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International mobility facilitates the exchange of scientific, institutional and

cultural knowledge. Yet whether globalization and advances in virtual com-

munication technologies have altered the impact of researcher mobility is a

relevant and open question that we address by analysing a broad inter-

national set of 26 170 physicists from 1980 to 2009, focusing on the 10-year

period centred around each mobility event to assess the impact of mobility

on research outcomes. We account for secular globalization trends by split-

ting the analysis into three periods, measuring for each period the effect of

mobility on researchers’ citation impact, research topic diversity, collabor-

ation networks and geographical coordination. In order to identify causal

effects we leverage statistical matching methods that pair mobile researchers

with non-mobile researchers that are similar in research profile attributes

prior the mobility event. We find that mobile researchers gain up to a 17%

increase in citations relative to their non-mobile counterparts, which can

be explained by the simultaneous increase in their diversity of co-authors,

topics and geographical coordination in the period immediately following

migration. Nevertheless, we also observe that researcher’s completely curtail

prior collaborations with their source country in 11% of the cross-border

mobility events. As such, these individual-level perturbations fuel multiscale

churning in scientific networks, e.g. rewiring the connectivity of individuals

and ideas and affecting international integration. Together these results pro-

vide additional clarity on the complex relationship between human capital

mobility and the dynamics of social capital investment, with implications

for immigration and national innovation system policy.

1. Introduction
The dispersion of knowledge across institutional and national borders is funda-

mental to scientific progress. Historically, knowledge exchange has been

mediated via the physical mobility of people and printed publications, however,

it is progressively mediated by a combination of physical and virtual networks.

While researcher relocation remains a prominent conduit for knowledge transfer,

researchers can now choose from a variety of virtual alternatives to explore new

research environments and collaborations. And while the professional prospects

and call of adventure associatedwith relocationmay be alluring to some, there are

nevertheless risky trade-offs associated with physical relocation that require

careful assessment of local versus non-local socio-economic, family, work and

funding opportunities [1–4]. This common dilemma factors into the cost of

human and social capital investment in science, which is rather substantial and

continues to grow with the globalization of the scientific endeavour [1,5].

To stay or leave?We provide guidance on this pivotal question by quantifying

the impact of researcher mobility from four perspectives—scientific impact,

research topic diversity, collaboration and international integration—together

providing insights into the socially mediated network of networks connecting

individuals and knowledge production [6]. As such, our results contribute to

the literature on how knowledge flows [7,8] and how careers grow [9] following

pivotal events—e.g. winning the Nobel Prize [10], initiating a dedicated
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partnership [11], obtaining tenure [12] and pursuing cross-

disciplinary migration [13]—which in turn mediate shifts in

collaboration [14–16] and research topic exploration [17–20].

In particular, we focus on the domain of physics, a broad

research field characterized by relatively high levels of geo-

graphical mobility, which contributes to growing efforts

to measure the impact of high-skilled migration in both

industry and academia [1–5,7,8,14–16,21–33]. We employ a

data-driven approach, starting with author disambiguation

of 355 808 research articles published in American Physical

Society (APS) journals over the period 1980–2009, resulting

in a final dataset of 26 170 prominent researcher profiles

that are broadly distributed both in terms of geography,

productivity and scientific impact.

We leverage the size and breadth of this researcher dataset

to address common reverse causality and selection bias pro-

blems that render identifying causal mobility effects rather

challenging [34]. For example, many studies to date focus on

select subsets of migrant researchers—e.g. elite scientists, win-

ners of prestigious international fellowships or participants in

select national exchange programmes—in which measured

shifts in performance may endogenously depend on the selec-

tion ofmigrant researchers being analysed. Instead, following a

data-driven approachwe are able to estimate themobility effect

within a diverse population, accounting for variation in time

period, geographical region, and social and cognitive aspects

of research activity.

Our results demonstrate the impact of researcher mobility

across scales—from individual careers, to collaboration net-

work churning, to international integration. As motivation,

the Nobel Prize offers a prime example of multiscale impact,

highlighting how countries with attractive academic and

industrial R&D environments that support objective and

impartial immigration policy are positioned to benefit greatly

from the immigration of even just a single elite scientist capable

of prosecuting ground-breaking and transformative research.

To provide insights into the global immigration patterns of

elite scientists, we analyse the international pathways of all

Nobel Prize winners through 2016 (figure 1). We found that

roughly 1 in 4 are foreign-born—having performed their

prize-winning research in a country different than their birth

country. This finding is rather stable across the different

award categories, with the exception of the Peace Prize,

which has lower frequencies since there is a propensity for

human rights activists to lead movements in their native

countries. The UK, Germany and France, the three countries

in Europe with the highest R&D spending, have seen a recent

surge since the 1990s in the fraction of Nobelists from their

countrywho are foreign-born. The rest of theworld, not includ-

ing the US, shows the opposite trend since the 1960s. There is

also significant disparity in the flow counts from source to des-

tination country, as figure 1d illustrates how research hubs like

the USA, the UK and Germany attract a disproportionate share

of foreign-born Nobelists.
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Figure 1. International mobility of Nobel laureates. (a) Fraction of Nobel Prize winners who received their award for work done in a country different than their

birth country—‘foreign-born’; 23% of Nobel Prize winners from 1901 to 2016 belong to the foreign-born category, indicated by the horizontal line. (b) Fraction by

award and time period. (c) Fraction by region of achievement over 10-year intervals. (d ) The Nobelist birth-discovery network: countries are represented along the

arc, with arc-length proportional to the number of laureates born in a given country. Link width represents the number of individuals born in country cb that

performed award research in country ca. The link direction is denoted by the gap, which differentiates incoming and outgoing links: e.g. the majority of the

international links associated with the US terminate with a gap, indicating foreign-born. The majority of links are intra-country (e.g. 29% of all laureates have

the US as their country of birth and their country of achievement), but the international links represent the nearly 1 in 4 Nobelists who migrated internationally.

Data from Wolfram Alpha [35]. (Online version in colour.)
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While winning the Nobel Prize is likely to remain out of

reach for most scientists, the bulk of scientists will nevertheless

encounter an opportunity and be faced with the decision of

whether to relocate. Based on our data, we estimate the rate

of international mobility among all researchers in our dataset,

independent of productivity level, to be roughly 2 in 5 (40%);

and including US inter-state cross-border mobility this rate is

closer to 3 in 5 (58%).

In what follows, we focus on several thousand relatively

productive physicists across three decades, implementing

statistical matching techniques that leverage the breadth of

our dataset to compare researchers who migrate to similar

researchers who do not. As such, we demonstrate the value

of cross-border mobility on research outcomes, reflecting the

pervasive and persistent value of physicalmobility as a conduit

for the exchange of intellectual, professional and cultural

experience.

2. Results

2.1. Researcher data
We analysed the APS Physical Review datasets ‘Citing article

pairs’ and ‘Article metadata’ [36], from which we extracted

researcher profiles using a network-based author name disam-

biguation method [37]; see electronic supplementary material,

appendix A.1 for additional details. Application of this algor-

ithm identified 208 734 distinct researcher profiles over the 30-

year period 1980–2009. Each researcher profile, indexed by i,

is characterizedby theyearof researcher’s firstAPSpublication,

y0i , and total number of APS publicationsNi. We concentrate on

the 26 170 researchers withNi ! 10 publications who alsomeet

additional career longevity and productivity criteria. Electronic

supplementary material, figure S1(A–C) provides a statistical

summary of the publication and researcher profile data.

Despite the large sample size, there are several limitations

common to large-scale data-driven approaches, which derive

frommissing contextual information at the researcher and geo-

graphical level. First, we lack data for physics and non-physics

research published by these researchers outside of the set of

APS journals. Yet because of the reputation and prominence

of the APS journal family, we are able to make the assumption

that researchers characteristic of physics-related domains are

likely to publish in one or more of these journals rather fre-

quently over the course of his/her career. Thus, as long as

their publications in the APS journals are characteristic of

their contemporaneous research output in other journals

(albeit excluding the exceptionally novel and infrequent

research published in high-impact multidisciplinary letters

journals) then we do not expect this to significantly bias our

estimates. In other words, our reported estimates measure

the impact of mobility on typical research outcomes.

Second, and relevant to this previous point, in order to

facilitate the precision of the statistical matching method used

here that leverages the large size of our researcher sample,

we only include relatively prolific APS researchers. This is

achieved by thresholding on publication rates during the

10-year window around each mobility event, which also

ensures that the publication measures are aggregated from

sufficient sample size to be a reasonably robust measure of

researcher attributes in the immediate (5-year) period before

and after the event. However, this also means that we

likely exclude many early stage (doctoral) and postdoctoral

researchers who commonly migrate for brief periods, but do

not have significant publication output to enter our study

before they exit the academic career path. For example, accord-

ing to US National Science Foundation Statistics, by 2008 the

rate of US PhD recipients (postdoctoral fellows) in science

and engineering whowere foreign-born had grown to roughly

1 in 2 (3 in 5) [5]. Thus, our results do not capture the mobility

premium for this highly mobile portion of the academic

workforce, which deserves additional attention given shifts

in the early and mid-career labour market [12,38–41] and

the uncertainty associated with academic career trajectories

[24,29,42–44].

And third, in addition to missing bibliometric information,

we also lack other important information such as gender,

which is an important factor relevant to career longevity and

productivity in science [42,45–48], and possibly also migration

decisions. In a broader sense, we lack contextual information

on what push and pull factors underly researchers’ decisions

to migrate. For example, a 2011 survey analysis based on

more than 15 000 researchers’ responses reports that destina-

tion countries with competitiveness-oriented national science

policy (i.e. oriented around ‘prestige’ and ‘research excellence’)

is a major attractive factor [31]. A different study based

on more than 10 000 biomedical researchers, which incor-

porates social and familial factors in additional to the

traditional professional factors, also shows that researchers

are attracted by the prospects associated with a competitive

professional and peer environment; however, more accom-

plished researchers are less likely to move if they recently

obtained NIH funding or if their children are in high

school [3]. Countries with relatively high R&D expenditure

levels tend to have higher rates of elite physicist immigra-

tion [2]. And researcher mobility between two countries is

positively correlated with international student mobility

in the opposite direction, indicative of the formation of

cross-generational brain circulation channels [49]. Comple-

menting these findings is an analysis of high-skilled

migration within Europe over the period 1997–2014,

showing that countries with higher government expendi-

ture on education also make significantly more attractive

destination countries [4].

2.2. Researcher mobility framework
The aim of our study is to measure shifts in researcher profiles

before versus after an cross-border mobility event occurring in

year t*i,T. Electronic supplementary material, figure S2 illus-

trates our framework for measuring the reconfiguration of

research attributes before and after such a mobility event; see

electronic supplementary material, A.1 for further details on

the calculation of t*i,T. In particular, our framework relies on

the following subscript notation: we split into three time

periods (indexed by T ), drawing on numerous researcher

profiles (indexed by i), which are then split into three mobility

groups (indexed by G). Moreover, in order to assess individual

researcher profile attributes, we also analysed the collaborators,

keywords, and countries associated with each researcher

profile, hereafter generically indexed by j.

For two main reasons, we split the analysis into three

mobility observation periods denoted by T, each defined

by non-overlapping lower and upper year limits, t2T and tþT :

T1 ; [199021997], T2 ; [199822003] and T3 ; [200422007].

First, this separation facilitates drawing period-specific
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conclusions; considered together, they facilitate identifying

trends in the mobility effect over time. Second, this choice

provides a compromise on the issue of how to treat multiple

mobility events for a given researcher. In principle, a resear-

cher could migrate multiple times over a short period (e.g.

characteristic of a short postdoctoral or sabbatical period).

However, we are primarily interested in the shifts in research

activity associatedwith the first mobility eventwithin a reason-

able time frame. Thus, for a given analysis period T, we use just

the first t*i,T associated with a sequence of mobility events. By

partitioning our analysis intomultipleT, we then allow for sub-

sequent mobility events by the same i to also contribute to our

analysis. Electronic supplementary material, figure S1(D) pro-

vides a schematic of the separation of the analysis into three

observation periods: R is the number of researcher profiles

analysed per T: R1 ¼ 4124, R2 ¼ 9362 and R3 ¼ 13 457. The

variablewindow size accounts for the growth of the profession,

and the latter period is chosen to occur after 2004 so to account

for the increased international mobility following the EU

enlargement [4,16].

Electronic supplementary material, figure S1(E) provides

a schematic description of our procedure for classifying

each researcher i that was active in a given period T according

to three groups: (i) Gi,T ¼ 1 identifies researchers who did not

migrate before or during period T; Gi,T ¼ 2 identifies a ‘pla-

cebo’ mobility group comprised of researchers who were

mobile prior to T but not during T; and (iii) Gi,T ¼ 3 identifies

researchers who were mobile during T, with specific mobility

year t*i,T. Researchers in a given T belonging to either group

Gi,T ¼ 1 or 2 are prescribed t*i,T ;Median[t2T , t
þ
T ], the midpoint

of T (e.g. t*i,1;1994). We then aggregated each researcher’s

publications in the Dt ; 5-year window before t*i,T, i.e. over

the interval [t*i,T 2 Dt, t*i,T 2 1]); likewise, we aggregated the

publications after t*i,T over the interval [t*i,T, t
*
i,T þ Dt2 1]).

This framework facilitates measuring research patterns

over a balanced observation period for each i, thereby lever-

aging the longitudinal dimension of the researcher profiles.

As a final dataset refinement, we excluded researcher profiles

with fewer than three publications in either the period before

or after t*i,T and fewer than four distinct years of publication

activity in total.

Electronic supplementary material, figure S1(F) shows

the annual distribution of the total 31 075 mobility events,

including in this count the multiple movements by a single

researcher within a single T. Refining to just the first mobility

event per researcher per period, we observe 6498 profiles

belonging to the Gi,T ¼ 3 group (i.e. roughly 21% of the

total mobility events). These select researcher profiles are

rich in data and sufficient in number to implement a match-

ing method approach to estimate the impact of researcher

mobility on research outcomes by comparing groups 1 and

3; moreover, we perform a robustness check by comparing

researchers in groups 1 and 2 and researchers in groups 2

and 3. Intuitively, we expect that the mobility effect for the

groups 1 and 3 comparison should be larger than the other

group comparison estimates if our specification is to be

considered consistent.

2.3. Research activity measures
We provide four complementary perspectives on (i) scienti-

fic impact, (ii) collaboration, (iii) research topics and

(iv) geographical coordination, defined as follows:

2.3.1. Citation impact
Wenormalized the standard integer citation count ni,p,t for each

publication p published in year t to account for temporal bias.

The result is a normalized z-score zi,p, which is normally dis-

tributed for all t. We then calculate the average citation

impact value Zþ,2
i ;kzþ,2

p,i l across the Nþ,2
i publications in

each Dt ; 5-year interval, i.e. before (2) or after (þ) t*i,T. We

also use a measure of total citation impact, Sþ,2
i , useful for

assessing the magnitude of the mobility effect in real terms

by applying a ‘citation deflator’ that accounts for ‘citation

inflation’ [50].

2.3.2. Co-author diversity
For each Dt ; 5-year interval we count the number of articles

published by iwith co-author j, given by kij. We then calculate

the Shannon entropy for the distribution of kij across the set of

Ki co-authors, defined as Eþ,2
K,i . Higher levels of variation cor-

respond to larger entropy values, with E ! 0; the limiting case

of no variation, kij ¼ const. for all j, corresponds to E ¼ 0.

2.3.3. Research topic diversity
Similar to (§2.3.2), we aggregate the instances of Physics and

Astronomy Classification Scheme (PACS) codes associated with

each publication to calculate a Shannon entropy measuring

the variation in research topics, Eþ,2
Q,i .

2.3.4. Geographic reach diversity
We aggregate the countries indicated in the affiliation bylines

and again calculate a Shannon entropy measuring the

variation in geographical coordination, Eþ,2
C,i .

See the Material and methods for further details on each

measure. In what follows, we use the quantities Zþ
i , Sþ

i ,

Eþ
K,i, Eþ

Q,i and Eþ
C,i as dependent variables in five separate

models, and the corresponding Z2i , S
2

i , E
2

K,i, E
2

Q,i and E2C,i,

along with five other covariate data measured before t*i,T, in

order to match i between Gi,T groups. Electronic supplemen-

tary material, figures S3–S4 show the distribution of the

quantities Zþ,2
i , Eþ,2

K,i , Eþ,2
Q,i and Eþ,2

C,i ; see electronic sup-

plementary material, A.2 and figure S5 for the analysis of

the difference in these variables around t*i,T.

2.4. Reorganization of social and geographical links
When a researcher relocates, there is an immediate impact

on his/her proximity to former collaborators. This reorganiz-

ation of collaboration networks at the individual level can

have far-reaching implications at the national and global

scale. A case example is how East–West migration imbalance

within Europe following the 2004 enlargement of the European

Union (EU) [16] negatively impacted rates of international

collaboration; it is not unlikely that high-skilled migration in

response to Brexit will have a similar effect on international

collaboration patterns in Europe [4].

Against this background, in this section we investigate the

extent to which mobility mediates collaboration-based shifts

in social and geographical integration, providing insights

into the formation and disintegration of social capital. As

above, C2 (Cþ) denotes the list of countries extracted from

the publication affiliation byline (dropping the subscript i

for brevity), with list length denoted by jC2j (jCþj). We

also define the set of distinct countries as Ĉ
#

(Ĉ
þ
), with

lengths jĈ
#
j and jĈ

þ
j, thereby disregarding the multiplicity
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of the countries in the original lists. By way of example, con-

sider the hypothetical list of countries associated with

the affiliations derived from an arbitrary set of publications,

C2;fCA, CA, FR, FR, AU, AUg; then the corresponding

unweighted country list is Ĉ
#
¼ fCA, FR, AUg. These two

definitions provide complementary perspectives on the

degree to which geographical collaborations reorganize:

the first measure (Cþ,2 ) is weighted proportional to the

number of publications (i.e. per author affiliation), and the

second is more aggregate (i.e. per country).

As such, we seek to quantify the degree towhich the source

country c2i and destination country cþi of a mobile researcher

are related to Cþ,2. Thus, we define the ‘per-affiliation’

geographical association of the source (destination) country

c2i (cþi ) with C2 (or Cþ) as

f[Cþ
> c#i ] ¼

jCþ
> c#

i
j

jCþj

and f[C#
> cþi ] ¼

jC#
> cþ

i
j

jC#j ,

9

=

;

ð2:1Þ

where jX> Y j denotes the number of elements in the inter-

section of the two sets X,Y. Similarly, the ‘per-country’

measure of geographical association is defined using Ĉ
þ,#

in

equation (2.1) instead.

Figure 2a shows that roughly 34% of the mobility events

were ‘blind’, corresponding to the value f [Cþ
> c2i ] ¼ 0,

i.e. the destination country was not in the sphere of prior

collaborations. Similarly, roughly 11% of the migrations corre-

sponded to the scenario in which the sphere of destination

collaborations did not intersect with the source country

( f[C2 > cþi ] ¼ 0), corresponding to the maximal curtailing of

prior collaborations.

In addition to these extreme cases, we find that most other

mobility events are followed by significant collaboration re-

organization. Figure 2b shows the cumulative distribution

function (CDF) CDF(! f [C2> cþi ]) and CDF(! f[Cþ
> c2i ]),

with both distributions more concentrated around small

values. In the case of f[C2> cþi ]), this indicates a relatively

small likelihood that researchers maintain prior collaborations

when they move.

We also analysed the dynamics of geographical coordi-

nation, conditional on the source country, defined as the

difference

D[C> C] ¼ f[Cþ
> c#i ]# f[C#

> c#i ], ð2:2Þ

which is negative if there is more overlap between c2i and C2

than between c2i and Cþ. Figure 2c shows that most D[C> C ]

are negative—i.e. migration is associated with significant

churning within collaboration networks. Electronic sup-

plementary material, figure S6 shows the same distributions

for data disaggregated by T, demonstrating the stability of

these observations over time.

2.5. Estimating the mobility effect using propensity

score matching
To what degree does researcher mobility affect scientific

impact, topical direction and collaboration? In this section,

we describe the Rubin causal inference framework [51] as it

applies to estimating the impact of cross-border mobility on

various quantitative researcher career metrics. Using poten-

tial outcome notation, we estimate the average treatment

effect on the treated (ATET),

tW¼1[Y] ; E[Y1 # Y0jW ¼ 1]

' N#1
W¼1

X

i:Wi¼1

(Yi # Ŷi(0)),
ð2:3Þ

where Yi indicates the outcome variable of interest, defined as

one of the variables Zþ
i , S

þ
i , E

þ
K,i, E

þ
Q,i, or E

þ
C,i and E[Y1 2 Y0]

denotes the expected difference between the two counter-

factual outcome measures. The indicator Wi ¼ 1 denotes

‘treatment’, i.e. mobility by individual i in period T; con-

versely, Wi ¼ 0 corresponds to no mobility during T. Of

course, a researcher is observed with either Wi ¼ 0 or Wi ¼ 1

in a given T, but not both; thus, the challenge is to estimate

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0 0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

2.5

–1.0 –0.5

per affiliation

per country

cu
rt

ai
l 

m
o
b
il

it
y

b
li

n
d
 m

o
b
il

it
y

0.50

relative shift in geographical

coordination, D [C « C]

integrity of the collaboration network

after migrating, f [C « c]

P
D

F
 (

D
[C

 «
 
C

])

C
D

F
 (

≥
f
[C

 «
 
c]

)

f
[C

 «
 
c]

=
0

C
+ «

 

c
–

C
– «

 

c
+

C– 
« c+

C+ 
« c–

0.4

0.2

0.6

0.8

1.0
(a) (b) (c)

Figure 2. The impact of mobility on geographical collaboration networks. Cþ > c2i (C
2
> cþi ) represents the geographical overlap between a researcher’s

location before (after) migrating, denoted by c2i (c
þ
i ), and the set of collaborator locations after (before) migrating, denoted by C

þ(C2). (a) Shown is the fraction

of mobility events corresponding to: (i) ‘blind mobility’ (blue): in which there is no overlap between a researcher’s prior location and the locations of future col-

laborators ( f [Cþ > c2i ¼ 0] ¼ 0.34); and (ii) ‘curtail mobility’ (red): in which there is no overlap between the locations of a researcher’s prior collaborators and

his/her destination country ( f [C2> cþi ¼ 0] ¼ 0.11). (b) The distributions of collaboration network integrity, measured by f [Cþ > c2i ] and f [C
2
> cþi ], are

right-skewed: on average there is only a 16% overlap between Cþ and c2i and a 23% overlap between C2 and cþi . (c) The difference D[C > C ] measures the

change in the amount of geographical overlap (see equation (2.2)), measured in two ways: per affiliation and per country. Negative values indicate more overlap

before as compared to after. Both methods indicate relatively high levels of collaboration network disintegration following a mobility event: 89% (70%) of the values

are negative when measuring per affiliation ( per country). Shown are calculations on data aggregated across all three periods, T123; for analogous plots specific to a

given period T see electronic supplementary material, figure S6. Vertical lines indicate distribution mean values. (Online version in colour.)
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the counterfactual outcome, i.e. what would have happe-

ned had the researcher i not migrated. Hence, we use the

propensity score matching (PSM) method [52] to identify

researcher pairs (i, i0), where i0 is as similar as possible to i

in terms of likelihood to belong to the treated group based

on measured researcher characteristics (denoted by X
#
i )

prior to t*i,T. Equation (2.3) defines the mobility-effect

estimate tW¼1[Y] according to the PSM method, which

approximates the counterfactual outcome Ŷi(0) for

researcher i with Yi 0 (0) by identifying the closest match i0

from the pool of NW¼0 researchers with W ¼ 0. In this

way, tW¼1 is approximated as the average researcher-level

effect across the sample of NW¼1 researchers with W ¼ 1.

For a practical review of the matching estimators and their

implementation see [53].

We estimated the treatment effect associated with each

dependent variable Yþ
i using a vector X

#
i comprised of six

covariates. We specified the logit model to calculate the like-

lihood of treatment for each i, which is used by PSM to match

i with the closest i0 (results are reported for single matches,

which we found to be consistent with nearest-neighbour

matching up to the five closest matches). To be specific, for

a given dependent variable Yþ
i , the six covariates we used

to match are: (i) the outcome variable calculated for the

period before the mobility, Y2i ; (ii) the number of distinct

co-authors, jk2ij j; (iii) the number of publications, N2i ; (iv)

the average citation impact, Z2i ; (v) the researcher age s*i ¼

t*i,T 2 y0i þ 1 in the year of the mobility event; and (vi) a

factor variable F2i which maps the country of residence c2i
to one of five geographical regions (N. America, S. &

C. America, Europe, Asia & Australasia, Africa; see electronic

supplementary material, A.3). Electronic supplementary

material, figure S7 shows the distribution of each model

variable and the corresponding correlation matrix.

Electronic supplementary material, table S1 shows

the estimates of a logit model for the dependent variable

1Gi
¼ 3, with value 1 if a researcher i belongs to the mobile

group Gi ¼ 3 and 0 otherwise, thereby estimating the mobi-

lity likelihood depending on a given researcher’s attributes.

See electronic supplementary material, appendix A.4

for analysis of the factors that correlate with cross-border

mobility, along with refs. [1,3] which describe additional

employment and other factors not feasible to include within

our data-driven approach.

2.6. Impact of mobility on research outcomes
We applied the PSM method to five different dependent

variables (Zþ,Sþ, Eþ
K , E

þ
Q, E

þ
C) calculated for three non-

overlapping analysis time periods and for three different

control-treated subgroup comparisons. More specifically,

the matching between the groups G3 (treated, comprised

of researchers with Gi,T ¼ 3) and G1 (control, comprised of

researchers with Gi,T ¼ 1) provides the core estimate of the

mobility effect; the matching between G2 (placebo-treated)

and G1 (placebo control) provides a robustness check, as we

do not expect there to be significant differences between the

researchers in these two groups; and the matching between

G3 (treated) and G2 (control), serves as an additional robust-

ness check, since we hypothesize the mobility effect to be

present, but to a lesser degree than the G3–G1 estimation.

Figure 3 reports the resulting 35 tW¼1[Y] mobility-effect

estimations; insufficient samples sizes for the G2 and G3

groups limited the PSM matching performance for the

periods T1 and T2 (see electronic supplementary material,

figure S2(D) for the size of G1, G2, G3 for each T ). To demon-

strate model robustness, electronic supplementary material,

figure S8 shows the estimates using the nearest-neighbour

method (nnmatch in STATA13) instead of the PSM method

( psmatch in STATA13); the important difference is that with

the nnmatch method one can force an exact match on the

source region F2i . The results using nnmatch are consistent

with the results of PSM, with the exception of the ATET for

Eþ
K , which are significantly smaller in significance and magni-

tude. The Material and methods section summarizes

additional robustness checks to further assess the statistical

significance of our PSM estimates.

The PSM results indicate that researcher mobility has a sig-

nificant positive effect on citation impact and increases

diversity in research topics and collaboration at the individual

and geographical level. Notably, the effect size for mean cita-

tion impact, tW¼1[Z
þ], increased over each period T. Because

zp ; (ln[np þ 1] 2 mt)/st is a logarithmic transform of the

citation count variable np (see Material and methods),

the mobility effect for the average publication, in terms of

the per cent increase in np, is approximately 100 ( ksl (

tW¼1[Z
þ] ¼ 9% to 17% depending on T.

We also observe a decreasing trend for tW¼1[S
þ], which at

first appears inconsistent with the trend for tW¼1[Z
þ]. How-

ever, the Sþ measure suffers from right-censoring bias
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(publications analysed for later T have not the same amount of

time to accrue citations as for publications from previous T )

and so the negative trend is confounded by this bias; the

value of the citation premium is nevertheless statistically sig-

nificant and relevant in magnitude: tW¼1[S
þ] ' 90–150

citations depending on T, which provides an estimate for the

aggregate mobility effect tallying over all research produced

in the 5-year period after mobility. This is a lower-bound esti-

mate because the APS dataset does not include citations from

articles published in other journals, nor does Sþ account for

the citation tally from researchers’ publications in non-APS

journals. Thus, it is likely that tW¼1[S
þ] would be significantly

larger if non-APS publications and citations were included.

Among the entropy variables, the mobility effect is largest

for tW¼1[E
þ
K] (diversity of co-authors) and tW¼1[E

þ
C] (diversity

of geographical coordination). The effect of mobility on Eþ
Q

(diversity of research topics) is statistically significant for

periods T1 and T3, but not for T2. These results quantify

the extent to which mobile researchers facilitate a valuable

interface for intellectual exchange. A prime example was the

cross-disciplinary interface formed by computing and biology

researchers in the genomics revolution, in which this construc-

tive configuration facilitated the cross-pollination of methods

and institutional know-how that were crucial for the success

of the Human Genome Project [13].

We further estimated the mobility effect using OLS

regression on matched researcher pairs (i, i0), which facilitates

incorporating covariates X
# to explain the outcome variable

Yþ associated with each tW¼1[Y ]. See electronic supplemen-

tary material, A.5 and tables S2–S6 for the description and

results of this additional analysis. For example, we find that

increasing researcher age correlates with lower research

topic diversity, Eþ
Q, suggesting that the ability to diversify

into new research topics decreases with age (bs* , 0; elec-

tronic supplementary material, table S5). We also observe a

negative relation (bs* , 0) between researcher age and

citation impact variables, e.g. Zþ and Sþ, consistent with

findings from previous studies on researcher careers [11,13].

Are the observed mobility effects merely a feature of elite

scientists in our dataset? To address this question,we separated

the researchers into three terciles according to N2i in order to

further analyse the degree to which variation in tW¼1[Y ] is

mediated by researcher productivity, a variable that is highly

correlated with a researcher’s characteristic team size, among

other factors. Figure 4 reports the PSM estimates aftermatching

researchers onlywithin each subgroup, showing that themobi-

lity effect on mean citation impact is largest for researchers

belonging to the low- and medium-N2i tercile groups; the

mobility effect on co-author diversity is dominated by the

high N2i tercile group; and no significant variation is observed

for topic diversity or geographical diversity.

3. Discussion
The globalization of science and decreasing costs of migration

have democratized the opportunities for international mobility

[2], thereby becoming an increasingly relevant topic for

national innovation system policy [1], the economics of science

[5], and the multiscale modelling of the scientific system [6].

Against this backdrop, we assembled and analysed a relatively

comprehensive longitudinal dataset of researchers in physics in

order to accurately quantify how researcher mobility affects

career growth and intellectual exploration at the micro-level,

and the churning of the collaboration network facilitating inter-

national integration at the macro-level. We used statistical

matching techniques to measure the differences between

mobile researchers and similar non-mobile researchers, thereby

addressing the reverse causality and sample selection biases

that hinder estimating causal effects. To this end, we developed

amethodical framework for comparing the shifts in a research-

er’s publication profile in the 10-year period centred around

each mobility event (see electronic supplementary material,

figure S2 for a schematic of this framework).

We proceeded by separating our analysis into three time

periods (T ) in order to be able to identify significant temporal

trends. Qualitatively, our quantitative results are not sensitive

to T, indicating that the mobility premium identified for each

variable (Zþ,Sþ, Eþ
K , E

þ
Q, E

þ
C) has not diminished as virtual

avenues for exploring new collaborations proliferate.

The results that are relevant to individual researchers are as

follows. We measure a 9–17% increase in the number of cita-

tions received by articles published by mobile researchers,

relative to the matched non-mobile control set. Aggregating

this differential across all publications in the 5 years after

migrating, on average this citation premium tallies up to
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the order of 100 citations (figure 3). A hypothetical mechan-

ism that emerges directly from our analysis of the research

diversity variables (Eþ
K , E

þ
Q, E

þ
C) is that mobility increases the

likelihood of drawing together different intellectual capacities

and professional experience distributed across researchers,

which when combined, provide a valuable perspective on

how to best advance research efforts [17]. As such, this

recombinant collaboration emerges as an important factor

promoting recombinant innovation [54].

We complement this analysis based upon a broad cross-

section of physicists with an alternative perspective based

upon the extreme tail of scientific success—the 884 recipients

of the Nobel Prize from 1901 to 2016. Analysis of their inter-

national trajectories reveals that 23% of these Nobelists were

foreign-born, having received the award for work done in a

country different than their birth country (figure 1). As such,

these success stories provide ample evidence that just a

single immigrant can have a monumental positive impact on

adestination country, explaining to somedegree the substantial

international competition for elite scientists [2,3,5,21].

Motivated by recent work connecting migration imbalance

(i.e. East–West ‘brain drain’) following the 2004 European

Union enlargement to the stalled integration of national inno-

vation systems across Europe [16,55], we also analysed the

coevolution of mobility and collaboration from a systems

perspective. In this regard, we provide additional micro-level

evidence for such a mobility-mediated disintegration mechan-

ism by showing that researchers completely curtail all former

international collaborations roughly 11% of the time they

migrate (figure 2). Conversely, we also found that 34% of the

mobile researchers in our analysis moved to a location that

was not in their sphere of prior collaborations. In addition to

these exceptional cases, we observed remarkably high levels

of churning following most mobility events. In this way,

migration affords a prime opportunity to phase out old (poss-

ibly stagnant) collaborations and research topics in order to

make way for exploring new (potentially lucrative) avenues.

Other scholars have also noted that having migrated once

likely increases the likelihood to migrate again, not merely

due to additional experience and openness in regards

to future opportunies, but also because recently shuffled

collaboration networks are likely to be less restricting [31].

In conclusion, we analysed the dynamic interpersonal

and international interface mediated by mobile researchers,

one that facilitates the exchange of knowledge, as well as

other valuable professional and cultural perspectives. While

our focus was on mobile researchers in physics, our results

are generalizable to other scientific and intellectual domains

where cross-border experience confers a considerable com-

parative advantage by virtue of increased exposure to

group diversity [56] and opportunities to broker knowledge

[30], thereby promoting career development along an

otherwise uncertain career path [24,29,42–44].

Against this background, recent scholarly efforts have pro-

vided considerable new insights into the professional, social

and familial factors influencing scientists’ decisions to stay or

go [3,31,49]. For example, survey responses from more than

15 000 respondants indicated that ‘opportunities to improve

future career prospects’ and ‘prestige/excellence of the insti-

tution’ were the two most important factors underlying their

decision to move abroad [31]; however, a separate large

study found that researchers were significantly less likely to

relocate if they recently obtained competitive funding or if

their children were in high school [3]. Related empirical work

has also sought to determine whether other types of mobi-

lity—i.e. institutional, social, or inter-sectoral—produce a

measurable effect on subsequent productivity and citation

impact [28,57,58]; altogether these studies consistently report

positive shifts in productivity, but a little if not insignificant

effect on citation impact, when moving to a better institution.

International recruitment and home-return policy are typi-

cally geared around elite scientists [2,21,32], yet our results

suggest that the career benefits of mobility are common to all

ranks. Another important consideration is immigration

policy, which can have a significant impact on the attraction

and retention of talented researchers, thereby affecting the

development of national innovation systems. An important

example is the 2000 change in USA H-1B visa policy, which

nullified the cap on available visas for non-profit sponsors,

thereby eliminating the competition between industry and aca-

demia over this critical type of visa that facilities high-skilled

immigration [5]. By analysing the annual changes in the

number of H-1B visa recipients in industrial science and engin-

eering, scholars found that higher rates of Chinese and Indian

H-1B recipients correlated with higher levels of employment

and patenting in innovation hubs that depend on immigrant

high-skilled labour; moreover, the scholars report limited

effects of the increase in H-1B immigrant population on

native inventors’ employment and patenting productivity

[59]. These are important results showing that immigration of

high-skilled labour does not appear to crowd out native

employment opportunities and innovation capacity. And

finally, countries with travel visa restrictions are negatively

associated with international researcher mobility, in particular

because they significantly increase the cost of travel, thereby

inhibiting short-term collaboration visits that may precede the

opportunity and ultimate decision to migrate long-term [49].

Considered in this way, our results contribute to these dis-

cussions by suggesting that national innovation systems and

high-skilled immigration policy should not be so exclusively

focused on the attraction and retention of elite scientists, but

rather, should extend strategies to develop competitiveness by

fostering international community and cultural diversity that

serve all ranks of scientists. Moving forward on these issues,

especially in consideration of the inherent difficulties—both

ethical and statistical—in testing and empirically measuring

the impacts of immigration policy [60], there is a need to

develop better data-driven analytical and systems modelling

methods to inform science policyon these issues. Indeed, antici-

pating the multiscale impacts of science policy is a formidable

challenge calling for continued trans-disciplinary efforts to

better understand the scientific enterprise [5,6,13,61].

4. Material and methods

4.1. Network-based author disambiguation method
We use the rich publication metadata in the APS dataset as input
for a network-based author disambiguation method [37] that
groups publications into researcher profiles. The Helbing algor-
ithm leverages three key pieces of information available for
each publication: (i) the co-author names, (ii) the publications
listed in the reference list, i.e. outgoing citations, and (iii) the
list of incoming citations from other publications (note that
incoming and outgoing citations are restricted to publications
within the APS dataset). Importantly, we did not provide any
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geographical affiliation information to the disambiguation algor-
ithm, and so the resolved researcher profiles are free of
geographical biases, and thus, well-suited for the study of
cross-border mobility.

In an effort to assess statistically significant changes in
publication profile attributes, and to reduce the frequency of
spurious fluctuations arising from small sample size, we
only analysed profiles with Ni ! 10 publications in the APS
dataset and initial publication year y0i ! 1985, resulting in
26 170 researcher profiles; electronic supplementary material,
figure S1(C) shows the distribution y0i for our final dataset,
with 1995 as the median starting-year value.

4.2. Specification of research activity measures
4.2.1. Citation impact
In order to compare the citation impact of publications (indexed
by p) from different years (t), we apply a normalization method
thatmaps the integer citation count ni,p,t to a z-score using a logarith-
mic transform. To be specific, zi,p ; (ln(ni,p,t þ 1)2 mt)/st, where
mt ¼ kln(nt þ 1)l and st ¼ s[ln(nt þ 1)] denote the mean and stan-
dard deviation calculated over the set of publications from a
specific year cohort (t). By mapping citations to their log value
(adding þ1 to avoid the divergence associated with ln 0), and
accounting for the age-cohort-specificmeanand standarddeviation,
zi,p follows a normal distributionN(0, 1) that is stable across t [11,13].
Publications with zi,p. 0 are thus above the average log citation
impact,mt, and since they aremeasured in units of s, standard intui-
tion and statistics of z-scores apply. As such, zi,p is well-suited for
cross-temporal analysis, e.g. OLS regression, as well as averaging
and summing within profiles. For this reason we calculate the aver-
age citation impact value Zþ,#

i ; hzþ,#
p,i i¼ (1=Nþ,#

i )
P

p[N zþ,#
p,i

across the Nþ,2
i publications in each Dt; 5-year interval, before

(2) or after (þ) t*i,T. Moreover, due to the properties of logs,
the per cent difference in nt associated with the mobility effect is
given by 100Dnp/np¼ 100( st( (@z/@W )' 100( ksl( tW¼1[Z

þ],
which follows because st is approximately constant over time,
and so we approximate st with the average value ksl ¼ 1.05.

For comparison, we also considered an ‘extensive’ citation
impact measure, as opposed to zp, which is an ‘intensive’
impact measure. The deflated citation count n̂i,p,t accounts for
the fact that the total number of references produced by science
is steadily growing with time (electronic supplementary material,
figure S1(A)), the result of which is a ‘citation inflation’ mea-
surement bias associated with the nominal citation count ni,p,t
[50]. However, the ‘deflated’ variable n̂i,p,t is well-suited for com-
parisons of citation counts for articles published in different
years, and so we instead tally n̂i,p,t for each interval, defining
the total as Sþ,#

i ;
P

p[þ,# n̂þ,#
i,p . As such, Sþ,2

i is amenable to
modelling differences in total citation impact before and after t*i,T.

4.2.2. Co-authors
Within each Dt;5-year interval, Ki denotes the number of dis-
tinct co-authors we count for each i. Similarly, the number of
publications including central researcher i and co-author j is kij;
the total number of co-author instances across all Ni publications
is Ai ¼

P

j kij. We then use the Shannon entropy, a diversity
index measuring the variety across the Ki co-authors, defined

as EK,i ¼ #
PKi

j¼1 (kij=Ai) ln (kij=Ai). More specifically, we calculate
the entropy E2K,i (E

þ
K,i) using data in the Dt-year interval before

(after) t*i,T. Higher levels of variation correspond to larger entropy
values E ! 0; the limiting case of no variation, kij ¼ const. for all j,
corresponds to E ¼ 0.

4.2.3. Research topics
Similar to (§4.2.2), we aggregate the PACS codes associated with
eachpublication, a systemusedby theAmerican Institute of Physics
and implemented broadly in physics journals since 1975; see
https://publishing.aip.org/publishing/pacs/pacs-2010-regular-edi-
tion. This five-level classification is comprised of more than 5000
individual PACS codes, which authors self-assign to their publi-
cations (e.g. ‘89.75.-k’ corresponds to ‘Complex systems’); we
observe on average 2.5 unique PACS per publication with only
1% of publications having five or more PACS. We aggregated
the PACS codes from all publications in each observation period
into the two lists denoted by qþ,2

j . We then define the variation
Eþ,2
Q,i in each qþ,2

j list of PACS codes using the same Shannon
entropy measure in (ii) above.

4.2.4. Geographical reach
As above, we aggregate the country codes associated with each
publication affiliation into two lists, Cþ,2

i . We define the vari-
ation Eþ,2

C,i in the categorical country code lists using the
Shannon entropy (e.g. the list C ¼ fNL, NL, NL, UK, IT, JP, AUg

has entropy EC ¼ 1.475).

4.3. Robustness check of propensity score matching

method
We randomized the treatment/control group classification variable
1Gi

¼ 3 to test the likelihood that we could obtain an effect size as
large as the observed tW¼1[Y] by chance. To be specific, we shuffled
the treatment indicator 1Gi

¼ 3 within each G3–G1 estimation,
without replacement, thereby conserving the total numberof obser-
vations (researchers) classified as being mobile during a specific
period (i.e. belonging to group Gi ¼ 3). We applied this shuffling
procedure 10 000 different times, each time recording the value of
the ‘placebo’ estimate for tW¼1[Y]. Figure S9 shows the distribution
of placebo estimates, P(tW¼1[Y ]), for each Y ; in estimates, with one
exception (panel D for tW¼1[E

þ
Q]), we find the observed treatment

effect to be significantly larger and outside the 99% CI bounds of
the placebo estimate, thereby demonstrating the robustness of our
PSM specification to spurious correlations.
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Multiscale impact of researcher mobility

Appendix, Figures S1-S9, and Tables S1-S6
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S1. The American Physical Society dataset

We analyzed the 2009 American Physical Society (APS) Physical Review article and citations dataset, which is openly

available in well-documented XML data files that record article-level author-byline data and PACS classification information for

publications from the Physical Review journal family: Physical Review A (PRA), Physical Review B (PRB), Physical Review C

(PRC), Physical Review D (PRD), Physical Review E (PRE), Physical Review Letters (PRL), and Reviews of Modern Physics

(RMP). The publication metadata is homogenized and stable over time, and includes: (i) author name(s), (ii) affiliations with

pointers to particular authors, (iii) citation data between APS articles, and (iv) Physics and Astronomy Classification Scheme

(PACS) codes.

Data elements (i) and (iii) are inputs for the disambiguation of authors, detailed in the next subsection. It is important to

note that the disambiguation algorithm we used does not use the affiliation metadata.. If the disambiguation algorithm did

use the affiliation data, then there would be an increased likelihood of splitting researcher profiles according to intra-region

publication clusters, which would not only increase the splitting (false negative) rate of researcher profiles into 2 or more

clusters, but would under-represent the rate of researcher mobility. Instead, the clustering algorithm is not biased by geographic

information contained in the affiliation data (ii). As a result, the publication clusters produced by the disambiguation algorithm

– corresponding to disambiguated researcher profiles – are particularly amenable to geographic mobility analysis.

Author disambiguation method leveraging the collaboration and citation network. Because the PACS system was initiated

in 1975, we include a 5-year buffer period before this year and the start year of our refined dataset. Hence, we analyzed 355,808

publications from 1980 – 2009. We then implemented the Helbing disambiguation algorithm [36]. This algorithm uses the

citation network and the collaboration network to cluster publications into groups that are likely to correspond to an individual

researcher. To be specific, the algorithm calculates a similarity score between any two given publications based on the overlap

of (a) coauthor names, (b) the list of references cited by each publication, (c) the list of publications citing each publication, and

(d) the particular scenario of direct citations between the two publications. This method was developed for large-scale data using

the complete Web of Science dataset; Google Scholar profiles were used as a gold standard to obtain the algorithm parameters

based on precision and recall error, in addition to several additional validation methods, including a theoretical model of the

h�index distribution. Given the generality of this algorithm to scenarios in which the citation and collaboration network data

are available, we applied it to the APS dataset using the optimal parameters reported in Shulz et al. [36].

More specifically, the algorithm works as follows. The starting point is the set of Nx publications that all list a given coauthor

name, e.g. corresponding to the concatenated string Ax=“LastName FirstNameInitial” (e.g. Smith A). We then calculate a

similarity score between every pair of publications p and p0 using a linear combination of weights for 4 factors: (i) the similarity

[1] Please send correspondence to: Alexander M. Petersen

E-mail: apetersen3@ucmerced.edu

http://journals.aps.org/datasets
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in the set of coauthors, (ii) the self-citation scenario where on of p or p0 cites the other, (iii) similarity in the reference lists

of either publication, and (iv) similarity in the set of publications citing each publication. The algorithm first clusters the Nx

publications into subgroups, and then merges subgroups into researcher profiles in a multi-step procedure.

Application of this algorithm produced A =208,734 publication clusters, indexed by i = 1...A, with each cluster containing

Ni unique publications corresponding to the researcher profile of the author “LastName FirstNameInitial#i” (e.g. Smith A#5).

Figure S1(B) shows the distribution P (Ni) of the number of publications per researcher profile.

Author selection procedure. We restricted our analysis to authors with greater than Ni � 10 publications spread over � 3
distinct years and first publication y0i � 1985; we implemented the last threshold to account for left censoring bias, i.e. to

reduce the number of researchers in our analysis whose first publication was actually prior to 1980. As a final refinement, we

excluded researcher profiles with fewer than three publications in either the period before or after t⇤i,T and fewer than four

distinct years of activity. The result of this additional selection is 26,170 APS researcher profiles corresponding to 206,272

distinct publications, which were cited 2,184,619 times altogether over their collective 986,287 years of citation activity. The

total number of author career-year observations is 388,079, or roughly 15 career years per researcher profile.

Estimation of mobility year from raw publication data. The APS data has remarkably “clean” author affiliation data, which

we used to geo-locate the individual articles by using string matches for country names, ISO2 and ISO3 country codes, and also

the full names and 2-letter codes of US states which were used to classify affiliations that did not include “USA” but did include

US State codes. Because the APS metadata has specific tags to link each researcher with one or more specific affiliations, we

were able to link an individual i to specific countries and US states. When an author was affiliated with 2 or more countries in a

given year, we tallied up these affiliations and assigned the primary location as the most common country within that year. In the

case of a tie, we instead aggregated the affiliation data for the previous 3-year period and then used the most common country,

which resolved 100% of the ties. Applying this geolocation method, we obtained an annual primary location time series for each

author over the 30-year period 1980-2009; in the years in which the author did not publish in the APS dataset we denoted the

primary affiliation as “blank”. We then filled in the “blank” years in which the primary location before and after the blank period

matched.

When the primary locations differ, before and after a period of �y(� 0) “blank” years, this points to a mobility event. We

estimate the mobility year t⇤i by first defining y+ ⌘ y� + �y, where y+ (y�) is the first year after (before) the gap of “blank”

years. If �y = 1 then we define the mobility transition year t⇤i ⌘ y�, and if �y > 1 then t⇤i ⌘ y+ � d�y/2e.

S2. Research activity measures

Figures S3-S4 show the distribution of each model variable during the pre-mobility period t 2 [t⇤T � 5, t⇤T � 1] and post-

mobility period t 2 [t⇤T , t
⇤

T + 4], respectively. We also calculated the change in the dependent variables for each researcher,

between the pre- and post-treatment periods, as follows:

(i) Citation impact: We define the 2-period change in mean normalized citation impact as ∆Zi ⌘ Z+

i � Z�

i .

(ii) Coauthors: As a measure of the 2-period change in the coauthor list, we calculate the similarity between the two lists

using a variant of the cosine similarity, SK,i ⌘ S[k+ij , k
�

ij ] = (|k+ij ||k
�

ij |)
�1

P

j k
+

ijk
�

ij , where |kij | =
p

(
P

j k
2
ij) is the

euclidian norm of the list in which the order of the categories (j) are matched so that they correspond to the same entity

(e.g. coauthor) in k+ij and k�ij . Since kij � 0, S[k+ij , k
�

ij ] 2 [0, 1], with maximum correspondence only when k+ij = k�ij for

all j.

(iii) Research topics: As in (ii) we measure the change in the PACS lists using the similarity distance SPACS,i ⌘ S[q+j , q
�

j ].

(iv) Geographic reach: As above we measure the change in the list of country codes drawn from the affiliation lists of each

publication using the similarity distance SC,i ⌘ S[C+

j , C�

j ].

Figure S5 shows the distribution of ∆Zi, SK,i, SPACS,i, and SC,i, measuring the characteristic scale of research profile

shifts, before and after t⇤i,T .
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S3. Country classification

We classified countries into geographic regions as follows (2-letter ISO codes followed in parenthesis by the number of

affiliations recorded for a corresponding country):

• [Africa]: ZA (1758), MA (204), EG (199), DZ (99), CM (61), TN (41), ET (17), NG (12), NA (5), LY (5), KE (4), MG

(2), ZW (2), TZ (1), BI (1), GA (1), LS (1), GN (1), BW (1)

• [Asia & Australasia]: JP (155447), CN (38023), IN (30066), KR (26298), TW (18053), AU (14441), HK (4249), SG

(2226), NZ (1661), AM (1256), IR (598), PK (325), UZ (318), PH (231), SA (224), VN (219), KZ (192), BD (143), TH

(118), ID (78), MY (77), LB (53), JO (45), QA (44), KW (43), MN (43), AE (36), AZ (31), GE (29), OM (9), MO (5),

BH (4), KG (3), IQ (3), PS (2), NP (1), SY (1)

• [Europe]: DE (151210), IT (147885), FR (109531), UK (98944), ES (31843), NL (25129), SE (18397), BE (10623),

DK (9144), AT (8702), FI (8376), GR (4330), PT (2914), IE (1911), LU (18), PL (16132), HU (5424), CZ (4935), SI

(3898), RO (2155), SK (1288), BG (1087), LV (275), LT (247), EE (238), CY (136), MT (5), CH (96970), RU (54597),

IL (17797), NO (3935), UA (2939), HR (1913), YUGO (1260), TR (1240), CS (688), BY (418), RS (384), ME (109), IS

(104), MD (84), MK (42), JE (8), AL (2)

• [North America]: USA (1,360,653), CA (63645), MX (6628)

• [South America, Central America, and Carribean]: BR (24304), AR (7553), CO (2022), CL (1573), VE (568), EC

(235), CU (230), UY (187), PE (51), CR (14), BO (13), JM (12), PA (5), GD (4), BB (2), GY (1)

We classify the origin country (c�i ) according to 5 broad regions, denoted by the factor variable F�

i in the Propensity Score

Matching and regression model specifications: (a) Europe; (b) N. America; (c) Central America, South America and the

Caribbean; (d) Asia/Australia and (e) Africa. Because there were not many researchers from Africa with sufficiently large

publication profile to meet our pruning criteria, observations associated with this region were excluded from our model esti-

mates.

S4. Modeling mobility with the Logit model

We analyzed the factors that correlate with mobility in period T by modeling the dependent binary indicator variable 1Gi=3 –

which takes the value 1 if Gi = 3 and 0 otherwise – by applying Logistic regression. This Logit model is specified within the

Propensity Score Matching method to identify matched pairs [51]. We focus on just two sets of researchers for a given period,

those researchers with Gi = 1 (not mobile up to and including the upper limit year t+T of the period T ) and Gi = 3 (mobile in

T ). Thus, we model the likelihood P (Gi=3) that a researcher is mobile given his/her research profile information, and so the

binary outcomes follow the simple relation P (Gi = 3) + P (Gi = 1) = 1. For each i we included 5 variables measured, as

previously, for the ∆t ⌘ 5-year period before t⇤i,T : the number of distinct coauthors, |k�ij |, the number of publications, N�

i , the

mean citation impact Z�

i , the researcher age, s⇤i , and a factor variable representing the researcher’s geographic region, F�

i .

We model the odds O ⌘ P (Gi = 3)/P (Gi = 1) according to the Logit regression model specified as

log
⇣P (Gi = 3)

P (Gi = 1)

⌘

= �1|k
�

ij |+ �2N
�

i + �3Z
�

i + �4s
⇤

i + �0 + F�

i + ✏ , (S1)

which we estimate using robust standard errors. Table S1 reports the exponentiated coefficient, exp(�), which is the odds ratio,

or factor by which the odds O changes for each 1-unit increase in the corresponding independent variable, i.e. O+1/O = exp(�);
put another way, 100(exp(�)�1) is the percent change in O corresponding to a 1-unit increase in the corresponding independent

variable. As a result, reported exp(�) values that are less than (greater than) unity indicate variables that negatively (positively)

correlate with cross-border mobility.

The results of the model show that more coauthors correlate with a marginally smaller likelihood of migration for all T .

Higher productivity (N�

i ) and citation impact (Z�

i ) correlate with a statistically significant higher likelihood of migration for T1

and T2 but not T3, suggesting that mobility is becoming less contingent on researcher prestige. The most significant correlate

is researcher age, which indicates a strong and statistically significant negative relation between increasing research age and

likelihood of migration, observed for all T . The factor variables capturing the geographic region of residence prior to mobility

(F�

i ) indicate that, relative to N. America (the most likely to migrate), a researcher residing in S. & C. America is the second

most likely to migrate, followed by researchers from Europe, and then Asia & Australasia, in that order.



4

S5. Matched regression

While Propensity Score Matching is suitable for estimating the impact of treatment on post-treatment outcomes, it does

not provide guidance as to the causal link between certain pre-treatment factors and the differential outcome. In order to

estimate the degree to which certain researcher variables prior to t⇤i,T correlate with the same set of variables after t⇤i,T , we

used the set of matched researcher pairs (i, i0) identified by the Propensity Score Matching method to regress each outcome

(dependent) variable Y +

i against the set of pre-treatment matching variables denoted by ~X . For example, in the first case

where Y +

i ⌘ Z+

i , we regressed the post-migration average citation impact, Z+

i , against the pre-migration variables ~X =
(Z�

i , |k�ij |, N
�

i , s⇤i , F
�

i , 1Gi=3), where F�

i indicates a factor variable for the researcher’s geographic sub-region (determined by

the home country c�i prior to t⇤i,T ), and 1Gi=3 is a binary indicator variable equal to 1 if the researcher migrated in period T and

0 otherwise. We performed OLS regression on the set of matched observations (i, i0) according to the linear model

Z+

i = �1|k
�

ij |+ �2N
�

i + �3Z
�

i + �4s
⇤

i + �51Gi=3 + �0 + F�

i + ✏ . (S2)

Table S2 shows the results in columns (1,3,5) for each sample period T , respectively. The coefficient �5 ⇡ ⌧W=1[Y ⌘ Z]
reported in Fig. 3 for each T . That is, the treatment effect calculated by estimating the mean pairwise difference Yi � Yi0

between the matched researcher pairs (see Eq. [3]) is consistent with the difference in Z+

i between the two groups, controlling

for ~X . That is, the PSM treatment effect estimate is not confounded by ~X .

Similarly, the model estimates reported in columns (2,4,6) of Table S2 correspond to the same model but including additional

interaction terms between the scalar variables and the mobility indicator variable,

Z+

i = (�1|k
�

ij |+ �2N
�

i + �3Z
�

i + �4s
⇤

i )⇥ 1Gi=3 + �51Gi=3 + �0 + F�

i + ✏ . (S3)

As a result, this model specification yields two coefficients for each interacted covariate, one coefficient (�x,Gi=3) derived from

observations with Gi = 3 and a second coefficient (�x,Gi=1) derived from those with Gi = 1. Tables S2-S6 report the coefficient

�x,Gi=1 followed by the difference in the two coefficients �3(x) ⌘ �x,Gi=3 � �x,Gi=1, which facilitates identifying covariates

that distinguish the mobile/treated (G3) and not-mobile/untreated (G1) groups.
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FIG. S1: Data summary and 3-period observational framework. (A) The total number of publications per year across the APS journals

PRA, PRB, PRC, PRD, PRE, PRL, and RMP (blue), and the total number of references made by these publications that cite other APS

publications within this journal set (red). Combined, the total number of publications is growing at roughly a 4.6% annual rate, and the

total number of references made is growing at roughly a 7.2% annual rate over 1980–2009. (B) The distribution P (Ni) of APS publications

per researcher profile; 16.3% of the disambiguated researcher profiles have Ni ≥ 10 corresponding to 34,194 profiles. (C) Distribution

of researcher profiles according to their first APS publication year. We only analyzed researcher profiles with y0
i ≥ 1985 and Ni ≥ 10

publications spread across at least 3 distinct years, resulting in a total of 26,170 profiles. (D) We separated the mobility analysis into 3 non-

overlapping observation periods, denoted by T , ensuring that each researcher contributes to the analysis of each T just once. (inset) Shown

are the fraction of researchers belonging to a given mobility group GT for a given T . The total number of researcher profiles by period are:

4,124 in T1; 9,362 in T2; 13,457 in T3. Researchers (indexed by i) from the same T but different G are paired in the PSM analysis in order to

estimate counterfactual outcomes. (E) Schematic of the classification process for 4 researcher profiles with respect to the observation period

T1: researchers 1 and 2 were mobile (indicated by the disjoint line) within the T1 interval – thus they both belong to group G3, and so we

aggregate the publication data in the 5-year window before and after the mobility event specific to each i; researcher 3 was mobile prior to

T1 but not during T1, and so we use the midpoint of T1 as a placebo mobility year and aggregate his/her publication data before and after

the midpoint year of T1 and assign this researcher to the placebo group G2; researcher 4 was neither mobile prior to nor during T1, and thus

belongs to the group G1. (F) Dashed lines correspond to the number of mobility events observed per year, allowing for multiple events per

researcher profile: (blue) Intra-European32 mobility (e.g. DE to FR; EU32 corresponds to 28 EU members and CH, NO, LI, and IS); (red)

Intra-USA state mobility (e.g. MA to CA); (green) International mobility (e.g. IT to USA); (black) All cross-border mobility, including both

international and also inter-US state. Solid lines correspond to the number of mobile researchers in G3 by each period T . Note that even if

a mobile researcher moved two or more times in a given T (i.e. multiple mobility events), this latter G3 researcher tally only counts these

researchers once.
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FIG. S2: Schematic of researcher mobility framework. For each researcher i we record their attributes ~X
+,�
i during the 5-year periods

before and after the mobility event occurring in year t⇤i,T , from country c�i to country c+i . The weighted element xij represents a particular

attribute, which by way of example, may be the number of publications with a particular collaborator, the number of instances of a particular

PACS “keyword” capturing research topics, or other attributes of a single publication such as its citation count np or the set of countries Cp

listed in the affiliation byline. We define a summary outcome variable Y
+,�
i , determined by particular information contained in ~X

+,�
i , which

facilitates: (a) measuring the change ∆Yi in the researcher profile attribute; (b) matching mobile and non-mobile researchers according to ~X�

i

and Y �

i in order to obtain a causal estimate of the impact of mobility on Y +

i .
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FIG. S3: Distribution of PSM dependent variable values – before t⇤ by period. Distributions demonstrate a high degree of stability

between the three subgroups G1 (red: not mobile prior to the end of T ), G2 (orange: mobile prior to the beginning of T but not mobile during

T ), and G3 (blue: mobile during T ).
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FIG. S4: Distribution of PSM dependent variable values – after t⇤ by period. Distributions demonstrate a high degree of stability between

the three subgroups G1 (red: not mobile prior to the end of T ), G2 (orange: mobile prior to the beginning of T but not mobile during T ), and

G3 (blue: mobile during T ).
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FIG. S5: Distribution of change in career measures – before and after t⇤ – by period. Each panel shows the probability distribution of a

given quantity by mobility group and observation period. Comparison between groups G1 (no prior mobility, red) and G3 (mobility in period

T , blue) provides an unconditional estimate of the impact of mobility on researcher trajectories in a given T . All variables measure the change

in a given variable after minus before t⇤T . (A-C) Change in the citation impact: on average, researchers in the mobile group have slightly more

positive change in citation impact. (D-F) Change in the collaborator network. (G-I) Change in the PACS research topics. (J-L) Change in

the geographic network. For (D-L), one average, the mobile researchers have less similarity between their coauthors/topics/geography after

migrating as compared to before migrating, than researchers from the control group.
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FIG. S6: The impact of mobility on the geographic projection of collaboration networks – by period. These results are calculated using

data specific to each indicated period, thereby demonstrating the robustness of the distributions over time; compare with Fig. 2. (A,B,C)

The degree of collobaration-mediated mobility measures the similarity between source and destination country of each i and the geographic

distribution of his/her collaborators, before and after t⇤ – small values indicate the relatively low levels of similarity. (inset) Comparison of

the “blind mobility” and “curtail mobility” rates. (D,E,F) Probability distribution of ∆[C ∩ C] which measures the change in the geographic

association between the collaborators before and after with respect to the source country of mobility, c�i . Negative values indicate that there is

less overlap between c�i and the collaborators after the mobility event. For robustness, we calculate the geographic overlap in two ways: using

distinct country lists (per country) and allowing for multiplicity due to multiple affiliations per publication (per affiliation). (inset) Cumulative

probability distribution indicating that the majority of ∆[C ∩ C] values are negative. Vertical lines indicate mean values.
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FIG. S7: Model variables – distribution and covariation. Shown is the correlation matrix calculated using the variables included in the

PSM model; data are combined across the three periods (T ). The diagonal elements show the distribution of the variable quantities; the

upper-diagonal elements show the density-weighted scatter plots of any given pair of data observations; the lower-diagonal elements list the

Pearson correlation coefficient between the corresponding variable pairs.
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FIG. S8: Estimation of the mobility effect using the nearest-neighbor nnmatch matching method. Robustness check for the propensity

score matching results reported in Fig. 3. The teffects nnmatch routine differs from the teffects psmatch in that the former calculates a single

distance between multi-variate observations using a the Mahalanobis metric, and then matches to the nn closest observations (we used nn=1)

[52]. One particular advantage of the teffects nnmatch method is that it allows the option to force a match on specified variables (using the

ematch option); hence, we forced matches on the geographic region factor variable F�

i representing one of the 5 geographic (continental)

regions that the researcher primarily resided in prior to t⇤i,T (see “Country classification” in Section S3). In this capacity, the teffects nnmatch

estimate appropriately matches mobile individuals to un-mobile individuals from the same geographic region, thereby controlling for variation

in regional migration opportunity. Despite this key difference, each set of estimates are robust with respect to the teffects psmatch estimates

with the exception of the coauthor analysis (bottom row, left panel). Each error bar is a point estimate with 95% confidence interval.
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FIG. S9: Testing the statistical significance of ⌧W=1. It is possibility that spurious correlations could give rise to the statistically significant

PSM estimations for ⌧W=1[Y ] reported in Figs. 3 and S8. We explored this possibility for the PSM models comparing G1 (control) and

G3 (mobility) groups by randomizing the group assignments, implemented by shuffling Gi without replacement so that the total number of

researchers in each group is conserved relative to the unshuffled (real) data. Thus, for each dependent variable (Y ), we produced N = 10, 000
shuffled datasets (‘placebo model’), calculating ⌧W=1[Y ] for each. Shown for each specification is the probability distribution P (⌧W=1) of

the placebo estimates for ⌧W=1[Y ]; the solid vertical blue line indicates the real ⌧W=1[Y ], and the dashed lines indicate the corresponding

95% confidence interval. In all cases except for in panel K, in which ⌧W=1[EQ,T2] is not statistically significant in the first place, we can rule

out the possibility that ⌧W=1[Y ] estimations are statistically significant due to chance.
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TABLE S1: Logit model. The dependent variable of the model is the binary outcome variable 1Gi=3 with value 1 if researcher i migrated

during T and value 0 if there was no migration during or before T . Reported are odds ratios, exp(�).

T1 = [1990� 1997] T2 = [1998� 2003] T3 = [2004� 2007]
Researcher variables

coauthors, |k�ij | 0.996⇤⇤⇤ (0.000) 0.999⇤⇤⇤ (0.000) 0.999⇤⇤⇤ (0.000)

publications, N�

i 1.023⇤⇤⇤ (0.000) 1.005⇤ (0.037) 1.001 (0.247)

citation impact Z�

i 1.132⇤ (0.043) 1.155⇤⇤⇤ (0.001) 0.969 (0.449)

researcher age, s⇤i 0.781⇤⇤⇤ (0.000) 0.856⇤⇤⇤ (0.000) 0.899⇤⇤⇤ (0.000)

Researcher geographic region, F�

i

N. America 1 (.) 1 (.) 1 (.)

S. & C. America 0.871 (0.591) 0.400⇤⇤⇤ (0.000) 0.383⇤⇤⇤ (0.000)

Europe 0.455⇤⇤⇤ (0.000) 0.492⇤⇤⇤ (0.000) 0.452⇤⇤⇤ (0.000)

Asia & Australasia 0.373⇤⇤⇤ (0.000) 0.350⇤⇤⇤ (0.000) 0.361⇤⇤⇤ (0.000)

N 4117 9347 13446

p-values in parentheses.
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

TABLE S2: Results of OLS regression using matched researcher pairs (i, i0). The dependent variable is Y +

i ≡ Z+

i , the average citation

impact after t⇤i,T .

(1) (2) (3) (4) (5) (6)

T1 = [1990–1997] T1 = [1990–1997] T2 = [1990–1997] T2 = [1998–2003] T3 = [2004–2007] T3 = [2004–2007]

(w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction)

coauthors, |k�ij | 0.000⇤⇤⇤ (0.000) 0.000 (0.099) 0.000⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000)

# interaction difference, �3(|k�ij |) 0.000 (0.052) -0.000⇤ (0.047) -0.000 (0.055)

publications, N�

i -0.000 (0.885) 0.004⇤ (0.022) -0.003⇤⇤⇤ (0.000) -0.004⇤⇤⇤ (0.000) -0.001 (0.137) -0.000 (0.515)

# interaction difference, �3(N�

i ) -0.009⇤⇤⇤ (0.000) 0.002 (0.105) -0.000 (0.848)

citation impact, Z�

i 0.486⇤⇤⇤ (0.000) 0.585⇤⇤⇤ (0.000) 0.460⇤⇤⇤ (0.000) 0.540⇤⇤⇤ (0.000) 0.465⇤⇤⇤ (0.000) 0.495⇤⇤⇤ (0.000)

# interaction difference, �3(Z�

i ) -0.195⇤⇤⇤ (0.000) -0.160⇤⇤⇤ (0.000) -0.069⇤⇤ (0.004)

researcher age, s⇤i -0.009 (0.062) -0.005 (0.393) -0.006⇤⇤ (0.003) 0.003 (0.370) -0.011⇤⇤⇤ (0.000) -0.007⇤⇤⇤ (0.001)

# interaction difference, �3(s⇤i ) -0.008 (0.379) -0.017⇤⇤⇤ (0.000) -0.007⇤ (0.032)

Mobile researcher indicator (1Gi=3) 0.088⇤⇤⇤ (0.000) 0.286⇤⇤⇤ (0.000) 0.124⇤⇤⇤ (0.000) 0.325⇤⇤⇤ (0.000) 0.114⇤⇤⇤ (0.000) 0.231⇤⇤⇤ (0.000)

Constant 0.098⇤⇤⇤ (0.001) 0.004 (0.919) 0.162⇤⇤⇤ (0.000) 0.056⇤ (0.039) 0.170⇤⇤⇤ (0.000) 0.115⇤⇤⇤ (0.000)

Researcher geo. region fixed effect, F�

i Y Y Y Y Y Y

N 3342 3342 5048 5048 4600 4600

adj. R2 0.274 0.289 0.267 0.275 0.306 0.309

F 158.903 114.212 230.241 160.577 254.016 172.004

p-values in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001
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TABLE S3: Results of OLS regression using matched researcher pairs (i, i0). The dependent variable is Y +

i ≡ Σ
+

i , the total deflated

citations after t⇤i,T .

(1) (2) (3) (4) (5) (6)

T1 = [1990–1997] T1 = [1990–1997] T2 = [1990–1997] T2 = [1998–2003] T3 = [2004–2007] T3 = [2004–2007]

(w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction)

total deflated citations, Σ�

i 0.353⇤⇤⇤ (0.000) 0.446⇤⇤⇤ (0.000) 0.099⇤⇤⇤ (0.001) 0.311⇤⇤⇤ (0.000) 0.175⇤⇤⇤ (0.000) -0.007 (0.808)

# interaction difference, �3(Σ�

i ) -0.195⇤ (0.032) -0.395⇤⇤⇤ (0.000) 0.307⇤⇤⇤ (0.000)

coauthors, |k�ij | 3.849⇤⇤⇤ (0.000) 3.995⇤⇤⇤ (0.000) 1.500⇤⇤⇤ (0.000) 1.185⇤⇤⇤ (0.000) 0.389⇤⇤⇤ (0.000) 0.264⇤⇤⇤ (0.000)

# interaction difference, �3(|k�ij |) -0.219 (0.259) 0.433⇤⇤⇤ (0.000) 0.192⇤⇤⇤ (0.000)

publications, N�

i -8.839⇤⇤⇤ (0.000) -13.611⇤⇤⇤ (0.000) -1.844⇤ (0.011) -5.654⇤⇤⇤ (0.000) 0.413 (0.185) 3.794⇤⇤⇤ (0.000)

# interaction difference, �3(N�

i ) 8.714⇤ (0.025) 7.853⇤⇤⇤ (0.000) -5.508⇤⇤⇤ (0.000)

citation impact, Z�

i 23.215 (0.181) 22.389 (0.362) 34.774⇤⇤ (0.004) 8.535 (0.621) -16.293⇤ (0.017) 25.608⇤⇤ (0.009)

# interaction difference, �3(Z�

i ) 7.748 (0.822) 49.320⇤ (0.036) -68.474⇤⇤⇤ (0.000)

researcher age, s⇤i -29.642⇤⇤⇤ (0.000) -22.662⇤⇤⇤ (0.000) 0.679 (0.691) 1.005 (0.672) -4.492⇤⇤⇤ (0.000) -3.841⇤⇤⇤ (0.000)

# interaction difference, �3(s⇤i ) -14.780 (0.082) -2.855 (0.402) -1.160 (0.402)

Mobile researcher indicator (1Gi=3) 107.441⇤⇤⇤ (0.000) 165.309⇤⇤⇤ (0.001) 68.059⇤⇤⇤ (0.000) 30.758 (0.298) 60.188⇤⇤⇤ (0.000) 84.689⇤⇤⇤ (0.000)

Constant 253.634⇤⇤⇤ (0.000) 229.265⇤⇤⇤ (0.000) 115.496⇤⇤⇤ (0.000) 147.993⇤⇤⇤ (0.000) 32.515⇤⇤⇤ (0.001) 15.183 (0.197)

Researcher geo. region fixed effect, F�

i Y Y Y Y Y Y

N 3342 3342 5048 5048 4600 4600

adj. R2 0.527 0.528 0.358 0.369 0.489 0.502

F 415.097 267.964 313.401 212.108 489.345 331.721

p-values in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

TABLE S4: Results of OLS regression using matched researcher pairs (i, i0). The dependent variable is Y +

i ≡ E+

K,i, the coauthor entropy

after t⇤i,T .

(1) (2) (3) (4) (5) (6)

T1 = [1990–1997] T1 = [1990–1997] T2 = [1990–1997] T2 = [1998–2003] T3 = [2004–2007] T3 = [2004–2007]

(w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction)

coauthor entropy, E�

K,i 0.848⇤⇤⇤ (0.000) 0.804⇤⇤⇤ (0.000) 0.865⇤⇤⇤ (0.000) 0.766⇤⇤⇤ (0.000) 0.844⇤⇤⇤ (0.000) 0.840⇤⇤⇤ (0.000)

# interaction difference, �3(E�

K,i) 0.087⇤⇤ (0.003) 0.155⇤⇤⇤ (0.000) 0.009 (0.652)

coauthors, |k�ij | 0.001⇤⇤⇤ (0.000) 0.002⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.002⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000)

# interaction difference, �3(|k�ij |) -0.001⇤⇤ (0.008) -0.002⇤⇤⇤ (0.000) -0.000 (0.229)

publications, N�

i -0.008⇤⇤⇤ (0.000) -0.009⇤⇤⇤ (0.001) -0.003⇤⇤⇤ (0.001) -0.008⇤⇤⇤ (0.000) -0.001 (0.182) -0.001 (0.090)

# interaction difference, �3(N�

i ) 0.003 (0.378) 0.006⇤⇤ (0.006) 0.001 (0.313)

citation impact, Z�

i -0.049⇤ (0.015) -0.019 (0.509) -0.114⇤⇤⇤ (0.000) -0.110⇤⇤⇤ (0.000) 0.047⇤⇤ (0.005) 0.023 (0.342)

# interaction difference, �3(Z�

i ) -0.056 (0.162) 0.008 (0.815) 0.048 (0.152)

researcher age, s⇤i -0.036⇤⇤⇤ (0.000) -0.030⇤⇤⇤ (0.000) -0.027⇤⇤⇤ (0.000) -0.027⇤⇤⇤ (0.000) -0.022⇤⇤⇤ (0.000) -0.022⇤⇤⇤ (0.000)

# interaction difference, �3(s⇤i ) -0.016 (0.198) 0.006 (0.344) -0.001 (0.736)

Mobile researcher indicator (1Gi=3) 0.084⇤⇤⇤ (0.000) 0.010 (0.907) 0.036 (0.102) -0.355⇤⇤⇤ (0.000) 0.075⇤⇤⇤ (0.000) 0.040 (0.517)

Constant 0.966⇤⇤⇤ (0.000) 1.010⇤⇤⇤ (0.000) 1.039⇤⇤⇤ (0.000) 1.256⇤⇤⇤ (0.000) 0.807⇤⇤⇤ (0.000) 0.825⇤⇤⇤ (0.000)

Researcher geo. region fixed effect, F�

i Y Y Y Y Y Y

N 3342 3342 5048 5048 4600 4600

adj. R2 0.776 0.776 0.767 0.769 0.852 0.852

F 1285.405 828.658 1847.981 1202.122 2946.382 1894.009

p-values in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001
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TABLE S5: Results of OLS regression using matched researcher pairs (i, i0). The dependent variable is Y +

i ≡ E+

Q,i, the PACS (research

topic) entropy after t⇤i,T .

(1) (2) (3) (4) (5) (6)

T1 = [1990–1997] T1 = [1990–1997] T2 = [1990–1997] T2 = [1998–2003] T3 = [2004–2007] T3 = [2004–2007]

(w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction)

PACS (research topic) entropy, E�

Q,i 0.336⇤⇤⇤ (0.000) 0.397⇤⇤⇤ (0.000) 0.243⇤⇤⇤ (0.000) 0.312⇤⇤⇤ (0.000) 0.458⇤⇤⇤ (0.000) 0.481⇤⇤⇤ (0.000)

# interaction difference, �3(E�

Q,i) -0.114⇤⇤ (0.004) -0.131⇤⇤⇤ (0.000) -0.048 (0.106)

coauthors, |k�ij | 0.001⇤⇤⇤ (0.000) 0.002⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000)

# interaction difference, �3(|k�ij |) -0.001⇤⇤ (0.004) -0.000⇤⇤⇤ (0.001) 0.000 (0.116)

publications, N�

i 0.002 (0.136) 0.000 (0.970) -0.001 (0.089) -0.005⇤⇤⇤ (0.000) 0.000 (0.906) 0.000 (0.989)

# interaction difference, �3(N�

i ) 0.004 (0.164) 0.006⇤⇤⇤ (0.000) 0.000 (0.899)

citation impact, Z�

i -0.038⇤ (0.021) -0.059⇤ (0.011) 0.096⇤⇤⇤ (0.000) 0.170⇤⇤⇤ (0.000) 0.010 (0.400) 0.006 (0.740)

# interaction difference, �3(Z�

i ) 0.047 (0.145) -0.139⇤⇤⇤ (0.000) 0.011 (0.643)

researcher age, s⇤i -0.039⇤⇤⇤ (0.000) -0.025⇤⇤⇤ (0.000) -0.002 (0.487) -0.003 (0.384) -0.006⇤⇤⇤ (0.000) -0.009⇤⇤⇤ (0.000)

# interaction difference, �3(s⇤i ) -0.032⇤⇤ (0.002) 0.005 (0.235) 0.006 (0.069)

Mobile researcher indicator (1Gi=3) 0.123⇤⇤⇤ (0.000) 0.501⇤⇤⇤ (0.000) -0.024 (0.111) 0.246⇤⇤⇤ (0.000) 0.083⇤⇤⇤ (0.000) 0.121 (0.078)

Constant 1.629⇤⇤⇤ (0.000) 1.435⇤⇤⇤ (0.000) 1.847⇤⇤⇤ (0.000) 1.689⇤⇤⇤ (0.000) 1.363⇤⇤⇤ (0.000) 1.343⇤⇤⇤ (0.000)

Researcher geo. region fixed effect, F�

i Y Y Y Y Y Y

N 3342 3342 5048 5048 4600 4600

adj. R2 0.204 0.212 0.148 0.157 0.330 0.331

F 96.397 65.195 98.686 67.912 252.875 163.279

p-values in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

TABLE S6: Results of OLS regression using matched researcher pairs (i, i0). The dependent variable is Y +

i ≡ E+

C,i, the country entropy

after t⇤i,T .

(1) (2) (3) (4) (5) (6)

T1 = [1990–1997] T1 = [1990–1997] T2 = [1990–1997] T2 = [1998–2003] T3 = [2004–2007] T3 = [2004–2007]

(w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction) (w/ 1Gi=3 interaction)

country entropy, E�

C,i 0.466⇤⇤⇤ (0.000) 0.553⇤⇤⇤ (0.000) 0.536⇤⇤⇤ (0.000) 0.632⇤⇤⇤ (0.000) 0.597⇤⇤⇤ (0.000) 0.721⇤⇤⇤ (0.000)

# interaction difference, �3(E�

C,i) -0.182⇤⇤⇤ (0.000) -0.227⇤⇤⇤ (0.000) -0.265⇤⇤⇤ (0.000)

coauthors, |k�ij | 0.001⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.001⇤⇤⇤ (0.000) 0.000⇤⇤⇤ (0.000) 0.000⇤ (0.017)

# interaction difference, �3(|k�ij |) 0.000 (0.107) 0.000 (0.969) 0.000⇤⇤⇤ (0.000)

publications, N�

i -0.003⇤⇤ (0.005) -0.001 (0.508) 0.001 (0.249) 0.000 (0.604) 0.000 (0.241) 0.000 (0.381)

# interaction difference, �3(N�

i ) -0.004 (0.080) -0.000 (0.897) -0.000 (0.673)

citation impact, Z�

i 0.013 (0.293) 0.042⇤ (0.023) -0.015 (0.147) -0.008 (0.573) 0.086⇤⇤⇤ (0.000) 0.129⇤⇤⇤ (0.000)

# interaction difference, �3(Z�

i ) -0.059⇤ (0.019) -0.011 (0.566) -0.092⇤⇤⇤ (0.000)

researcher age, s⇤i -0.005 (0.164) -0.007 (0.168) -0.006⇤⇤⇤ (0.001) -0.008⇤⇤ (0.002) -0.008⇤⇤⇤ (0.000) -0.009⇤⇤⇤ (0.000)

# interaction difference, �3(s⇤i ) 0.005 (0.544) 0.007 (0.059) 0.004 (0.167)

Mobile researcher indicator (1Gi=3) 0.114⇤⇤⇤ (0.000) 0.237⇤⇤⇤ (0.000) 0.084⇤⇤⇤ (0.000) 0.244⇤⇤⇤ (0.000) 0.035⇤⇤ (0.002) 0.293⇤⇤⇤ (0.000)

Constant 0.447⇤⇤⇤ (0.000) 0.382⇤⇤⇤ (0.000) 0.460⇤⇤⇤ (0.000) 0.372⇤⇤⇤ (0.000) 0.352⇤⇤⇤ (0.000) 0.229⇤⇤⇤ (0.000)

Researcher geo. region fixed effect, F�

i Y Y Y Y Y Y

N 3342 3342 5048 5048 4600 4600

adj. R2 0.328 0.335 0.426 0.438 0.536 0.552

F 182.449 121.347 417.520 282.008 590.838 406.136

p-values in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001
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