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Abstract

We present a multiscale integrationist interpretation of the boundaries of cognitive 

systems, using the Markov blanket formalism of the variational free energy princi-

ple. This interpretation is intended as a corrective for the philosophical debate over 

internalist and externalist interpretations of cognitive boundaries; we stake out a 

compromise position. We first survey key principles of new radical (extended, enac-

tive, embodied) views of cognition. We then describe an internalist interpretation 

premised on the Markov blanket formalism. Having reviewed these accounts, we 

develop our positive multiscale account. We argue that the statistical seclusion of 

internal from external states of the system—entailed by the existence of a Markov 

boundary—can coexist happily with the multiscale integration of the system 

through its dynamics. Our approach does not privilege any given boundary (whether 

it be that of the brain, body, or world), nor does it argue that all boundaries are 

equally prescient. We argue that the relevant boundaries of cognition depend on the 

level being characterised and the explanatory interests that guide investigation. We 

approach the issue of how and where to draw the boundaries of cognitive systems 

through a multiscale ontology of cognitive systems, which offers a multidisciplinary 

research heuristic for cognitive science.

Keywords Boundaries of cognition · Variational free energy principle · 

Externalism · Internalism · Enactive cognition · Embodied cognition · Markov 

blankets

What we think cognition is depends on what our theoretical commitments suggest 

can be explained. The question facing the field is not “Which approach is true?” 

but “Which approach gives us the best scientific leverage?”

(Hutchins 2010, pp. 706–707).
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1 Introduction

Over two decades ago, in 1991, Francisco Varela and colleagues articulated a 

general idea that now underlies what might be called radical views on cognition; 

namely, enactive, embodied, and extended approaches to cognition. According to 

proponents of the enactive approach, “cognition is … the enactment of a world 

and a mind on the basis of a history of the variety of actions that a being in the 

world performs” (Varela et al. 1991, p. 9). Since Varela and colleagues, philoso-

phers and scientists have addressed the role of embodied activity in cognition and 

the degree to which our cognitive capacities are realised partly by elements of 

our embedding environment. Philosophers especially have been considering what 

embodied, enactive, and extended accounts have to teach us about the boundaries 

of cognitive systems.

Here, we focus on making explicit a description of the boundaries of cognitive 

systems that we think follows from taking seriously the enactive, embodied, and 

extended nature of cognition. This is the idea that the boundaries of cognitive sys-

tems are nested and multiple—and that, with respect to its study, cognition has 

no fixed or essential boundaries (Clark 2017; Kirchhoff 2012, 2018c; Kirchhoff 

and Kiverstein 2019; Stotz 2010; Sutton 2010).

This idea is far from the accepted view in the philosophy of mind and cogni-

tion. Indeed, it is common for researchers from different fields of study—e.g., neu-

roscience and the philosophy of neuroscience (Hohwy 2014; Seth 2014), embod-

ied cognition (Gallagher 2006; Noë 2004), ecological psychology (Gibson 1979), 

and anthropology (Ingold 2001)—to infer that there is a uniquely defining boundary 

or unit of analysis from which best to understand and investigate cognition. In its 

more extreme forms, one might call this position essentialism about the boundaries 

of cognition. Views stressing that cognition has a unique and privileged boundary 

take many forms. Some argue that cognitive activity is essentially realised by states 

of the brain. Others argue that cognition is best conceived of as forms of embodied 

activity. Others still prefer to study cognition “in the wild,” in terms of the pattern-

ing of cultural practices and construction of cognitive niches.

The claim that the boundaries of cognition are nested and varied runs counter 

to any of these brain-based, embodied, and/or ecological, environmental assump-

tions about the boundaries of cognition, for it does not privilege the brain, the 

body, or the environment. Nor do we consider the brain, body and environment 

as equally important, as some in the enactivist tradition have proposed (Hutto and 

Myin 2013). This is the Equal Partner Principle of radical enactivism. It states 

that the contributions of the brain to cognition should not be prioritised over 

those of the body and the environment. Even if there is something correct about 

this claim—that one should not a priori privilege the brain in explanations of 

cognition—there is also something problematic about this principle; namely, that 

on some occasions it will turn out to be incorrect, as privileging the brain will be 

required to explain some phenomena under consideration.

Where to draw the scientifically relevant boundaries will depend both on the 

nature of the phenomenon being investigated and on our explanatory interests 
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(Clark 2017; Hutchins 1995). By standing on the shoulders of theorists that take 

seriously the idea that cognitive boundaries are not singular but nested and var-

ied, we reject all views assuming there to be unique and privileged boundaries for 

cognitive systems, and stake out a compromise position between (in our view) the 

overly coarse-grained distinction between internalism and externalism about the 

boundaries of cognition.

Our argument takes the form of a multiscale integrationist formulation of the 

boundaries of cognition based on the variational free energy principle (henceforth 

FEP). This principle casts cognition and action in terms of quantities that change 

to minimise free energy expected under action policies. As we discuss in the sec-

ond section of this paper, we use the FEP because free energy and its expectation 

can be broadly construed as metrics of cognitive activity that transcend specific spa-

tial and temporal scales (Friston et al. 2015; Kirchhoff 2015; Kirchhoff et al. 2018; 

Ramstead et al. 2018a, 2019). This allows us to cast the boundaries of cognition as 

assembled and maintained in an informational dynamics across multiple spatial and 

temporal scales. Crucially, we shall show that this multiscale application of the FEP 

implies both ontological and methodological pluralism.

We cast ontological pluralism in terms of a multiscale formal ontology of cog-

nitive systems. In the sense we are using the term, to produce a formal ontology 

means to use a mathematical formalism to answer the questions traditionally posed 

by metaphysics; i.e., what does it mean to be a thing that exists, what is existence, 

etc. Our formal ontology is effectively in the same game as statistical physics, in that 

it treats as a system sets of states that evince a robust enough form of conditional 

independence.

This ontology implies, that any given cognitive system has a plurality of bounda-

ries relevant to their scientific study; namely, the boundaries of its relevant subsys-

tems. Our claim is that which among these are the most relevant will depend on 

the phenomenon being studied and the explanatory interests of researchers. Some 

of these boundaries are internal to the systems—these are boundaries of relevant 

subsystems nested in the whole system or organism (e.g., cells, ensemble of cells, 

organs, etc.); other boundaries separate the organism from its external environment 

(e.g., the skin membrane); and others still extend outwards to include the organ-

ism and external, worldly states (e.g., constructed niches and patterned cultural 

practices).

The claims we are making about the boundaries of cognitive systems are ontolog-

ical. We are using a mathematical formalism to answer questions that are tradition-

ally those of the discipline of ontology, but crucially, we are not deciding any of the 

ontological questions in an a priori manner. The Markov blankets are a result of the 

system’s dynamics. In a sense, we are letting the biological systems carve out their 

own boundaries in applying this formalism. Hence, we are endorsing a dynamic and 

self-organising ontology of systemic boundaries.

Furthermore, this ontological pluralism implies methodological pluralism under 

the FEP. The FEP can be used as a methodological heuristic for interdisciplinary 

research, which in turn allows scientists to privilege various boundaries of a nested 

cognitive system, depending on their specific explanatory interests. The FEP is not a 

theory of everything; it does not, on its own, provide an explanation of the systemic 
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processes that constitute living systems (Ramstead et al. 2018b). Rather, it is a prin-

ciple that coordinates and constrains the kind of explanations deployed when one 

is addressing how expected free energy minimisation occurs across many different 

spatial and temporal scales; which call for complementary explanations in terms 

of, e.g., neuroscience (Friston 2010), embodied cognition (Allen and Friston 2018), 

ecological psychology (Bruineberg and Rietveld 2014; Ramstead et al. 2019), and 

niche construction (Constant et al. 2018a; Hesp et al. 2019).1

We approach this multiscale, integrationist view of the boundaries of cognition 

by focusing on the Markov blanket formalism, which underwrites the FEP (see 

Fig. 1 for a detailed technical explanation). This formalism allows us to individu-

ate a system by demarcating its boundaries in a statistical sense. Intuitively, for a 

thing to exist, it must evince some form of conditional independence from the sys-

tem in which it is embedded. Markov blankets operationalise this intuition. In more 

technical terms, a Markov blanket induces a statistical partitioning between internal 

(systemic) and external (environmental) states, where environmental states can be 

associated with neuronal, bodily, or worldly states depending on the relevant par-

titioning of the system in question. The Markov blanket itself comprises a bipar-

tition into active and sensory states, which mediate exchanges between systemic 

and environmental (neuronal, bodily, worldly) states. Importantly, the presence of a 

Markov blanket shields or insulates internal states from the direct influence of exter-

nal states. This follows from the partitioning rule of Markov blankets, according 

to which internal states can influence external states via active states, and external 

states can influence internal states via sensory states. Hence, the Markov blanket 

formalism shows that internal and external states are ‘hidden’ (i.e., conditionally 

independent) from one another in virtue of the existence of a Markov blanket, thus 

providing the statistical means by which to delineate the boundaries of a biological 

and/or cognitive system.

We accept that the Markov blanket formalism can be used to delineate the 

boundaries of cognitive systems (cf. Hohwy 2016; Kirchhoff and Kiverstein 2019). 

We shall argue that cognition involves dynamics (i.e., the Bayesian mechanics of 

active inference) that ensure adaptiveness, which straddle across and integrate such 

boundaries. We call this position multiscale integration. We argue that the FEP can 

accommodate a multiscale integrationist account of the boundaries of cognitive sys-

tems. We therefore argue that the inferential seclusion of internal states and external 

states, given by the Markov blanket formalism, can coexist with existential integra-

tion through active inference; justifying the view that the boundaries of cognition 

are nested and multiple.

The structure of this paper is as follows. In the next (second) section, we review 

the FEP and active inference. In the third section, we survey key principles of new 

radical—extended, enactive, embodied—views of cognition, with a focus on enac-

tive views in particular. We then describe a brain-based argument for the boundary 

of cognitive systems premised on the Markov blanket formalism—and the FEP—

that pushes back again these radical views of cognition. In the fourth section, we 

1 We do not intend this list of relevant disciplines to be exhaustive.
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develop our positive proposal for a multiscale account of the FEP. We argue that the 

encapsulation or statistical seclusion entailed by the Markov boundary is reiterated 

at every hierarchical description of living systems; from the single cell, to organs, to 

individuals, and all the way out to coupled organism-environment systems—all of 

Fig. 1  The Markov blanket and active inference. A Markov blanket is a set of states that enshrouds or 

statistically isolates internal states from external or hidden states. This figure depicts the partition of the 

states into internal ( � ) and external states ( � ). In the parlance of graph theory, the Markov blanket is a 

set of nodes that shields the internal states (or nodes) from the influence of external states; in the sense 

that internal states can only be affected by external states indirectly, via the blanket states (Friston et al. 

2017b). Internal and external states are therefore separated, in a statistical sense, by the Markov blanket 

( b ), which itself comprises sensory ( s ) and active states ( a)—defined as blanket states that are and are 

not influenced by external states respectively. The top panel schematises the relations of reciprocal cau-

sation that couple the organism to its ecological niche, and back again. Internal states of the organism 

change as a function of its current state ( � ) and the state of its niche ( � ), which is expressed in terms of 

a flow f
�
(�, �) with random fluctuations. Reciprocally, states of the niche change over time as a function 

of the current state of the environment and the organism, again, specified in terms of a flow f
�
(�,�) with 

random fluctuations. The self-organisation of internal states in this scheme corresponds to perception. 

Active states couple internal states back to states of the niche, and so correspond to the actions of an 

organism. Given the anti-symmetric conditional dependencies entailed by the presence of the Markov 

blanket, the dynamics of the niche, too, can be expressed as a gradient flow of a free energy functional 

of external and blanket states. The lower panel depicts the dependencies as they would apply to a unicel-

lular organism. In this panel, the internal states are associated with the intracellular states of a cell, the 

sensory states are associated with surface states of the cell membrane, and the active states are associated 

with the actin filaments of the cytoskeleton. Adapted from Constant et al. (2018b)
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which can be cast as having their own Markov blanket. We also argue that the organ-

ism and niche are coupled to one another through active inference.

In this sense, our argument owes much to (Clark 2017). Clark sets out the idea of 

organisms having temporally extended Markov blankets, the boundaries of which 

reach all the way down to DNA and all the way up to individual organisms and their 

respective niches. Our focus, however, is different from Clark’s, in two ways. First, 

we make explicit that this view of the Markov blanketed cognitive system implies 

two forms of pluralism, ontological and methodological; and second, we emphasize 

that active inference entails adaptive phenotypes, cultural practices, and niche con-

struction; the joint phenotype of the organism (including states of its adapted niche) 

encodes information that, at least in some cases, is as important as that encoded 

by states of the brain to explain adaptive behaviour. We conclude by considering 

future research directions for approaching systemic organisation through a multi-

scale ontology of cognitive systems and a multidisciplinary research heuristic for 

cognitive science.

2  A variational principle for living systems

2.1  The variational free energy formulation

Organisms find themselves, more often than not, in a bounded set of characteristic 

states. We can cast this set of states, in which the organism is most likely to find 

itself, as its overall phenotypical states and traits; namely, the repertoire of meas-

urable functional and physiological states, as well as morphological traits, behav-

ioural patterns, and the adapted ecological niches that characterizes it as ‘the kind 

of organism that it is’ (Kirchhoff et al. 2018; Ramstead et al. 2018a). From this sta-

tistical perspective, the question of how organisms remain alive can be recast as the 

question of how they maintain themselves in phenotypic states.

Remarkably, organisms resist entropic erosion by simply limiting the dispersion 

of states that they occupy during their lifetime. The variational free energy princi-

ple (FEP) provides a formal description of this anti-entropic feat. The FEP casts the 

functioning of biological systems of any kind, including their different psychologi-

cal profiles, in terms of a single imperative: to minimise surprise (aka surprisal or 

self-information). The concept of surprise does not refer to the psychological phe-

nomenon of being surprised. It is an information-theoretic notion that measures how 

uncharacteristic or unexpected a particular sensory state is, where sensory states can 

be caused by external worldly (and bodily) states.

A key premise of the FEP is that cognitive systems cannot estimate surprise 

directly and therefore must work to reduce an upper bound on surprise, which they 

can track; namely, variational free energy. In other words, surprise cannot be evalu-

ated directly because this would entail to name all possible ways in which some 

sensations could have been caused. However, variational free energy can be evalu-

ated given a generative model of how sensations were caused. Because variational 

free energy is (by construction) always greater than surprise, minimising free energy 

implicitly minimises surprise (see Fig. 2). One can think of variational free energy 
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as a guess or approximation to surprise, whose accuracy can be finessed through 

perception; namely, the dynamics of a system’s internal states. This perceptually 

crafted approximation to surprise can now be minimised by action; namely, the 

dynamics of a system’s active states.

In a nutshell, the FEP tells us that cognitive systems can estimate and thereby 

avoid surprise, on average and over time, by working to suppress a variational bound 

on surprise. Crucially, this free energy bound is exactly the same quantity used in 

Fig. 2  The free energy principle and self-evidencing. Upper panel: depiction of the quantities that define 

an agent engaging in active inference and its coupling to its ecological niche or environment. These are 

the internal states of the agent ( � ), sensory input s = g(�, a) + � , and action a . Action and sensory input 

describe exchanges between the agent and its world; in particular, action changes how the organism sam-

ples its environment. The environment is described by equations of motion, �̇ = f (�, a) + � , that specify 

the (stochastic) dynamics of (hidden) states of the world � . Here, � denote random fluctuations. The free 

energy ( F ) is a function of sensory input and a probabilistic belief q(� ∶ �) that is encoded by internal 

states. Changes in active states and internal states both minimise free-energy and, implicitly, self-infor-

mation. Lower panel: depiction of alternative expressions for the variational free-energy, which clarify 

what its minimisation entails. With regards to action, free-energy can only be minimised by increasing 

the accuracy of sensory data (i.e., the selective sampling of predicted data). Conversely, the optimisa-

tion of internal states through perception makes the probability distribution encoded by internal states 

an approximate conditional density on the causes of sensory input (by minimising a Kullback–Leibler 

divergence D between the approximate and true posterior density). This optimisation tightens the free-

energy bound on self-information and enables the creature to avoid surprising sensations through adap-

tive action (because the divergence can never be less than zero). With regards to the selection of actions 

that minimise the expected free energy, the expected divergence becomes (negative) epistemic value or 

salience, and the expected surprise becomes (negative) extrinsic value; which is the expected likelihood 

that prior preferences are indeed realised as a result of the selected action. See (Friston et al. 2017) for a 

full description of the free energy expected following an action. Adapted from Ramstead et al. (2018a)
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Bayesian statistics to optimise (generative) models of data. In this setting, negative 

free energy is known as log model evidence or marginal likelihood. This leads to 

a complementary perspective on surprise-minimising dynamics that become self-

evidencing; in the sense of optimising Bayesian model evidence—and, by implica-

tion, performing some sort of (perceptual) inference. In short, technically speaking, 

minimising self-information underwrites self-organisation through self-evidencing 

(Hohwy 2016); thereby evincing a Bayesian mechanics for any system that exists in 

the sense of possessing a Markov blanket.

Standard cognitive functions like perception (Hohwy et al. 2008), attention (Feld-

man and Friston 2010), and learning (Friston 2005; Friston et al. 2016a) all seem 

to conform to this single principle. The machinery used to estimate and avoid sur-

prise also recruits a series of non-standard functions like emotions (Van de Cruys 

and Wagemans 2011), action (Friston et al. 2011), culture and its production (Fabry 

2018; Ramstead et al. 2016), as well as evolutionary processes like niche construc-

tion (Constant et  al. 2018a, b) and natural selection (Campbell 2016; Friston and 

Stephan 2007), thereby forcing us to rethink the boundaries of cognition.

Statistically, one can define variational free energy as surprise plus a measure 

of the distance between a system’s (posterior Bayesian) beliefs2 about the external 

causes of its sensory input, encoded by its internal states (e.g., neural architecture), 

and the true posterior probability distribution, conditioned on a generative model 

of how that input was produced (Friston 2010). Thus, the variational free energy is 

defined with reference to a (generative) model of what caused its sensations (includ-

ing, crucially, its own actions). Variational free energy can thus be cast as a measure 

of the kinds of things that the cognitive systems finds surprising or, more simply, 

an estimation of surprise. In summary, variational free energy is an upper bound on 

surprise, in the sense that surprise can never be greater than free energy given the 

way variational free energy is constructed—for details, see Friston (2012). Thus, by 

acting to minimise free energy, organisms implicitly minimise surprise.

Crucially, by acting to reduce variational free energy, biological systems come 

to instantiate a probabilistic (generative) model of their environment, including the 

states of their body (Friston et al. 2017b). This generative model can be viewed as 

a ‘map’ of the relational or causal structure among the various quantities (e.g., sen-

sory observations and Bayesian beliefs) that are optimized through action, percep-

tion, and learning, as the organism navigates, and maintains itself in its environ-

ment. Hence, it is said that the generative model is ‘entailed’ by the existence of 

an organism (Friston 2012; Ramstead et al. 2018a), in the sense that it changes as a 

function of the organism’s normal bioregulatory activity. Heuristically, this means 

that through adaptive action, organisms come to embody a guess about the causes 

of their sensations (i.e., a generative model) by optimizing its beliefs about those 

causes.

2 Note that we will use the term ‘belief’ throughout to mean ‘probabilistic Bayesian belief’, which is 

a probability distribution encoded by states of the organism. A belief in this sense need not have any 

content; it is not a belief in the traditional philosophical sense, but instead should be read as synonymous 

with ‘probability distribution’.
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An intuitive example of free energy bounding dynamics is the maintenance of 

core body temperature. Human beings tend to maintain their body temperature 

around 36.5 °C. Human bodies expect to be in typical (phenotypical or character-

istic) states; surprise is large if the probability of the sensory state is low. So, any 

deviation from the mean, 36.5  °C, implies that the organism is in a sensory state 

with (relatively) high surprise. Conversely, surprise is low when the probability of 

the sensory observation is high. Importantly, deviations from the expected (i.e., the 

mean) state induce active inference.

Active inference refers to the joint optimisation of internal states (e.g., percep-

tion) and the selection of action policies (i.e., sequences of active states that mini-

mize expected free energy), which function hand-in-hand to reduce free energy 

(resp. surprise). The system of nested subsystems reacts as a whole, at various 

scales, to discrepancies between the predictions under the generative model and the 

actual state of the world. Active inference can take many forms in this setting. Reac-

tions to departures from expected temperature include, at one scale, individual reac-

tions from temperature-sensitive sensory cells in the skin; the raising of individual 

hairs by skin cells; the registering of a temperature difference by the networks of the 

nervous system, and the body’s subsequent engaging in shivering behaviour. More 

individual, psychological reactions to changes in temperature might include enjoy-

ing this change (or not); culturally-mediated behavioural reactions to differences in 

temperature might come into play as well, relying on elements of the cultural niche. 

If it is too hot, we might take off some clothes; but if one lives in the desert, this 

exposes one’s bare skin to the elements; and to fend off the heat, we might instead 

put on robes, as Bedouins do in the desert.

2.2  Generative models and action policies

In the variational approach, the form taken by the generative models is that of graph-

ical models (Friston et al. 2017b). The model itself carries correlational information 

about causal factors that lead to the generation of sensory states. So, in a nutshell, 

the model is intrinsically probabilistic and correlational, not causal; in the sense that 

the generative model, by necessity, captures useful probabilistic information about 

the agent acting in its niche.

Technically, the generative model is just a probability distribution over the joint 

occurrence of sensory states (of the Markov blanket) and the external states generat-

ing sensory states. It is a normative model, in the sense that it specifies the condi-

tions that allow the continued existence of the type of creature being considered. 

This can be variously formulated in terms of the likelihood of some sensory states, 

given external states and prior beliefs over external states. It manifests in active 

inference via inferential dynamics (i.e., action and perception) that flow on free 

energy gradients, where the free energy is defined in terms of a generative model.

However, the variational story is one about how the respective statistical struc-

tures of the generative model and generative process (the actual causal structure 

that generated observations) become attuned to one another. So, when everything is 

going well (i.e., when the organism engages in adaptive behaviour and thrives in its 
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niche), the correlational structure carried by the generative model—ideally—maps 

onto the causal structure of the generative process in the environment. So, while the 

model is necessarily only ever probabilistic, it remains that active inference fits or 

tunes the generative model to the generative process; and by that fact, the generative 

model gains some causal purchase: indeed, the generative model is often described 

as a probabilistic description of how sensory consequences are generated from their 

causes. Inference then corresponds to the inversion of this mapping—to infer causes 

from consequences. This is inference is, by construction, implicit in the minimisa-

tion of free energy or the maximisation of model evidence.

One novel way to think about the generative model is in terms of ‘enactment’. 

On this view, minimising free energy essentially means reducing the disattunement 

between the expectations of an organism and the generative model under which 

actions are selected (Bruineberg and Rietveld 2014). Active inference is the process 

of creating and maintaining self-organization through action. Under the FEP, active 

sampling of sensory states is a feature of the entire dynamics themselves, which 

entail a generative model. This speaks to the idea that the entire process of attuning 

the system to its niche involves perceptual inference, but especially the selection and 

expression of relevant action policies—policies that select the actions most likely 

to elude surprise. Minimising expected surprise does not mean avoiding sensations, 

on the contrary, it means resolving uncertainty by seeking out salient, informative 

sensations. This follows simply from the fact that expected surprise (i.e., self-infor-

mation) corresponds to uncertainty (i.e., entropy) (Friston et al. 2016b; Friston et al. 

2018)

This implies that the function of the generative model is to guide action in a con-

text-sensitive fashion; in turn, this speaks to a shift away from viewing the brain 

in terms of Bayesian predictive processing to how the brain enables “feedback 

loops that maintain attunement to the environment and support adaptive behavior” 

(Anderson 2017, p. 8). This dynamic emphasis on the realisation of biological self-

organisation through adaptive action clearly aligns the FEP with enactive and prag-

matist approaches to cognition (Bruineberg et al. 2016; Engel et al. 2016; Kirchhoff 

and Froese 2017; Ramstead et al. 2019)—a point we will explore in greater detail in 

Sect. 4.

2.3  Markov blankets and the boundaries of cognitive systems

Under the FEP, the statistical conception of life leads to a formal, statistical ontology 

of living systems (Friston 2013; Kirchhoff et al. 2018; Ramstead et al. 2018a). This 

ontology leverages a statistical formalism; namely, the Markov blanket formalism, 

which provides a principled account of what constitutes a system, and what does 

not. A Markov blanket is a statistical partitioning of a system into internal states 

and external (i.e., non-constitutive) states; where the blanket itself can be partitioned 

further into sensory and active states (Clark 2017; Friston 2013; Pearl 1988). This 

implies that internal and external states are conditionally independent from one 

another, given that internal and external states can only influence each other via sen-

sory and active states.
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A Markov blanket constitutes the evidential or existential boundary that sets 

something apart from that which it is not. A cell therefore has a Markov blanket—its 

plasmalemma. As do multicellular organisms like Homo Sapiens. Take the cell as an 

example. It arises out of a molecular soup by assembling its own boundaries, thus 

acquiring an identity (Friston 2013; Varela et al. 1991). For a cell to remain alive, 

its internal states must constantly organise and prepare its boundaries—lest it decay, 

and dissipate into its surroundings (Di Paolo 2009).

This, in turn, implies the maintenance of a statistical boundary that separates 

internal from external states, and vice versa (Friston 2013). Under the FEP, this sta-

tistical boundary is an achievement, rather than a given; it is generated and main-

tained through active inference (i.e., adaptive action). This again aligns the FEP with 

enactive and pragmatist approaches to cognition (Engel et  al. 2016). Thus, under 

the FEP, to exist ‘just is’ maintaining the states that comprises one’s Markov blan-

ket through active inference. In other words, without a Markov blanket and the pro-

cesses that assemble it, the cell would cease to exist, as there would be no way for 

the cell to restrict itself to a characteristic set of states. In other words, there would 

be no way of establishing the conditional independence between internal states and 

the surrounding environment—and the cell would simply dissolve, dissipate or 

decay into its universe (Hohwy 2016).

The nice thing about Markov blankets is that they allow us to speak in a meaning-

ful (and mathematically tractable) way about conditional independencies between 

internal and external states. Consider again the cell. The intracellular (i.e., internal) 

states of a cell have an existence that is distinct from their external environment. 

This shows that intracellular and extracellular states are conditionally independ-

ent. It is the conditional independence (in a statistical sense) between internal and 

external states that are captured—or indeed defined—by appeal to the concept of a 

Markov blanket (see Fig. 1).

2.4  A formal ontology for the boundaries of cognitive systems

This reading of active inference as self-evidencing makes the boundary of cognitive 

systems an existential notion, tied up with the epistemic process of generating evi-

dence for your own existence. In a nutshell, then, to enact a generative model is to 

provide evidence (i.e., to generate evidence through adaptive action) for a model of 

one’s existence.

More specifically, the claim we are making about the status of the boundary of 

cognitive systems is that this boundary is both ontological and epistemological. The 

boundary of a given cognitive system is given by the Markov blanket of that system, 

which carves out or individuates a system by separating systemic states from non-

systemic ones. The Markov blanket is an ontological boundary, in the sense that 

this boundary individuates the system as the kind of system that it is. It sets apart 

the states that count as systemic states from those that count as part of its surround-

ings. Markov blankets provide the most minimalistic answer to this question, based 

on the notion of conditional independence. If a system exists, there must a sense in 

which the non-systemic parts can change without the system of interest changing 
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in concert. Markov blankets formalise this requirement. The Markov blanket is a 

result of the system’s dynamics (i.e., the system’s patterns of adaptive action), which 

means that it is the system’s dynamics itself that carves out the relevant boundaries. 

In other words, the boundary itself is orchestrated and maintained through active 

inference, it is an achievement of the cognitive system that is orchestrated and main-

tained through adaptive action.

We claim that the Markov blanket is an epistemological boundary as well. This is 

because the boundary is realised through active inference, which is a process of self-

evidencing. Self-evidencing means that to exist as a system is to produce evidence of 

your existence. More explicitly, the variational framework suggests that the dynam-

ics of living systems entails a generative model of one’s existence. The variational 

framework tells us how the generative model that organisms embody and enact tunes 

itself to (approximates the statistical structure of) the generative process, or actual 

causal process in the environment that causes the sensory states of an organism. To 

exist as a living being and to engage in adaptive action (when all goes well) just is to 

realise the relations between quantities that are modelled in the generative model. In 

other words, under the FEP, to exist at all means to produce evidence for a model of 

oneself (or more exactly, since the generative model is a control system, a model of 

oneself acting in the world).3 Existence in this sense is fundamentally tied up with 

the creation and maintenance of an informational boundary, i.e. the Markov blanket.

The Markov blanket formalism, then, tells us what counts as a system and what 

does not. It provides us with a principled means to determine what it is to be a self-

evidencing system under the FEP. In this sense, the term existential boundary might 

be most appropriate: the evidential boundary is also an existential boundary.

In summary, when applied to the biological realm, the statistical formalism of the 

Markov blanket provides a way to define the boundaries of a system. To so enshroud 

the internal (constitutive or insular) states of a system behind a Markov blanket 

enables the individuation of a well-defined partition of the system into internal and 

external states, mediated by the (active and sensory) states that comprise the Markov 

blanket itself, and over which we can define systemic dynamics.

3  Cognitive boundaries: externalism and internalism

In this section we have two agendas. The first is to address externalist or radical 

views of cognition; namely, embodied, enactive, and extended cognition. We will 

pay special attention to enactive formulations of life and mind, highlighting that on 

this account, the basis of life and mind is a nested set of properties: autopoiesis, 

operational closure, autonomy, and adaptivity. The nice thing about this formulation 

3 A very similar conflation of epistemological and ontological notions of a ‘model’ was apparent at the 

inception of cybernetics in the form of the Good Regulator Theorem (every system that regulates its 

environment must be a good model of that environment) (Conant and Ashby 1970). The free energy prin-

ciple formalises this notion by equipping existential dynamics with an epistemological corollary cast in 

terms of inference.
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of living and cognitive systems is that it allows us both to address the organisational 

principles of life, as per the enactive framework, and speak to how this framework 

underpins the ideas of cognition as realised across brain, body, and world; while, at 

the same time, giving a special place to embodied activity in the assembly of cogni-

tive activities and processes. Our second agenda is to describe how this emphasis on 

(especially) adaptive operational closure could be turned into an argument against 

the enactive view by appeal to the active inference scheme and the Markov blanket 

formalism.

3.1  Externalism: radical views of cognition

Embodied approaches to cognition hold that the body is crucial for cognition (Gal-

lagher 2006). Extended views suggest that not only are bodies important, the local 

environment of individual cognitive systems can partly realise cognitive processes 

(Clark 2008; Clark and Chalmers 1998). Enactive views play up the role of action in 

the functioning of cognition, especially on certain accounts of enactivism tethering 

mind to the biology of living systems (Chemero 2009; Gallagher 2017; Thompson 

2010). In this subsection we formulate the enactive view associated with the work 

of Varela and colleagues; so-called autopoietic enactivism (Di Paolo 2009; Di Paolo 

and Thompson 2014; Thompson 2010; Varela et al. 1991). Our focus is selective; 

the enactive framework not only exemplifies current radical views on cognition, it 

also shares a number of important overlaps with our multiscale integrationist view, 

derived from the FEP.

A central aspect of living and cognitive systems is their individuation. Individua-

tion is the process that makes something distinct from something else, and is in this 

sense consistent with our use of the Markov blanket formalism as a means by which 

to delineate systemic boundaries separating systemic from non-systemic states, 

and vice versa. Crucially, on the enactive account, this process of individuation 

implies that systems that can self-organise their own process of individuation are 

(a) autopoietic, (b) operationally closed, and (c) autonomous. Autopoiesis denotes 

the property of structural self-generation; namely, the capacities to (re-)generate and 

maintain systemic constituents, despite compositional and functional change. An 

autopoietic system can be cast as an operationally closed system. Operational clo-

sure refers to processes of autopoietic self-assembly, on the one hand, and boundary 

conservation conditioned on interdependent processes, on the other. This is entirely 

consistent with the kind of statistical independence between states induced by the 

Markov blanket formalism, as this implies that the very existence of a living system 

is premised on recurrent processes that work to conserve the integrity of systemic 

boundaries (see Fig. 3).

In an operationally closed network each process is affected by another process 

such that the operations of processes comprising the network are dependent on each 

other. As Di Paolo and Thompson put it, in relation to this figure: “If we look at 

any process in black, we observe that it has some enabling arrows arriving at it that 

originate in other processes in black, and moreover, that it has some enabling arrows 

coming out of it that end up also in other processes in black. When this condition is 
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met, the black processes form a network of enabling relations; this network property 

is what we mean by operational closure.” (Di Paolo and Thompson 2014, p. 71). To 

make this a little more concrete, consider Fig. 4.

This figure describes a network of four reactions, r1, r2, r3, and r4, each of which 

is enabled—in the sense of being accelerated to sufficiently fast rates—by the 

Fig. 3  An illustration of operational closure. Here the black circles form part of an operationally closed 

network of self-organising processes. Each black circle has at least one arrow arriving at it and at least 

one arrow coming from it—respectively originating and ending in another black circle. Dashed arrows 

refer to enabling relations between processes in the operationally closed network and processes that do 

not belong to it. Adapted from Di Paolo and Thompson (2014, p. 70)

Fig. 4  Schematic illustration of autocatalytic closure. A network of chemical reactions is organized such 

that each reaction is enabled or catalyzed by products of other reactions in the network. From Di Paolo 

et al. (2017, p. 113)
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molecules of type, a, b, and c, which are themselves the products of the same reac-

tions (Di Paolo et al. 2017). This is an example of an operationally closed network, 

given that—as a whole—the set is able to enable its own production.

Given what we have said in Sect. 2, it is fairly straightforward to establish that the 

Markov blanket formalism provides a statistical formulation of operational closure 

(Kirchhoff et al. 2018). In the same way that active and sensory states of Markov 

blankets couple internal and external states—via an informational dynamics—oper-

ational closure does not imply that the systemic (i.e., operationally enclosed) states 

are cut-off from external states. To see this, note that autonomy implies that an oper-

ationally closed network of self-enabling processes can modulate its relation to the 

embedding environment. If this were not so, the network would stop or run down. 

The nice thing about the emphasis on autonomy is that it speaks directly to adaptiv-

ity, the basic capacity to act purposefully and probabilistically, as the basis of the 

self-organisation of life and cognition (Di Paolo 2005). In the context of the FEP, 

this is called adaptive active inference (Kirchhoff 2018a, b).

This enactive view of living and cognitive systems exemplifies a radical view of 

cognition; i.e., a view that breaks faith with the standard assumptions about internal-

ism. First, autopoietic enactivism is a denial of any kind of internalism, given that it 

is entirely possible for operationally closed dynamics to be realised in an extensive 

network of processes breaking across neural and non-neural variables (De Jaegher 

and Di Paolo 2007). Second, autopoietic enactivism denies what is a usual starting 

point of so-called first-wave or functionalist arguments for the extended mind the-

sis. First-wave arguments starts by taking the individual as the default cogniser and 

only then asks whether some worldly elements can play functionally similar roles to 

mental states or cognitive processes realised internally (Clark and Chalmers 1998). 

So these arguments for the extended mind assume a kind of internalism in their for-

mulation (for similar critiques, see (Kirchhoff 2012; Menary 2010). Finally, autopoi-

etic enactivism holds the view that cognition is a relational phenomenon between an 

organism and its environment (Thompson and Stapleton 2009).

3.2  Internalism: pushing back

Despite its influence in the sciences of life and mind, the enactive approach can be 

put under pressure. Indeed, a specific formulation of the FEP, turning on the Markov 

blanket formalism, arguably pushed back against any of these radical views of cog-

nition (Hohwy 2016, 2017). Our aim in this subsection is to (briefly) rehearse some 

of the main steps of this internalist argument. We develop a counterargument to the 

internalist position in the next section, which gives an information-theoretic justifi-

cation for the view that the boundaries of cognition are nested and multiple.

In a nutshell, the internalist argument states that the relevant boundary for cogni-

tive systems and cognition is essentially the boundary of the brain or skull. Internal-

ists take the inferential seclusion of internal states in active inference—that internal 

(systemic) states are hidden behind the veil of the statistical Markov blanket—to 

imply that the boundaries of cognition stop at the boundaries of the brain given the 

presence of a brain-bound Markov blanket (Hohwy 2016; Seth 2014).
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A crucial aspect of this argument is the assumption that the brain itself is a gen-

erative model of its environment, one that “garners evidence for itself by explaining 

away sensory input” (Hohwy 2017, p. 1) by a process of variational Bayesian infer-

ence.4 This means that through active inference, a cognitive system minimises its 

variational free energy, thereby securing the evidence for its generative model, and 

inferring the hidden causes of its observations (sensory data). Cognitive processes 

(e.g., attention, learning, decision, perception, and so on) are processes that work to 

optimise internal states in accordance with the FEP—and implicit self-evidencing 

(Hohwy 2016).

The next, crucial step is the statistical partitioning of a system into internal and 

external states through the Markov blanket formalism. This captures the notion that 

internal (neural) and external (environmental) states are conditionally independent; 

capable of influencing one another only via sensory and active states. Internalists 

interpret the Markov blanket as enforcing an evidentiary boundary severing, in an 

epistemic and causal sense, the brain from its body and environment. Thus, Hohwy 

concludes: the “mind begins where sensory input is delivered through exteroceptive, 

proprioceptive and interoceptive receptors and ends where proprioceptive predic-

tions are delivered, mainly in the spinal cord.” (Hohwy 2016, p. 276).

The issue of internalism comes up when these two notions, the Markov blanket 

and active inference, are combined in the free energy formulation. Proponents of 

internalist readings of the FEP argue that the presence of a Markov blanket implies 

that systems that minimise their free energy, on average and over time, ipso facto, 

are epistemically and causally secluded from their environment. The upshot of such 

a conception is that the boundaries of cognition stop at the skull. Mind is a skull-

bound phenomenon. The rationale for this way of thinking is that the spontane-

ous formation of Markov ensembles realizes a form of Bayesian inference (active 

inference). Active inference carves out coherent neural ensembles, which are neu-

ral ensembles (Hebbian assemblies) ‘wrapped’ in a Markov blanket (Hohwy 2016; 

Yufik and Friston 2016). This means that cognition implies the transient assembly of 

such brain-bound Markovian ensembles.

This internalist rendition of internal states, hidden behind of curtains of the 

Markov blanket, leads to a neo-Kantian or Helmholtzian account of cognition that 

emphasises its indirect nature (Anderson 2017; Bruineberg et al. 2016). The Markov 

ensembles are said to infer external states, and this inference is taken to be a con-

tent-involving affair. This means that inferences are over content-involving states (in 

the sense that internal states that are about things in the world), which are cast as 

hypotheses and beliefs.5 The idea is that organisms leverage their generative model 

to infer the most likely hidden causes of its sensory states. This is a Helmholtzian 

5 This ‘aboutness’ is a key aspect of the FEP and follows from the fact that internal states encode or 

parameterise a probability distribution over external states. In other words, internal states are the suffi-

cient statistics of Bayesian beliefs (about external states). See (Ramstead et al. 2018a), Box 4.

4 Also known as approximate Bayesian inference. Variational or approximate Bayesian inference neces-

sarily entails the minimisation of variational free energy, under a generative model and an assumed form 

for posterior beliefs.
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interpretation of the FEP (Bruineberg et al. 2016). On this reading, active inference 

is understood on an analogy with scientific inference, as literal hypothesis-testing.

This kind of neo-Kantian schism between mind and world is taken to imply that 

the contact of a cognitive system with its environment—perceptually or behaviour-

ally—is mediated by its internal (neural) states, often interpreted as representations 

encoded in hierarchical generative models that are realised in the brain’s cortical 

architecture (Gładziejewski 2016; Gładziejewski and Miłkowski 2017; Williams 

2018). We shall not dwell on the question whether these internal states are represen-

tations—for contrasting interpretations, see (Kirchhoff and Robertson 2018) versus 

(Kiefer and Hohwy 2018). However, in the next section, we consider whether inter-

nalist interpretations of Markov blankets and generative models are appropriate.

4  Multiscale integration: nested and multiple boundaries

In this section, we argue that the internalist interpretation of the boundaries of cog-

nition rests on a problematic interpretation of what generative models are, and the 

kind of properties they have under the FEP. Crucially, we agree with internalism that 

any relevant mind–world relation is mediated by processes that can be cast as both 

assembling and finessing the generative model. But this is just to say that we can 

describe how internal and external states are statistically coupled to one another via 

intricate and complex sensorimotor dynamics (Gallagher and Allen 2016; Kirchhoff 

and Froese 2017).

4.1  Generative models: what they are, and how they are used to study cognition

First, we take issue with the claim that, under the FEP, the generative model is 

something internal to the organism (i.e., that the generative model comprises neu-

ronal vehicles or any other vehicles). Rather, the generative model is a mathemati-

cal construct that explains how the quantities embodied by the system’s architecture 

change to transcribe (i.e., update beliefs about) the causes of the system’s sensory 

observation. What should be at stake in the debate between internalists and external-

ists is the status of the ‘guess’ that the organism embodies; namely, the posterior 

beliefs6 encoded by internal states, and whether this guess does, or does not consti-

tute the limit of ‘cognition’, understood as the avoidance of surprisal, or informa-

tional homeostasis.

The posterior belief (i.e., recognition density) represents the system’s ‘best 

guess’ regarding the causes of its sensory states, and is embodied or encoded by 

the states of the organism; technically, internal states of the Markov blanket (Fris-

ton 2012). Under the FEP, the system’s posterior belief is refined or ‘tuned’ under 

6 By definition, the posterior belief encoded by internal states approximates the true posterior belief 

when free energy is minimised. It is often referred to as a recognition density or approximate posterior 

belief.
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the generative model, through a process of variational (approximate Bayesian) infer-

ence, and becomes a tight bound on the true posterior belief it aspires to (Friston 

et al. 2016b).

The generative model is a statistical construct that transcribes the expected sen-

sory causal regularities in the process generating sensory states. The generative 

model is used to model the set of viable phenotypical statistical relations (prefer-

ences, and action policies) that must be brought forth by the organism in active 

inference: in short, a model of a viable state of being for the organism. Through 

active inference, internal states are tuned and this tuning changes its posterior belief, 

and hence the organism’s ‘best guess’ about what caused its sensations (that usually 

include its own actions). In other words, a generative model can be used to under-

stand how organisms are able to track (infer) their own behaviour.

The FEP is based on the idea that the functions and changes in the structure of 

living systems conform to approximate Bayesian inference. This assumption rests 

on the claim according to which living systems avoid surprise (cf. Sect. 2.); approxi-

mate Bayesian inference under the FEP, then, is just one sensible strategy to under-

stand how living systems avoid surprise and the dispersion of their sensory states. 

It rests on what we described earlier as the generative model (the control system), 

the recognition density (the living system), and the generative process (the exter-

nal world, which includes the organism’s actions). Simply put, the relation between 

these is that the recognition density changes as a function of the control system; 

and because the control system constitutes expectations about the world conditioned 

upon the preferences of the living system, the living system turns out to change so as 

to become (statistically) consistent with the preferred world; that is, according to its 

preferences and expectations about the world.

Under the FEP, ‘cognition’ is what the recognition density, or living system does 

(i.e., changing to elude surprises and maintaining informational homeostasis by 

minimizing free energy), and the way one studies cognition (i.e., what the system 

does), is by developing, simulating, and analysing the possible generative models 

that explain how the recognition density of interest (the system of interest) changes 

so as to attain minimal free energy.

In other words, ‘drawing the bounds cognition’ means defining the recognition 

density of the system of interest, and identifying a generative model that explains 

changes in that system that follow variational Bayesian inference.7 In this sense, 

cognitive science might be understood as the study of generative models and pro-

cesses: it is in the business of modelling the correlational or causal structure of 

actions and observations of the organism. The generative model, then, is not the 

vehicle of something like content or mutual information; instead, it is the tool that 

we use to study cognitive systems (as explanatory model), and indeed, perhaps more 

speculatively, the guide, or path living systems entail and follow to stay alive (as 

7 This is especially true in specialised fields such as computational psychiatry, where a crucial part of 

the generative model—namely prior beliefs—completely specify behaviours and preferences. This means 

that any behavioural phenotype can be, in principle, quantified or understood in terms of prior beliefs. 

See (Schwartenbeck and Friston 2016) for a worked example.
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control systems). The vehicle is the recognition density (also called the variational 

density), the ‘best guess’ that the system of interest embodies, and whose function 

and structure can be studied using the generative model.

This means that we can study cognition meaningfully as it occurs in individu-

ated systems at the respective scales at which those systems exist; e.g., the brain in 

ontogeny, or large-scale ensembles like species over phylogenetic time. Since organ-

ization at each level depends upon the integration to the entire dynamics, one can 

also study cognition ‘across boundaries’. Below, we will see that we can formalise 

how the system moves from one state to the other in terms of a free energy bounding 

dynamics. This dynamics integrates systems of systems; all individuated as nested 

Markov blankets of Markov blankets.

In summary, we are suggesting that organisms use a statistical trick—i.e., the 

minimization of variational free energy—to track the causes of their sensory states 

and to select appropriate actions. The key is to note that organisms are organized 

such that they instantiate the prior that their actions will minimise free energy. This 

mechanics of belief is the only causally relevant aspect of the variational free energy. 

The free energy may or may not exist; what is at stake is the causal consequences 

of the action-guiding beliefs of organisms and groups of organisms, which are har-

nessed and finessed in the generative model (Ramstead et al. 2019). What matters 

is that organisms are organized such that they instantiate such a prior to guide their 

action.

4.2  Enactivism 2.0

The generative model, as we have seen, functions as a control system. That is, its 

function for the cognitive system is to generate of adaptive patterns of behaviour. In 

the parlance of the FEP, its purpose is to guide the evaluation and selection of rele-

vant action policies (Friston et al. 2016b). The generative model is a strange beast in 

the variational framework, in that it exists only insofar as it underwrites the organ-

ism’s inference about states of affairs and subsequent action selection. Since the free 

energy expected following an action, which determines the policy to be selected, 

is defined in terms of the generative model, the latter is the cornerstone of the self-

evidencing process.

This emphasis on adaptive action aligns active inference with one brand of 

radical accounts of cognition, namely enactivism. Indeed, it has been argued that 

the FEP provides an implementation of enactivism, and in a sense supersedes or 

absorbs classical (i.e., autopoietic) formulations of enactivism (i.e., Froese and Di 

Paolo 2011; Thompson 2010; see Kirchhoff 2018a; Kirchhoff and Froese 2017, for a 

detailed argument to this effect). Active inference is inherently a pragmatist or enac-

tive formulation, and can be contrasted with non-enactive appeals to Bayesian prin-

ciples of cognition, such as predictive coding.

However, because it relies fundamentally on formulations from information the-

ory, active inference is in tension with a few of the more (arguably) conservative 

elements of the enactive theory. Indeed, classical enactivism has typically rejected 

the appeal to information theory to describe cognition (e.g., Thompson 2010). We 
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believe this is a hangover from another age in cognitive science. And, more to the 

point, this conservatism has not prevented the proponents of active inference from 

taking up the banner of enactivism (Bruineberg et al. 2016; Engel et al. 2016; Kirch-

hoff and Robertson 2018; Ramstead et al. 2018a). Active inference provides a theo-

retical model for enactment. (Allen 2018) has called this form of enactivism, based 

in information theory, ‘enactivism 2.0’, or Bayesian enactivism.

4.3  Nestedness: or how to study cognition beyond the brain

The existence of Markov blankets at one scale means that interaction amongst com-

ponents at that scale are mediated by states belonging to their respective Markov 

blankets. These active exchanges have a sparsity structure that induces nested sets 

of Markov blankets—that is, Markov blankets of Markov blankets (Kirchhoff et al. 

2018; Ramstead et al. 2018a). The central idea behind the multiscale integration of 

Markov blankets is that the particular statistical form and the specific partitioning 

rule that governs the Markov blanket allows for the assembly for larger and larger 

Markov blankets (of cells, of organs, of organisms, of environments, and so on). 

This is because Markov blankets at increasingly larger scales of systemic organi-

sation recapitulate the statistical form of Markov blankets at smaller microscopic 

scales of systemic organisation. This can be shown to follow from the observation 

that any meaningful statistical separation between internal and external states at the 

scale of, for example, complex organisms, a macroscale Markov blanket must be 

present, whose sensory and active states, distinguish this organism from its local 

niche, and which itself is composed of smaller and smaller Markov blankets sharing 

the same statistical form as the macroscopic Markov blanket (see Fig. 5).

Figure 5 illustrates the idea of Markov blanket formation at any scale of hierarchi-

cal and systemic organisation, thus speaking to the notion that organisms and their 

local environment will be “defined not by a singular Markov blanket, but by a near-

infinite regress of causally interacting Markov blankets within Markov blankets.” 

(Allen and Friston 2018, p. 19). This, in turn, provides an integrated perspective 

from which to approach the multiple scales of self-organisation in living systems.

The multiscale partition of model parameters, encoded by internal states of the 

Markov blanket, attunes itself to the sufficient statistics of the generative process 

that generated the sensory observations, tuning its internal states by bounding free 

energy. This process occurs at and across spatiotemporal scales, effectively integrat-

ing the system through dynamics. Indeed, for each system individuated at a given 

scale, one can define a generative model entailed by the dynamics at the scale above; 

which speaks to the complementarity between specialisation and statistical segre-

gation, on the other hand, and functional integration, on the other (Badcock et al. 

2019).

Free energy is an additive or extensive quantity minimised by a multiscale 

dynamics integrating the entire system across its spatiotemporal partitions (Ram-

stead et al. 2019). There is also, therefore, only one free energy for the entire system, 

which is simply the sum of free energies at all the relevant scales (see Fig. 6). The 

whole system dynamics leverage internal states across temporal and spatial scales, 
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to integrate the system across scales. This means that the variational approach 

accommodates both multiscale partition of the recognition density, and a multiscale 

integration (through active inference).

The underlying philosophical point is that states that are statistically isolated by 

Markov boundaries become integrated under one dynamics in active inference; they 

come to parameterise one generative model (the one entailed by the adaptive behav-

iour of the whole system), thereby guiding one integrated action across temporal 

and spatial scales. Internal states that are inferentially secluded at one scale become 

Fig. 5  Blankets of blankets. This figure depicts the recursively nested structure of Markov blankets 

that forms the basis of our formal ontology of cognitive systems. In this scheme, successively larger 

and slower scale dynamics arise from, and constrain, those dynamics arising at subordinate (smaller 

and faster) scales. Consider an ensemble of vector states (here, in the lower panel, nine such states are 

depicted). The conditional dependencies between these vector states define a particular partition of the 

system into particles (upper panels). The effect of this partition into particles is, in turn, to partition each 

of these particles into blanket states and internal states. Blanket states comprise active states (red) and 

sensory states (magenta). Given this new partition, we can summarize the behaviour of each particle in 

terms of (slow) eigen modes or mixtures of its blanket states, which in turn produces vector states at the 

next (higher) scale. These constitute an ensemble of vector states and the process can begin anew. The 

upper panels depict this bipartition into active and sensory states for a single particle (left panel) and 

for an ensemble of particles. The insets at the top of the figure illustrate the self-similarity that arises 

as we move from one scale to the next. In this figure, Ω·b denotes a linear mixture of blanket states that 

decay sufficiently slowly to contribute to the dynamics at the level above. Adapted from Ramstead et al. 

(2018a). (Color figure online)
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Fig. 6  Multiscale self-organization and active inference. This figure depicts variational free energy 

being minimised across scales through active inference. It presents the results from a simulation of mor-

phogenesis using the active inference framework (Friston et  al. 2015). The simulation used a gradient 

descent on variational free energy to simulate a group of cells self-assembling into a larger pattern (i.e., 

target morphology). The simulation employed an ensemble of eight cells. Each cell was equipped with 

the same generative model, which is a metaphor for shared genetic information. This generative model 

generated a prediction of what each cell would sense and signal to other cells (chemotactically) for any 

given location in a target morphology. In other words, the model predicted what each cell would expect 

to sense and signal if it were in that location (lower middle panel—extracellular target signal). Each cell 

engaged in active inference, by actively moving around to infer its place in the target morphology relative 

to other cells. In doing so, each cell minimised its own variational free energy (and by proxy, its surprise 

or self-information). Remarkably, the fact that all cells shared the same generative model allowed their 

individual active inference to minimise the free energy of the ensemble, which exists at the scale above 

the individual cells. Each of the cells that make up the ensemble shares the same generative model. Cru-

cially, the sensory evidence for the model with which each cell is equipped is generated by another cell. 

The arrangement that minimises the free energy of the ensemble is the target morphology. This means 

that each cell has to ‘find its place’; the configuration in which they all have found their place is the one 

where each cell minimises its own surprise about the signals it senses (because it knows its place), and in 

which the ensemble minimises the total free energy as well. The upper panels show the time courses of 

expectations about the place of each cell in the target morphology (upper left), as well as the associated 

active states that mediate cell migration and signal expression (upper middle). The resulting trajectories 

have been projected onto the first (vertical) direction and color-coded to show cell differentiation (upper 

right). The trajectories of each individual cell progressively, and collectively, minimize total free energy 

of the entire ensemble (lower left panel), which illustrates the minimization of free energy across scales. 

The lower right panel shows the configuration that results from active inference. Here, the trajectory is 

shown in small circles (for each time step). The insert corresponds to the target configuration. In short, 

all multiscale ensembles that are able to endure over time must destroy free energy gradients, which inte-

grates system dynamics within and between scales. Adapted from Friston et  al. (2015). (Color figure 

online)
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absorbed into higher order Markov blankets and dynamics at the scale above. This 

means that the epistemic seclusion of internalism is, in a sense, illusory or par-

tial; since the entire organism engages in active inference across scales. Under the 

FEP, inferential seclusion coexists with existential (pragmatic) integration through 

dynamics (i.e., adaptive behaviour).

This perspective vindicates an integrationist ontology of the boundaries of cogni-

tion, while retaining the possibility of granting epistemic priority to any of these 

boundaries, given explanatory interests. The nested Markov blankets perspective 

answers the question of how to understand the generative model from this mul-

tiscale perspective. The challenge, now, is to develop the theoretical apparatus to 

describe the boundaries of cognition at higher scales. We address this issue in the 

next subsection.

In a nutshell, at any scale, the relevant Markov-blanketed systems are composed 

of parts that, in virtue of their (relative) conditional independence, can also be 

described as Markov blanketed systems. Each of these separate Markov blanketed 

subsystems might count as separate systems, i.e., one cognitive subsystem can be a 

nested part of another system. However, all these nested boundaries are integrated 

within the same system. More precisely, all the subsystems that are individuated by 

their own Markov blanket are integrated as one single dynamical system through the 

system dynamics (i.e., adaptive action). Collectively, there is only one (hierarchi-

cal) generative model and therefore one free energy functional, for the ensemble of 

nested blankets (where each constituent blanket itself has a generative model and 

accompanying free energy functional). This sort of nesting is particularly prescient 

for hierarchical systems like the brain. In this brain-bound setting, the integrated 

Markov blanket could be regarded as comprising the brain’s sensory epithelia and 

motor (or autonomic) efferents, while internally nested Markov blankets are a neces-

sary feature of neuronal (e.g., cortical) hierarchies (Shipp 2016; Zeki 2005; Zeki and 

Shipp 1988). At each and every level of the cortical hierarchy the associated free 

energy is minimised by neuronal dynamics, such that the total free energy of the 

brain is upper-bounded in accord with the FEP.

4.4  Multiplicity: or how to describe cognition beyond the brain

Central to our discussion is the concept of joint phenotype, which we have intro-

duced in Sect. 1 in terms of repertoire of highly probable states and traits. Some of 

those states are contained within the organism (e.g., brain states), and other traits 

extend far beyond the internal states of an organism (e.g., states of the niche). We 

use the concept of joint phenotype to support our description of the boundaries of 

cognition at higher scales.

Typically, joint phenotypes are seen as shared ‘extended phenotypes’ (Dawkins 

1982). Extended phenotypes are traits (e.g., niche construction outcomes like beaver 

dams) that, like physiological states, undergo selection due to their fitness enhancing 

impact. In the case of an extended trait, the impact is on the genes having favoured 
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the reproduction of that extended trait (e.g., beavers’ genetic disposition to build 

dams).

Extended phenotypes, therefore, are extensions from genes to the extended trait. 

Accordingly, the typical view of the joint phenotype broadly construed describes 

coextensive phenotypic traits consistent with two or more different species’ genetic 

makeup. In that case, all parties can be ‘joint owners’ of the trait; for instance, the 

insect and the plant are joint owners of the portion of the leaf eaten by the insect 

(Queller 2014).

The FEP interpretation of the joint phenotype that interests us here brings this a 

step further. On that view, coextensive phenotypic traits do not need to be included 

in the extended phenotype. They can include biotic or abiotic traits, like ecologi-

cal cascades produced by niche construction, or other ‘seemingly’ random effects 

of organismic activity. These are not directly related to the genetic makeup of either 

party, while nonetheless being seen as having a systematic and evolutionary signifi-

cant impact on fitness.

With the FEP, one can study organism-niche complementarity that obtains 

through phenotypic accommodation and niche construction over development (i.e., 

adaptation) using variational free energy (Bruineberg et  al. 2018; Constant et  al. 

2018b), and thereby predict the influence of a trait on fitness. Hence, one can con-

ceive of and study joint phenotypic traits as non-genetically specified traits by study-

ing the changes in the statistical relationship that bounds those traits to the states of 

the organism(s).

Now, the point we want to motivate here is that—especially in humans—many 

traits of the constructed niche defining the human joint phenotype increase state-trait 

complementarity by smoothing the attunement process, or variational free energy 

minimising process. For instance, in developmental psychology and niche construc-

tion theory, it is argued that the material artefacts populating human niches enable 

individuals to deal with perceptual uncertainty (Christopoulos and Tobler 2016; 

Dissanayake 2009) by constraining, and directing sensory fluctuations in their sur-

rounding (Constant et al. 2018a).

Briefly, computing expected free energy requires computing the cost of a pol-

icy (where the cost is given in terms of the divergence between posterior beliefs 

and preference about sensory outcomes), and the expected ambiguity, or expected 

‘certainty’ about the sensory outcome relative to one’s beliefs about the state of the 

world (i.e., expected surprise) (see Friston et al. 2016a, b for a detailed treatment). 

Artefacts that populate human niches can be seen as doing much of the legwork in 

computing the expected ambiguity term that constitute expected free energy. In that 

sense, they ease the modelling activity of the organism, understood as expected vari-

ational free energy minimization (Constant et  al. 2018b); cf. epistemic affordance 

(Parr and Friston 2017).

Thus, especially in humans, when taking the FEP perspective, one can include 

external, joint phenotypic traits within the boundaries of cognition for higher scales 

systems like joint phenotypes, or bodies–environment systems. It also means that 

under the FEP, one could meaningfully study cognition ‘from outside the brain’, for 

instance, by producing a generative model of an higher scale system (e.g., that of the 

leaf-insect system) and by simulating the effects of external factors on variational 
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free energy, like environmental cues (Sutton 2007); cultural practices (Vygotsky 

1978); ecological information (Gibson 1979). Again, this speaks to the idea that the 

relevant boundaries of cognitive systems are relative to explanatory interests (e.g., 

cognition from the point of view of neurophysiology for cognitive neuroscientists, 

or cognition from the point of view of ecology, for behavioural ecologists).

The Markov blanket formalism might allow us to study the transient assembly of 

cognitive boundaries over time, in the spirit of the models considered above. Indeed, 

the original simulation studies employing the Markov blanket formalism were about 

the carving out of Markov boundaries by the dynamics of free energy minimiza-

tion (Friston 2013). The variational framework, then, might allow us to model how 

organisms extend their Markov blankets into the environment, at a host of different 

spatial and temporal scales (Ramstead et al. 2019); e.g., to model the spider’s web 

extending its ensemble of sensory states to include states outside its body (Kirchhoff 

and Froese 2017).

In summary, the boundaries of cognitive systems are nested in that any system is 

made up of components, which (given that they, too, exist in a minimal sense) have 

a boundary that can be formalised as a Markov blanket. A given organism is essen-

tially a hierarchical set of nested Markov blankets. Furthermore, there is a hierarchi-

cal listing of scales, in the sense that every state at a given scale is itself a mixture 

of blanket states at a smaller scale (see Figs. 5, 6). The subsystems of interest here 

range from intra-cellular blanketed systems (e.g., organelles) to the blanket of the 

entire species. By the very fact that they are nested in this way, up to the scale of the 

species, the boundaries of any cognitive process of cognitive dynamics are multiple, 

in the sense that cognitive systems at different scales are integrated in one multiscale 

cognitive dynamics. The boundaries and scale that are relevant will depend on the 

kind of investigation we are aiming at, the phenomenon that is of interest, etc.

5  Concluding remarks: towards multidisciplinary research heuristics 
for cognitive science

In this paper, we have attempted to overcome a common tendency to think of the 

boundaries of cognitive systems as either brain-based, embodied, or ecological/envi-

ronmental by appealing to a multiscale interpretation of Markov blankets under the 

variational FEP. The resulting multiscale integrationist perspective suggests that the 

boundaries of cognition are multiple and nested.

Some of the radical externalist views on cognition that we have discussed suggest 

that the divide between internalism and externalism is problematic (Thompson and 

Stapleton 2009). We agree, precisely because each of these two options begs the 

question over where to look for the realisers of cognition. We argued in favour of an 

ontological pluralism based on a multiscale formulation of Markov blankets under 

the FEP. We argued that ontologically, states statistically insular or segregated at 

one scale are integrated by the dynamics (i.e., adaptive behaviour) at scales above. 

States separated by their respective Markov blankets are dynamically and statisti-

cally linked as states of the same higher-order system. The recursively nested, mul-

tilevel formulations of the Markov blanket formalism under the FEP allow to study 
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the realisers of cognition, while acknowledging that they are a moving target; they 

shift according to the level of inquiry.

Some radical externalist views, enactive approaches especially, cast cognition as 

a relational phenomenon that equally recruits states of the brain, the body, and the 

world. The view we propose here agrees with the relational aspect of this project, 

but rejects the a priori emphasis in the assumption that all factors contribute equal-

ity to the causal patterns of interest. That cognition is inherently relational, that it 

integrates the contribution of states that are internal (systemic) and external to any 

given boundary, does not imply that the contributions of all relevant components are 

equal. Certain kinds of cognition rely mainly on the contributions of internal states 

(e.g., mental calculations); other activities are more embodied, and rely mainly on 

physiological or morphological states (e.g., walking); and other still depend most 

on the influence of abiotic, environmental factors or culturally patterned practices 

(e.g., driving a car). The approach we advocate here casts cognition as radically rela-

tional at each scale, even within the brain; e.g., relations between cells, relations to 

the brain’s microenvironment, between different networks or again, between differ-

ent patterns of functionally integrated units; without for all that endorsing the view 

that nothing matters more than anything else. This speaks to the necessity of meth-

odological pluralism in cognitive science; and to the importance of developing new 

interdisciplinary research heuristics to determine and study, for any phenomenon, 

the relevant levels of description that are necessary to account for it.

Our multiscale integrationist formulation of the boundaries of cognition rejects 

any kind of essentialism about the boundaries of cognition. It suggests that explana-

tions of cognition will differ conditioned on the phenomenon and our explanatory 

interests. In this sense we are more aligned with (Clark 2008) when he encourages 

us to “let a thousand flowers bloom” (p. 117). However, we restrict the scope of this 

gardening project by arguing that the FEP plays a coordinating and constraining role 

on the kind of explanations one should be looking for in the cognitive sciences.
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