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Abstract

The evolution in our understanding of tumor angiogenesis has been the result of pioneering

imaging and computational modeling studies spanning the endothelial cell, microvasculature and

tissue levels. Many of these primary data on the tumor vasculature are in the form of images from

pre-clinical tumor models that provide a wealth of qualitative and quantitative information in

many dimensions and across different spatial scales. However, until recently, the visualization of

changes in the tumor vasculature across spatial scales remained a challenge due to a lack of

techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of

three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such

data from patients presents a serious hurdle for the development and validation of predictive,

multiscale computational models of tumor angiogenesis. In this review, we discuss the

development of multiscale models of tumor angiogenesis, new imaging techniques capable of

reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-

based models”of tumor blood flow and molecular transport. Collectively, these developments are

helping us gain a fundamental understanding of the cellular and molecular regulation of tumor

angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this

exciting integration of multiscale imaging and mathematical modeling to have widespread

application beyond the tumor vasculature to other diseases involving a pathological vasculature,

such as stroke and spinal cord injury.
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INTRODUCTION

Angiogenesis or the process of de novo blood vessel formation in cancer is a critical

determinant of its pathophysiological characteristics, such as invasiveness, metastatic

potential, and efficacy of therapies.6,39, 109 Seminal work by Dr. Folkman has demonstrated

that the progression of most solid tumors beyond 1–2 mm3 in size is angiogenesis-dependent

because of their requirement for oxygen and nutrients.38 This switch of tumors to an

angiogenic phenotype involves the upregulation of pro-angiogenic factors overwhelming the

anti-angiogenic defenses of the cells.10 Therefore, tumor progression relies upon the

continual interactions between the tumor microenvironment and the host’s immune

system.45

Tumor angiogenesis is characterized by uniquely adapted endothelial cells,17 aberrant

microvasculature, 108 anomalous blood flow,55 and disruption of homeostatic signaling

pathways.35 The evolution in our understanding of tumor angiogenesis has been the result of

pioneering studies spanning the endothelial cell,122 microvasculature3 and tissue levels.124

In recent years, our understanding of the angiogenic microenvironment has been

revolutionized by an explosion in imaging technologies.82 Many of these primary data on

angiogenesis are in the form of images from preclinical models that provide a wealth of

qualitative and quantitative information in many dimensions, and across different spatial

scales.82 Furthermore, high-throughput analyses of various cancer types have created an

abundance of “-omics”data, e.g., genomics, proteomics, metabolomics. These developments

have created a need for new image processing and visualization tools for extracting,

comparing and integrating these data124 (Fig. 1). The development of new imaging methods

in conjunction with ever increasing and affordable computing power has ushered in a new

area of bioinformatics that has been dubbed “bioimage informatics”.94

Another factor driving multiscale imaging and modeling initiatives has been the advent of

“systems biology”approaches to study disease models and pathways. For instance, the study

of how genotypic interactions give rise to the function and phenotype of a biological system

is inherently a multiscale problem. Therefore, there is a determined effort to develop image-

based phenotyping methods,84 particularly in murine models as they have become the

workhorse of human disease models.48 See the review by Kherlopian et al. 65 for a summary

of imaging techniques and their utility in systems biology applications.

Furthermore, computational models have greatly refined our understanding of the

microenvironmental changes that accompany tumor angiogenesis.103 These include changes

in tumor blood flow,30,83 oxygen transport61,111 vascular endothelial growth factor (VEGF)

distribution76 and extracellular pH.78 However, high-resolution, high-fidelity, 3-D imaging

data that simultaneously quantify tissue morphology and the molecular players involved

have not been readily available. Simultaneously visualizing changes in the complex

angiogenic microenvironment at different spatial scales remains a challenge due to the lack

of integration between micro- and macroscopic imaging data, and the difficulty in obtaining

such data from patients. Acquiring such data has been a major hurdle that needed to be

overcome to further advance quantitative oncology.

This review commences with a description of imaging techniques for visualizing the 3-D

tumor vasculature, followed by novel imaging strategies for characterizing the vascular

phenotype at different spatial scales. Next, we recapitulate insights about the tumor

vasculature that have been gleaned from pioneering mathematical models. Since the

description of microcirculatory phenomena requires an understanding of their interactions

with processes that occur at larger and smaller spatial scales, these traditional blood flow

models have now been expanded to “multiscale”models that range from endothelial
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receptors to microvascular sprouting, to the whole tissue level.103 Therefore, we introduce

‘image-based’ multiscale modeling, wherein the morphological data on the organ or tumor

vasculature is derived from one of several high-resolution, 3-D imaging methods. Finally,

we conclude with a summary of the challenges facing this burgeoning area of research.

Collectively, we expect that the integration of multi-resolution imaging and computational

modeling will yield novel insights into a range of diseases involving the pathological

vasculature.

IMAGING METHODS FOR VISUALIZING THE 3-D TUMOR VASCULATURE

Since pioneering neuroanatomist Ramon Cajal’s early drawings of angiogenesis,79 we have

come a long way toward “capturing”the heterogeneity of the tumor vasculature. While there

exists a range of methods for imaging the tumor vasculature (see the comprehensive reviews

by McDonald82 and Pathak90), the ensuing section highlights imaging methods capable of

digitally acquiring and quantifying the 3-D architecture of these unique vessels with high

fidelity.

Intravital Microscopy

Laser scanning confocal microscopy (LSCM) is a commonly used, high-resolution

fluorescence imaging method. It differs from conventional fluorescence microscopy in that a

focused, scanning laser source is used to excite the sample point by point, and a pinhole

aperture in front of the detector and confocal (having the same focal point) to the source

pinhole aperture is used to block light not emitted from the focal point. This spatial filtering

of out-of-focus background fluorescence permits optical sectioning of tissue specimens up to

~100 µm thick. By scanning across a series of focal planes, a 3-D image can be constructed.

LSCM has been used for intravital imaging of the vasculature in window chamber tumor

xenografts labeled with fluorescent RGD-nanoparticles87 or after intravenous injection of

dextran-conjugated fluorophores.33

Two-photon microscopy (TPM) is another high-resolution fluorescence imaging method

capable of imaging the 3-D vascular architecture in vivo. Two-photon fluorescence is a

nonlinear optical process in which fluorescence is caused by the simultaneous absorption of

two photons, each with half the requisite excitation energy. Since the probability of two

photon absorption depends on the square of the light intensity, a focused ultra-short pulse

laser is used to selectively excite a small region around the focal point. This provides

inherent 3-D optical sectioning and reduces photobleaching and phototoxicity.29 In addition,

TPM uses near-infrared (NIR) excitation, which allows for a tissue imaging depth

approaching 1 mm. TPM has been used for intravital imaging of the vasculature in window

chamber tumor xenografts following intravenous injection of dextran-conjugated

fluorophores to provide contrast.1

Optical coherence tomography (OCT) is another technique used for 3-D intravital imaging

of tumor vasculature with a wider field of view (FOV) and greater depth of penetration than

TPM, which come at the expense of spatial resolution. And since contrast between vessels

and background tissue arises from the Doppler shift caused by the motion of circulating red

blood cells, OCT does not require exogenous contrast agents. In conventional time domain

OCT, a low coherence broadband light source is split into a reference arm and a sample arm;

the reflected light beams from the two arms are combined and produce interference if their

path lengths differ by less than the coherence length of the light source. Thus, the location

within the sample from which the sample light beam is reflected can be determined by

scanning the length of the reference arm and measuring the interference of the two beams,

allowing a 3-D image to be reconstructed.51 A frequency-domain OCT method called

optical frequency domain imaging (OFDI) allows for more rapid imaging by employing a
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frequency scanning light source while keeping the reference and sample arm lengths fixed.

Depth resolution is then obtained by Fourier analysis.127 Vakoc et al.119 used TPM and

OFDI to characterize the morphology of tumor vessels in various window chamber models.

A comparison of the two modalities showed that TPM was capable of resolving the smallest

superficial capillaries while OFDI was able to image vessels at depths of up to ~1–2 mm.

For vessels larger than 12 µm in diameter as measured by TPM, the vessel diameters derived

from the two modalities correlated well, but the lower spatial resolution of OFDI (~7 µm)

likely resulted in partial volume effects and thus overestimation of the diameters of smaller

vessels. Extensive details on intravital microscopy of the tumor vasculature can be found in

reviews by Tozer et al.117 and Fukumura et al.40

Magnetic Resonance Angiography

While TFM and OFDI allow high-resolution in vivo imaging of tumor vasculature, their

limited tissue penetration restricts their use to superficial vessels or transparent window

chamber models. Magnetic resonance angiography (MRA) is a method for imaging the

vasculature in vivo without the depth limitations of optical techniques. Although MRA

cannot resolve vessels at the capillary level, its spatial resolution can be increased for small

animal imaging. Doblas et al.31 used MRA (102 × 66 × 86 µm3) to assess the changes in

blood volume, vessel diameter and length with tumor progression in various rodent tumor

models, while Figueiredo et al.36 conducted time-of-flight MRA (TOF-MRA) of mouse

cerebrovasculature at a spatial resolution of 31 × 31 × 93 µm3.

TOF-MRA produces images in which the vasculature appears bright without necessitating

the use of exogenous contrast agents. Instead, pre-saturation radio-frequency pulses are used

to attenuate the signal from stationary tissue, while unsaturated spins carried into the

imaging FOV by inflowing blood exhibit higher signal, resulting in bright blood vessels.

However, since this method is sensitive to flowing blood, veins and vessels in regions of low

or intermittent flow such as those found in tumors can be difficult to image. Contrast

enhanced (CE)-MRA is an alternative technique, which involves intravenous administration

of contrast agents such as various gadolinium chelates to provide contrast between blood

vessels and background tissue. The development of long-circulating blood pool contrast

agents has enabled longer scan times, and thus, higher resolution and higher signal-to-noise

ratio (SNR) imaging.7 In addition, CE-MRA can achieve the same spatial resolution and

higher contrast- to-noise ratio (CNR) with a shorter imaging time than TOF-MRA.50 Van

Vliet et al.120 recently demonstrated the utility of high-resolution MRA by directly

correlating it with digital photography and intravital microscopy in a window chamber

tumor model. They found tumor angiogenesis could be mapped micro- and macroscopically

in vivo and showed excellent correlation with the other imaging techniques. In addition, they

showcased the clinical utility of CE-MRA for imaging tumor induced changes in

vascularity. Finally, it should be pointed out that with MRA, one can extract and quantify

changes in the 3-D morphology of blood vessels. For example, in an elegant demonstration

of the clinical utility of using MRA to monitor changes in blood vessel morphology, Bullitt

et al.16 were able to demonstrate that 3-D vessel tortuosity measurements on vascular trees

derived from MRA could predict brain metastases treatment response sooner than traditional

methods.

High-resolution Ex Vivo Techniques

There are several ex vivo methods of imaging tumor vasculature in 3-D. Most of these

methods entail the creation of a vascular “cast”. A typical vascular casting procedure is

described in Verli et al.121; in brief, the animal is anesthetized and then perfused, first with a

solution such as heparinized saline for exsanguination, followed with a fixative such as

formaldehyde, and finally with a polymerizing resin. After the cast has polymerized, a
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corrosion step can be performed to macerate the surrounding tissue. The corrosion cast can

then be imaged by different methods such as scanning electron microscopy (SEM) and

microcomputed tomography (µCT). SEM uses a high-energy electron beam to produce very

high resolution images on the scale of 1 nm. Deane and Lantos used SEM to conduct some

of the earliest studies quantifying the morphological abnormalities of the endothelium of

experimental brain tumors.27 While it is not an inherently 3-D technique, stereo pairs of

SEM images can be used to obtain 3-D information.77 This SEM stereoimaging method has

been used for morphometric analysis (e.g., computation of the inter-vessel distance, inter-

branch distance, branching angle and vessel diameter) of vascular corrosion casts from

various tumor models.37 However, for SEM stereoimaging, 3-D reconstruction is limited to

vessels that are within the “line of sight”of the electron beam.

Micro-CT (µCT), on the other hand, is a true 3-D method in which a 3-D image is

reconstructed from 2-D X-ray projections taken at incremental angles around an axis of

rotation. Vascular casting resins are radiopaque (i.e., strongly attenuate X-rays) and thus

enable µCT imaging of the vasculature. Micro-CT is capable of imaging the vasculature of

entire tumors at resolutions up to ~3 µm.37 This is a sufficiently high resolution to image the

vascular architecture down to the capillary level, as demonstrated by a study that showed

excellent agreement between µCT- and SEM-measured cortical vessel diameters.47 Another

advantage of µCT is that tissue maceration is not required. While the vascular casting

technique is the same, the corrosion step is excluded, which allows samples to be preserved

for further study (e.g., histology). Micro-CT has also been successfully combined with MRI

to create a high-resolution, 3-D atlas of the neurovasculature in a CBA mouse.32 This rich

multi-modality dataset shows the placement of the major arteries, their branches and the

brain structures they feed. As one of the first 3-D atlases of the cerebral vasculature in mice,

it is proving an invaluable resource for comparative studies involving the murine

neurovasculature in healthy and disease models.

Risser et al.107 employed a synchrotron X-ray source to conduct synchrotron radiation µCT

(SRµCT) on 2.5 mm diameter cylindrical samples from 9L tumor-bearing rat brains and

obtained high contrast between the vasculature and background tissue at 1.4 µm resolution.

The sub-capillary spatial resolution of their 3-D images enabled them to ascertain that both

tumor and normal brain vasculature display fractal organization on small spatial scales.

Recently Chien et al.24 employed SRµCT to profile “microangiogenesis”in a panel of

subcutaneous tumor models as well as in an orthotopic pancreatic tumor model. They could

assess small differences between the vasculature of pancreatic tumors derived from control

or radiation activated PANC1 tumor cells. However, SRµCT is not widely available because

of the need for a synchrotron for generating the high-energy X-rays necessary for imaging.

Further applications of vascular imaging with µCT can be found in the review by Zagorchev

et al.128

Although ex vivo MR microscopy or micro-MRI (µMRI) has been employed to image the

vasculature of the mouse embryo11 and adult rat brain,62 it had not been employed to

characterize the aberrant vasculature of solid tumors. Therefore, recently we developed a

µMRI method to quantify the 3-D architecture of tumor blood vessels in a brain tumor

model.66 In our application, the vascular casting resin acts as a negative MRI contrast agent

because it lacks the mobile water protons necessary for producing an MR signal. Thus, a 3-

D image can be acquired in which blood vessels appear dark against bright background

tissue. While the spatial resolution of µMRI is less than that of µCT, at 60 µm isotropic

resolution we were able to quantify and distinguish the vascular phenotype of 9L brain

tumor xenografts from contralateral brain as well as between brain tumors at different

stages. An advantage of µMRI is that it permits the assessment of tumor vascular

morphology while providing complementary, co-registered information about the tumor
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microenvironment. This is achieved by exploiting different physiological MR contrast

mechanisms. For example, we recently used vascular µMRI in conjunction with diffusion

tensor imaging (DTI) to visualize the interplay between tumor angiogenesis and white

matter reorganization that often accompanies brain tumor invasion.91 Since µMRI is a

“mesoscopic”scale imaging technique, it facilitates co-registration and bridges the spatial

resolution gap between microscopic µCT and macroscopic in vivo MRI angiogenesis data.22

MULTISCALE IMAGING OF THE TUMOR VASCULATURE

As described above, the vasculature in pre-clinical tumor models has been traditionally

characterized at the “cellular”scale using optical imaging methods, and the “systemic”scale

using in vivo CT and MRI. While optical imaging and histology are powerful for

quantifying changes in the tumor vasculature at submicron resolutions, they suffer from

limited spatial coverage which makes co-registration with in vivo imaging data challenging.

Also, 3-D blood vessel and tissue architecture once destroyed by sectioning is extremely

difficult to reconstruct.43 Conversely, imaging modalities such as in vivo MRI provide

quantitative data, but lack the spatial resolution and specificity to relate changes in

angiogenic parameters (e.g., tumor blood volume) to the distribution of angiogenic proteins

(e.g., vascular endothelial growth factor or VEGF). Furthermore, integrating 3-D imaging

data from disparate sources into computational models of tumor angiogenesis remains

challenging. For example, if one wished to simulate the changes in tumor blood flow that

accompany tumor progression, one would require high-resolution 3-D data describing the

vascular geometry of the tumor at different time points. The scarcity of such high-quality

datasets remains a serious hurdle for: (i) simultaneously visualizing changes in the

angiogenic microenvironment at different spatial scales; (ii) incorporating these data in

multiscale computational models of angiogenesis and their validation; (iii) phenotyping the

dynamic tumor microenvironment; and (iv) obtaining an integrated, global perspective of

the angiogenic microenvironment.

Some of the most exciting developments in “multiscale”imaging of the vasculature have

been a consequence of advances in µCT47 and µMRI91 imaging techniques. Both methods

permit high-resolution, 3-D, ex vivo imaging of the vascular network of entire organs as

opposed to imaging the vasculature of excised tissue samples from limited regions of

interest. Additionally, the integration of µCT and µMRI imaging with imaging modalities

capable of covering complementary spatial scales permits “wide area mapping”of the

vasculature.

For example, in an elegant study, Heinzer et al.47 demonstrated the feasibility of true

“hierarchical”imaging of the vascular network in the murine brain. In this study, the authors

were able to acquire co-registered images of the murine neurovasculature over a range of

spatial scales by exploiting the complementary strengths of µCT, SRµCT and SEM. To

facilitate the integration of 3-D imaging data from different spatial scales, the authors

utilized a specialized sample holder that facilitated registration of images from different

modalities into a common image coordinate system. Large vessels visible in each image and

the relative positions of regions of interests (ROIs) with respect to pins in the sample holder

facilitated accurate intermodality image registration. Using this unique imaging platform,

they were able to image the murine neurovasculature at spatial resolutions spanning several

orders of magnitude that ranged from the endothelial cell level using SEM (~0.1 µm),

through the capillary/arteriole/venule level using SRµCT (~µm) and finally to the whole

brain vasculature using µCT (~10 µm) (Fig. 2). Finally, using hierarchical imaging, the

authors successfully visualized and quantified differences in the morphology of the

neurovasculature in a control mouse and an APP23 transgenic mouse model of Alzheimer’s

disease.
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From the standpoint of multiscale modeling, it is desirable to integrate in vivo imaging data

with ex vivo and histologic data. As illustrated in Fig. 3, this would enable: (i) bridging the

spatial resolution gap between the micro- and macroscopic imaging scales; (ii) mapping the

distribution of cellular factors (e.g., distribution of VEGF) obtained using optical

microscopy to parametric in vivo MRI maps (e.g., tumor blood volume); (iii)

implementation and validation of multiscale models of tumor angiogenesis (see following

section for details). To facilitate the integration of ex vivo microscopic vascular data

obtained using µCT (~10 µm resolution) and macroscopic blood volume data obtained in

vivo with MRI, we developed a “mesoscopic”scale vascular imaging method that employs

µMRI.91 As described above, µMRI offers high 3-D imaging resolutions (~25 µm), is

nondestructive, provides excellent soft tissue contrast, and preserves tissue and blood vessel

architecture.63 This platform also enabled multiscale imaging of brain tumor angiogenesis,

wherein we directly compared in vivo MRI blood volume measurements with ex vivo

vasculature data obtained from µMRI (Fig. 4).

Furthermore, we recently conducted multiscale angiogenesis imaging of tumor xenografts

derived from the MDA-MB-231 human breast carcinoma cell line at three complementary

spatial scales: (i) at the macroscopic scale with susceptibility contrast enhanced in vivo

MRI; (ii) at the mesoscopic scale with ex vivo µMRI; and (iii) at the microscopic scale with

µCT (Fig. 5). In vivo susceptibility-contrast enhanced MRI exploits the difference in intra-

and extravascular magnetic susceptibility (i.e., “magnetizability”of a material placed in an

external magnetic field) created by paramagnetic or superparamagnetic blood pool contrast

agents such as gadolinium chelates and iron oxide nanoparticles, respectively. This

susceptibility difference hastens the exponential decay of the MR signal, characterized by

the transverse relaxation rate constant, which is sensitive to the underlying vasculature of the

tissue being imaged.89 It has been shown that the change in the spin echo (SE) MRI

relaxation rate ΔR2 is maximally sensitive to the microvascular blood volume (i.e., venules,

capillaries, arterioles), while the change in the gradient echo (GE) MRIrelaxation rate ΔR2*

ismore sensitive to the global blood volume (i.e., larger vessels).13 One can therefore create

micro- and macrovascular blood volume maps to track tumor angiogenesis in vivo. We then

employed µMRI as an “integrator”(as described in Fig. 3) to bridge the resolution gap

between µCT and in vivo MRI blood volume data.22 To achieve this, we first extracted the

3-D tumor vasculature from µMRI and µCT data as described in Kim et al.66 and Cebulla et

al.22 Next, 3-D µMRI data were co-registered to the in vivo MRI data using images from the

first echo time (TE). We then co-registered the µCT vascular data to the µMRI vascular data

using landmarks placed on large vessels. Fractional blood volume (FBV) maps were

computed from high-resolution µMRI and µCT vascular data by re-sampling these data onto

the in vivo MRI spatial grid, and calculating the fractional occupancy of vessels in each in

vivo voxel as described in Kim et al.66 and Cebulla et al.22 The FBV calculated from µMRI

systematically overestimated the values calculated from µCT (Figs. 5b–5c). This was likely

the result of partial volume effects resulting from the coarser spatial resolution of µMRI

relative to µCT. And while two disparate contrast mechanisms were used to generate the in

vivo and ex vivo FBV maps, there was good qualitative correspondence between the three

modalities (Figs. 5a–5c). Additionally, tumor rim and core ROIs were identified using

morphological erosion of the tumor ‘mask’ such that the numbers of pixels in the two

regions were approximately equal. It was found that consistent with the vascular phenotype

of this human breast cancer model, the FBV in the tumor core was significantly lower

compared to the rim at all three spatial scales (Figs. 5d–5f).

In recent years there has been a concerted effort toward acquiring multiscale data in a range

of preclinical disease models. A major driving force in this integration has been the

development of novel optical 34 and molecular imaging techniques.92 Innovations include

the development of brighter, more photostable, and switchable contrast agents that enable
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imaging of gene expression, protein compartmentalization, target localization, and receptor

kinetics. Collectively, these advances have facilitated the integration of traditional imaging

techniques with “-omic”approaches for elucidating the systems biology of cells, entire organ

systems and animals. As this review is focused on multiscale, 3-D imaging of the tumor

vasculature, readers are referred to outstanding reviews by Megason et al.84 and Du et al.34

for detailed treatment of these topics.

INSIGHTS ABOUT THE TUMOR VASCULATURE FROM MATHEMATICAL

MODELING

The acquisition and reconstruction of “wide-area”, 3-D microvascular networks from high-

resolution imaging data is technically challenging and computationally intensive and such

data are only now becoming available. Thus, in the past researchers had to employ in silico

synthesized vascular networks to study hemodynamics in the microcirculation.8,15,54,115

Modeling of microvascular hemodynamics has been reviewed in Lee and Smith68 and Popel

and Johnson.96 Blood flowing in microvessels exhibits non-Newtonian rheological

properties, e.g., the effective viscosity is dependent on vessel diameter. Based on

experimental measurements of blood flow in rat mesentery, Pries, Secomb and co-authors

have derived empirical relationships to account for the in vivo Fahraeus effect (tube

hematocrit lower than discharge hematocrit), Fahraeus-Lindqvist effect (effective viscosity

in a microvessel lower than bulk viscosity) and phase separation effects of red blood cells in

bifurcations.101,102 Subsequently, their models have included the remodeling of blood

vessels due to hemodynamic and metabolic stimuli, as well as the effect of the endothelial

surface layer (ESL) on effective viscosity.99,100 The Pries and Secomb analysis has been

applied to calculations of microvascular blood flow and hematocrit distribution in skeletal

muscle,9,71,118 brain,74,75 heart,69 lung,126 eye42 and other tissues and organs; constant

Newtonian viscosity calculations assuming Poiseuille flow in vascular segments have been

carried out in the heart, taking into account myocardial contractions.26

In contrast to the vasculature of healthy tissues, a hallmark of the tumor microvasculature is

its highly irregular morphology.67 Consequently, the distribution of blood,55 oxygen and

nutrients is extremely heterogeneous, leading to the creation of hypoxic regions in the

tumor.40,98 Hyperpermeable tumor vessels result in elevated interstitial fluid pressure that

negatively affects drug delivery, targeted chemotherapy and radiation therapy.41 Therefore,

mathematical simulations of microvascular hemodynamics at the whole-tumor level will

benefit the development and optimization of new therapies for inhibiting cancer growth and

angiogenesis.

Jain has proposed that anti-angiogenic therapy can normalize tumor blood flow by reducing

vascular heterogeneity and allowing more efficient delivery of anticancer agents.56 On the

other hand, excessive anti-angiogenic therapy could ultimately lead to destruction of tumor

blood vessels and enhance the tumor’s resistance to therapy. Therefore, it would be

invaluable to be able to identify the “window of opportunity”for vascular

normalization.20,56,57 Based on these concepts, Jain and coworkers developed a

mathematical model and showed that anti-angiogenic therapy can affect a number of key

aspects of the tumor microenvironment, such as interstitial fluid pressure and vascular

permeability.60 Wu et al.125 developed a 3-D computational framework to predict the effects

of vascular normalization on a synthetic tumor vascular network induced by anti-angiogenic

therapy. In conjunction with physiologically derived parameters, a detailed knowledge of the

3-D geometrical features of the tumor vessel network would enable more realistic

simulations of blood flow in every segment of the de facto tumor vascular network.59

Furthermore, computational models of blood flow, shear rate and hematocrit have the

potential to quantify the functional and structural heterogeneity and remodeling of tumor

Kim et al. Page 8

Ann Biomed Eng. Author manuscript; available in PMC 2013 October 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



vascular networks in comparison to normal ones.97,110 Due to the disorganized nature of

tumor vasculature, microvessel density alone is not an adequate biomarker of successful

anti-angiogenic therapy. 58 As a result, a number of functional and morphological indices

have been proposed to assess the efficacy of drug delivery5,97 and anti-angiogenic therapy90

in tumors. Finally, predictions of shear stress values across the tumor vasculature can

provide valuable information related to the mechanotransduced activation of genes related to

angiogenesis.64

Collectively, these computational advances have the potential to: (i) contribute to a

“systems-level”view of angiogenesis; (ii) increase the efficacy with which circulating

pharmaceutical agents can be administered12; and (iii) aide in the development of clinical

blood biomarkers (e.g., cancer proteins secreted into the blood) of cancer detection.49

IMAGE-BASED MODELS OF TISSUEAND ORGAN-LEVEL BLOOD FLOW

The advances in imaging described above, together with multiscale models of blood flow

constitute a new computational framework for elucidating the function of various organ

systems under normal and pathophysiological conditions.52 An accurate quantitative

description of the 3-D blood vessel architecture is necessary for numerically solving partial

differential equations of fluid dynamics. Advances in processing power and high-resolution

imaging have resulted in sophisticated new image-based “macroscale”(i.e., at the spatial

scale of arteries and assuming Newtonian properties of blood) computational models of

blood flow in vascular networks to elucidate systemic disease states (Fig. 6). These

approaches span from one-dimensional (1-D) models up to 3-D models attempting to

characterize the entire arterial network by applying the appropriate boundary conditions

(Table 1). For example, Zhou et al.129 applied a 3-D finite element method (FEM) to predict

cardiovascular flow in a whole-body model based on vascular data derived from CT

imaging. Similarly, elegant multidomain approaches have been developed to describe 3-D

hemodynamics in major arteries. In these multiscale systems, the computational fluid

dynamic (CFD) models are linked to lumped parameter (e.g., windkessel) models to account

for the impedance of various organs and the downstream vascular bed.123

Theoretical approaches to describe the dynamics of blood flow in image-based vasculature

of several physiological subsystems have been reported. Grinberg and Karniadakis applied a

3-D spectral element method to simulate the intracranial blood flow network. In this model

they imposed Resistance–Capacitance (RC) and RCR (two- and three-element windkessel

models) pressure boundary conditions for the closure linking the outlet domain resistances

with their flow rates ratio.44 A 3-D FEM approach was used by Tang et al.116 to describe

blood flow in major pulmonary arteries based on MRI-acquired vessel structure. A summary

of representative macroscale hemodynamic studies using image-derived vascular geometries

is presented in Table 1.

Recently, Lorthois et al.74,75 simulated blood flow and predicted hematocrit distribution in a

human cerebral microvascular network, comparing different boundary conditions. The data

for this study were derived from confocal microscopy of thick sections of India ink-injected

human brain.21 Benedict et al.9 also used confocal microscopy to obtain vascular data on

immunostained skeletal muscle and performed hemodynamic simulations. SRµCT-derived

vascular data was used by Reichold et al.105 to simulate cerebral blood flow. Micro-CT data

were used by Lee and Smith to implement a novel approach linking blood flow and

hematocrit in a coronary microvascular network model.69 Yang et al.126 also employed

µCT-derived 3-D vascular data to simulate the hemodynamics of the rat placenta and lung

vasculature (Table 2).
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IMAGE-BASED MODELING OF TUMOR BLOOD FLOW

Several factors have contributed to the rapid progress of multiscale computational models of

solid tumors, e.g., the development of new modeling methodologies, such as agent-based

modeling and the integration of the molecular, cellular, and tissue scales. Agent-based

models represent a class of computational models in which a discrete rule-based approach is

used to simulate the interaction of individual entities of interest (e.g., cells, macromolecules

etc.) with one another and with their microenvironment. The rules that dictate the behavior

of these agents can be defined more succinctly due to the availability of high-throughput

genomic and proteomic data. These advances in modeling tumor growth and progression are

summarized in Chaplain et al.,23 Hatzikirou et al.,46 Anderson and Quaranta,2 Byrne,18

Deisboeck et al.,28 Rejniak and Anderson,106 Stefanini et al.114

While ex vivo and in vivo optical imaging data have been employed to develop multiscale 3-

D models of tumor growth,25,95 models of tumor blood flow based on high-resolution

imaging data are only emerging.86 We have recently applied the hemorheological

formulation described above to the “wide-area”digitized microvasculature of a human triple-

negative breast cancer xenograft model acquired with 8 µm spatial resolution using µCT.22

The tumor was excised 5 weeks after orthotopically inoculating MDA-MB-231 human

breast cancer cells in the mammary fat pad of SCID mice. Details of the experimental

procedure, image acquisition and processing are described in the section on Multiscale

Imaging above. Following segmentation of the tumor vasculature, we identified the

topological features of the microvascular network (e.g., node position vectors and adjacency

matrix) and filtered any morphological discrepancies present in the images.21 The

reconstructed network (Fig. 6a) exhibited all the known characteristics of breast tumor

microvascular morphology such as trifurcations, tortuosity, self-loops and blind ends.70

Pressure boundary conditions were imposed in hemodynamic simulations. The Amira

(Visage Imaging) software package was used for visualization of the results. Figures 6b and

6e illustrate the simulated microvascular flow rate and pressure drop in each of the segments

of the µCT-derived tumor vasculature. Figure 6f illustrates the distributions of vessel radius

and flow rate for two ROIs selected in the tumor rim (Fig. 6c) and core (Fig. 6d),

respectively. Our hemodynamic analysis revealed functional “shunting”(i.e., high flow, low

resistance paths) that is often observed in tumor vascular networks. In addition, it indicated

the remarkably elevated vascularization and blood flow in the rim compared to the core of

the tumor vascular network. These results are consistent with the ROI analysis of FBV

obtained from multiscale imaging presented in Fig. 5. Much remains to be accomplished to

make comprehensive and validated predictions at different stages of tumor growth and for

different tumor types, with and without therapeutic interventions.

CHALLENGES AND FUTURE STEPS

While considerable advances have been made in the fields of multiscale imaging and

modeling, significant challenges still remain. It remains necessary to rigorously validate the

predictions of multiscale blood flow models on a scale similar to that employed in the

simulations. Such validation would involve multiscale imaging that spans from the capillary

to the macro-vascular scale. For example, one could employ laser speckle imaging104 or

microsphere-based techniques80 to assess microvascular perfusion, and in vivo MRI89 or CT

and ultrasound14 to assess perfusion at the whole tumor/organ level. It will also be necessary

to develop new image processing schemes and databases for seamlessly integrating and

mining these multiscale datasets. We will need to develop strategies for exploiting the

availability of online repositories of gene expression and proteomic data (e.g., the Allen

Brain Atlas Project88) for integration into, and validation of these models. Finally, it will be

necessary to establish a unified framework for disseminating these multiscale models and
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imaging data to the widest possible audience. Taking these future steps will herald a new

understanding of phenomena as diverse as the tumor microenvironment, structure–function

relationships in disease and drug delivery.

CONCLUSION

Although focused on the tumor vasculature, the multiscale imaging methods described here

can be employed in a variety of disease models that involve a pathological vasculature, e.g.,

stroke and spinal cord injury. The eventual integration of hierarchical imaging platforms

with widely available genomic databases will enable systems biology researchers to gain

insights into a range of issues, such as the mechanisms of resistance to anti-angiogenic

therapies. When incorporated in computational models of MR susceptibility contrast such as

the finite perturber method,93 multiscale data could help elucidate the biophysical

relationship between the MRI signal and the underlying vasculature. This would facilitate

the development of more accurate clinical biomarkers of angiogenesis and anti-angiogenic

therapy. Moreover, image-based blood flow modeling of the tumor vasculature provides

valuable information on the hemodynamic properties of the network that influence

endothelial sprouting and vascular remodeling.98,112 This will also enable development of

multiscale mathematical platforms of tumor growth and angiogenesis based on detailed

experimental data, without the need to rely on idealized vascular structures.19,73,95

Multiscale modeling can be exploited to assess various anti-tumor and anti-angiogenic

treatment scenarios, as well as guide the administration of these agents. We believe that

multiscale imaging and modeling will be an invaluable resource for researchers for years to

come, and will greatly enhance our understanding of the complex system that is the tumor

microenvironment.
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FIGURE 1.
Schematic illustrating “multiscale”imaging of the angiogenic phenotype. (a) In vivo MRI of

a 9L brain tumor bearing mouse brain at the ‘macroscopic’ scale (~150 µm resolution); 3-D

ex vivo MR microscopy (µMRI) at two ‘mesoscopic’ scales. (b) ~60 µm, and (c) ~30 µm in

which the neurovasculature has been segmented into tumor vessels (gold) and cortical

vessels (red). One can visualize the abnormal tumor vessel architecture and appreciate

changes in vessel morphology at the tumor-host tissue interface (arrows). Imaging at the

‘microscopic’ scale: fluorescence microscopy images of (d) CD34 stained tumor vessels

(10×), and (e) a lectin-labeled arteriole (40×). (f) Cartoon illustrating microarray analysis of

the endothelium at the ‘molecular’ scale.
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FIGURE 2.
Hierarchical imaging of the mouse brain vasculature. (a) Intact mouse brain vasculature

scanned at medium resolution (16 µm voxel size) using a µCT system. (b) Slice of the

section marked red in panel (a), revealing the frontal cortex. The red square labeled

“C1”denotes a region of interest (ROI) which was measured using SRµCT. (c) Slice of

SRµCT high-resolution data visualizing intracerebral arteries and the capillary network. The

latter is not visualized in the medium resolution data (b) but provides essential structural

characteristics of the vasculature, as for example the microinfarct marked by the red

rectangle. (d) Surface rendering of the infarct region marked in panel (c) suitable for detailed

3-D analysis. Scale bar: 100 µm. (Adapted with kind permission from Heinzer et al.47).
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FIGURE 3.
Schematic illustrating the bidirectional feedback between multiscale imaging and multiscale

modeling of tumor blood flow. Following acquisition of the hierarchical angiogenesis data,

certain imaging parameters will serve as inputs to the multiscale model of tumor blood flow,

while others will be employed to validate model predictions. For example, the µCT-derived

3-D tumor vessel geometry could serve as the input for large-scale tumor blood flow

simulations. Predictions of the blood flow simulations will inform an oxygen transport

model, which in turn will determine results of a VEGF secretion model. The VEGF

secretion model will predict the spatio-temporal distribution of VEGF within the tumor,

which will be validated against the spatial distribution of VEGF obtained from confocal

microscopy of immunostained tumor sections. It should be borne in mind that acquiring

macroscopic 2D (1 mm thick slices) in vivo MRI data over a 1–2 cm axial FOV at 125 µm

in-plane resolution takes 5–10 min and results in ~MB of data. In contrast, a mesoscopic

µMRI acquisition of the same volume at ~40–50 µm isotropic resolution takes 8–10 h,

resulting in ~100 MB of data, while a microscopic µCT acquisition of the same volume at

~8 µm isotropic resolution takes 10–12 h, resulting in ~1 GB of data.
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FIGURE 4.
Bridging “macroscale”and “microscale”with MRI. (a) In vivo macrovascular cerebral blood

volume (CBV or ΔR2*) map. (b) Co-registered ex vivo fractional blood volume (FBV) map

obtained from µMRI. The tumor region of interest (ROI) is highlighted by hatched lines in

each panel. (c) Histograms showing the relative distribution of the ΔR2* between tumor and

contralateral ROIs. (d) Histograms showing the relative distribution of the FBV between

tumor and contralateral ROIs. Tumor blood volume is elevated relative to the contralateral

brain across these “multi-scale”data. Adapted from Pathak et al.91
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FIGURE 5.
Co-registered, multiscale blood volume maps in a human (MDA-MB-231) breast cancer

model. (a) Macrovascular blood volume map computed from in vivo MRI (~100 µm). Co-

registered maps of fractional blood volume (FBV) computed from (b) µMRI (~40 µm) and

(c) µCT (~8 µm). One can differentiate the well-vascularized rim from the poorly

vascularized tumor core in (a–c). (d–f) Distributions of FBV from each spatial scale

demonstrating elevated blood volumes in the rim vs. the core for this xenograft model. The

rim and core were identified using morphological erosion on a tumor ‘mask’ such that the

numbers of pixels in the two regions were approximately equal. The lines superimposed on

the histograms represent normal distributions fitted to the histogram data.
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FIGURE 6.
Image-based hemodynamic modeling in a human breast cancer model. (a) Reconstructed

“wide-area” 3-D microvascular network derived from µCT data acquired from a 5-week-old

MDA-MB-231 breast cancer xenograft. (b) Blood flow map (in nl/s). Magnified blood flow

maps corresponding to (c) a rim ROI (blue box), and (d) a more central ROI (red box). (e)

Pressure distribution (in mmHg) for the entire tumor vasculature. (f) Radius (in µm) and

blood flow (in nl/s) distributions corresponding to the tumor rim and core ROIs in (c–d).

The lines superimposed on the histograms represent normal distributions fitted to the

histogram data.
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TABLE 2

Summary of representative microvascular image-based blood flow simulations using the empirical

hemorheological Pries–Secomb relationships.

System/organ Imaging method Outlet boundary conditions Species References

Intra-cortical vascular network Confocal microscopy Pressure/zero flow/flow rate Human Lorthois et al.75

Retinal microvasculature Confocal microscopy Pressure Mouse Ganesan et al.42

Retinal arterial microvasculature Fundus camera Structured tree Human Liu et al.72

Skeletal muscle microvasculature Confocal microscopy Pressure Rat Benedict et al.9

Coronary microvasculature µCT Pressure Rat Lee and Smith69

Intra-cortical vascular network SRµCT Pressure Rat Reichold et al.105

Fetoplacental and pulmonary vascular network µCT Pressure Mouse Yang et al.126

SRµCT: Synchrotron Radiation Based Micro-CT.
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