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MULTISCALE MAXIMUM LIKELIHOOD ANALYSIS OF A
SEMIPARAMETRIC MODEL, WITH APPLICATIONS1

By Guenther Walther

Stanford University

A special semiparametric model for a univariate density is introduced
that allows analyzing a number of problems via appropriate transforma-
tions. Two problems treated in some detail are testing for the presence of
a mixture and detecting a wear-out trend in a failure rate. The analysis of
the semiparametric model leads to an approach that advances the maxi-
mum likelihood theory of the Grenander estimator to a multiscale analysis.
The construction of the corresponding test statistic rests on an extension
of a result on a two-sided Brownian motion with quadratic drift to the
simultaneous control of “excursions under parabolas” at various scales of
a Brownian bridge. The resulting test is shown to be asymptotically opti-
mal in the minimax sense regarding both rate and constant, and adaptive
with respect to the unknown parameter in the semiparametric model. The
performance of the method is illustrated with a simulation study for the
failure rate problem and with data from a flow cytometry experiment for
the mixture analysis.

1. Introduction and overview. This paper is concerned with the semi-
parametric model

f�x� = exp�φ�x� + cx��(1)

where f is a probability density with support in [0, 1], φ is a nonincreasing
function taking values in �R, and c ≥ 0 is a real parameter. For uniqueness we
will always take c to be the smallest value possible in the above representation.
Given n iid observationsX1� � � � �Xn from f, the problem is to test whether c =
0, that is, f is nonincreasing, while under the alternative c > 0� f is allowed
to possess local stretches of exponential growth with unknown parameter c.
Besides the direct application to testing whether a density is monotone [see,

e.g., Hildenbrand and Hildenbrand (1985)], a number of important problems
from different areas in statistics can be reduced to the semiparametric model
(1) by appropriate transformations. Two problems from reliability theory and
the analysis of mixtures will be addressed in more detail in Section 5.
The shape of the failure rate function plays an important role in reliability

theory. An increase in the failure rate marks a wear-out trend and can be
used as a signal for preventive maintenance or replacement. The standard
approach for testing a constant vs. a monotone failure rate is based on the
cumulative total time on test statistic [see Robertson, Wright and Dykstra
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(1988), Chapter 7.6], which looks for a global monotone trend in the normal-
ized spacings. It exploits the fact that the latter are iid if the failure rate is
constant (i.e., the distribution is exponential), whereas the sequence of nor-
malized spacings is stochastically decreasing (increasing) when the failure
rate is increasing (decreasing).
It is generally recognized, however, that many failure rates in practice are

bathtub shaped, that is, are first decreasing (during a “burn-in” period), then
are roughly constant, and are finally increasing (during the “wear-out” period)
[see, e.g., Glaser (1980) or Miller (1981), page 15]. Statistical procedures look-
ing for a global trend in the normalized spacings are clearly not well suited for
detecting a wear-out (or burn-in) period for such failure rates, as the locally
increasing and decreasing trends can cancel in the statistic. Rigorous statisti-
cal theory and procedures to detect these important alternatives seem not to
have been developed yet, apparently due to the difficulties in modeling bath-
tub shaped failure rates parametrically (personal communication with Ingram
Olkin). Section 5 will show how the theory to be developed for model (1) applies
directly to this problem via the total time on test transformation.
The second application concerns detecting the presence of mixing in a dis-

tribution. That is, one wishes to decide whether a given sample is composed
of observations from one population or from multiple subpopulations. The sta-
tistical theory has been developed with remarkable success in the case where
the component distributions are from a one-parameter exponential family or
from the two-parameter normal family [see, e.g., Lindsay and Roeder (1992,
1997) and Roeder (1994)]. There is also a considerable interest in a nonpara-
metric approach to this problem, as the conclusions of a parametric approach
can depend quite sensitively on the assumed model and skewed distributions
in particular cause problems [see Roeder (1994), page 493]. However, the stan-
dard nonparametric approach to this problem is a test for unimodality, which
is known not to be very sensitive to detect the presence of a subpopulation [see,
e.g., Roeder (1994), page 493, and Titterington, Smith and Makov (1985)] for
a judicious discussion on the use of modality in this context.
The approach taken here is based on a nonparametric model that is com-

monly employed in the MCMC and Gibbs sampling literature; see Gilks and
Wild (1992), Dellaportas and Smith (1993) and Brooks (1998). It models single-
component distributions as logarithmically concave densities, that is, densi-
ties of the form f�x� = eψ�x�, where ψ is a concave function. As detailed in the
above references, this model is motivated by the fact that most commonly used
parametric densities are log-concave, the prime example of course being the
standard normal density where ψ is a quadratic. While this model is thus a
quite natural choice for the mixture problem at hand, the requisite statistical
methodology has not been developed yet. The following lemma shows how this
approach can be subsumed under the general semiparametric model (1).

Lemma 1. Let F be the cdf of a univariate random variable X whose dis-
tribution is a finite mixture of log-concave distributions with common sup-
port. Then for all d > 0 the distribution of the random variable F�X − d� is
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absolutely continuous on (0, 1) (and may have an atom at 0). The distribution
of X is log-concave if and only if for all d > 0 the Radon–Nikodym derivative
fd of F�X − d� is nonincreasing on (0, 1). Moreover, on every closed interval
I ⊂ �0�1�� fd is of the form �1�.

The lemma is illustrated in Figure 1: forty observations 	Xi
40i=1 were sam-
pled from a gamma(10, 0.1) distribution. The shifted observations 	Xi−d
40i=1
with d = 0.2 are plotted on the horizontal axis of the left figure. The solid
line is a graph of the smoothed empirical cdf F̃n of the Xi [see Shorack
and Wellner (1986), page 86]. The transformation �Xi − d� �→ F̃n�Xi − d�
is delineated by dotted lines, and the transformed observations are plotted
on the vertical axis. One clearly notes the decreasing frequency of the trans-
formed observations in (0, 1), corresponding to the nonincreasing fd. On the
other hand, the solid line in the right figure shows the density of the mixture
1
2gamma�2�0�1�+ 1

2gamma(5, 0.15). For easier visualization fd is also plotted
in the figure, rather than a transformed sample. fd is of the form (1), and the
local increase indicates the presence of a mixture.
Another problem that can be subsumed under (1) is that of detecting a

local trend in the intensity function of a nonhomogeneous Poisson process.
See Woodroofe and Sun (1999) for the link and for an approach to detect a
global trend.
The problem of testing whether a density is nonincreasing or related ver-

sions have been considered by Chaudhuri and Marron (1999), Dümbgen and
Spokoiny (2000), who deal with the Gaussian white noise model and also give
optimality results in that setting, and by Woodroofe and Sun (1999), who test
uniformity versus a monotone density. The first two papers investigate shape
properties of f with kernel estimates by simultaneously considering a range
of bandwidths.
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Fig. 1. Left: 	Xi − d
40i=1 are plotted on the horizontal axis, where Xi ∼ γ�10�0�1�� d = 0�2.
	F̃n�Xi − d�
40i=1 are plotted on the vertical axis. Right: f = 1

2γ�2�0�1� + 1
2γ�5�0�15� (solid line)

and Radon–Nikodym derivative of F�X− d�, where X ∼ f (dashed line).
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For the analysis of properties of the logarithm of f, as required by model (1)
and its extension (2), it is natural to use the method of maximum likelihood,
which has an extensive history in order restricted inference, see Robertson,
Wright and Dykstra (1988). Note that the MLE of c does not exist. The pro-
gram is to compute the MLE of f for various fixed values of the unknown
parameter c, and then to evaluate the evidence for c > 0 by combining the
evidence obtained from the various MLEs. It will be shown how this approach
advances the method of maximum likelihood to a multiscale analysis of the
model (1) that enjoys certain adaptivity and optimality properties.
The MLE of f for the case c = 0 is the well-known Grenander estimate

[see, e.g., Groeneboom (1985)]. We will call the model (1) when c = 0 the “null
family,” following terminology introduced by Silverman (1982) in a related sit-
uation. It will be seen that for a given c > 0 the MLE can be computed by
solving a penalized ML problem, or equivalently, by transforming the data to
a different scale, applying the estimator for the null family on that scale, and
transforming the resulting estimator back to the original scale. The parameter
c, or equivalently the Lagrange (tuning) parameter in the penalized ML prob-
lem, can thus be interpreted as a “scale” parameter that provides information
about f on various scales. This approach avoids the usual problem of appro-
priately choosing the tuning parameter in a penalized ML problem. Rather,
the analysis combines the information obtained on the various scales.
Deriving an optimal simultaneous testing procedure requires knowledge of

the simultaneous null distribution of the Grenander estimators across scales.
The pointwise limiting distribution of the Grenander estimator is related to
an “excursion below a parabola” of a Brownian bridge and can be described in
terms of the argmax of a two-sided Brownian motion with quadratic drift [see
Prakasa Rao (1969) and Groeneboom (1985)], whose distribution is related to
the solution of a heat equation [see Chernoff (1964) and Groeneboom (1989)].
To construct an appropriate test, this result is generalized by simultaneously
considering such excursions at various scales of the Brownian bridge as well
as across locations.
Section 2 shows how the analysis of the semiparametric model (1) gives

rise to the multiscale procedure sketched above. In Section 3 the simulta-
neous behavior of “excursions below parabolas” of a Brownian bridge across
scales and locations is derived, which allows constructing an appropriate test
statistic. In Section 4 it is proved that the resulting procedure is adaptive with
respect to the unknown parameter c and asymptotically minimax. In Section 5
the procedure is applied to two problems in reliability theory and the analysis
of mixtures. Section 6 contains a brief outlook on further work. The proofs are
deferred to Section 7.

2. The multiscale MLE. The plan for testing

H0� c = 0
in the model (1) is to compute the MLE of f for various values of the unknown
parameter c, and then to extract and combine the evidence for c > 0 from the
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various estimates. We have already noted that in the case c = 0 the MLE of
f is the Grenander estimator based on the observations Xi; that is, the left-
hand slope of the least concave majorant of the empirical cdf of the Xi [see,
e.g., Robertson, Wright and Dykstra (1988)]. A similar representation obtains
for the case c > 0.

Proposition 1. Fix c > 0 in (1). Then the MLE f̂c
n of f is given by

f̂c
n�x� = ĝc

n�ecx�cecx�
where ĝc

n is the Grenander estimator based on the transformed observations
Yi = ecXi� i = 1� � � � � n.

The proof proceeds by showing that, just as in the case of the Grenander
estimator, f̂c

n is given via the solution to an isotonic regression problem, which
now involves “exponentially tilted” weights. Proposition 1 shows that evaluat-
ing the MLE f̂c

n for various values of c amounts to a multiscale analysis: The
expression given by Proposition 1 is plainly the image density of ĝc

n under the
transformation y �→ �log y�/c, hence f̂c

n obtains by the following three-step
procedure:

1. Map the observations Xi onto a different scale: Xi �→ Yi = ecXi .
2. Compute the null estimate (the Grenander estimate) for the transformed
data.

3. Transform the resulting estimate back onto the original scale with the
inverse transformation y �→ �log y�/c.

Remark. Woodroofe and Sun (1999) treat a related problem using a penal-
ized MLE. The above approach can also be put into a penalized ML frame-
work. It is readily checked that f̂c

n is the nonparametric MLE in the set
� �c� �= 	f� log f�y� − log f�x� ≤ c�y − x� for all x < y
. But Green and
Silverman [(1994), page 51] show that constrained maximum likelihood is
just an alternative characterization of penalized maximum likelihood, with
the Lagrange (tuning) multiplier of the appropriate penalty being a function
of the constraint c. Thus the difference from the usual penalized ML approach
is that we consider a range of Lagrange (tuning) parameters instead of try-
ing to find an “optimal” one. This aspect is crucial for the optimality results
derived in Section 4.

3. The test statistic and its null distribution. For the case where
interest centers on local deviations from the null model, it was shown by Liero,
Läuter and Konakov (1998), Neumann (1998) and Dümbgen and Spokoiny
(2000) that it is advantageous to employ minimum distance goodness-of-fit
statistics that are based on the supremum norm. Consequently we will mea-
sure the distance of f fromH0 by infm∈Mon � �log f−m�w �∞, where Mon is the
class of nonincreasing functions, and w is a weight function that allows down-
weighting the tails of the distribution, which is a desirable option in practice.
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Here we use the notion of a distance in the usual loose sense [see, e.g., Titter-
ington, Smith and Makov (1985), page 115]. We will treat in detail the case
where w = f1/3, as it can be shown that then, for the purpose of the following
analysis, the above distance is equivalent to supx<y

3
2�f1/3�y� − f1/3�x��. This

leads to the test statistics

Tn�c� = sup
X�1�≤x<y≤X�n�

3
2��f̂c

n�1/3�y� − �f̂c
n�1/3�x��

= max
1≤i<j≤n

3
2c
1/3(�ĝc

n�ecXj�ecXj�1/3 − �ĝc
n�ecXi+1�ecXi�1/3)�

Simultaneous use of the Tn�c� across scales c requires an appropriate stan-
dardization of the Tn on each scale. Asymptotic considerations will yield a
standardization that will be shown to result in a procedure that is adaptive
and optimal in the asymptotic minimax sense.
To see heuristically how the distribution ofTn can be analyzed, it is informa-

tive to sketch Groeneboom’s (1985) elegant derivation of Prakasa Rao’s (1969)
result on the pointwise limiting distribution of the Grenander estimator.
Groeneboom noticed that this distribution can be derived from the limiting dis-
tribution of the process Un�a� = sup	t ≥ 0� Gn�t�−at is maximal
, where Gn

denotes the empirical cdf. Un can be interpreted as an inverse to the Grenan-
der estimator ĝn. Writing

√
n�Gn�t�−at� = √

n�Gn�t�−G�t��+√n�G�t�−at�
and observing that the first term approximately equals a Brownian bridge
while the second term behaves like a quadratic locally around t0 = g−1�a�,
makes plausible that the limiting distribution of ĝn�t0�, appropriately normal-
ized, is given by the argmax of a two-sided Brownian motion with quadratic
drift.
Considering now Tn�c� in the case where f = 1�0�1�, and thus the trans-

formed density equals gc�y� = 1
cy
on �1� ec�, we have Tn�c� ≤ supx∈�0�1� ×

3��f̂c
n�1/3�x� − 1� ≈ supy∈�1� ec� �cĝc

n�y�y− 1�. Formally switching arguments by
taking the sup over the range of ĝc

n instead of its domain gives supa�caUn�a�−
1� = supa ca�Un�a�−�gc�−1�a��. This heuristic shows that one needs to control
the argmax of a Brownian bridge with quadratic drift, uniformly over varying
centers of the quadratic. Furthermore, different values of c give rise to differ-
ent curvatures of the quadratic. The following theorem gives the pertinent
result for the limiting process.

Theorem 1. Let Y be either a standard Brownian motion or a standard
Brownian bridge, and for a ∈ �0�1�, c > 0, define Vc�a� �= argmaxt	Y�t� −
c�t− a�2
, where t ranges over the domain of Y. Then

sup
c≥ee

sup
a∈�0�1�

c2/3�Vc�a� − a� − �log c�1/3
�log c�−2/3 log log c <∞ a.s.

Vc�a� is a.s. unique [see Kim and Pollard (1990)] and is the location on
the t-axis of the point where the parabola c�t − a�2 + b, sliding down along
the line t = a, hits Y. Figure 2 provides an illustration of the situation for
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Fig. 2. “Excursions under parabolas” at various scales of the Brownian bridge.

three different scales c and a standard Brownian bridge Y. For each c only
the lower envelope of all the parabolas with centers in �0�1� is shown. Note
that apart from a vicinity of 0 and 1, this lower envelope coincides with a
parabola that hits Y at least twice, and supa �Vc�a� − a� is attained for one of
those parabolas. One sees that varying c corresponds to looking at “excursions
under parabolas” at various scales of the Brownian bridge.
Theorem 1 yields the appropriate standardization of the test statistic Tn�c�

across scales.

Theorem 2. Let the Xi� i ≥ 1, be iid U�0�1�. Then

lim
n→∞ sup

c∈�een−1/2� n/ log10 n�

�n/4c�1/3Tn�c� − �log�
√
nc/2��1/3

log�√nc/2��−2/3 log log�√nc� ≤ L a.s.

where L is a real random variable. If the X′
i, i ≥ 1, are iid f ∈H0 and gener-

ated by the inverse probability transform from the Xi, then the corresponding
statistic is dominated by the above statistic eventually a.s.

Denote by φn�Tn� the test that rejectsH0 iff the sup in Theorem 2 exceeds
a critical value ln�1−α� to be specified. The recipe provided by Theorem 2 for
obtaining ln�1−α� is to evaluate the statistic for Monte Carlo samples of size n
drawn from U�0�1�. By Fatou’s lemma, φn�Tn� has then asymptotically level
α. Replacing the sup with the maximum over a finite grid of c-values should
not have a large effect on the efficiency of the test. The Grenander estimator
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ĝc
n can be computed using standard algorithms such as the pool adjacent vio-
lators algorithm (PAVA) [see Robertson, Wright and Dykstra (1988)] or related
versions which appear to run in O�n log n� time [see, e.g., Zhang and Newton
(1997)].

4. Optimality. Theorem 3 below shows that the test φn�Tn� is asymp-
totically optimal in the minimax sense as described in the survey of Ing-
ster (1993), and also adaptive with respect to the unknown parameter c.
It is shown in Ingster (1993) that a meaningful set-up for such optimal-
ity results requires a restriction on the set of alternatives under consider-
ation, usually via a smoothness assumption. Note that Lemma 1 states what
kind of regularity will naturally be available for the mixture analysis: Any
increase in the log-density in model (1) must satisfy a Lipschitz condition.
However, the general semiparametric model (1) also allows for discontinuous
decreases.
We denote by Hc the class of densities that satisfy (1), and by δ�f�H0� =

supx<y
3
2�f1/3�y�−f1/3�x�� the distance of f from H0 introduced in Section 3.

Part (a) of the following theorem states that a meaningful test of H0 is gen-
erally impossible if the alternative is in Hc and its distance from the null
hypothesis is C� log n

n
�1/3 with C < �2c�1/3: Any test with asymptotic level α

has asymptotically a type II error of at least 1− α for some alternative of the
described form; that is, its asymptotic power is no larger than its significance
level. On the other hand, part (b) of the theorem shows that if C > �2c�1/3,
then for the above test φn�Tn� the maximal type II error over the set of these
alternatives goes to zero. Then �2c�1/3 is called the exact separation constant,
and � log n

n
�1/3 the minimax rate of testing; see Ingster (1993).

Theorem 3. The minimax rate of testing H0 versus the semiparametric

alternative Hc is � log n
n
�1/3 and the exact separation constant is �2c�1/3. The

test φn�Tn� with asymptotic level α ∈ �0�1� is asymptotically minimax and
adaptive.

(a) If dn = C� log n
n
�1/3 with C < �2c�1/3, then

lim
n→∞

inf
ψn

sup
f∈Hc� δ�f�H0�≥dn

Pf�ψn�Xn� = 0� ≥ 1− α�

where infψn
denotes the infimum over all tests with level αn → α that are based

on an iid sample Xn = �X1� � � � �Xn� from f.

(b) If dn = C� log n
n
�1/3 with C > �2c�1/3, then

lim
n→∞ sup

f∈Hc� δ�f�H0�≥dn

Pf�φn�Tn� = 0� = 0�

Theorem 3 makes precise the adaptivity property of the test φn: in a certain
sense it performs as well as any level α test possibly can, even if the latter
were allowed to use knowledge of the unknown parameter c.
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5. Applications.

5.1. Detecting an increase in the failure rate. Let X1� � � � �Xn denote the
failure times from a continuous distribution on �0�∞�. Then the normalized
spacings are given byDi �= �n−i+1� �X�i�−X�i−1�� and the studentized total
time on test statistics byWi �=

∑i
j=1Dj

/∑n
k=1Dk, i = 1� � � � � n �X�0� �= 0� [see

Robertson, Wright and Dykstra (1988), Chapter 7]. The cumulative total time
on test procedure (CTTT) described in Section 1 uses the statistic

∑n−1
i=1 Wi [see

Robertson, Wright and Dykstra (1988), Chapter 7.6].
Using the total time on test transformation, the multiscale maximum like-

lihood (MSML) procedure is immediately applicable to detect locally monotone
parts in the failure rate.

Theorem 4. The assertion of Theorem 2 remains valid for testing the
hypothesis of a nonincreasing failure rate on �0�∞�, provided only that the
statistic Tn−1 is computed with the Wi, 1 ≤ i ≤ n− 1, in place of the Xi, and
the exponential distribution takes the place of the uniform distribution.

In the case where the failure rate is constant, that is, the Xi are iid E�1�,
the assertion is an immediate consequence of the fact that the joint law of
�W1� � � � �Wn−1� is the same as that of the order statistics of n − 1 iid U�0�1�
random variables [see Shorack and Wellner (1986), Chapter 21.1].
Testing whether the failure rate is nondecreasing is analogous by changing

Tn−1 in an obvious way. Theorem 2 remains clearly also valid if the denomi-
nator is set to 1. This simplification was used in the following with hardly any
effect on the simulation results, due to the fact that the denominator varies
very slowly with c.
The performance of the MSML statistics will now be illustrated by a small

simulation study. We will sample from a distribution whose failure rate is con-
stant up to some point t0, and linearly increasing thereafter. Thus the change-
point t0 marks the beginning of a wear-out period. The goal is to detect the
presence (and location) of the increasing part. No decreasing stretch was built
into the failure rate so that the CTTT is also applicable to this problem, thus
allowing a comparison with the MSML procedure to show the limitations of the
latter in this extreme case. The null distribution of the MSML statistic was
obtained from 10,000 Monte Carlo samples using exponentially distributed
random samples with the given sample size. The set of scales c was taken
to be the integers from 1 to 10. Using finer disretizations did not change the
results much. The CTTT statistic was evaluated against its limiting normal
distribution [see Robertson, Wright and Dykstra (1988), Chapter 7.6]. Both
tests were evaluated at the 5% significance level for 10,000 Monte Carlo sam-
ples of observations from distributions with failure rates r�t� = 1/2+s�t−t0�+.
For a given change-point t0 the slope s was chosen so that the powers obtained
in the simulation fell into a nontrivial range. The case t0 = 0 is tailor made
for the CTTT statistic, as the failure rate increases globally on the support.
As expected, Table 1 shows that in this case it dominates the MSML statistic,
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Table 1

Powers of the multiscale maximum likelihood (MSML) and cumulative total time on test (CTTT)
procedures for alternatives with failure rates r�t� = 0�5+ s�t− t0�+

t0 = 0� s = 0�1 t0 = 2�5, s = 0�25 t0 = 5, s = 2

Sample size MSML CTTT MSML CTTT MSML CTTT

250 0.607 0.883 0.785 0.799 0.426 0.414
500 0.898 0.991 0.990 0.976 0.892 0.700
750 0.978 0.999 1.000 0.997 0.993 0.852

which has to account for looking simultaneously over many substretches of
the data. As t0 increases, the trend becomes more local, modeling the onset of
a wear-out period. The simulations show how the MSML statistic becomes the
more powerful test for detecting the increase. The MSML statistic also allows
localizing the change-point t0 by retracing which stretch of the data results in
the largest value of the statistic. Note that the simulations treat an extreme
case that is unfavorable for the MSML statistic: using bathtub-shaped failure
rates (i.e., a local decrease is present) would gravely impair the performance
of the CTTT statistic, while the MSML statistic is designed to handle such a
case.

5.2. Detecting the presence of mixing. Assume the Xi to be ordered and
set X′

i �= F̃n�Xi−d�sd, where the factor sd �= #	i� Xi ≥X1+d
/�nF̃n�Xn−
d�� scales the X′

i linearly into an interval with length equal to the fraction
of nonzero X′

i. Analogously to Section 3, set Tn�c� �= maxε<X′
i<X

′
j<1−ε

3
2c
1/3

×(�ĝc
n �ecX

′
j�ecX′

j�1/3 − �ĝc
n�ecX

′
i+1��ecX′

i�1/3), with the ĝc
n computed using the

X′
i instead of the Xi. The relevant statistic for this problem is then T′

n�c� �=
supd>0 Tn�c�. To avoid the lengthy analysis for the case where F̃n equals the
smoothed ecdf, we give a result for the case where F̃n is the MLE under the
null model. The log-concave MLE f̃n can be readily computed using the itera-
tive convex minorant algorithm [Jongbloed (1998); see also Walther (2000b)].
The theoretical properties of a log-concave MLE are similar to those of the
MLE of a concave density, and the arguments in Groeneboom, Jongbloed and
Wellner (2001) suggest that the uniform rate of convergence isO��log n/n�2/5�.
If the scales c are contained in the interval

[�log2 n/n�1/5� n/ log10 n], then a
result analogous to Theorem 2 holds for T′

n.

Theorem 5. Let X1� � � � �Xn be iid from a log-concave distribution. Then
under the assumptions stated prior to the theorem, the assertions of Theorem 2
hold for T′

n in place of Tn.

Figure 3 shows a histogram, plotted using the default settings of the Mat-
lab histogram command, of flow cytometry measurements on 270 cells that
were obtained in the Herzenberg Laboratory in the Genetics Department at
Stanford. Flow cytometry uses light-induced fluorescence to measure certain
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Fig. 3. Left: Histogram of the flow cytometry data. Right: Logarithm of the kernel density esti-
mates using the rule-of-thumb bandwidth (solid line) and the Sheather–Jones bandwidth (dashed
line).

characteristics of cells. One goal of the analysis is to detect the presence of
subpopulations of cells, which could signal the presence of certain diseases.
Also shown in Figure 3 are the logarithms of kernel density estimates evalu-
ated with the rule-of-thumb bandwidth based on the interquartile range [see
Section 3.4.2 of Silverman (1986)], as well as the Sheather–Jones bandwidth
[see Sheather and Jones (1991)]. Both of these estimates confirm that the log-
concave model is plausible for the component distributions. Both estimates
also show a violation of concavity in the center of the data, suggesting that a
mixture is present.
The null distribution of the above test was obtained from 1,000 Monte Carlo

samples from the uniform distribution. A grid of ten equally spaced values
between 0 and 5 was used for the range of c, and 20 equally spaced values
between 0 and the standard deviation of the data for the range of d. The
results were not sensitive to these choices. The resulting p-value was 0.037,
indicating the presence of a mixture.

6. Outlook. The mixture problem can alternatively be analyzed without
employing a transformation. A key to that approach is the following proposi-
tion, which will be stated without proof.

Proposition 2. Let the fi be log-concave densities on Rd with common
support S and pi > 0; i = 1� � � � �m. Then on any compact subset of So the
representation

m∑
i

pifi�x� = exp�φ�x� + c � x �2�(2)

holds for a concave function φ on Rd and a constant c ≥ 0.
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Thus the proposition leads to a second-order version of the semiparametric
model (1), where φ is concave instead of monotone, and the quadratic cx2 takes
the place of the linear term cx. Further motivation for studying this model
derives from the direct and important extension to the multivariate setting
given in Proposition 2.

7. Proofs.

Proof of Lemma 1. The assertion is trivial if F is degenerate. Otherwise
F has a density f that is positive and continuous on �F−1�0��F−1�1��, where
F−1�0� �= inf	x� F�x� > 0
 and F−1�1� �= sup	x� F�x� < 1
. Thus the cdf Fd

of F�X−d� is given on [0, 1] by Fd�t� = P�X ≤ F−1�t�+d� = F�F−1�t�+d�,
which is continuously differentiable on �0�1�\	F�F−1�1�−d�
 and continuous
on (0, 1). Thus the distribution of F�X− d� is absolutely continuous on (0, 1)
(and possibly has an atom at 0). Differentiating Fd shows that the Radon–
Nikodym derivative is fd�t� = f�F−1�t�+d�/f�F−1�t��; t ∈ �0�1�. Taking logs
and using the fact that F−1�·� increases continuously from F−1�0� to F−1�1�
shows that fd is nonincreasing on (0,1) iff u �→ log f�u + d� − log f�u� is
nonincreasing on �F−1�0��F−1�1��. However, validity of this property for all
d > 0 is equivalent to log f being concave on �F−1�0��F−1�1�� as log f is
measurable.
Finally, if I ⊂ �0�1� is a closed interval, then M �= supt∈I

d
dt
F−1�t� =

supt∈I
1

f�F−1�t�� <∞ as f is positive and continuous on �F−1�0��F−1�1��. Thus
F−1�t� =Mt+φ1�t� for a nonincreasing function φ1 on I. Proposition 2 gives
the representation f�F−1�t�� = exp�φ�F−1�t�� + c�F−1�t��2�, t ∈ I, where φ is
concave and c ≥ 0. Thus log fd�t� = φ�F−1�t� +d� −φ�F−1�t�� + 2cdF−1�t� +
cd2. The stated increment of φ is nonincreasing in t as φ is concave. Substi-
tuting F−1�t� =Mt+φ1�t� in the term 2cdF−1�t� proves the lemma. ✷

Proof of Proposition 1. A simple argument [see, e.g., page 326 in
Robertson, Wright and Dykstra (1988)] shows that the MLE must be of the
form log f̂c

n�x� = φ̂�x� + cx, where φ̂�x� equals a constant φ̂i on �xi−1� xi�,
i = 1� � � � � n, and φ̂�x� = −∞ for x ∈ �−∞� x0� ∪ �xn� ∞�. Here xi �= X�i�,
i = 1� � � � � n, and x0 �= 0. Thus φ̂ is given by the solution of the optimization
problem

max
n∑

i=1
φ̂i

subject to φ̂1 ≥ φ̂2 ≥ · · · ≥ φ̂n and
n∑

i=1
exp�φ̂i�

∫ xi

xi−1
ect dt = 1�

Example 1.5.7 of Robertson, Wright and Dykstra (1988) shows that �exp�φ̂i�,
1 ≤ i ≤ n� is the antitonic regression of �g1� � � � � gn�with weights �w1� � � � �wn�,
where wi =

∫ xi

xi−1
ect dt = �ecxi − ecxi−1�/c and gi = 1/�nwi�, i = 1� � � � � n.

Theorem 1.4.4 in Robertson, Wright and Dykstra (1988), applied for antitone
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instead of isotone regression, gives exp�φ̂i� = mins≤i−1 maxt≥i
(∑t

j=s+1wigi/∑t
j=s+1wi

)
. But the last fraction equals c

n
�t − s�/�ecxt − ecxs� = c�Gn�yt� −

Gn�ys��/�yt − ys�, where yi �= ecxi , i = 0� � � � � n, and Gn is the empirical cdf
of the �yi� i = 1� � � � � n�. Hence exp�φ̂i�/c is again the least concave majorant
of an empirical cdf, but this time of Gn and evaluated at yi. The proposition
follows. ✷

Proof of Theorem 1. The proof employs some special properties of the
process V together with a covering argument and an exponential inequality.
See Shorack and Wellner [(1986), page 536] or Dümbgen and Spokoiny [(2000)
proof of Theorem 6.1] for related approaches to derive results on the modulus
of continuity of Brownian motion.
If follows from the definition of Vc�a� that a �→ Vc�a� is nondecreas-

ing and c �→ �Vc�a� − a� is nonincreasing (for any function Y on R). For
k ≥ 4 define the rectangle Rk �= �0�1� × �2k�2k+1� and the lattice Lk �=
	�i/�k2k��2k + j2k/k�� 1 ≤ i ≤ k2k� 0 ≤ j ≤ k − 1
 ⊂ Rk. Now consider
an arbitrary pair �a� c2/3� ∈ Rk and let �ã� c̃2/3� ∈ Lk be such that a ≤
ã� a − ã ≥ −1/�k2k�, and c ≥ c̃� c2/3 − c̃2/3 ≤ 2k/k. Then c2/3/�k2k� ≤ 2/k
and �c̃/c�2/3 ≥ c̃2/3/�c̃2/3 + 2k/k� ≥ 1 − 1/k. Hence for λ ∈ R the inequality
c2/3�Vc�a� − a� ≥ λ together with the above monotonicity properties of Vc�a�
imply c̃2/3�Vc̃�ã� − ã� ≥ �c̃/c�2/3c2/3�Vc�a� − a− 1/�k2k�� ≥ �1− 1/k��λ− 2/k�.
Now define the event

Ak �=
[
c2/3�Vc�a� − a� − �3/2 log c2/3�1/3

�3/2 log c2/3�−2/3 log log c > 16 for some �a� c2/3� ∈ Rk

]
�

and observe that 2k ≤ c2/3 ≤ 2k+1 entails �3/2 log c2/3�1/3 + 16�3/2 log c2/3�−2/3
log log c ≥ �3/2 log 2k�1/3 + 6�3/2 log 2k�−2/3 log log 2k + 2/k =� λk. Hence Ak

implies c̃2/3�Vc̃�ã� − ã� ≥ �1− 1/k��λk − 2/k� for some �ã� c̃2/3� ∈ Lk.
It is helpful now to take for Y the two-sided Brownian motion originat-

ing from the origin. Using Brownian scaling one sees that � �c2/3Vc�a�� =
� �V1�ac2/3��. The process a �→ V1�a� − a is stationary and the tail behavior
of its marginal density is given by fz�t� ∼ 44/3/2�t� exp�−2/3�t�3+21/3a1�t��/A
�as �t� → ∞�, where a1 ≈ −2�3381 and A ≈ 0�7022 [see Groeneboom (1989),
Corollary 3.4]. Let the random variable Z have density fZ. Then for L large
enough P��Z� > L� ≤ ∫∞

L Ct exp�−2/3t3�dt ≤ C
∫∞
L t2/L exp�−2/3t3�dt =

C/�2L� exp�−2/3L3� for some constant C. Together with #Lk = k22k one
obtains for k large enough,

P�Ak� ≤
Ck22k

�1− 1/k��λk − 2/k�
exp�−2/3�1− 1/k�3�λk − 2/k�3�

≤ Ck22k

�3/2 log 2k�1/3 exp�−2/3�1− 3/k��3/2 log 2
k + 18 log log 2k��
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≤ Ck22k

�3/2 log 2k�1/3 exp�log 2
−k+3 − 3 log log 2k�

≤ Ck2

�3/2 log 2k�10/3 ≤ C/k4/3�

Thus
∑

k P�Ak� < ∞. An analogous proof shows that this result is also true
with c2/3�Vc�a� − a� replaced by −c2/3�Vc�a� − a�, so the first Borel–Cantelli
lemma establishes the theorem in the case where Y is a two-sided Brownian
motion [note that supee≤c<C supa∈�0�1� c2/3�Vc�a� − a� <∞ for all C > ee by the
monotonicity properties of Vc�a�].
Now define Ṽc�a� �= argmaxt≥0	W�t� − c�t − a�2
, where W is two-sided

Brownian motion. The proof above shows that a.s. inf a∈�c−1/3�1� Vc�a� > 0 for c
large enough, whence Ṽc�a� = Vc�a� a.s. for a ∈ �c−1/3�1� and c large enough.
Thus, to prove the theorem for one-sided Brownian motion, it is enough to
prove it for Ṽc�a� with a ranging only over �0� c−1/3�. This proof proceeds just
as before, the important difference being the tail estimate: The two events
�argmaxt≥a	W�t�−c�t−a�2
−a > L� and �argmaxt≤a	W�t�−c�t−a�2
−a <
−L� are independent, have the same probability p�L� (asW�t� run backwards
from a is one-sided Brownian motion) and jointly imply �Vc�a� − a� > L. So
for a ≥ 0 one finds P��Ṽc�a� − a� > L� ≤ 2p�L� ≤ 2

√
P��Vc�a� − a� > L�,

and thus P�c2/3�Ṽc�a� − a� > L� ≤ C/
√
L exp�− 1

2
2
3L

3� for large enough L.
The additional factor 1

2 in the exponent is compensated for by the fact that
#�Lk ∩ ��0�2−k/2� × �2k�2k+1��� ≤ k22k/2, which gives

P

(
c2/3

(
Ṽc�a� − a

)
−
(
3
2 log c

2/3
)1/3

(
3
2 log c

2/3
)−2/3

log log c
> 32

for some �a� c2/3� ∈ [0�2−k/2]× [2k�2k+1]) ≤ C/k4/3�

Finally, for a Brownian bridge B write B�t� = W�t� − tW�1�, where W is
one-sided Brownian motion. Then VB

c �a� �= argmaxt∈�0�1�	B�t� − c�t− a�2
 =
argmaxt∈�0�1�	W�t�−c�t−a+W�1�/�2c��2
 =� VW

c �a−W�1�/�2c��. One checks
that VW

c �a −W�1�/�2c�� ≤ VW
c �a� for 0 ≤ a ≤ W�1�/�2c�, and then supa∈�0�1�

c2/3�VB
c �a� − a� ≤ supa∈�0�1+�W�1��/�2c�� c2/3�VW

c �a� − a� + �W�1��/c1/3. The claim
for the Brownian bridge now follows because the theorem holds for VW

c . The
restriction of the arg max to [0, 1] can be dealt with just as in the step from
two-sided to one-sided Brownian motion above. ✷

Proof of Theorem 2. The proof will make use of the following corollary
to Theorem 1, which is a consequence of the law of the iterated logarithm, as
well as the subsequent lemma. See Walther (2000a) for details of the proofs.



MULTISCALE MAXIMUM LIKELIHOOD 1311

Corollary 1. Let Y be as in Theorem 1 and p ≥ 0. Then

sup
c≥ee

sup
a∈�−p�1+p�

c2/3�Vc�a� − a� − �log c�1/3 ∨ pc2/3

�log c�−2/3 log log c <∞ a.s.

Lemma 2. Let A ⊂ B be compact intervals on the real line, and f�g�A→ R
be upper semicontinuous. For c > 0 set Uf�c� x� �= sup	t ∈ A� f�t� − c�t− x�2
is maximal
 and :f�c� �= supx∈B �Uf�c� x� − x�. Then for all c > 0,

�:g�c� −:f�c�� ≤ 2
√
�f− g�∞/c�

To fix notation, note that if theXi� i = 1� � � � � n are iid f with cdf F on [0, l],
then the Yi �= ecXi have density gc�y� = f� log y

c
�/cy with cdf Gc�y� = F� log y

c
�

on Dc = �1� ec�. Fn and Gc
n denote the empirical cdf of the Xi’s and Yi’s,

respectively, and f̂c
n and ĝc

n are defined in Proposition 1.
First let f be the uniform density on �0�1�, so gc�y� = 1

cy
on Dc = �1� ec�.

The central step of the proof consists of employing Theorem 1 and Corollary 1
to show the following multiscale result for the Grenander estimator ĝc

n:

limsup
n→∞

sup
c∈
[
een−1/2� n

log10n

] sup
y∈Dc�n

�√nc/2�2/3y�ĝc
n�y�−gc�y��−�log�√nc/2��1/3

�log�√nc/2��−2/3log log�√nc�(3)

≤K a.s.�

where Dc�n �= �1 + lc� n� e
c�, the random variable K is the a.s. finite value

asserted by Corollary 1, and one can take lc� n = 8�K ∨ 1� log log�√nc�×
� c

n log2�√nc/2� �1/3. The assertion of the theorem follows from 3��f̂c
n�1/3� log yc �−1� ≤

f̂c
n� log yc �−1 = cy�ĝc

n�y�−gc�y�� together with (3), and by proceeding similarly
with 3�1− �f̂c

n�1/3�··�� using the companion result to (3) for −�ĝc
n�y� −gc�y��.

To prove (3), note that Gc�y� = log y
c
on Dc and gc�y� = 1

cy
has range Rc �=

� 1
cec
� 1
c
�. For a > 0 define

Un�a� �= sup
{
y ≥ 1� Gc

n�y� − ay is maximal
}

= sup
{
y ∈ Dc�

√
n�Gc

n�y� −Gc�y�� + √n�Gc�y� − ay� is maximal}
[note that Un�a� ∈ Dc; see the picture in Groeneboom (1985), page 541]. The
dependence of Un on c will be suppressed. Setting y = Gc−1�u� in the above
definition, one gets

Ũn�a� �= Gc�Un�a��
= sup	u ∈ �0�1�� IUn�u� +

√
n�u− aGc−1�u�� is maximal
�

(4)

where IUn denotes the uniform empirical process. As the Grenander estimator
is the left-continuous slope of the least concave majorant of the empirical cdf,
one has

ĝc
n�y� ≤ z ⇔ Un�z� ≤ y a.e. �y� z�(5)
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[see (2.2) in Groeneboom (1985)]. Set x �= �log�√nc/2��1/3 + �K + δ�×
�log�√nc/2��−2/3 log log�√nc�, where δ is an arbitrary positive number, and
observe that for a generic y ∈ Dc�n and a �= 1

cy
�(√

nc/2�2/3y�ĝc
n�y� −

1
cy

)
≤ x

⇔ ĝc
n�y� ≤

1
cy
+ xn−1/3�c/2�−2/3

y

⇔ Un

(
1
cy
+ xn−1/3�c/2�−2/3

y

)
≤ y a.e. y by �5�

⇔ Ũn�a�1+ x�4c/n�1/3�� ≤ Gc
( 1
ac

)
by �4�

⇔ Ũn�a�1+ x�4c/n�1/3�� − ua ≤
1
c
log��1+ x�4c/n�1/3��

where ua �= − 1
c
log�ac�1+ x�4c/n�1/3��; the dependence of ua on c and n will

be suppressed. Thus (3) will follow once we show that a.s.,

sup
a� 1

ac∈Dc�n

(
Ũn�a�1+ x�4c/n�1/3�� − ua

)
≤ 1

c
log�1+ x�4c/n�1/3�(6)

for all c ∈ �een−1/2� n

log10 n
�, if n is large enough.

The plan is to show (6) by applying Theorem 1 and Corollary 1 to an
approximation to Ũn obtained by replacing the empirical process and the
function

√
n�u − aGc−1�u�� by a Brownian bridge and a parabola, respec-

tively, and then to incorporate the approximation error into this result. To
this end, set Ũ′

n�a� �= sup	u ∈ �0�1�� Bn�u� −
√
n c
2�u − ua�2 is maximal
,

where �Bn�n ∈ IN� is a sequence of Brownian bridges constructed on the
same probability space as IUn such that �IUn − Bn�∞ = O�log2 n/√n� a.s.
[see Komlós, Major and Tusnády (1975)]. Corollary 1 gives

sup
a∈Rc�n

�√nc/2�2/3�Ũ′
n�a� − ua�

≤ �log�√nc/2��1/3 +K�log�√nc/2��−2/3 log log�√nc�
(7)

a.s. for all c ∈ �een−1/2� n/ log10 n�, if n is large enough (depending only on K).
Here the set Rc�n can be chosen such that �ac�−1 ∈ Dc�n implies a ∈ Rc�n,
which in turn implies ua ≤ 1; see Walther (2000a) for details.
Now we account for the error incurred by employing Ũ′

n instead Ũn. Retrac-
ing the proof of Theorem 2.1 in Groeneboom, Hooghiemstra and Lopuaä (1999)
for our special case of the density gc and employing some straightforward
improvements for this case, one finds P�n1/3�Un�a� − 1

ac
� > z� ≤ 2 exp�−z3/

24c�ac�−3�. The first Borel–Cantelli lemma yields �Un�a� − �ac�−1� =
O��log n�1/3/a�c√n�2/3� a.s. uniformly in c > 0 and a ∈ Rc. Together with the
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concavity ofGc one deduces �Ũn�a�−Gc��ac�−1�� = O� �log n�1/3�c√n�2/3 � a.s. uniformly in
c ∈ �0� n/ log2 n� and a ∈ Rc. We now plug into this result ā �= a�1+x�4c/n�1/3�
instead of a to obtain [note that Gc��āc�−1� = ua]

�Ũn�a�1+ x�4c/n�1/3�� − ua� = O

( �log n�1/3
�c√n�2/3

)
a.s.(8)

uniformly in c ∈ �een−1/2� n/ log2 n� and a ∈ Rc�n; see Walther (2000a) for the
details when ua < 0.
On �0�1��Gc−1�u� = ecu. A Taylor series expansion gives

√
n�u − a�1 +

x�4c/n�1/3�ecu� = −√nc/2�u−ua�2−
√
nc2

6 e
cξ�u−ua�3 plus terms not involving

u, where ξ lies between 0 and u−ua. For u in the neighborhood of ua given by
(8), the term

√
nc2

6 e
cξ�u−ua�3 is O� log n√

n
�, uniformly in c ∈ �0� n/ log n� and a ∈

Rc�n. Together with (4), (8) and the fact that argmaxu∈�0�1�	IUn�u�−
√
nc/2�u−

ua�2
 also falls into the neighborhood of ua given by (8), one concludes that
one can write Ũn�a�1 + x�4c/n�1/3�� = sup	u ∈ �0�1�� IUn�u� −

√
nc/2�u −

ua�2 + dn�a� c�u� is maximal
, where �dn�a� c�∞ = O� log n√
n
� a.s., uniformly in

c ∈ �een−1/2� n/ log2 n� and a ∈ Rc�n. Together with Lemma 2 this yields

� supa∈Rc�n
�Ũn�a�1+x�4c/n�1/3��−ua�−supa∈Rc�n

�Ũ′
n�a�−ua�� = O�

√
log2 n/nc�

a.s. uniformly in c ∈ �een−1/2� n/ log2 n�. Now (6) and hence (3) follow from (7).
Finally, the case of a general f ∈ H0 can be dealt with by appropriate

modifications to the above proof, using the fact that F is concave, as well as
some additional technical arguments. The details are omitted. ✷

Proof of Theorem 3. For part (a), set f0 ≡ 1�0�1�. We will consider a uni-
form prior on the alternatives fj�k = f0+φj+ψk�1 ≤ j� k ≤m, where φj�ψk

andm are defined as follows: set b �= 2dn�1+3dn�/c and φ�x� �= cb
exp�cb�−1e

cx−1
on �0� b�� φ ≡ 0 on �0� b�c. Now define for j ≤ m �= $ 12b%� φj�x� �= φ+�x −
1
2 − �j − 1�b� and ψj�x� �= −φ−�x − �j − 1�b�. So for n large, φj looks like
c�x− 1

2 − �j− 1
2�b� on � 12 + �j− 1

2�b� 12 + jb�, and ψj looks like c�x− �j− 1
2�b�

on ��j−1�b� �j− 1
2�b�. There are m =m�c� n� & �n/ log n�1/3φj’s supported on

[0, 1]. The dependence of φj�ψj� fj�k� b and m on c and n will be suppressed.

One readily checks that
∫ b
0 φ = 0 and �φ�b� + 1�1/3 − �φ�0� + 1�1/3 ≥ 2/3dn,

whence fj�k ∈Hc and δ�fj�k�H0� ≥ dn for 1 ≤ j� k ≤m. We will show

1
m2

∑
1≤j� k≤m

e>
n
j�k → 1 in Pn

0 -probability as n→∞�(9)

where Pn
j�k denotes the probability measure pertaining to a sample �X1� � � � �

Xn� drawn independently from fj�k, and >
n
j�k =

∑n
i=1 log�1+φj�Xi�+ψk�Xi��

denotes the log-likelihood ratio. Hence if 	τn�Xn�� n ≥ 1
 is any sequence of
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tests with level αn → α, then for arbitrary ε > 0,

sup
f∈Hc� δ�f�H0�≥dn

Pn
f�τn = 0� ≥

1
m2

∑
1≤j� k≤m

Pn
j�k�τn = 0�

≥ En
0

(
1�τn = 1� +

1
m2

∑
1≤j� k≤m

e>
n
j�k1�τn = 0�

)
− αn

≥ �1− ε�Pn
0

(
1
m2

∑
1≤j� k≤m

e>
n
j�k ≥ 1− ε

)
− αn�

So assertion (a) of the theorem follows from (9).
Set Sn

j �=
∑n

i=1�φj�Xi�−E0φj�Xi��− 1
2

∑n
i=1E0φ

2
j�Xi� and define Tn

j anal-
ogously with φj replaced by ψj. We will prove (9) by showing

En
0 �e>

n
j�k − eS

n
j+Tn

k � → 0 uniformly in j� k�(10)

1
m2

∑
1≤j� k≤m

eS
n
j+Tn

k → 1 in Pn
0 -probability�(11)

As for (10), fix j and k and use a Taylor expansion to write
∑n

i=1 log�1 +
φj�Xi� +ψk�Xi�� =

∑n
i=1�φj�Xi� +ψk�Xi�� − 1/2

∑n
i=1�φj�Xi� +ψk�Xi��2 +∑n

i=1Ri. Set Yi �= 1/2�φj�Xi� + ψk�Xi��2 − 1/2Ej�k�φj�Xi� + ψk�Xi��2 −
Ri +Ej�kRi. Then Ej�kYi = 0 and �Yi� ≤ 6d2n for all i. Hoeffding’s inequal-
ity gives supn E

n
j�k exp�2

∑n
i=1Yi� = supn

∫∞
0 Pn

j�k�2
∑n

i=1Yi ≥ log t�dt ≤ 1 +
supn

∫∞
1 exp	−2�log t�2/�144nd4n�
dt < ∞ as supn nd

4
n < ∞. Further, �Ej�k

�φj�Xi�+ψk�Xi��2−E0φ
2
j�Xi�−E0ψ

2
k�Xi�� ≤ 3

c
d4n and Ej�kRi ≤ 2d4n. Hence

sup
n

En
j�k

(
eS

n
j+Tn

k−>n
j�k
)2

= sup
n

En
j�k exp

{
2

n∑
i=1

Yi

}
× exp

{ n∑
i=1
�Ej�k�φj�Xi� + ψk�Xi��2 −E0φ

2
j�Xi�

− E0ψ
2
k�Xi� − 2Ej�kRi�

}
<∞

(12)

[use E0φj�Xi� = −E0ψk�Xi�]. It is readily seen that this bound holds uni-
formly in j� k. Next, Varnj�k�Sn

j +Tn
k − >n

j�k� = Varnj�k�
∑n

i=1Yi� ≤ 36nd4n → 0,
as �Yi� ≤ 6d2n. Hence Sn

j + Tn
k − >n

j�k → 0 in Pn
j�k-probability uniformly in

j� k. Together with the uniform integrability condition (12), (10) follows by a
standard argument, and by employingEn

0 �e>
n
j�k−eSn

j+Tn
k � = En

j�k�1−eS
n
j+Tn

k−>n
j�k �.

To prove (11) we will show 1
m

∑m
j=1 e

Sn
j → 1 in Pn

0 -probability. The proof
with Tn

j in place of S
n
j is analogous. Note that the Sn

j are not independent.
We will employ the following refinement of a conditioning idea which was
used by Korostelev and Nussbaum (1995) in a related situation: Partition
� 12 �1� into �m/nε� & n1/3−ε/�log n�1/3 intervals Ink� k = 1� � � � � �m/nε�, of equal
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length, where the small ε > 0 will be specified later. Denote by νk the ran-
dom number of Xi’s that fall into Ink. A standard calculation shows that

the event �n �= ��νk − nε

2mn� ≤
√

nε

m
nnε/3 for all k = 1� � � � � $m/nε%� satisfies

limn→∞Pn
0��n� = 1. Under Pn

0 and conditional on the vector ν, the collections
of Xi’s pertaining to different I

n
k are independent, and within each Ink the

Xi’s are iid uniform. Each Ink contains the supports of a block of & nε consec-
utive φj’s. Thus the random variables 1

nε

∑
j∈block k e

Sn
j � k = 1� � � � � $m/nε%, are

Pn
0 -conditionally independent given ν. The assertion will follow once we prove
1

m/nε

∑m/nε

k=1 �1/nε∑
j∈block k e

Sn
j � → 1 in conditional Pn

0 -probability given ν, uni-
formly in ν ∈ �n. The proof of Corollary 10.1.2 in Chow and Teicher (1988)
shows that it is enough to prove

En
0

(
eS

n
j �ν)→ 1 uniformly in j ∈ 	1� � � � �m
 and in ν ∈ �n�(13)

En
0

(
1
nε

∑
j∈block k

eS
n
j · 1

(
1
nε

∑
j∈block k

eS
n
j >

m

nε
δ

)
�ν
)
→ 0

uniformly in k ∈ 	1� � � � � $m/nε%
 and in ν ∈ �n� for every δ > 0�

(14)

Lemma 3. Let t ≥ 0. Then

En
0

(
etS

n
j �ν) = exp(C3

6c
log n · �t2 − t� + o�1�

)
�

uniformly in j ∈ 	1� � � � �m
 and in ν ∈ �n. Here C is the constant given in the
statement of the theorem.

The proof of the lemma is based on a Taylor series expansion and standard
inequalities. See Walther (2000a) for details. Now (13) follows by setting t = 1
in the lemma. Let j be an index in block k. The expression in (14) is not larger
than En

0�eS
n
j · 1�eSn

l > m
nε δ for some l ∈ block k�ν� ≤ ∑

l∈block k E
n
0�eS

n
j · 1�eSn

l >
m
nε δ��ν� ≤ ∑

l∈block k E
n
0�eS

n
jetS

n
l �ν�/�m

nε δ�t for any t > 0. As the conditional
Pn
0 -distribution of e

Sn
j is the same as that of eS

n
l , we get En

0�eS
n
jetS

n
l �ν� ≤

En
0�e�1+t�S

n
j �ν� by Cauchy–Schwarz. Setting t =

√
2c/C3 − 1 > 0 and apply-

ing the lemma shows that the above sum is not larger than nε exp�C36c log n ·
�t + 1�t�n−�1/3−ε�t�log n�t/3 ·O�1� = n�

√
C3/�2c�−1�t/3+ε�1+t� · �log n�t/3 ·O�1� → 0

for ε small enough, as
√
C3/�2c� − 1 < 0. The proof of (a) is complete.

The proof of part (b) will make use of the following lemma.

Lemma 4. Let g be a nonincreasing density on �1� z� and set g−1�a� �=
inf	y� g�y� < a
 and Un�a� �= sup	y ≥ 1� Gn�y� − ay is maximal
. Assume
there exist y1 ∈ �1� z� and t > 0 such that g�y1� > 0 and g�y� ≥ g�y1�y1y
for y ∈ �y1�1 − t�� y1 + t� ⊂ �1� z�. Then for all x ∈ �0� n1/3t�1 + z�� and
a �= g�y1��1+ xn−1/3� the inequality

P
(
n1/3�Un�a� − g−1�a�� > x

) ≤ exp�−Kg�y1�x3�
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holds for a constant K that does not depend on g. One can take K = �1 +
z�−3�2�z+ t��−1��1+ t��z�1+ t� + 1��−2.

The lemma is a generalization of Theorem 2.1 of Groeneboom, Hooghiem-
stra and Lopuaä (1999) in that g is not required to be smooth and the expo-
nential bound is uniform in g apart from the factor g�y1�. In turn, the lemma
requires the link between a and x and that g satisfies the stated inequality.
See Walther (2000a) for a proof of the lemma.
Now let f ∈Hc such that δ�f�H0� ≥ dn. Then (1) implies that the function

gc, defined via f at the beginning of the proof of Theorem 2, satisfies for all
1 ≤ y1 < y2 ≤ ec�

gc�y2� − gc�y1� = f

(
log y2

c

)
1
cy2

− f

(
log y1

c

)
1
cy1

≤ f

(
log y1

c

)(
y2
y1

1
cy2

− 1
cy1

)
= 0�

So gc is nonincreasing. As δ�f�H0� ≥ dn there exist 0 ≤ x1 < x2 ≤ 1 such
that f1/3�x2� − f1/3�x1� = sups<x2�f1/3�x2� − f1/3�s�� ≥ 2/3dn. Using (1) one
readily deduces

f�x1� ≥
(

2/3dn

exp�c/3� − 1
)3

and y2 − y1 ≥
�log n�1/5
f1/3�x1�

n−1/3�(15)

where yi �= ecxi .
gc satisfies the condition of Lemma 4: By the definition of x1 we have

gc�y� = f� log y
c
� 1
cy

≥ f� log y1
c
� 1
cy

= gc�y1�y1/y for y ∈ �1� y2�. By (15) the
last interval contains �y1�1− tn�� y1+ tn� ⊂ �1� ec�, where tn = �log n�1/6n−1/3/
f1/3�x1�, provided x1 ≥ 2tn/c, which will be assumed from now on (other-
wise one has to take x1 �= 2tn/c and use an additional argument). Applying
Lemma 4 with z �= ec and x = x�f�n� �= �log n�1/6/f1/3�x1� and using the
monotonicity of gc gives

Pf

{
Un

(
gc�y1��1+ xn−1/3�

)
≤ y1 + xn−1/3

}
≥ 1− exp�−K1

√
log n��(16)

where K1 > 0 does not depend on f�n or x1 [as tn ≤ 1 by (15)], and Un is
taken with respect to the random variables Yi �= ecXi . Using b1/3 − a1/3 ≤
1
3�b− a�a−2/3 for a� b > 0 we get

Pf

{(
n

4a

)1/3((
f̂c
n

)1/3( log�y1+xn−1/3�
c

)
−f1/3�x1�

)
≤�logn�1/64−1/3�2ec+1�/3

}
≥Pf

{(
n

4c

)1/3(
f̂c
n

(
log�y1+xn−1/3�

c

)
−f�x1�

)
f−2/3�x1�

≤�logn�1/64−1/3�2ec+1�
}

(17)
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≥Pf

{
ĝc
n�y1+xn−1/3��y1+xn−1/3�−gc�y1�y1
≤gc�y1��xn−1/3+y1xn

−1/3+x2n−2/3�}
as y1xn

−1/3+x2n−2/3≤2ecxn−1/3 by �15�
=Pf

{
ĝc
n�y1+xn−1/3�≤gc�y1��1+xn−1/3�}

≥1−exp
(
−K1

√
logn

)
by (16) and (5). Similarly, one finds

Pf

{(
n

4c

)1/3((
f̂c
n

)1/3( log�y2 − x′n−1/3�
c

)
− f1/3�x2�

)
≥ −K2�log n�1/6

}
≥ 1− exp

(
−K3

√
log n

)
�

(18)

where x′ �= �log n�1/6/f1/3�x2�. Set ε �= C−�2c�1/3 > 0, then �n/�4c��1/3 32�f1/3
�x2� − f1/3�x1�� − �log�√nc/2��1/3 = �1/�4c��1/3��2c�1/3 + ε��log n�1/3 − �1/2
log n + log c/2�1/3 ≥ ε/�8c�1/3�log n�1/3 for n large enough, depending only on
c. Together with (17), (18) we obtain for every constant l,

Pf

{(
n

4c

)1/3 3
2

((
f̂c
n

)1/3( log�y2 − x′n−1/3�
c

)

−�f̂c
n�1/3

(
log�y1 + xn−1/3�

c

))
−
(
log

√
nc

2

)1/3
> l

}
→ 1�

the convergence not depending on f�y1 or y2. As y1 + xn−1/3 < y2 − x′n−1/3

by (15) and the critical value ln�1− α� is bounded by Theorem 2 and Fatou’s
lemma, one obtains Pf�φn�Tn� = 1� → 1 uniformly in 	f ∈ Hc� δ�f�H0� ≥
dn
, proving (b).
Note that the crucial feature of the asymptotically minimax adaptive test

lies in comparing �n/�4c��1/3Tn�c� to �log�
√
nc/2��1/3 across scales c. The exact

choice of the denominator of the rescaling for the test statistic (cf. Theorem 2)
is less important. The effort that went into deriving the rescaling sequence in
the denominator in Theorem 2 reflects the desire to give equitable weights to
all scales. ✷

Proof of Theorem 5. To avoid technicalities the main arguments of the
proof will be sketched. Denote by f andF the density and cdf of theXi, respec-
tively. The proof of Lemma 1 shows that if the cdfG has the same support asF
and a density g that is positive and continuous in its interior, then G�Xi−d�
has Radon–Nikodym derivative f�G−1�t� + d�/g�G−1�t��� t ∈ �0�1�. If G = F,
then the derivative is nonincreasing, again by the proof of Lemma 1. We will
consider the least favorable case where F is the cdf of U�0�1�, and the above
Radon–Nikodym derivative equals 1�0�1−d��t�. To see how taking the sup over
d > 0 is incorporated into the statement of Theorem 2, note that if Xi > d
then F�Xi−d� is just a shift ofXi by an amount d. Thus the statistic looks at
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a subset of the same stretches of data considered in the context of Theorem 2,
and this fact is readily incorporated into equation (4). When employing F̃n in
place of F note that the Radon–Nikodym derivative f�F̃−1

n �t�+d�/f̃n�F̃−1
n �t��

differs from the nonincreasing function f�F̃−1
n �t�+d�/fn�F̃−1

n �t�� by not more
than O��log n/n�2/5� a.s. as � f− f̃n �= O��log n/n�2/5� a.s. [and in the case of
a general log-concave f using the fact that f is bounded above and away from
0 on �F−1�ε��F−1�1 − ε��]. By Theorem 3(a) and the proof of Theorem 3(b),
the statistic will not be sensitive to a perturbation of order �log n/n�2/5 if
c' �log n/n�1/5. ✷
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