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Multiscale Image Segmentation Using
Wavelet-Domain Hidden Markov Models
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Abstract—We introduce a new image texture segmentation
algorithm, HMTseg, based on wavelets and the hidden Markov
tree (HMT) model. The HMT is a tree-structured probabilistic
graph that captures the statistical properties of the coefficients
of the wavelet transform. Since the HMT is particularly well
suited to images containing singularities (edges and ridges), it
provides a good classifier for distinguishing between textures.
Utilizing the inherent tree structure of the wavelet HMT and its
fast training and likelihood computation algorithms, we perform
texture classification at a range of different scales. We then fuse
these multiscale classifications using a Bayesian probabilistic
graph to obtain reliable final segmentations. Since HMTseg works
on the wavelet transform of the image, it can directly segment
wavelet-compressed images without the need for decompression
into the space domain. We demonstrate the performance of
HMTseg with synthetic, aerial photo, and document image
segmentations.

Index Terms—Hidden Markov tree, segmentation, texture mod-
eling, wavelets.

I. INTRODUCTION

A. Image Segmentation

A N IMAGE segmentation algorithm aims to assign aclass
label to each pixel of an image based on the properties

of the pixel and its relationship with its neighbors. A “good”
segmentation separates an image into simple regions with ho-
mogeneous properties, each with a different “texture” [1].

Recently, many authors have applied Bayesian statistical
techniques to jointly estimate the region shapes and determine
their classes [2]–[4]. Bayesian techniques regard a sampled
image as a realization of a random field with distinct and
consistent stochastic behavior in different regions.1 In an image
region of class , the pixels are assumed distributed
with joint probability density function (pdf) . In these
terms, the image segmentation problem can be rephrased
as: given an image , estimate for each pixel a class label

. The labeling field records the class
label of each pixel. Maximum likelihood (ML) segmentation
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partitions the image into regions that maximize the likeli-
hood over the regions. Maximuma posteriori(MAP)
segmentation in addition weights the likelihoods by the prior
probability of each .

The two key ingredients to any segmentation scheme are 1) a
description of the possible image regionsand 2) a set of joint
pixel pdfs .

The primary difficulty in image segmentation arises because
there are simply too many possible region shapes, and it is in-
tractable to specify the joint pixel pdf for each possibility. More-
over, even if the joint density could be specified for each pos-
sible region shape, the cost of computing the optimal ML or
MAP segmentation would be prohibitive. In practice, we must
impose structures on both the possible image regions and on the
pixel pdfs.

B. Multiscale Image Segmentation

Many segmentation algorithms employ aclassification
windowof some size in the hope that all pixels in the window
belong to the same class. A typical segmentation then con-
sists of classifying each window of pixels followed by some
post-processing.

Clearly, the size of the classification window is crucial. A
large window usually enhances the classification reliability (be-
cause many pixels provide rich statistical information) but si-
multaneously risks having pixels of different classes inside the
window. Thus, a large window produces accurate segmentations
in large, homogeneous regions but poor segmentations along the
boundaries between regions. A small window reduces the pos-
sibility of having multiple classes in the window but sacrifices
classification reliability due to the paucity of statistical informa-
tion. Thus, a small window is more appropriate near the bound-
aries between regions.

To capture the properties of each image region to be seg-
mented, both the large and small scale behaviors should be uti-
lized to properly segment both large, homogeneous regions and
detailed boundary regions. Inmultiscale segmentation[5], [6]
the results of many classification windows of different sizes are
combined to obtain an accurate segmentation at fine scales.

In this paper, we will employ thedyadic squares(or blocks)
to implement classification windows of different sizes. Given
an initial square image of pixels, the
dyadic squares are obtained simply by recursively dividing the
image into four square subimages of equal size [see Fig. 1(a)].
Since the four “child” squares nest inside their “parent” square
at the next coarser scale, the dyadic squares have a convenient
quad-tree structure; each node in the quad tree in Fig. 1(b) cor-
responds to a dyadic square. Denote a dyadic square at scale
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Fig. 1. (a) Imagexxx divided into dyadic squaresddd at different scales. Each dyadic square can be associated with a subtree of Haar wavelet coefficients.
(b) Quad-tree structure of dyadic squares. The dyadic squareddd splits into four child squares at scalej.

Fig. 2. (a) Parent–child dependencies of the three 2-D wavelet transform subbands: Each arrow points from a parent wavelet coefficient to its four children at the
next finer scale. (b) More detailed view of the quad-tree structure for one subband. Each black node corresponds to a wavelet coefficient. The figure also illustrates
our tree indexing notation:T is the subtree of coefficients rooted at nodei, and�(i) is the parent of nodei. (c) A 2-D wavelet hidden Markov tree (HMT) model for
one subband. We model each wavelet coefficient (black node) as a Gaussian mixture controlled by a hidden state variable (white node). To capture the persistence
across scale property of wavelet transforms, we connect the states vertically across scale in Markov-1 chains.

by (with an abstract index enumerating the squares at
this scale). At the two extremes, (root of the tree) is the
entire image , and each (leaf of the tree) is an individual
pixel. Given a random field image , the dyadic squares are
also random fields, denoted . In the sequel, when we speak
of a generic square, we will often drop the.

With this structure for representing regions, we will segment
images by estimating the class labelfor each dyadic square

. This estimation requires a pixel pdf model for each class
that is suited to the dyadic squares. Help is close at hand with
the dyadic wavelet decomposition and wavelet-based statistical
models.

C. Multiscale Statistical Models and Wavelets

Models of different image textures play a fundamental role
in image classification and segmentation, since the complete
joint pixel pdf is typically overly complicated or unavailable
in practice. Transform-domain models are based on the idea
that often a linear, invertible transform will “restructure” an
image, leaving transform coefficients whose structure is sim-
pler to model. Most real-world images, especially gray-scale
texture images, are well characterized by theirsingularity(edge
and ridge) structure. The wavelet transform provides a powerful
transform domain for modeling singularity-rich images [7].

The wavelet transform can be interpreted as a multiscale
edge detector that represents the singularity content of an
image at multiple scales and three different orientations.
Wavelets overlying a singularity yield large wavelet coef-
ficients; wavelets overlying a smooth region yield small
coefficients. Four wavelets at a given scale nest inside one at
the next coarser scale, giving rise to a quad-tree structure of
wavelet coefficients that mirrors that of the dyadic squares [see
Fig. 2(a)]. In particular, with theHaar wavelet transform, each

wavelet coefficient node in the wavelet quad-tree corresponds
to a wavelet supported exactly on the corresponding dyadic
image square.

In combination, the multiscale singularity detection property
and tree structure imply that image singularities manifest them-
selves as cascades of large wavelet coefficients through scale
along the branches of the quad-tree [7]. Conversely, smooth re-
gions lead to cascades of small coefficients.

Thismultiscalesingularity characterizationmakes the wavelet
domain natural for modeling texture images. A number of statis-
ticalmodelshavebeendeveloped formodeling textures [8]–[11];
here we concentrate on thehidden Markov tree(HMT) model
of Crouseet al. [12]. The HMT approximates both the mar-
ginal and joint wavelet coefficient statistics. The HMT associates
with each wavelet coefficient a (hidden) state variable that con-
trols whether it is “large” or “small.” The marginal density of
each coefficient is then modeled as a two-density Gaussian mix-
ture, using a large variance Gaussian for the large state and a
small variance Gaussian for the small state. This Gaussian mix-
ture closely matches the nonGaussian wavelet coefficient mar-
ginal statistics observed in natural images [9], [10], [13]. The
HMT captures the persistence across scale of large/small coeffi-
cients using Markov-1 dependencies between the hidden states
that chain across scale in a tree structure that parallels that of the
wavelet coefficients and dyadic squares [see Fig. 2(c)]. Grouping
the model parameters (Gaussian mixture variances and Markov
state transition probabilities) into a vector , the HMT can be
viewedasahigh-dimensionalyethighlystructuredGaussianmix-
ture model that approximates the overall joint pdf of
the wavelet coefficients .

The computational efficiency of the wavelet transform carries
over to HMT-based processing. The HMT model parameters
can be estimated using the iterative expectation-maximization
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Fig. 3. HMTseg applied to a synthetic test image. (a) A512�512 grass texture image [14]. (b) A512�512wood texture image [14]. (c) A64�64 grass/wood
mosaic test image~xxx to be segmented. (d) Raw HMT-based multiscale classificationsĉcc ofxxx for 8�8,4�4, 2�2, and pixel-sized dyadic squares. Classification
accuracy increases with block size (toward coarser scales), because more statistical information is available for the class label decision. However, this comes at a
cost of reduced boundary resolution. (e) Final segmentationsĉcc using Bayesian context-based interscale fusion.

(EM) algorithm at a cost of computations per iteration
[12]. More importantly, given the wavelet transformof a test
image and a set of HMT parameters , computation of the
likelihood that is a realization of the HMT model
requires only a simple upsweep through the HMT tree
from leaves to root [12].

The HMT has a convenient nesting structure that matches that
of the dyadic squares. Each subtree of the HMT is itself an HMT,
with the HMT subtree rooted at nodemodeling the statistical
behavior of the wavelet coefficients corresponding to the dyadic
square . Serendipitously, the partial likelihood calculations
obtained at intermediate scales of the HMT tree as part of the
leaves-to-root upsweep give the likelihoods of each
dyadic subsquare of the imageunder the HMT model (more de-
tails in Section IV-B).

These tools enable a simple multiscale image classi-
fication algorithm. Suppose that for each texture class

we have specified or trained an HMT with

parameters . Now, given the wavelet transform of an
image consisting of a montage of these textures, applying the
above multiscale likelihood calculation to each HMT yields
the likelihoods , for each dyadic
subimage . With the multiscale likelihoods at hand, the
simplest ML classification

(1)

then informs us of the most likely label for each dyadic
subimage . This classification process, which we call theraw
ML segmentation, can be completed in just computations
for an -pixel image. It yields a set of different segmentations

, , one for each different scaleof
dyadic square.

Fig. 3 illustrates the process. After training HMT models on
the grass and wood textures from Fig. 3(a) and (b), we per-
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formed the multiscale classification (1) on the test image (c) to
obtain the raw segmentations (d) at various scales.

D. Interscale Decision Fusion

While quick and easy, as Fig. 3(d) attests, the raw ML seg-
mentations suffer from the classical “blockiness versus robust-
ness” tradeoff that leaves no single desirable. To obtain a
high-quality segmentation, clearly we should combine the mul-
tiscale results to benefit from both the robustness of large block
sizes and the resolution of small block sizes.

Since finer scale dyadic squares nest inside coarser scale
squares, the dyadic squares will be statistically dependent
across scale for images consisting of fairly large, homogeneous
regions. Hence, (reliable) coarse-scale information should be
able to help guide (less reliable) finer-scale decisions.

If the dyadic square was classified as class, then it is
quite likely that its four children squares at scalebelong to the
same class, especially whenis large (at fine scales). Hence, we
will guide the classification decisions for the child squares based
on the decision made for their parent square. This will tend to
make the class labels of the four children the same unless their
likelihood values strongly indicate otherwise, thus reducing the
number of misclassifications due to slight perturbations in child
likelihood values. In addition to the parent square, we can also
use the neighbors of the parent to guide the decision process.
Similar multiscale decision ideas have been successfully applied
to document segmentation in [6].

To exploit the parent–child dependencies between the dyadic
squares, we will build yet another tree-structured probability
model, thelabeling tree(more details in Section IV-C). Akin to
the HMT, the labeling tree models the dependencies between
dyadic squares across scale in a Markov-1 fashion, where the
dyadic squares at scaleare assumed to depend only on the
squares at scale . (Dependencies between squares within
the same scale are captured through the squares’ common
ancestors.) Using tree-based modeling, we gain tremendous
“economies of scale” [4], [12], [15]–[17].

Markov modeling leads us to a simple scale-recursive clas-
sification of the dyadic squares, where we classifybased on
its likelihood and guidance from the previous scale . This
Bayesianinterscale decision fusioncomputes a MAP estimate
of the class label of each dyadic square . Stopping the
fusion at scale, we obtain the MAP segmentation . As we
see from Fig. 3(e), multiscale decision fusion greatly improves
the robustness and accuracy of the segmentation.

Combining the above tools results in a robust and accurate
yet simple and efficient segmentation algorithm that we call
HMTseg [18]. It relies on three separate tree structures: the
wavelet transform quad-tree, the HMT, and the labeling tree.

E. Related Work

We group related work in texture classification and segmen-
tation into four broad classes.

Markov Random Fields:Markov random fields (MRFs)
[19]–[21] have been extensively applied to model the pixel pdf

. However, while they enable spatially local processing,
they capture only local interactions and thus have only a limited

ability to describe large scale behavior. MRF’s can be improved
by incorporating more neighboring pixels, but this rapidly
increases their complexity. More recently, there have been
attempts to approximate MRFs using tree structured models
[15], [22].

Scaling Coefficient Models:Multiscale autoregressive
models approximate the multiscale statistics of thescaling
coefficients rather than wavelet coefficients [5]. While the
main advantage of multiscale image segmentation is to avoid
the ad hoc choice of the classification window size, the di-
vide-and-conquer segmentation algorithm of [5] (and a similar
one in [23]) still requires a proper choice.

Wavelet-Domain Features:Wavelet-domain features are not
new to texture classification and segmentation. In [24], Unser
extracts parameters at different wavelet scales to facilitate tex-
ture classification. Liet al. [25] employ wavelet coefficient sta-
tistics to classify different textures in document images. Gross
et al. [26] use a neural network to model the textural features of
wavelet coefficients for classification purposes.

Multiscale Decision Algorithms:The multiscale labeling
model of Boumanet al. [4], [16], [17] does not use an explicit
model for the image pixels. Rather it indirectly models the
pixel pdf using a multiscale model of the class labels only. The
technique in [4] is a general systematic method for combining
multiscale information. However, because it considers only
the behavior of the class labels across scale without actually
considering the joint statistics of the image pixels (it assumes
that the pixels are independent given the class label), the
algorithm is useful only for certain types of images (such as
the SAR images considered in [4]) in which pixel values can
be considered independent. The algorithms recently proposed
in [16], [17] generalize [4] further. However, because these
algorithms still do not perform direct modeling and decision
of class labels at multiple scales, they require complicated sta-
tistical learning methods based on manually prepared training
data. Furthermore, they still model the wavelet coefficients as
independent, which is not accurate for singularity-rich data
such as textures, because of the strong residual correlations
between wavelet coefficients. In followup work to [25], Li
et al. [6] propose a divide-and-conquer multiscale decision
algorithm that incorporates deterministic context information.
While intuitively appealing, their proposed decision rules are
deterministic and presented with little justification.

As far as we know, HMTseg is the first attempt to combine
parametric wavelet-domain statistical modeling, direct likeli-
hood calculation, and multiscale Bayesian decision fusion (via
the labeling tree, which is inspired by [4], [16], and [17]). We
believe that these features give HMTseg several distinct advan-
tages over existing segmentation techniques. In particular, since
we obtain the multiscale likelihoods and classifications directly
through the HMTs, the multiscale information fusion simplifies
considerably. As a result, unlike the algorithms in [16], [17], we
are able to extract the labeling tree parameters from the given
image to be segmented, without additional training data.

F. Paper Organization

In Sections II and III, we study two of the basic ingredients
of HMTseg: the wavelet transform and the wavelet HMT model.
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We describe the third basic element, the labeling tree, and con-
struct the algorithm in Section IV. Section V demonstrates the
performance of HMTseg through a number of examples. We
conclude in Section VI by pointing to some remaining issues
and suggesting directions for further research.

II. WAVELET TRANSFORM

A. Wavelet Transform and Dyadic Squares

The wavelet transform represents the singularity content of
an image at multiple scales. There are several different interpre-
tations; we will find the pyramidal multiscale construction for
discrete images cleanest for our purposes [27].

We will focus on the simplest wavelet transform, that
of Haar. The construction of Haar wavelet coefficients of
an image can be explained using four 2-D wavelet fil-
ters: the local smoother , horizontal
edge detector , vertical edge de-
tector , and diagonal edge detector

.
To compute the wavelet transform of a discrete image

, first set , . Next,
convolve with the filters , , , and and dis-
card every other sample in both theand directions. The re-
sulting subbandimages— , , , and , re-
spectively—are each of size . The 4-pack can be
compactly stacked back into a matrix

The filtering and downsampling process can now be continued
on the image and the procedure iterated up totimes [see
Fig. 2(a)].

The scaling coefficientmatrices , are
progressively smoothed versions of the original image. The
wavelet coefficientmatrices , , and are high- and
band-pass filtered,edge-detected, versions of the image that re-
spond strongly to edges in the horizontal, vertical, and diagonal
orientations, respectively. For example, the wavelet coefficient

, , is large if the image
block

contains a horizontal edge and small otherwise.
The iterative computation of each Haar wavelet coefficient

from a block in a finer-scale image leads naturally to
a quad-tree structure on the wavelet coefficients in each sub-
band, as illustrated in Fig. 2(a) and (b) [28]. First assume that
we carry out the iterated filtering to scale , and consider
only the subband. Then the root of the tree lies at
and the leaves at , . As we move
down the tree, we move from coarse to fine scale, adding de-
tails as we go. More specifically, eachparentwavelet coefficient

analyzes the same region in the original image as its
four children , , ,
and . Coefficients on the path to the root

areancestors; coefficients on the paths to the leaves aredescen-
dents. If we terminate the iterated filtering at a scale , then
there will be more than one coarsest scale wavelet coefficient in
each subband, leading to a forest of quad-trees in each subband
[12].

To keep the notation manageable in the sequel, letdenote
the collection of all wavelet coefficients, and let , ,

denote the collections of all coefficients in the respective
subbands. Let denote a generic wavelet coefficient, with the
subband under consideration determined by context. In our sta-
tistical modeling framework, we will regard as a realization
of the random variable and as a realization of the wavelet
random field . Define by the scale of coefficient in the
subband quad-tree. Define as the parent of tree node. In a
given subband, define as the subtree of wavelet coefficients
with root node ; that is, contains coefficient and all of its
descendents [see Fig. 2(b)].

With the 2-D Haar wavelet transform, there is an obvious cor-
respondence between the wavelet coefficients and the dyadic
squares [recall Fig. 1(a)], which are obtained by iteratively di-
viding the image into equal-size quadrants. Recall thatde-
notes a dyadic square at scale, with an abstract index for the
square. (In the sequel, superscripts will always denote scale and
subscripts will always denote position within a scale.) Eachis
obtained by dividing a square at scale (the “parent” square,

) into four quadrants (the “child” squares). To each dyadic
square of pixels there corresponds a unique set of wavelet co-
efficients with a special property: all wavelet coefficients in the
subtree rooted at depend exclusively on the pixel values
in .

The same procedure of wavelet transform construction can be
applied to other wavelet systems besides the Haar. While larger
wavelet filters are more appropriate for representing smooth im-
ages, the Haar system is more appropriate for our purpose of
classifying dyadic squares, due to its direct connection with the
dyadic squares. We will see that the Haar system is more than
adequate for the HMTseg algorithm.

Because each wavelet coefficient is computed locally, the
wavelet transform efficiently represents with large coefficients
only the edges of images, resulting in a very sparse and compact
representation of singularity-rich images [7], [12], [28]. Further-
more, the approximate decorrelation of wavelet coefficients [7],
[12] enables us to use very simple local modeling of joint sta-
tistics between wavelet coefficients.

III. T WO-DIMENSIONAL HIDDEN MARKOV TREEMODEL

The wavelet hidden Markov tree (HMT) [12], [29] models
both the nonGaussian marginal pdfs of the wavelet coefficients
and the persistence of large/small coefficients across scale. As
indicated in [12], HMT models can be developed for wavelet
transforms of any dimensionality; here we focus on 2-D images
and thus quad trees.

A. Modeling the Marginal Distribution

The energy compaction property [7], [12], [27] of the wavelet
transform implies that the transform of most real-world images
consists of a small number of large coefficients and a large
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number of small coefficients. We can consider the population
of large coefficients as outcomes of a pdf with a large variance.
Similarly, we can consider the collection of small coefficients as
outcomes of a pdf with a small variance. Hence, the pdf
of each wavelet coefficient is well approximated by a two-den-
sity Gaussian mixture model[9], [10], [12], [13].2

To each wavelet coefficient , we associate a discrete
hidden state that takes on the values , signifying
the small and large variance, with probability mass function
(pmf) . Conditioned on , is Gaussian with
mean and variance . Thus, the overall pdf of is
given by

S L

(2)

where and
. In Fig. 2(c) we depict the wavelet coefficients using black

nodes and their associated hidden states using white nodes.

B. Modeling Across-Scale Dependencies

Working in the Gaussian mixture marginal distribution
framework, we can characterize the dependencies between the
wavelet coefficients by specifying the joint pmf of the hidden
states. Thanks to the approximate decorrelating power of the
wavelet transform [7], the most important correlations are the
parent–child interactions due to magnitude persistence across
scale [12].3

To capture the scale persistence of coefficient magnitudes,
we connect the hidden states in a directed Markov-1 prob-
abilistic graph [12]. For each parent–child pair of hidden
states , the state transition probabilities for

represent the probability for to be small/large
when its parent is small/large. For each, we thus have
the state transition probability matrix

S

S

S

L

L

S

L

L

S

S

S

S

L

L

L

L

For typical gray-scale images, we expect S

S
and L

L
to

be large due to the persistence property.

C. The 2-D HMT Model

A complete 2-D image wavelet transform comprises three
subbands with three parallel quad-tree structures [as in
Fig. 2(b)]. In particular, node in the , , and quad
trees corresponds to the same dyadic squarein the image.
While the three subbands are clearly dependent on each other,
for tractability reasons, we assume the following.

Subband Independence Assumption:The three subbands of
the 2-D wavelet transform are statistically independent.

The complete 2-D wavelet HMT model consists of
three HMT’s [one for each wavelet subband as shown in

2We can use more than two mixture densities to provide a fit to the actual
f(w ) with any desired fidelity. In practice, however, we have seen no real per-
formance benefit to using more than two.

3While the HMT focuses on across-scale dependencies, it does not ignore
within-scale dependencies. Correlations between coefficients at the same scale
are modeled through their mutual ancestors in the HMT quad tree.

Fig. 2(c)]. Denoting the parameter vectors for the three sub-
band HMTs as and , respectively, we have

. The HMT is thus a parametric
model (multidimensional Gaussian mixture) for the joint pdf
of the wavelet coefficients. Under the subband independence
assumption, we can write

(3)

In addition to modeling the wavelet coefficients, we can sep-
arately model the scaling coefficients—using a mixture den-
sity, for example [12]. However, for HMTseg, we will inten-
tionally ignore the scaling coefficients. Since the scaling coef-
ficients equal local pixel averages, we thus build into our statis-
tical modeling independence to the local brightness level. This
is a desirable feature for many segmentation applications, be-
cause even in regions of homogeneous statistical properties, the
local brightness often varies in different parts of the region.

As it stands, the HMT has a large number of parameters (ap-
proximately for an -pixel image). This can make model
training difficult when only a small number of training images
are available. Fortunately, wavelet coefficients at the same scale
tend to exhibit similar statistical characteristics [12], [30]; thus
we can use just one set of parameters for each scale. This nodal
tying reduces the number of parameters considerably (to ap-
proximately for a -scale transform), avoiding the risk of
overfitting the model [12], [31].

IV. M ULTISCALE SEGMENTATION USING HMT MODELS

We now describe the HMTseg algorithm’s HMT training, fast
HMT-based likelihood calculation, and multiscale Bayesian de-
cision fusion.

A. Training the HMT Models

Before we begin, we must acquire training data representa-
tive of each texture and train an HMT model for each. We typi-
cally obtain training images either by picking homogeneous re-
gions from the given image or from completely different im-
ages having homogeneous regions representative of the candi-
date textures. For each class , we train a 2-D
wavelet HMT model using the iterative expectation-maxi-
mization (EM) algorithm [12], [31], [32].

The EM algorithm finds the locally optimal (in the ML sense)
set of model parameters for a given set of training data. In
each iteration, the E step defines a likelihood surface based on
the current parameters. The M step then updates the parame-
ters to maximize the likelihood that the training data came from
the model [31], [32]. The EM algorithm derived for 1-D HMT
models in [12] applies with little modification in 2-D if we in-
terpret the parent–child relations between nodes appropriately
for quad-trees.4 In the HMT, each EM iteration consists of an
up/down sweep through the tree [ cost for wavelet coef-
ficients].

4The only necessary change is in [12, p. 900, Eq. (22)], where the product
now covers four child coefficients on the quad tree rather than two children
on the binary tree. For more information on probabilistic graphs and training
algorithms, see [32].
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To maximize the spatial shift invariance of HMTseg, we can
either use intra-scale tying (using the same mixture variances
and state transition matrices for all wavelet coefficients at the
same scale) as proposed in [12] or prepare a training set con-
taining different shifts of the training textures. In our experi-
ments, we have found only minimal performance reduction (but
significant parameter reduction) using intra-scale tying. Fur-
thermore, in all of our experiments, reliable HMT training re-
quired fewer than ten training images.

Given training images of pixels each, the total computa-
tional cost per EM iteration is . While the total training
cost can be enormous for large and , we have several av-
enues for reducing the amount of computation. First, intra-scale
tying significantly reduces both the number of parameters to
train and the number of required training images. Second, we
note that coarse-scale wavelet coefficients correspond to large
dyadic squares that likely contain a number of different textures.
Since these squares supply little information for segmentation,
we can clip the upper scales from the HMT, creating a forest of
smaller HMTs. These smaller HMT’s naturally share the same
parameters and thus reduce the sizeof our required training
images (more on this in Section IV-E).

While EM training is notorious for its slow convergence, in
our experiments (including the two examples in Section V) we
reached convergence in fewer than twenty iterations using an
intelligent parameter initialization.

B. Multiscale Likelihood Computation

Given a set of 2-D HMT model parameters and the
wavelet transform of a test image, it is straightforward to
compute thelikelihood that the image was generated
by the model [12]. Furthermore, thanks to the dyadic multiscale
structure of the wavelet transform and the HMT, we can obtain
the likelihoods of all dyadic squares of the imagesimultane-
ously in a single upward sweep through the tree [a fast
algorithm].

Consider first the likelihood calculation for a subtreeof
wavelet coefficients rooted at in one of the subbands [12].
Suppose this subband has HMT parameters. Given the con-
ditional likelihoods obtained by
sweeping up the quad-tree from the leaves to node(see [12]),
the likelihood of the coefficients in can be computed as

S L

(4)

with state probabilities obtained directly from
(or computed during training).

Now recall the connection with the dyadic squares. It is easy
to see that the wavelet coefficients of the squareconsist of the
triple , each a subtree of one of the three
wavelet subband quad-trees. Using three HMT upsweeps, we
can easily compute the likelihood (4) for each of these subtrees.
Then, using the subband independence assumption, we have

(5)

Using (5), we can compute the likelihood under each texture
model of each dyadic square down to block scale.

Direct block-by-block comparison of the likelihoods (1) com-
puted using (5) yields the ML raw segmentations at a range of
scales [recall Fig. 3(d)]. (We discuss how to carry this down to
pixel-sized blocks in Section IV-D.) We refer to this block-by-
block classification as “raw,” because we do not exploit any pos-
sible relationships between the classifications at different scales.
We expect the raw decisions to be more reliable at coarser scales
(where we have more image pixels per block) but more finely
localized at finer scales (where the blocks are smaller). Clearly
it is in our best interests to overcome this blockiness versus ro-
bustness tradeoff by folding the coarse-through-fine likelihoods
into our final segmentation recipe.

C. Context-Based Interscale Fusion

We can improve the raw segmentation considerably by con-
sidering the dependencies between the class decisions at dif-
ferent scales. We will do this by modeling the multiscale depen-
dencies between the dyadic blocks. Our approach is inspired by
the Bayesian multiscale segmentation framework of Boumanet
al. [4].

1) Bayesian Segmentation:In a Bayesian segmentation
framework, we treat each class labelas a random variable

taking a value from . Given the posterior
distribution of given the image , the MAP classi-
fication of dyadic square corresponds to the class label that
maximizes the posterior distribution

(6)

By Bayes rule, the posterior is given by

(7)

Let denote the collection of all dyadic squares at
scale ; note that each contains complete information on the
image . A posterior equivalent to (7) is thus

(8)

Since computation and maximization of (8) is intractable in
practice, we will perform a succession of manipulations and
simplifications to arrive at a practical MAP classifier. Just as
the HMT models the pdfs and by echoing the struc-
ture of the wavelet coefficient quad tree, we will construct a
probabilistic tree to model the posterior (8) based on the dyadic
square quad tree of Fig. 1(b). The resultinglabeling treemodel
will capture the interscale dependencies between dyadic blocks
and their class labels and enable amultiscale Bayesian deci-
sion fusion. There are many ways to capture these multiscale
dependencies [4], [6], [16], [17]; here we outline one possible
approach that balances accuracy with tractability.

2) Image Model with Hidden Class Labels:Rather than
modeling the joint statistics of the dyadic squaresdirectly,
we will model the statistics of the associated class labels.
We assume that class label controls the textural properties
of square ; that is, each is generated based on the distri-
bution independently of all other and , . Let
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Fig. 4. (a) Context, class label, and dyadic square form a Markov-1 chain:vvv ! C ! DDD . (b) Context labeling tree. The context of the child square is
determined by the decision results of its parent plus eight neighbors.

denote the collection of all class labels at scale.
Then, given , all are independent

(9)

The class labels play a role analogous to the hidden states in
the HMT (recall that given the values of the states, all wavelet
coefficients are independent [12], [31], [32]).

Under the conditional independence of thes given , our
MAP classification problem transforms to maximizing the pos-
terior [recall (8)], the marginal of

(10)

Here we have used (9). Unfortunately, marginalizing (10) to ob-
tain (8)—integrating out all , —for the MAP decision
statistic is difficult in general, unless the joint distribution
has a special structure.

3) Multiscale Prior and Contexts:To simplify the deter-
mination and marginalization of the joint prior distribution

in (10), we assume that the joint distribution of the
class labels at scale is completely determined by the
at the previous coarser scale. Combined with the assumption
that is conditionally independent of all given

, we have that , , and form a Markov chain:
. This heuristic models the interscale

dependencies between the class labels that we motivated in
Section I-D. Thus, given , the s at scale are
independent, and we can write themultiscale prior distribution

(11)

Due to the high dimensionality of the conditioning vector
, estimating the marginalized class prior distribution

still requires a prohibitive amount of training data.
Contextsprovide a useful further simplification of (11) [33]. To
each dyadic square with hidden class label , we assign
the (deterministic) context vector , which is formed from
information about the .

The triple forms a Markov-1 chain [see
Fig. 4(a)]. That is, encodes sufficient information regarding

such that, given its value, we can treat and as in-
dependent of all other and . If is chosen as a discrete
vector of small dimension, then it simplifies the modeling con-
siderably. In the multiscale prior model (11), we letbe a func-

tion of the . Let be the collection of all contexts at scale
.
The choice of a good context model is crucial to the perfor-

mance of HMTseg. We have a trade-off between the complexity
of the context and the accuracy of the model. Among many can-
didate contexts, we can determine the effective contexts based
on known training data. In some sense, the decision-tree based
algorithm in [16] is a general form of the context-based fusion
algorithm applicable when sufficient training data is available
for reliable estimation of the decision parameters.

Contexts allow us to write

(12)

Since is independent of given (by the Markov-1 prop-
erty), conditioning (10) on the contexts yields

(13)

and the marginalized, context-based posterior

(14)

This is a greatly simplified version of the MAP posterior (7) for
use in the MAP equation (6). Here, the are the likeli-
hoods of the dyadic square given the different class values

, which are computed using an HMT likelihood upsweep on
each texture model. The prior supplies information on
the provided by the s through .

4) Context Labeling Tree:The interscale dependency
modeling between the class labels (11) yields a tree of class
labels, where the dependencies march down the tree in a
Markov fashion. Compared with dependency modeling at
each individual scale (with, say, a MRF), causal tree-based
dependency modeling is both simple and effective.

While each context is potentially a function of all at
scale , here we will employ a simplified tree organization:
each at scale will receive information from nine scale
class labels, the parent label plus the parent’s eight nearest

neighboring [see Fig. 4(b)]. We term this context organ-
ization thecontext labeling tree. The limit of coarser scale in-
formation to just nine blocks is easily justified by noting that
will receive information from a region of pixels centered around
and 36 times larger than its square.
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While the context choice is very general and we may need a
very complex context to accurately summarize the information
conveyed by the , over-complicated contexts run the risk of
context dilution, especially with insufficient training data [16],
[17], [33].5

Inspired by the success of hybrid tree model in [4], we will
employ a simple context structure in HMTseg. Each context
vector will contain two entries: the value of the class label

of the parent square (which will be a MAP estimate in
practice) and the majority vote of the class labels of the parent
plus its eight neighbors. Given different textures, each con-
text can take on different values. Let the number of dif-
ferent values can take be ( in the algorithm); thus,

. While this simple context isad hoc, it
is more than sufficient for demonstrating the effectiveness of
multiscale decision fusion. Furthermore, context training can be
accomplished reliably based on the given image only, without
requiring extra training data for estimating the context related
probabilities.

Since the s at scale depend on the s from
scale , we will evaluate and maximize (14) in a multiscale,
coarse-to-fine manner to fuse the HMT likelihoods
(precomputed as in Section IV-B) using the labeling tree prior

. Our fusion will pass the MAP decisions down through
scale to aid the segmentation of fine scale dyadic squares. The
result is simple, yet effective.

5) Interscale Fusion EM Algorithm:The fusion proceeds
as follows. Start at a coarse enough scale such that the
ML raw segmentations are statistically reliable. Use these
and all coarser ML decisions as the MAP decisions . This
is entirely reasonable; at coarse scales (large dyadic squares),
the next coarser scale (very large dyadic squares) provides little
prior information for segmentation.

Now move down to the next finer level. Fix the context
values from the at scale (from the parent label
and its eight nearest neighbors). We are given the likelihood

in (14) from the HMT likelihood computation step.
Hence, after computing , we can choose the label for

that maximizes the product (14).
To compute , we use an ML estimate averaged over

the collection ofall dyadic squares at scale . Since this col-
lection is precisely the image, we can write (by the chain rule
of conditioning)

(15)

Here we sum over the candidate textures and use the fact that
all blocks at the same scaleare independent given the con-
texts . Because represents the relation between the
context and the class label, it is reasonable to assume that it is
same for all within each scale. The ML estimate of is
that which maximizes the likelihood of the image given thes
[given in (15)]. Maximizing (15) is possible because the like-
lihoods are already available from the multiscale

5Effective contexts can be selected from a library of possible contexts using
a classification algorithm such as that proposed in [16], provided that sufficient
manually prepared training data are available.

HMT likelihood computations. Note that is chosen in
the ML sense by averaging over the entire imagein (15).

The EM algorithm again comes to our rescue; in fact, we can
use it to compute and maximize the posterior (14) directly. We
do not specify directly, but rather specify and
apply Bayes rule

(16)

Assuming these probabilities to be constant at each scale, set

(17)

for all in scale and , .
The set of probabilities can be com-
puted using an EM algorithm on the context labeling tree (see
the Appendix for details). The context-based Bayes classifica-
tion then finds the class label that maximizes the contextual pos-
terior distribution from (14) [see (18) in the Ap-
pendix].

While EM iterations are necessary at each scale to estimate
the fusion parameters and , we note that the al-
gorithm converges rapidly with the initial parameters set to the
values estimated in the previous coarser scale. This is because
the parameters change little from scale to scale, especially at fine
scales where EM iterations are more expensive. Furthermore, at
very fine scales, we can actually use the fusion parameters esti-
mated in the coarser scales without re-estimation. This is partic-
ularly helpful when the likelihoods at very fine scales
are less robust and maximizing in (15) does not give the
desired s. We employed this technique in the document
segmentation example of Section V-B.

D. Pixel-Level Segmentation

Since the Haar wavelet HMT characterizes the joint statistics
of the dyadic image squares only down to blocks, we do not
directly obtain pixel-level segmentations. While the collection
of all wavelet and scaling coefficients completely characterizes
the original image, the HMT subband independence assump-
tion and the fact that we ignore the scaling coefficients limit
our reach to blocks. Pixel-level segmentation requires a
model for the pixel brightness of each texture class. However,
obtaining an appropriate model can be difficult, since in many
images the local brightness varies considerably due to shading,
etc. For such images, the block segmentations will be far
more robust, since they rely on inter-pixel dependencies and not
local brightness.

Pixel brightness corresponds to the pdf of a single pixel. For
our purposes, we fit a Gaussian mixture to the pixel values for
each training texture. We can then compute the likelihood of
each pixel and extend the above interscale scale fusion algo-
rithm from blocks to the pixel level.

E. Implementation Issues

As described above, the interscale fusion algorithm starts at
the root node of the context labeling tree and descends to the
finest scale to combine all possible coarse scale information.
However, at very coarse scales, the likelihoods of the dyadic
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Fig. 5. Aerial photo segmentation using HMTseg. (a) A1024� 1024 aerial photo and (b)256� 256 test subimagexxx. The homogeneous ground/sea regions
outside the region (b) were used to train two HMT’s. (c) Raw HMT-based multiscale classificationsccc of xxx for 8 � 8, 4 � 4, 2 � 2, and pixel-sized dyadic
squares. (d) Final segmentationsccc using Bayesian context-based interscale fusion. The erroneous segmentation of the ground regions in the upper middle
portion of the image is due to the large expanses of concrete (runways), whose texture is closer to that of sea than ground in this case.

squares do not contain significant information, since the squares
are large and hence are likely to contain several differently tex-
tured regions. When fusing multiscale classification results, we
therefore ignore the information at very coarse scales.

Ignoring the coarsest scales has the side benefit. As described
in Section IV-A, reducing the size of the HMT reduces the
computation required for training and likelihood determination.
If we start fusing at scale , then we only need the wavelet
coefficients, HMT models, and likelihoods at scales .
With the Haar transform, starting at scale is equivalent
to dividing the image into the dyadic squares and then
performing the HMT likelihood computation independently
on each of these squares. This saves a considerable amount of
computation and reduces the size of the required homogeneous
training images to . In practice, we set the
starting scale such that the coarsest raw segmentations have
sufficient reliability.

F. Summary of HMTseg Algorithm

The final segmentation algorithm consists of three steps;
HMT training, multiscale likelihood computation, and multi-
scale fusion.

HMTseg Algorithm
1) Train wavelet-domain HMT models for each texture using
homogeneous training images. To obtain pixel-level segmenta-
tion, also train a pixel brightness pdf model.
2) Compute multiscale likelihoods.Using the likelihood com-
putation algorithm for the HMT model [12] and (4), compute the
likelihood of each dyadic image square at each different scale.
This gives the likelihoods for each dyadic square. If
the trained HMT model is smaller than the test image, repeat
the likelihood computations for image subblocks assuming that
the blocks are independent (see Section IV-E).
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Fig. 6. Document segmentation using HMTseg. (a) A512� 512 training image was hand-segmented, and homogeneous regions were used to train HMTs for
text, image, and background textures. (b) A512 � 512 test imagexxx. (c) Raw HMT-based multiscale classificationsccc of xxx for 8 � 8, 4 � 4, 2 � 2, and
pixel-sized dyadic squares. Black, gray, and white represent text, image, and background, respectively. Classification accuracy clearly decreases at fine scales. (d)
Final segmentationsccc using Bayesian context-based interscale fusion correctly classify even the angled text on the books. Adding a fourth class (large text)
would allow us to correctly classify the text at the bottom ofxxx.

3) Fuse multiscale likelihoods using the labeling treeto form
the multiscale MAP classification. Pick the starting scale
such that the ML classifications of the s at scale
are reliable enough to obtain thes. Estimate the parameters

and to maximize in (15) using the
EM algorithm in the Appendix. Each EM iteration updates the
contextual posterior distribution . When converged,
determine the that maximizes . Continue fusion
at scale based on the formed using the s obtained
at scale . Continue the process for all scales until the finest
scale is reached.

V. EXAMPLES

Fig. 3 demonstrated the HMTseg process on a synthetic data
example. Here we illustrate two real-world image segmentation
problems.

A. Aerial Photo Segmentation

We trained wavelet HMTs for “sea” and “ground” textures
using hand-segmented blocks from the aerial photo
[14] in Fig. 5(a). For training data, we extracted homo-
geneous ground [upper-left corner of Fig. 5(a)] and sea [lower-
right corner of Fig. 5(a)] images. Then, from each
image, we randomly picked ten (overlapping) blocks.
With this training data and intra-scale tying in the HMT models,
the EM training algorithm converged in less than 15 iterations.

Choosing for the starting scale (corresponding to
6-scale quad-trees on image blocks), we segmented the

test image in Fig. 5(b).
Fig. 5(c) shows the raw classification results. Pixel-level

raw segmentation was obtained using 2-density Gaussian
mixture models for pixel brightness of the ground and sea
textures. Fig. 5(d) illustrates the segmentation resulting from
coarse-to-fine interscale fusion. Except for some segmentation
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errors in the upper middle part of the image (caused by the
ground there having a concrete texture more resembling sea),
we observe excellent segmentation results at all scales.

B. Document Segmentation

We trained HMT and pixel brightness models for “text,”
“image,” and “background” textures using hand-segmented
blocks from the document in Fig. 6(a) [34]. Again,
we randomly picked ten homogeneous regions for each
texture from Fig. 6(a) as training data set. The EM trainings of
the models converged within 20 iterations.

Choosing for the starting scale (corresponding to
6-scale quad-trees on image blocks), we segmented
the test image in Fig. 6(b). Fig. 6(c) shows the raw
classification results. As expected, we observe many classifica-
tion errors. The pixel-level segmentation, in particular, is not
reliable (all text was classified as imagery). Fig. 6(d) illustrates
the segmentation resulting from coarse-to-fine interscale
fusion. All text regions are segmented well, including the text
surrounded by images on the books. At the bottom, we observe
the large-font title text segmented as imagery. This is because
the homogeneous texture inside each large letter has properties
more similar to imagery than (small-font) text. The background
regions are correctly segmented, even though the brightness of
the background varies in different areas and is corrupted by a
noise-like feature caused by text on the reverse side of the page.
In the fusion step, we estimated the fusion parameters only
down to block scale, since incorrect pixel likelihoods
make the estimation unreliable.

VI. CONCLUSIONS

In this paper, we have developed a new framework for mul-
tiscale Bayesian image segmentation based on wavelet-domain
HMT models. By concisely modeling and fusing the statistical
behavior of textures at multiple scales, the HMTseg algorithm
produces a robust and accurate segmentation of texture images.
HMTseg yields not one final segmentation but a range of seg-
mentations at different scales.

While we have illustrated with an aerial photograph and a
document image, HMTseg can be applied to many different
image types, including radar/sonar images [35] and medical
images. Furthermore, because the HMT modeling framework
extends trivially to higher-dimensional data, we can employ
HMTseg to segment multidimensional data such as geophys-
ical surveys. One-dimensional signals, such as speech and
geophysical well-logs, are also within HMTseg’s purview.

As an added bonus, HMTseg has the potential to segment
wavelet-compressed data directly without re-expanding to the
space domain. HMTseg thus provides a natural vehicle for de-
veloping joint segmentation/compression algorithms [36].

Promising avenues for future HMTseg research include the
investigation of wavelet basis representation different from
Haar, simplified universal HMT modeling [30], more accurate
(but complicated) interscale fusion algorithms, and the analysis
of multiscale classification errors [37].

APPENDIX

EM ALGORITHM FOR CONTEXT LABELING TREE

Our goal is to find maximizing in (15). We
precompute the conditional likelihoods for all

using (5) by sweeping up the HMTs from the
leaves to node [12]. Recall the definitions of , ,
and from (17). The EM algorithm runs as follows.

Initialize: Set and choose .
(A natural choice for is the set of parameters obtained in

the previous, next coarser scale.)
Expectation (E): Given , calculate (using Bayes rule)

(18)

Maximization (M): Update the elements of

(19)

for each (20)

Iterate: Increment and apply and until
converged.
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