree model in [4], we withpply Bayes rule
employ a simple context structure in HMTseg. Each context
vectorwv; will contain two entries: the value of the class label pleilvs) = ZM_ (16)
C,) of the parent square (which will be a MAP estimate in p(vi)
practice) and the majority vote of the class labels of the parefésuyming these probabilities to be constant at each scale, set
plus its eight neighbors. GiveN, different textures, each con-
text can take onV? different values. Let the number of dif-  ¢; ,,, := p..(m), «
ferent valuew; can take beV, (= N2 in the algorithm); thus,

v; € {m1, ..., vy, }. While this simple context igd hog it foralliinscalej andm € {1,..., Nc}, k € {1,..., NuJ.

is more than sufficient for demonstrating the effectiveness dhe set of probabilities := {¢; ..., «; 5, ., } can be com-
multiscale decision fusion. Furthermore, context training can Béted using an EM algorithm on the context labeling tree (see
accomplished reliably based on the given image only, withotite Appendix for details). The context-based Bayes classifica-
requiring extra training data for estimating the context relatd@n then finds the class label that maximizes the contextual pos-
probabilities. terior distributionp(¢;|d;, w;) from (14) [see (18) in the Ap-

Since thep(c]|v;)s at scalej depend on the2i~'s from pendix].
scalej — 1, we will evaluate and maximize (14) in a multiscale, While EM iterations are necessary at each scale to estimate
coarse-to-fine manner to fuse the HMT likelihoodléd;|c;) the fusion parameters; ,,, and«, 7, ., we note that the al-

(precomputed as in Section IV-B) using the labeling tree pri(gorithm converges rapidly with the initial parameters set to the
p(dlvi)- Our fusion will pass the MAP decisions down througiyalues estimated in the previous coarser scale. This is because
scale to aid the segmentation of fine scale dyadic squares. th@parameters change little from scale to scale, especially atfine
result is simple, yet effective. scales where EM iterations are more expensive. Furthermore, at

5) Interscale Fusion EM AlgorithmThe fusion proceeds Very fine scales, we can actually use the fusion parameters esti-
as follows. Start at a coarse enough scale 1 such that the mated in the coarser scales without rg-estimation. This is partic-
ML raw segmentationg; ;" are statistically reliable. Use thesetlarly helpful when the likelihoodg(d; |c:) at very fine scales
and all coarser ML decisions as the MAP decisigfjg . This ~are less robustand maximizigigz|v’) in (15) does not give the
is entirely reasonable; at coarse scales (large dyadic squar@ggired(ci|v;)s. We employed this technique in the document
the next coarser scale (very large dyadic squares) provides liiRgmentation example of Section V-B.
prior information for segmentation.

Now move down to the next finer level Fix the context
valuesv! from theé > at scalej — 1 (from the parent label ~ Since the Haar wavelet HMT characterizes the joint statistics
and its eight nearest neighbors). We are given the likelihoofithe dyadicimage squares only dowr2te2 blocks, we do not
f(d{|c§) in (14) from the HMT likelihood computation step.directly obtain pixel-level segmentations. While the collection
Hence, after computing(cﬂv{), we can choose the label forof all wavelet and scaling coefficients completely characterizes
aqap that maximizes the product (14). the original image, the HMT subband independence assump-

To computep(c;|v;), we use an ML estimate averaged ovefion and the fact that we ignore the scaling coefficients limit
the collection ofall dyadic squared;, at scalej. Since this col- our reach ta@ x 2 blocks. Pixel-level segmentation requires a
lection is precisely the image, we can write (by the chain rule model for the pixel brightness of each texture class. However,
of conditioning) obtaining an appropriate model can be difficult, since in many

images the local brightness varies considerably due to shading,
; al p etc. For such images, tf#ex 2 block segmentations will be far
faw) = [T X f@le =Dpe =llvs). (15 5 robust, since they rely on inter-pixel dependencies and not
J)=j 1=t local brightness.
Here we sum over thd, candidate textures and use the fact that Pixel brightness corresponds to the pdf of a single pixel. For
all blocks at the same scajeare independent given the con-our purposes, we fit a Gaussian mixture to the pixel values for
textsv’. Becausey(c;|v;) represents the relation between theach training texture. We can then compute the likelihood of
context and the class label, it is reasonable to assume that R@h pixel and extend the above interscale scale fusion algo-
same for alk within each scale. The ML estimate pffc;|v;) is  fithm from2 x 2 blocks to the pixel level.
that which maximizes the likelihood of the image given the
[given in (15)]. Maximizing (15) is possible because the likeE
lihoods f(d!|c; = [) are already available from the multiscale As described above, the interscale fusion algorithm starts at

_ _ _ the root node of the context labeling tree and descends to the
SEffective contexts can be selected from a library of possible contexts us|

i . . . .
a classification algorithm such as that proposed in [16], provided thatsufficieﬁit%(':‘St scale to combine all possible CQar_Se scale 'nformat'o_n'
manually prepared training data are available. However, at very coarse scales, the likelihoods of the dyadic

=pv; =Tl =m)  (17)

3, Uk, m

D. Pixel-Level Segmentation

. Implementation Issues
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(b) test data

8 x B blocks 4 A blocks 2 = 2 blocks pixel level
(] raw segmentations

B » B blocks 4 % 4 blocks 2 = 3 blocks pixel lewel
{d) interscale fused segmentations

Fig. 5. Aerial photo segmentation using HMTseg. (a) R4 x 1024 aerial photo and (b}56 x 256 test subimage. The homogeneous ground/sea regions
outside the region (b) were used to train two HMT's. (c) Raw HMT-based multiscale classificatignsf z for 8 x 8,4 x 4, 2 x 2, and pixel-sized dyadic
squares. (d) Final segmentatioifs . using Bayesian context-based interscale fusion. The erroneous segmentation of the ground regions in the upper middle
portion of the image is due to the large expanses of concrete (runways), whose texture is closer to that of sea than ground in this case.

squares do not contain significant information, since the squafesSummary of HMTseg Algorithm
are large and hence are likely to contain several differently tex-thea final segmentation algorithm consists of three steps:

tured regions. When fusing multiscale classification results, w, training, multiscale likelihood computation, and multi-
therefore ignore the information at very coarse scales. scale fusion. ' ’

Ignoring the coarsest scales has the side benefit. As described
in Section IV-A, reducing the size of the HMT reduces the
computation required for training and likelihood determinatiotrdMTseg Algorithm
If we start fusing at scalg, > 0, then we only need the waveletl) Train wavelet-domain HMT models for each texture using
coefficients, HMT models, and likelihoods at scales> j,. homogeneous training images. To obtain pixel-level segmenta-
With the Haar transform, starting at scale> 0 is equivalent tion, also train a pixel brightness pdf model.
to dividing the image into the dyadic squarEs® and then 2)Compute multiscale likelihoods.Using the likelihood com-
performing the HMT likelihood computation independentlyputation algorithm for the HMT model [12] and (4), compute the
on each of these squares. This saves a considerable amoulikelihood of each dyadic image square at each different scale.
computation and reduces the size of the required homogene®bis gives the likelihoods (d! |¢!) for each dyadic square. If
training images to2”—J0 x 27—Jo_ In practice, we set the the trained HMT model is smaller than the test image, repeat
starting scalg, such that the coarsest raw segmentations hatve likelihood computations for image subblocks assuming that
sufficient reliability. the blocks are independent (see Section IV-E).



CHOI AND BARANIUK: MULTISCALE IMAGE SEGMENTATION USING WAVELET-DOMAIN HIDDEN MARKOV MODELS 1319
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(&) Eraining image (b] kest imégt
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m——— =

4 % 4 blocks 2 % 2 blocks posel bevel
(c) raw segmentations

8 x & blocks T $x 4 blocks 2% 2 blocks pivel level
(d) interscale fused segmentations

Fig. 6. Document segmentation using HMTseg. ()18 x 512 training image was hand-segmented, and homogeneous regions were used to train HMTs for
text, image, and background textures. (bp#2 x 512 test imagex. (c) Raw HMT-based multiscale classificatiogy; of = for 8 x 8,4 x 4,2 x 2, and
pixel-sized dyadic squares. Black, gray, and white represent text, image, and background, respectively. Classification accuracy clesslgtdewreasles. (d)

Final segmentation&; . using Bayesian context-based interscale fusion correctly classify even the angled text on the books. Adding a fourth class (large text)
would allow us to correctly classify the text at the bottomezof

3) Fuse multiscale likelihoods using the labeling tre¢o form  A. Aerial Photo Segmentation
the multiscale MAP classification. Pick the starting scgle  \ve trained wavelet HMTs for “sea” and “ground” textures
. . i1 .
such that the ML classifications of thé™"s at scalej —1 | ;5ing hand-segmented blocks from 1i8€4 x 1024 aerial photo
are reliable enough to obtain thgs. Estimate the parameters) 4]in Fig. 5(a). For training data, we extractsi) x 100 homo-
¢j,m and a; 5, to maximize f(z[»’) in (15) using the genequs ground [upper-left comer of Fig. 5(a)] and sea [lower-
EM algorithm in the Appendix. Each EM iteration updates thﬁght comer of Fig. 5(a)] images. Then, from eal® x 100
context.ual posterior distribqtio;i(ci|di, v;). When_converg_ed, image, we randomly picked ten (overlappirig) x 64 blocks.
determine the; that maX|r?J|rzle$)(ci|di, v;). Continue fusion \yith this training data and intra-scale tying in the HMT models,
at scaIerJr 1 baged on the’*! formed using the’s qbtalngd the EM training algorithm converged in less than 15 iterations.
at scalej. Continue the process for all scales until the finest Choosingjo = 3 for the starting scale (corresponding to
scale is reached. 6-scale quad-trees @ x 64 image blocks), we segmented the
256 x 256 test image in Fig. 5(b).
Fig. 5(c) shows the raw classification results. Pixel-level
raw segmentation was obtained using 2-density Gaussian
Fig. 3 demonstrated the HMTseg process on a synthetic datxture models for pixel brightness of the ground and sea
example. Here we illustrate two real-world image segmentatitextures. Fig. 5(d) illustrates the segmentation resulting from
problems. coarse-to-fine interscale fusion. Except for some segmentation

V. EXAMPLES
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errors in the upper middle part of the image (caused by the APPENDIX
ground there having a concrete texture more resembling sea), EM ALGORITHM FOR CONTEXT LABELING TREE

we observe excellent segmentation results at all scales. Our goal is to findp(c;|v;) maximizing f(z|v’) in (15). We

precompute the conditional likelihood¥d’|c;) for all ¢; €
B. Document Segmentation {1, ..., N.} using (5) by sweeping up the HMTs from the

; : . ar eyt 1€AVES t0 Nodeé [12]. Recall the definitions 0é; .., «; 5,
We trained HMT and pixel brightness models for “text, and P from (17). The EM algorithm runs as follows. *

image,” and “background” textures using hand—segmentedlnitialize: Setl — 0 and choosd.

blocks from th9°12 x 512 document in Fig. 6(a) [34]' Again, (A natural choice forP° is the set of parameters obtained in
we randomly picked tefi4 x 64 homogeneous regions for eact} .
e previous, next coarser scale.)

:ﬁfﬁ:i;g;ncgf\)e%ag da\?viirrwa}lr\n;]gi?eiiizig.The EM trainings 0 Expectation (E): Given P!, calculate (using Bayes rule)
Choosingj, = 4 for the starting scale (corresponding to o — m)
6-scale quad-trees di x 64 image blocks), we segmented _ ‘ . (@18)
the512 x 512 test image in Fig. 6(b). Fig. 6(c) shows the raw Ne .
classification results. As expected, we observe many classifica- Z €, 10, v, 1.f (df G = l)
tion errors. The pixel-level segmentation, in particular, is not =1
reliable (all text was classified as imagery). Fig. 6(d) illustrates
the segmentation resulting from coarse-to-fine interscale

VRN
d;, v;

7]
) ejmlaj,vi,mf (di

p(ci:m

Maximization (M): Update the elements @/ +!

fusion. All text regions are segmented well, including the text o — 1 Z (C‘ S dj) (19)
surrounded by images on the books. At the bottom, we observe ST 925 P& = i
the large-font title text segmented as imagery. This is because 1Z

the homogeneous texture inside each large letter has properties«; %, ,,, = 27 o Z p (Cv‘, =m|v}, df)
more similar to imagery than (small-font) text. The background P with v =5,

regions are correctly segmented, even though the brightness of for eachwy, k € {1, ..., N,}. (20)
the background varies in different areas and is corrupted by a

noise-like feature caused by text on the reverse side of the pagdterate: Increment/ — I + 1 and applyE and A until
In the fusion step, we estimated the fusion parameters omlynverged.

down to2 x 2 block scale, since incorrect pixel likelihoods
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