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Information storage, reflecting the capability of a dynamical system to keep predictable information during

its evolution over time, is a key element of intrinsic distributed computation, useful for the description

of the dynamical complexity of several physical and biological processes. Here we introduce a parametric

approach which allows one to compute information storage across multiple timescales in stochastic processes

displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular

framework of multiscale entropy, whereby a time series is first “coarse grained” at the chosen timescale through

low-pass filtering and downsampling, and then its complexity is evaluated in terms of conditional entropy. Within

this framework, our approach makes use of linear fractionally integrated autoregressive (ARFI) models to derive

analytical expressions for the information storage computed at multiple timescales. Specifically, we exploit state

space models to provide the representation of lowpass filtered and downsampled ARFI processes, from which

information storage is computed at any given timescale relating the process variance to the prediction error

variance. This enhances the practical usability of multiscale information storage, as it enables a computationally

reliable quantification of a complexity measure which incorporates the effects of LRC together with that of

short-term dynamics. The proposed measure is first assessed in simulated ARFI processes reproducing different

types of autoregressive dynamics and different degrees of LRC, studying both the theoretical values and the

finite sample performance. We find that LRC alter substantially the complexity of ARFI processes even at short

timescales, and that reliable estimation of complexity can be achieved at longer timescales only when LRC

are properly modeled. Then, we assess multiscale information storage in physiological time series measured in

humans during resting state and postural stress, revealing unprecedented responses to stress of the complexity of

heart period and systolic arterial pressure variability, which are related to the different role played by LRC in the

two conditions.

DOI: 10.1103/PhysRevE.99.032115

I. INTRODUCTION

Several physical and biological systems, such as climatic

systems, econometric systems, the brain, or the cardiovascular

system, exhibit a rich dynamical activity that stems from the

coexistence of self-sustained oscillators, interacting subsys-

tems, and feedback loops reacting to internal and external

inputs [1–4]. This multifaceted organization results in a com-

plex system evolution over time, which is often revealed by

the time course of a systemic variable like the global tem-

perature, the stock market, the brain wave amplitude, or the

heart period. In the recent past, several techniques have been

proposed which aim at quantifying the richness of a dynamic

process, usually indicated as “dynamical complexity” [5–10].

These methods have potentially important applications

regarding both the characterization of the system state and the
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extraction of diagnostic parameters; for instance, a reduction

of dynamical complexity may be associated with a reduced

capability of subsystems to interact and, in physiological sys-

tems, has been proposed as a feature of pathologic behaviors

[11,12].

A common approach to assess the complexity of a time

series intended as a realization of a dynamic process is that

of quantifying the degree of irregularity, or unpredictability,

of patterns extracted from the series. This approach has been

pursued by studies proposing measures derived from linear

or nonlinear prediction [13–15], or based on the concept of

conditional entropy [5–7], to quantify the dynamical complex-

ity of a process. On the other hand, a closely related com-

plementary measure, which has been taking place recently in

the frame of information theory, is the amount of information

stored in a dynamic system. The so-called information storage

is defined as the information contained in the past history of

a stochastic process that can be used to predict its future [16].

This measure has a straightforward information-theoretic for-

2470-0045/2019/99(3)/032115(13) 032115-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.032115&domain=pdf&date_stamp=2019-03-11
https://doi.org/10.1103/PhysRevE.99.032115


LUCA FAES et al. PHYSICAL REVIEW E 99, 032115 (2019)

mulation as it quantifies the information shared between the

current state of a process and its past states. Moreover, besides

reflecting the regularity of a dynamic process intended as

a complementary measure of its complexity, this quantity

is recognized as one of the three key component processes

constituting every act of information processing in a network

of interacting systems (i.e., information storage, transfer, and

modification) [17]. As such, information storage is considered

as a crucial aspect of the dynamics of several processes rang-

ing from human brain networks [18] to artificial networks [19]

and robot motion [20], and has been successfully proposed

to describe the regularity of brain [17], cerebrovascular [21],

cardiorespiratory [15], and cardiovascular [22] dynamics.

Another fundamental question about the analysis of com-

plexity or regularity is the evaluation of these properties for

stochastic processes displaying multiscale dynamical struc-

tures. It is indeed well known that a large variety of complex

systems exhibit peculiar oscillatory activities which span sev-

eral different temporal scales [10,23–25]. Since measures of

complexity and regularity based on conditional entropy and

information storage [5–7,16] are not scale-specific, a common

way to explore multiscale properties is to apply them after

“rescaling” the observed process to focus on a specific range

of temporal scales. This approach has been first proposed

with the definition of the concept of multiscale entropy [10],

which consists in computing the conditional entropy of the

observed process (through the sample entropy measure [7])

after eliminating the fast temporal scales through a lowpass

filter followed by downsampling. Even though this approach

lacks solid theoretical grounds (e.g., it does not achieve a scale

decomposition of variance, entropy, or conditional entropy),

the resulting measures are of great practical relevance. Indeed,

multiscale entropy is extremely popular and has been used,

either in its original formulation or in refined versions [26],

to assess multiscale complexity in a great amount of works

within several different fields of science [24–35].

Nevertheless, the approach underlying the computation of

multiscale entropy and related measures suffers also from

practical shortcomings, the main one being its inapplicability

to short time series which stems from the difficulty of esti-

mating entropies for multidimensional variables, exacerbated

by issues related to the filtering and downsampling steps

necessary for its calculation. In the present study, we over-

come this limitation exploiting an approach based on linear

autoregressive (AR) models [25]. This approach computes

complexity from the parameters of a state space (SS) model

which represents the rescaled version of the original AR pro-

cess obtained through the filtering and downsampling steps.

The approach is implemented here for the computation of

storage across multiple temporal scales. Importantly, we also

extend the SS formulation to account for the effect of long-

range correlations. In fact, many natural phenomena exhibit

slowly decaying serial correlations, or equivalently a spectrum

with a hyperbolic behavior at the origin, f (λ) ∼ |λ|−2d . This

behavior has been named long-memory or long-range correla-

tion [36] and is related to self-similar processes, also known as

fractals, and the so-called 1/ f noise. Long-range correlations

have an effect upon the scaling properties displayed across

timescales by a broad class of dynamic processes [23,37–39],

and are thus a fundamental aspect of multiscale processes.

Moreover, long-range correlations are manifested also at short

timescales and within the short time windows typically used

for the computation of complexity measures, thus coexisting

with short-term dynamics and having an impact on the as-

sessment of their complexity [39]. In spite of this, methods

are lacking which are able to describe quantitatively the

multiscale complexity or regularity of stochastic processes in

the presence of long-range correlations. Here, we fill this gap

by providing theoretical formulations and practical estimation

of multiscale information storage for stochastic processes

with long-range correlations, which are suitably described by

fractionally integrated autoregressive (ARFI) models.

The framework for multiscale analysis of information stor-

age developed in this work is implemented as a part of the

linear multiscale entropy Matlab toolbox [40].

II. METHODS

A. Linear stochastic processes with long-range correlations

We start recalling the classic parametric approach to the

description of linear Gaussian stochastic processes exhibiting

both short-term dynamics and long-range correlations, which

is based on representing a discrete-time, zero-mean stochas-

tic process Xn, −∞ < n < ∞, as a fractionally integrated

autoregressive (ARFI) process fed by uncorrelated Gaussian

innovations En. The ARFI process takes the form

A(L)(1 − L)d Xn = En, (1)

where L is the back-shift operator (LiXn = Xn−i ), AL = 1 −
∑p

i=1 AiL
i is an AR polynomial of order p and (1 − L)d is the

fractional differencing operator defined by [36]

(1 − L)d =

∞
∑

k=0

GkLk, Gk =
Ŵ(k − d )

Ŵ(−d )Ŵ(k + 1)
, (2)

with Ŵ(·) denoting the gamma (generalized factorial) func-

tion. The parameter d in (1) determines the long-term behav-

ior of the process, while the coefficients of the polynomial

A(L), i.e., Ai, i = 1, . . . , p, allow description of the short-

term dynamics. The ARFI model is stationary for 0.5 < d <

0.5, while it is nonstationary but mean reverting for 0.5 �

d < 1. The ARFI model may be extended to nonstationary

settings by allowing d to be written as d = dLM + D > 1 with

0.5 < dLM < 0.5 and D ∈ {1, 2, . . .}. The most usual case

occurs with D = 1, when the process is said to have a unit

root: the ARFI(p, d ) formulation is then used to model the

increments of the series, which is the differences between

consecutive observations. Note that the process defined in (1)

is a particular case of the broader class of ARFIMA(p,d,l)

processes, which also contains the class of autoregressive

processes AR(p); here we restrict our analysis to the descrip-

tion of the ARFIMA(p,d,0) process, which we denote as an

ARFI(p,d) process.

The parameters of the ARFI model (1), namely, the co-

efficients of A(L) and the variance of the innovations �E ,

are obtained from process realizations of finite length first

estimating the differencing parameter d by means of the

Whittle semiparametric local estimator [36], then defining

the filtered data X
( f )
n = (1 − L)d Xn, and finally estimating the

AR parameters from the filtered data X
( f )
n using the ordinary
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least-squares method to solve the AR model A(L)X
( f )
n = En,

with model order p assessed through the Bayesian information

criterion [41].

B. Measures of information storage

The information storage of a dynamical system that pro-

duces entropy with a nonzero rate is a quantity related to

how much the system is able to share information during its

evolution across time. Considering a system X whose activity

is defined by the stochastic process X , let us define as Xn the

random variable describing the present state of the system, and

as X −
n = [Xn−1Xn−2 . . .] the infinite-dimensional vector vari-

able describing its past states. Then, the information stored in

the system is defined as

SX = I (Xn; X −
n ) = E

[

log
p(xn, xn−1, . . .)

p(xn)p(xn−1, xn−2, . . .)

]

, (3)

where I (·; ·) denotes mutual information, p(·) denotes prob-

ability density function, and the expectation is taken over

several realizations (xn, xn−1, . . .) of the random variables

(Xn, Xn−1, . . .).

Even though information storage has been long recognized

as an important aspect of the dynamics of complex systems,

it has been formalized only recently as in Eq. (3) as the

amount of information shared between the present and the past

states of a dynamic process [16]. From the point of view of

the dynamic update of the state of a time-evolving system,

the information storage is complementary to a well-known

measure of system complexity quantified in terms of entropy

rate, i.e., the conditional entropy of the present state of the

system given its past states, CX = H (Xn|X
−
n ), which indeed

can be related to SX by simple information-theoretic rules:

SX = H (Xn) − H (Xn|X
−
n ) = HX − CX , (4)

where HX = H (Xn) is the entropy of the present system state.

The conditional entropy is typically computed, from short

realizations of the studied process, limiting the past history

X −
n to a small number of lags, and performing nonparametric

estimation of the associated probability density functions

[39]; even with this simplification, multiscale computation of

the conditional entropy cannot be reliably performed at long

timescales. Here, to overcome these limitations we restrict the

analysis to Gaussian processes for which exact expressions for

conditional entropy and information storage are derived (see

the next section for the multiscale formulation). Specifically,

we exploit the relation stated in (4) and particularize it to the

case of linear systems which can be fully described using an

ARFI dynamic process in the form of Eq. (1). Specifically we

note that, given the ARFI representation, the entropy of the

present state of the process and the conditional entropy of the

present given the past can be expressed analytically in terms

of the variance of the process Xn, �X , and the variance of the

innovations En, �E , as [15,42,43]

H (Xn) = 1
2

ln 2πe�X , (5a)

H (Xn|X
−
n ) = 1

2
ln 2πe�E , (5b)

from which the analytical formulation of the information

storage follows immediately:

SX =
1

2
ln

�X

�E

. (6)

To compute the information storage according to Eq. (6),

we need to find an expression for the process variance �X

starting from the ARFI parameters d and A(L) obtained as

described in Sec. II A (which allows computation also of the

innovation variance �E ). To do this, first we approximate the

ARFI process (1) with a finite order AR process by truncating

the fractional integration part at a finite lag q:

(1 − L)d ≈ G(L) =

q
∑

k=0

GkLk, (7)

so that the ARFI(p, d) process can be rewritten as an AR(p +

q) process:

B(L)Xn = En, (8a)

B(L) = A(L)G(L) =

(

1 −

p
∑

i=1

AiL
i

)

q
∑

k=0

GkLk . (8b)

The coefficients of the AR polynomial B(L) = 1 −
∑p+q

k=0 BkLk result from the multiplication of the two

polynomials in (8b), which in the case q � p yields

B0 = 1,

Bk =

⎧

⎪

⎨

⎪

⎩

−Gk +
∑k

i=1 Gk−iAi, k = 1, . . . , p,

−Gk +
∑p

i=1 Gk−iAi, k = p + 1, . . . , q,
∑p+q−k

i=0 Gq−iAi+k−q, k = q + 1, . . . , q + p.

(9)

Once the ARFI process with parameters d and p is approxi-

mated by an AR process of order m = p + q, we derive the

expression for the process variance using the theory of SS

models [43]. The SS formulation of the AR(m) process of

Eq. (8) is given by

Zn+1 = BZn + KEn, (10a)

Xn = CZn + En, (10b)

where Zn = [Xn−1 · · · Xn−m+1Xn−m]T is the m-dimensional

state (unobserved) process and the vectors K and C and the

matrix B are defined as

B =

⎡

⎢

⎢

⎣

B1 . . . Bm−1 Bm

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

⎤

⎥

⎥

⎦

, K =

⎡

⎢

⎢

⎣

1

0
...

0

⎤

⎥

⎥

⎦

,

C = [B1 . . . Bm−1 Bm]. (11)

The quantities in Eq. (11) are finally exploited to compute

analytically the process variance �X from the solution of the

following discrete-time Lyapunov equation [43]:

� = B�BT + �E KT K, �X = C�CT + �E , (12)

from which the information storage is computed using Eq. (6).
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C. Multiscale information storage

In this section we extend to multiple temporal scales the

computation of information storage for stochastic processes

which have an ARFI representation. To obtain the rescaled

version of a stochastic process at the temporal scale defined

by the scale factor τ , the approach originally designed in

[10] corresponds to simply take the average of the process

over τ consecutive samples; this procedure has been refined

later on [26,31] by recognizing that it actually entails the two

subsequent steps of filtering the process with a lowpass filter

with cutoff frequency fτ = 1/(2τ ), and then downsampling

the filtered process using a decimation factor τ . According

to this refined method, we first apply a linear finite impulse

response (FIR) filter to the original process Xn obtaining the

following filtered process:

X (r)
n = D(L)Xn, (13)

where r denotes the filter order and the filter coefficients

D(L) =
∑r

k=0 DkLk are chosen to set up a lowpass FIR con-

figuration with cutoff frequency 1/2τ . The filtering step trans-

forms the AR(m) process [which approximates the original

ARFI(p,d) process] into an ARMA(m,r) process with moving

average (MA) part determined by the filter coefficients:

B(L)X (r)
n = D(L)B(L)Xn = D(L)En. (14)

Then, we exploit the connection between ARMA processes

and SS processes [44] to evidence that the ARMA process

(14) can be expressed in SS form as

Z
(r)
n+1 = B(r)Z (r)

n + K (r)E (r)
n , (15a)

X (r)
n = C(r)Z (r)

n + E (r)
n , (15b)

where Z (r)
n = [X

(r)
n−1 · · · X

(r)
n−mEn−1 · · · En−r]T is the (m + r)-

dimensional state process, E (r)
n = D0En is the SS innovation

process, and the vectors K (r) and C(r) and the matrix B(r) are

given by

C(r) = [B1 · · · BmD1 · · · Dr ],

K (r) =
[

1 01×(m−1) D−1
0 01×(r−1)

]

,

B(r) =

⎡

⎢

⎣

C(r)

Im−1 0(m−1)×(r+1)

01×(m+r)

0(r−1)×m Ir−1 01×(m+r) 0(r−1)×1

⎤

⎥

⎦

(16)

with Ia and 0a×b indicating the a-dimensional identity matrix

and the null matrix of dimension a × b. The parameters of

the SS process are the three quantities defined in (16) and the

variance of the innovations �E (r) = D2
0�E , whereby Eq. (15)

defines an SS(B(r),C(r), K (r), �E (r) ) process.

The second step of the rescaling procedure is to downsam-

ple the filtered process in order to complete the multiscale

representation. To do this, we make use of recent theoretical

findings showing that the downsampled version of an SS

process has itself an SS representation [43,45]. Here, down-

sampling the SS process (15) with a factor τ yields the process

X (τ )
n = X (r)

nτ , which has the following SS representation:

Yn+1 = B(τ )Yn + Wn, (17a)

X (τ )
n = C(τ )Yn + Vn, (17b)

where Vn and Wn are different white noise processes with

variances �W and �V and covariance �VW , respectively

serving as innovations for the downsampled process X (τ )
n

and for the state process Yn. Thus, the process (17) is an

SS(B(τ ),C(τ ), �W , �V , �VW ) process whose parameters can

be obtained as [43,45]

B(τ ) = (B(r))τ , C(τ ) = C(r), �V = �E (r) ,

�VW = (B(r))τ−1K (r)�E (r) ,

�W (1) = �E (r) (K (r))T K (r), τ = 1,

�W (τ ) = B(r)�W (τ − 1)(B(r))T

+ �E (r) (K (r))T K (r), τ �= 2. (18)

Then, the SS(B(τ ),C(τ ), �W , �V , �VW ) process can be con-

verted in a form similar to that of Eq. (15) which evidences the

innovations, yielding the SS(B(τ ),C(τ ), K (τ ), �E (τ ) ) process:

Z
(τ )
n+1 = B(τ )Z (τ )

n + K (τ )E (τ )
n , (19a)

X (τ )
n = C(τ )Z (τ )

n + E (τ )
n , (19b)

which provides the SS form of the filtered and downsampled

version of the original ARFI(p, d) process. To move from (17)

to (19) it is necessary to consider a discrete algebraic Ricatti

equation [43,45]:

P = B(τ )P(B(τ ))T + �W − (B(τ )PC(τ ) + �VW )

× (C(τ )P(C(τ ))T + �V )−1(C(τ )P(B(τ ))T + (�VW )T ),

(20)

which leads, after solving for P, to the derivation of the two

remaining parameters in (19):

�E (τ ) = C(τ )P(C(τ ))T + �V , (21a)

K (τ ) =
B(τ )P(C(τ ))T + �VW

�V

. (21b)

Finally, the variance of the downsampled process can be com-

puted analytically solving a discrete-time Lyapunov equation

similar to that of Eq. (12):

� = B(τ )
�(B(τ ))T + �E (τ ) (K (τ ))T K (τ ), (22a)

�X (τ ) = C(τ )
�(C(τ ))T + �E (τ ) . (22b)

The derivations above lead to computing analytically the

parameters of the SS process of Eq. (19), which constitutes

a rescaled version derived through filtering [Eq. (15)] fol-

lowed by downsampling [Eq. (17)] of the AR approximation

[Eq. (8)] of the original ARFI process [Eq. (1)]. Among the

SS parameters, the ones relevant for the computation of the

information storage are the variance of the downsampled pro-

cess, �X (τ ) , and the variance of the corresponding innovations,
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�E (τ ) . These variances can be combined in a similar way to

that of Eq. (6) to yield the expression of the information stored

in the original process Xn when it is observed at scale τ :

SX (τ ) =
1

2
ln

�X (τ )

�E (τ )

. (23)

III. NUMERICAL STUDY

This section is devoted to assess the behavior of the

proposed multiscale measure of information storage in

stochastic processes with known dynamics. First the behavior

is assessed by computing the value of SX (τ ) for predetermined

values of the parameters influencing short-term dynamics and

long-range correlations of linear stochastic processes. Then

the performance of the adopted estimators of SX (τ ) is

studied from finite length realizations of such processes in a

simulation study.

A. Sensitivity analysis

Here we investigate the properties of multiscale

information storage by varying the parameters which

determine the dynamics of ARFI processes. These parameters

are the differencing parameter d and the AR coefficients

composing the polynomial A(L) in Eq. (1), which are

related to long-range correlations and short-term dynamics,

respectively. Here, the strength of long-range correlations was

varied changing the parameter d in the set {0, 0.05, 0.4, 0.7}

so as to move from absent (d = 0) to long-lasting mean

reverting (d = 0.7) memory effects. Moreover the AR

coefficients were set in order to generate stochastic

oscillations with assigned frequency and spectral radius.

This was achieved setting pairs of complex conjugate poles

in the complex plane as the roots of the AR polynomial,

where the modulus (ρ) or the phase (φ = 2π f , where f

is the frequency) of the pole was changed to reproduce

varying strength and frequency of the stochastic oscillations.

Two configurations were considered: (a) an AR polynomial

of order p = 2, with two poles having fixed frequency

f = 0.1 Hz and varying modulus ρ ∈ {0, 0.5, 0.8, 0.9}; (b)

an AR polynomial of order p = 4 with two pairs of poles, the

first with fixed modulus ρ1 = 0.8 and frequency f1 = 0.1 Hz,

and the second with fixed modulus ρ2 = 0.8 and varying

frequency f2 ∈ {0.15, 0.2, 0.25, 0.3} Hz.

In each simulation, starting from the imposed theoretical

values of the ARFI parameters, the analysis was performed

according to the procedures described in Secs. II B and II C;

the free parameters were set in accordance with the literature,

indicating q = 50 as an appropriate value for truncating the

ARFI process to a finite order [46], and r = 48 as a viable

choice for the order of the lowpass filter used to implement

the change of scale [25]. The results, obtained for timescales

increasing from 1 to 50 ( fτ decreasing from 0.5 to 0.01 Hz),

are reported in Figs. 1 and 2. In general, long-range corre-

lations tend to bring information storage into the dynamic

process, to an extent proportional to the long memory of the

process: indeed, for an assigned timescale τ , SX (τ ) tends to

increase with the parameter d . This occurs both at the original

timescale ( fτ = 0.5 Hz) and at longer time scales, regardless

FIG. 1. Theoretical profiles of multiscale information storage

for simulated ARFI processes with varying amplitude of stochastic

oscillations. Plots depict the information storage SX computed as

a function of the cutoff frequency fτ of the lowpass filter used to

change the timescale for an ARFI process characterized by two

complex conjugate poles with fixed phase φ = 2π0.1 and variable

modulus ρ = 0 (a), ρ = 0.5 (b), ρ = 0.8 (c), and ρ = 0.9 (d), and

variable differencing parameter d = 0, 0.05, 0.4, 0.7.

of the type of the AR process (Figs. 1 and 2); the only excep-

tion is the presence of a strong stochastic oscillation (ρ = 0.9

in Fig. 1), where an increase of d corresponds to a decrease of

SX at the original timescale. This finding has an implication

for the evaluation of entropy measures on dynamic processes

in which short-term dynamics coexist with long-range corre-

lations [39,47]. In these situations one should remember that,

since long memory properties have an important effect on the

dynamics, such properties should be accounted for to make a

proper evaluation of the complexity of the observed process; if

one is interested in short-term complexity only [9], long-range

correlations should be removed prior to entropy analysis [39].

Another general result is that the information storage

tends to decrease at decreasing fτ , as a result of the fact that

lengthening the timescale corresponds to removing regular

oscillatory components and making the process more complex

(i.e., less predictable); at very long timescales the process

is left with no predictable dynamics and SX decays to zero.

While the decrease of SX with the timescale is monotonic in

the absence of long-range correlations (see the curves with

d = 0 in Figs. 1 and 2), the simultaneous presence of short and

long memory effects may complicate the multiscale behavior

of information storage. In fact, the ARFI process tends to store

more information at intermediate timescales ( fτ ≈ 0.05 Hz)

than at lower timescales when long-range correlations occur

simultaneously with an appreciable stochastic oscillation

(d = 0.4, 0.7 and ρ = 0.8, 0.9, Fig. 1), or with a mismatch

032115-5



LUCA FAES et al. PHYSICAL REVIEW E 99, 032115 (2019)

FIG. 2. Theoretical profiles of multiscale information storage

for simulated ARFI processes with varying frequency of stochastic

oscillations. Plots depict the information storage SX computed as

a function of the cutoff frequency fτ of the lowpass filter used to

change the timescale for an ARFI process characterized by a pair

of complex conjugate poles with fixed modulus and phase (ρ1 =

0.8, φ1 = 2π0.1), and another pair of complex conjugate poles with

fixed modulus ρ2 = 0.8 and variable phase φ2 = 2π f2, where f2 =

0.15 (a), f2 = 0.2 (b), f2 = 0.25 (c), and f2 = 0.3 Hz (d), as well as

variable differencing parameter d = 0, 0.05, 0.4, 0.7.

between the frequencies of two stochastic oscillations with

the same amplitude (Fig. 2). These patterns were not revealed

by the utilization of multiscale complexity measures not

accounting for long-range correlations [25]. Therefore, it

seems that the multiscale evaluation of complexity may

benefit from the use of an approach able to model dynamical

effects occurring at different temporal scales such as short-

and long-range correlations.

We investigated also the effects of the approximation of the

ARFI process with a finite order AR process, obtained setting

a fixed value for the parameter q [see Eq. (7)]. Figure 3 reports

the curves of multiscale information storage obtained in four

representative AR parameter settings when assessed by the

typical value q = 50 [46] (solid lines) and with the reduced

value q = 10 (dashed lines). Overall, we note that excessive

truncation leads to an underestimation of the information

storage and to smoothening of nonmonotonic trends of the

storage with the timescale. The bias is more evident for higher

values of the differencing parameter d at long timescales

(lower fτ ). Therefore, high values of the parameter q are

recommended to obtain a good approximation of the long-

memory properties of the observed process, so to limit the

negative bias of information storage and to preserve the ability

to discern multiscale patterns.

FIG. 3. Dependence of the theoretical profiles of multiscale in-

formation storage on the approximation of a simulated ARFI process

with a finite-order AR process. Plots depict the information storage

SX computed as a function of the cutoff frequency fτ of the lowpass

filter used to change the timescale for an ARFI process characterized

by two complex conjugate poles with phase φ = 2π0.1 and modulus

ρ = 0 (a) or ρ = 0.8 (b), or by two pairs of complex conjugate

poles with modulus ρ1 = ρ2 = 0.8 and phases φ1 = 2π0.1, φ2 =

2π0.15 (c) or φ1 = 2π0.1, φ2 = 2π0.3 (d). In each panel, results

are plotted for values of the differencing parameter d = 0, 0.4, 0.7

and two values for the truncation parameter: q = 10 (dashed lines)

and q = 50 (solid lines).

B. Finite sample performance

Here we describe the practical estimation of multiscale

information storage computed for the processes simulated as

in Sec. III A. The focus of this analysis was on assessing

the computational reliability of the proposed estimator in

comparison with two alternative approaches for the multiscale

assessment of dynamical complexity: (i) linear multiscale

analysis, based on performing pure AR identification without

the modeling of long-range correlations [25], and (ii) refined

multiscale entropy analysis, based on computing entropy mea-

sures after the practical implementation of rescaling executed

through the application of a lowpass filter followed by down-

sampling [26]. The analysis was performed for a represen-

tative example of the simulation described above, where the

AR polynomial was obtained from a pair of complex conju-

gate poles with modulus ρ = 0.8 and frequency f = 0.1 Hz,

and for values of the fractional differencing parameter d ∈

{0, 0.4, 0.7}. In each analyzed case, 100 realizations of the

simulation were generated deriving the polynomial G(L) ac-

cording to Eq. (2), truncating it to q = 50 terms [Eq. (7)], and

feeding the model of Eq. (8) with independent samples drawn

from the standard normal distribution. Then, for each realiza-

tion, multiscale information storage analysis was performed
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FIG. 4. Estimation of multiscale information storage over finite

length realizations of simulated ARFI processes. Plots depict the

theoretical values (red) and the distributions [median and 10th–90th

percentiles (dispersion interval, D.I.) over 100 realizations] of the in-

formation storage SX computed as a function of the cutoff frequency

fτ of the lowpass filter used to change the timescale for an ARFI

process characterized by two complex conjugate poles with mod-

ulus and phase ρ = 0.8, φ = 2π0.1 for values of the differencing

parameters d = 0 [(a)–(c)], d = 0.4 [(d)–(f)], and d = 0.7 [(g)–(i)],

using the proposed ARFI method [(a), (d), (g)], the linear multiscale

AR method [25] [(b), (e), (h)], and the refined multiscale complexity

approach [26] [(c), (f), (i)].

for timescales τ = 1, . . . , 50 ( fτ = 0.5, . . . , 0.01 Hz): (i) ac-

cording to the procedure described in Sec. II (ARFI identifi-

cation), applying a FIR lowpass filter of order r = 48; (ii) ac-

cording to linear multiscale complexity analysis, i.e., follow-

ing the procedure of Sec. II but after forcing d = 0 in Eq. (6)

(AR identification); and (iii) according to refined multiscale

complexity analysis, i.e., filtering the time series with a sixth-

order Butterworth lowpass filter, resampling the filtered series

with a downsampling factor equal to τ , and computing sample

entropy [7] on the downsampled time series with standard

parameter setting (embedding dimension m = 2, similarity

tolerance r = 0.2�E (τ ) ). To allow comparison, the complexity

measures CX (τ ) derived from the complexity analyses (ii)

and (iii) were converted into values of information storage

exploiting the equivalence SX (τ ) = 0.5 ln 2πe − CX (τ ) that

holds for Gaussian processes. All estimates were compared

also with the exact patterns of multiscale information storage

obtained from the true values of the parameters.

First, we compared the distribution of SX (τ ) estimated

from realizations of N = 300 samples with its theoretical

values for the three estimation approaches. The results de-

picted in Fig. 4 show that all approaches return a biased

estimate of the information storage, with the bias generally

increasing with the differencing parameter d and with the

timescale τ . The bias is limited with the proposed approach

based on ARFI models, as the true values of SX are contained

FIG. 5. Estimation of multiscale information storage as a func-

tion of the length of simulated ARFI processes. Plots depict the

theoretical values (red) and the average estimated values (median

over 100 realizations, other colors) of the information storage SX

computed as a function of the cutoff frequency fτ of the lowpass

filter used to change the timescale for an ARFI process charac-

terized by two complex conjugate poles with modulus and phase

ρ = 0.8, φ = 2π0.1 for values of the differencing parameters d = 0

[(a)–(c)], d = 0.4 [(d)–(f)], and d = 0.7 [(g)–(i)], using the proposed

ARFI method [(a), (d), (g)], the linear multiscale AR method [25]

[(b), (e), (h)], and the refined multiscale complexity approach [26]

[(c), (f), (i)].

within the dispersion interval of 10th–90th percentiles of the

estimates [Figs. 4(a), 4(d) and 4(g)]. The linear multiscale

method based on pure AR identification is highly biased,

in the presence of long-range correlations [Figs. 4(e) and

4(h)], at intermediate timescales ( fτ � 0.1 Hz) and becomes

unreliable at longer time scales ( fτ � 0.05 Hz), returning very

low values of information storage. Nevertheless, this method

is highly reliable in the absence of long-range correlations

[Fig. 4(b)], performing even better than the ARFI estimator

which shows a certain bias [Fig. 4(a)]; this small bias can be

related to the variability in the estimation of the parameter

d , which in turn shows non-negligible bias and variance for

these estimates obtained with N = 300 (the estimation im-

proves for longer time series, results not shown). On the other

hand, the traditional approach based on multiscale complexity

analysis is highly unreliable at increasing timescales, as the

estimates of SX are strongly biased, display a variance that

grows dramatically with the timescale, and could not even

be computed for fτ � 0.1 Hz. These results document the

necessity of the proposed approach based on ARFI models to

capture the dynamical complexity of processes showing both

stochastic oscillations and long-memory properties.

Next, we studied the dependence of the estimates of in-

formation storage on the sample size, repeating the analyses

described above for time series of different length in the

range N ∈ {300, 512, 1024, 2048, 4096}. As shown in Fig. 5,

a general expected result is that the bias of SX decreases at
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increasing the time series length. The improvement is such

that the measure based on ARFI models becomes progres-

sively more accurate at all timescales [Figs. 5(a), 5(d) and

5(g)], while it does not help to obtain a good approximation

of SX at long timescales for the measure based on AR models

[Figs. 5(e) and 5(h)]. As to the measure based on multiscale

complexity, the improvement brought by analyzing longer

time series is only slight and not always clear [Figs. 5(c),

5(f) and 5(i)], confirming the unsuitability of model-free ap-

proaches to assess dynamical complexity at long timescales.

IV. APPLICATION TO PHYSIOLOGICAL PROCESSES

This section reports the application of multiscale informa-

tion storage in the field of cardiovascular and cardiorespira-

tory physiology. In this field, it is well known that the dynam-

ics of the cardiac, vascular, and respiratory systems, typically

assessed from the variability series of the heart period (HP),

systolic arterial pressure (SAP), and lung volume (LV), reflect

the activity of physiological mechanisms operating across

multiple temporal scales. In particular, the assessment of HP

and SAP dynamics over temporal scales ranging from seconds

to a few minutes allows the detection of short-term cardio-

vascular regulation, and is typically accomplished through

complexity measures like approximate entropy and sample

entropy [5,7], or even using the information storage [15,48].

In particular, two main physiological rhythms, associated to

specific temporal scales, are commonly detected in short-

term heart rate variability [49,50]: a low-frequency oscillation

(∼0.1 Hz), which is originated mainly by the sympathetic ner-

vous system but may incorporate also parasympathetic effects

and blood pressure regulation via the baroreflex [51,52]; and

a high-frequency oscillation (typically occurring within the

range 0.15–0.4 Hz), which reflects parasympathetic activity

and occurs in synchrony with respiration according to the

mechanism known as respiratory sinus arrhythmia [53,54]. On

the other hand, it is also known that cardiovascular oscillations

exhibit long-range correlation properties that are manifested

in scaling behavior and power-law correlations which are

commonly assessed using fractal techniques [23,37]. These

long-memory properties are physiologically associated to

the so-called very low-frequency cardiovascular oscillations

(<0.04 Hz), which are originated by very slow-acting physi-

ological processes driven by the renin-angiotensin system [55]

and possibly including physical activity as well as thermoreg-

ulatory and endothelial influences on the heart [50,56].

Given this coexistence of short-term dynamics and long-

range correlations, the evaluation of the dynamical complexity

of cardiovascular and respiratory processes remains a chal-

lenge that can be thoroughly faced only employing multiscale

approaches. Here we investigate how the dynamical com-

plexity of HP, SAP, and LV, assessed with our measure of

information storage quantified from ARFI processes, varies

across multiple timescales reflecting separate but simultane-

ously active physiological mechanisms. Moreover we address

the issue of quantifying the impact of long-range correlations,

typically manifested in short cardiovascular time series in

terms of slow trends superimposed to the short-term dynam-

ics, on the values of information storage computed from short

cardiovascular recordings.

A. Experimental protocol and measurement

of physiological time series

We consider the time series of HP, SAP, and LV, inter-

preted as realizations of the stochastic processes descriptive

of the cardiac, vascular, and respiratory dynamics, measured

in a group of 61 healthy subjects (17.5 ± 2.4 years old, 37

females) monitored in the resting supine position (SU) and in

the upright position (UP) reached through passive head-up tilt

[57]. The acquired signals were the surface electrocardiogram

(ECG), the finger arterial blood pressure recorded noninva-

sively by the photoplethysmographic method, and the respi-

ration signal recorded through respiratory inductive plethys-

mography. For each subject and experimental condition, the

values of HP, SAP, and LV were measured on a beat-to-beat

basis, respectively, as the sequences of the temporal distances

between consecutive R peaks of the ECG, the maximum

values of the arterial pressure waveform taken within the

consecutively detected heart periods, and the values of the

respiratory signal sampled at the onset of the consecutively

detected heart periods. A detailed description of experimental

protocol and signal measurement is reported in Ref. [57].
The analysis was performed on segments of N = 300

consecutive points, free of artifacts and deemed as weak-
sense stationary through visual inspection, extracted from the
time series for each subject and condition. Three different
approaches were followed to compute multiscale information
storage: (i) the “eAR” approach, based on pure AR model
identification, i.e., performing the whole procedure described
in Sec. II after forcing d = 0 in Eq. (6); (ii) the “eARd”
approach, based on pure AR identification as in (i), but applied

to the filtered data X
( f )
n = (1 − L)d Xn, after estimating the pa-

rameter d from the original time series; and (iii) the “eARFI”
approach, based on complete ARFI model identification, i.e.,
following the whole procedure described in Sec. II with d

estimated from the original time series and considered in
the computations. Pursuing these approaches we compare,
respectively, (i) the traditional complexity analysis where
long-range correlations are neither removed nor modeled, (ii)
the analysis performed only on the short-term dynamics after
removing long-range correlations, and (iii) the complexity
analysis performed by modeling the long-range correlations
and considering them together with the short-term dynamics.
Such a comparison is meant to infer the role of long-range cor-
relations vs that of short-term dynamics in contributing to the
information storage and to its variation between conditions.

The ARFI model fitting each individual time series was

identified first estimating the fractional differencing param-

eter d using the Whittle estimator, then filtering the time

series with the fractional integration polynomial truncated

at a lag q = 50, and finally estimating the parameters of

the polynomial relevant to the short-term dynamics through

least-squares AR identification. The AR model order p was

selected as the minimum of the BIC figure of merit [58]

in the range 2–16. Then, multiscale information storage was

computed implementing a FIR lowpass filter of order r = 48,

for timescales τ in the range (1, . . . , 50), which corresponds

to lowpass cutoff frequencies fτ = (0.5, . . . , 0.01) Hz.

Here the effects of SU and UP conditions on the informa-

tion storage profiles are assessed at any assigned timescale by

means of paired comparisons.
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FIG. 6. Multiscale information storage for the heart period time

series. Plots report the confidence interval (C.I.) for the mean of the

index of information storage computed across subjects using the eAR

approach (a), the eARd method (c), and the eARFI method (e) as a

function of the cutoff frequency of the rescaling filter in the supine

(SU) and upright (UP) body positions. For each estimation method,

the paired C.I. of UP-SU are also plotted in panels (b), (d), and (f).

B. Results and discussion

The results of the multiscale computation of information

storage for the HP, SAP, and LV time series are depicted, re-

spectively, in Figs. 6, 7, and 8, reporting the distribution across

subjects of the index SX (left column) computed following

the eAR (first row), eARd (second row), and eARFI (third

row) estimation approaches and evaluated as a function of the

timescale in the two analyzed physiological states (SU and

UP). In each figure, results of the statistical analysis are also

visualized (right column) reporting the mean and 95% con-

fidence intervals of the paired difference between the values

of SX computed in the UP and SU conditions; a statistically

significant variation from SU to UP is detectable at a given

FIG. 7. Multiscale information storage for the systolic pressure

time series. Plots report the confidence interval (C.I.) for the mean

of the index of information storage computed across subjects using

the eAR approach (a), the eARd method (c), and the eARFI method

(e) as a function of the cutoff frequency of the rescaling filter in the

supine (SU) and upright (UP) body positions. For each estimation

method, the paired C.I. of UP-SU are also plotted in panels (b), (d),

and (f).

timescale if the confidence intervals do not encompass the

zero line.

Figure 6 reports the results of multiscale information stor-

age analysis for the HP time series. Using the eAR method

whereby long-range correlations are not modeled [Fig. 6(a)],

at scale 1 ( fτ = 0.5) the information stored in the HP process

is significantly higher in the UP condition compared with SU.

This reflects a widely known behavior of heart rate variability,

whose complexity is known to decrease with head-up tilt due

to an activation of the sympathetic nervous system which has

a regularizing effect on the cardiac dynamics [59,60]. Higher

values of SX during orthostatic stress are observed also at

increasing the timescale, and are detectable up to fτ ∼ 0.1 Hz
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FIG. 8. Multiscale information storage for the respiratory time

series. Plots report the confidence interval (C.I.) for the mean of the

index of information storage computed across subjects using the eAR

approach (a), the eARd method (c), and the eARFI method (e) as a

function of the cutoff frequency of the rescaling filter in the supine

(SU) and upright (UP) body positions. For each estimation method,

the paired C.I. of UP-SU are also plotted in panels (b), (d), and (f).

[Fig. 6(b)], reflecting the results obtained in Ref. [25] where a

lower multiscale entropy is detected in the same data. Here we

see also that the tilt-induced increase of the information stor-

age is present also when the slow trends affecting HP, likely

due to long-range correlations, are filtered out using the eARd

method [Fig. 6(c)]; in this case the increase of SX from SU

to UP is significant also for intermediate timescales [0.05 Hz

< fτ < 0.1 Hz; Fig. 6(d)]. This behavior is less evident when

long-range correlations are modeled, as SX increases during

UP only at scale 1, and is even reverted at longer timescales, as

SX decreases during UP for 0.01 Hz < fτ < 0.1 Hz [Figs. 6(e)

and 6(f)]. This behavior, documenting that the complexity of

heart rate variability increases during tilt if observed at long

timescales, has been previously observed using multiscale

entropy [61]. Here, it becomes visible only modeling long-

range correlations through the eARFI approach and indicates

that long-range correlations are likely less important during

head-up tilt. Thus, the utilization of the modeling approach

proposed in this study suggests that postural stress augments

the capability of HP to store information at low timescales but

also diminish such capability at longer timescales.

Figure 7 reports the results of multiscale information stor-

age analysis for the SAP time series. According to the eAR

method [Figs. 7(a) and 7(b)], moving from SU to UP the index

SX increases significantly at scale 1 ( fτ = 0.5 Hz) and de-

creases significantly at scale 2 ( fτ = 0.25 Hz), confirming in

terms of information storage the results reported in Ref. [25]

based on a linear complexity measure. These two opposite

behaviors of the information stored in the SAP process are

here explained in terms of long-range correlations, which

are removed or explicitly considered, respectively, through

detrending or through performing ARFI identification. In fact,

according to the eARd method [Figs. 7(c) and 7(d)], SX is

still significantly higher during UP when fτ = 0.5 Hz, but is

not significantly different from SU for any other value of fτ .

On the contrary, according to the eARFI method [Figs. 7(e)

and 7(f)], SX does not show significant differences between

SU and UP when fτ = 0.5 Hz, but is significantly smaller

when fτ = 0.25 Hz. These results suggest that the higher

capability of SAP to store information during tilt observed at

scale 1 is related exclusively to short-term dynamics, while

the lower storage capability observed at intermediate scales

( fτ ∼ 0.25 Hz, where respiration-related components are sup-

pressed) is driven by long-range correlations. Thus, head-up

tilt induces scale-dependent variations in the complexity of

arterial pressure, with higher complexity (lower SX ) associ-

ated with slow oscillations, and lower complexity (higher SX )

associated to the effects of respiration.

Figure 8 reports the results of multiscale information

storage analysis for the respiratory (RESP) time series.

In this case we find that, using all methods, at short

timescales the respiration process stores more information

during UP than during SU, while at longer timescales

the amount of information stored in the process does not

change significantly with head-up tilt. This larger regu-

larity of the respiration dynamics and its multiscale be-

havior confirm previous findings [8,25], further suggesting

that long-range correlations do not have significant influ-

ence on the complexity of respiratory patterns. These re-

sults may be expected since respiration is usually strongly

evident in the so-called high-frequency band (>0.15 Hz)

[49] and is thus filtered out almost entirely for timescales �2.

To further elucidate the role played by long-range cor-

relations in determining the information stored in the con-

sidered processes, we analyze the values of the differencing

parameter d computed in the various conditions using the

Whittle semiparametric estimator [36]. Figure 9 reports, for

any given process and condition, the individual values of d

plotted for each of the analyzed subjects, together with their

95th confidence intervals relevant to the zero level [derived

from the asymptotic statistic given by Eq. (6) of Ref. [62]].

We find that the differencing parameter computed for the HP

series and for the SAP series is statistically significant (i.e.,
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FIG. 9. Values of the differencing parameter d estimated for each

subject (index 1,...,61) for the heart period [(a), (b)], systolic pressure

[(c), (d)], and respiration [(e), (f)] time series in the supine [SU;

(a), (c), (e)] and upright [UP; (b), (d), (f)] body positions. Each

panel reports also the 95th confidence intervals (solid lines) of the

distribution of d computed around the zero level (dashed line).

outside of the confidence intervals) in a lower number of

subjects in the UP condition [Figs. 9(b) and 9(d)] compared

with SU [Figs. 9(a) and 9(c)]; this seems not to be the case

for the RESP time series [Fig. 9(e) vs 9(f)]. These results are

confirmed by the application of a Student’s t-test for paired

data applied to the distributions of SX computed during SU

and during UP, which returns p values lower than the critical

0.05 level for HP and SAP (respectively, p = 0.0037 and

p = 0.0192), while the distributions were not significantly

different for RESP (p = 0.377). These changes correspond to

situations in which the eARFI method detects a statistically

significant decrease of the information storage at intermediate

and long timescales (Figs. 6 and 7). This suggests that when

the importance of long-range correlations decreases for a time

series (lower d), the slow dynamics of the series become more

complex (lower SX ), supporting the argument that long-range

correlations play a regularizing role for the process dynamics

[39].

V. CONCLUSIONS

In this study, we have introduced a computationally reli-

able approach for the practical calculation of the information

stored in a dynamic process when the process is observed

at specific timescales. Quantification across timescales of the

information storage and of its complementary complexity

measure, i.e., the conditional entropy of the process measuring

the new information produced by the process at each moment

in time, is performed in the present and many other studies

according to a specifically defined concept of “multiscale en-

tropy” [10,30]. Such concept envisages the multiscale analysis

of a dynamic process as a procedure based on (i) filtering

the process to remove the fast temporal scales and highlight

slower dynamics, and (ii) computing the complexity of the

filtered process to identify the presence of repetitive pat-

terns (low complexity) or unpredictable patterns (high com-

plexity). This procedure provides a multiscale representation

that is somewhat superficial in its theoretical and physical

meaning, as it does not lead to a well-defined entropy de-

composition whereby the information of the process results

from the information of the process components relevant to

different temporal scales. Nevertheless, such representation

turns out to be very useful for practical purposes. In fact,

in physiology and neuroscience as well as in other fields,

quantification of multiscale entropy and information storage

has rapidly become an extremely popular way to assess the

contributions of different regulatory mechanisms to the dy-

namics of the observed process, and to infer from them the

effects of physical, physiological, or pathological alterations

[24,27–29,31,33–35].

Thanks to its parametric formulation, the approach pro-

posed in this work inherits the computational reliability of

linear multiscale entropy [25], exploiting it for the assessment

of regularity and, most importantly, allowing the simultaneous

description of short-term dynamics and long-memory proper-

ties. Our simulations show that the state space formulation

implemented here, though being restricted to the descrip-

tion of linear dynamics, outperforms model-free multiscale

complexity analysis [26] and, thanks to the incorporation of

long-range correlations, leads to a more reliable evaluation of

the information storage at long timescales if compared with

linear multiscale entropy [25]. Since long-range correlations

are a fundamental aspect of multiscale dynamics, the present

work opens the ways to a reliable computation of the dynam-

ical complexity of several natural and man-made processes

where different mechanisms coexist, operating across multi-

ple temporal scales. Here, the application to cardiovascular

dynamics led to unprecedented physiological results, such as

the observation that, at temporal scales compatible with sym-

pathetic neural activity, postural stress blunts the capability

of heart rate and arterial pressure variability to actively store

information.

The main feature of the proposed framework for multiscale

analysis is that it allows, thanks to the parametric formulation,

one to compute exact values of information storage based on

the knowledge of the model parameters. On the other hand,

such a feature also relates to a main limitation of our approach,

i.e., the fact that our computations hold exactly only for linear

Gaussian processes. In fact, departures from linearity inducing
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non-Gaussian distributions may generate dynamics which can

be described only partially by an ARFI model, and this may

lead one to miss the multiscale properties to some extent.

Even though the suitability of parametric approaches and

ARFI models has been widely demonstrated in cardiovascular

variability analysis [49,62,63], future studies should compare

linear model-based and nonparametric model-free methods

for multiscale analysis in order to clarify the role played by

nonlinear dynamics under different experimental conditions

and even in different applicative fields. Moreover, since a

linear approach to multiscale analysis evidently has a relation

with the spectral representation of the observed process, future

studies should also define multiscale complexity measures

in the frequency domain, and compare them with the time

domain approach pursued by linear multiscale entropy and

information storage in order to understand similarities and

compatibilities.

As regards possible generalizations of the approach pro-

posed in this work, the framework based on ARFI models may

be extended to nonstationary settings by exploring nonstation-

ary ranges for the differencing parameter or implementing

time-varying formulations of AR or ARFI linear parametric

models [64,65]. Moreover, future developments should also

focus on extending the formulations proposed in this work to

the multiscale representation of vector ARFI models, in order

to attain a complete decomposition across timescales of the

other constitutive elements of information processing in dy-

namical networks, i.e., information transfer and information

modification [16,17]. Employed together, these generaliza-

tions would allow a combined multivariate, time-variant, and

multiscale assessment of the dynamics, opening the way for

a truly complete characterization of the properties of coupled

dynamical systems.
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