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Abstract

Drug action is inherently multiscale: it connects molecular interactions to emergent properties at 

cellular and larger scales. Simulation techniques at each of these different scales are already 

central to drug design and development, but methods capable of connecting across these scales 

will extend understanding of complex mechanisms and the ability to predict biological effects. 

Improved algorithms, ever-more-powerful computing architectures and the accelerating growth of 

rich datasets are driving advances in multiscale modeling methods capable of bridging chemical 

and biological complexity from the atom to the cell. Particularly exciting is the development of 

highly detailed, structure-based, physical simulations of biochemical systems, which are now able 

to access experimentally relevant timescales for large systems and, at the same time, achieve 

unprecedented accuracy. In this Perspective, we discuss how emerging data-rich, physics-based 

multiscale approaches are of the cusp of realizing long-promised impact in the discovery, design 

and development of novel therapeutics. We highlight emerging methods and applications in this 

growing field, and outline how different scales can be combined in practical modelling and 

simulation strategies.

Introduction

Biomolecular simulations are essential tools for drug design and development, and for our 

understanding of the molecular bases of disease1,2. Simulations provide a ‘computational 

microscope’ to reveal biological mechanisms in atomic detail.3 They can reveal cryptic drug 

binding sites4 and predict important biological properties such as drug resistance5. 

Molecular dynamics (MD) simulations are the most widely used biomolecular simulation 

method: they apply empirical molecular mechanics (MM) force fields and can now be used 

to explore in atomic detail time-dependent phenomena at the scale of viral capsids6 even 

over microseconds7, given sufficient computational power. MM methods are increasingly 

applied routinely in structure-based drug design, e.g. for free energy calculations to predict 
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binding affinities of pharmaceutical leads to their targets, accelerating drug development8. 

Their importance and algorithmic efficiency (resting on years of development by many 

pioneers) have made atomistic molecular dynamics simulations one of the largest scientific 

consumers of computing time globally. These methods (and Monte Carlo simulations) can 

be applied in rigorous free energy calculations of relative binding affinities of small 

molecules to protein targets. However, computational demands in terms of the sizes of 

systems and timescales limit the use of MD methods, but at the same time, the relatively 

simple potential functions used to achieve computational efficiency somewhat limit their 

range of application and accuracy. Different types of simulation methods are therefore 

required for different types of problems. Each of these different simulation methods has 

strengths, weaknesses and practical limitations in terms of the size of system that can be 

simulated, length of simulation that can be achieved, and type of phenomena that can be 

modeled. For example, various types of coarse-grained methods allow simulations on large 

spatiotemporal scales phenomena, including protein-protein interactions, protein orientation 

in membranes and packaging of nucleic acids. Simple molecular docking approaches offer a 

limited level of detail of molecular interactions, conformational flexibility and solvation in 

favor of increased computational efficiency for the rapid identification of potential leads 

from large databases. At the other extreme of computational molecular science, quantum 

chemical methods can be used to model chemical reactions (e.g., the mechanisms of enzyme 

catalysis) and calculate spectra. First principles (ab initio) electronic structure techniques for 

the structure optimisation of proteins9, and atomistic simulations to investigate dynamics of 

systems of appreciable size and complexity over nano- to microsecond 1011 and even 

millisecond timescale12 (for smaller systems) exemplify the upper limits of current 

capability for atomic and molecular methods13.

Multiscale modelling approaches are emerging in drug design with potentially enormous 

impact on human health. Drugs act at the molecular scale but obviously have macroscopic 

effects, so we must consider multiple length scales to understand how they exert their 

effects. The dynamic nature of drug targets and the breathtaking complexity of biological 

systems challenge our scientific understanding from the level of molecular structure all the 

way up to cellular organization (and beyond). Each level provides challenges and fascination 

in its own right, but a holistic approach requires an understanding of how changes at 

different levels are linked together and influence each other. No single simulation method 

can address all of the many questions involved, nor explain how phenomena at various 

spatiotemporal scales are coupled and linked. Multiscale simulation methods aim to model 

and analyse the connections across scales, e.g. how changes on one scale lead to changes at 

another. An obvious challenge is the integration of data and simulations across lengthscales 

and timescales. Current multiscale approaches are potentially capable of overcoming these 

limits by directly combining different levels of description, bringing a new perspective to 

drug discovery.

The award of the 2013 Nobel Prize in Chemistry to Karplus, Levitt, and Warshel for their 

seminal contributions in developing multiscale methods for modeling complex biochemical 

systems recognized the essential role of theoretical and computational methods as a direct 

and necessary complement to experiment, and the birth of multiscale molecular modelling in 

biochemistry14. Today, nearly half a century after the advent of these methods, multiscale 
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simulations offer the tantalizing possibility of understanding biology in intricate and 

exquisite detail. For example, multiscale modelling offers an understanding of how a 

chemical reaction occuring at an enzyme active site can affect other proteins and extend 

through the hierarchy of biological complexity - from subcellular neighborhoods, to cells, 

and tissues. The power of multiscale methods lies in the possibility to create a fluid 

knowledge landscape synthesizing disparate modelling and experimental data at different 

spatiotemporal scales. Practical insight will depend on combining diverse approaches, 

linking chemistry at the atomic scale with biological function at the cellular and higher 

levels to elucidate the mechanisms of emergent phenomena, and doing so in a way that 

circles back to drive drug design and development.

[H3] Unleashing the potential of emerging experimental data sources

Technological innovations for the in situ acquisition of biological structural data, including 

advances in direct detector and phase plate technologies15 for X-ray beamlines and electron 

microscopes (EMs), give access to new and vastly more detailed information across a range 

of previously inaccessible scales and, in some instances, time resolutions (Figure 1). 

Multiscale computational approaches are needed to fill in and connect datasets, which 

include data obtained from: serial block wide-field EM illumination of tissue and cellular 

ultrastructure to within tens of nanometers isotropic resolution for biologically real 

(endogenous, not cultured) samples16; cryoelectron tomography (cryoET) to localize 

supramolecular complexes and yield glimpses into cells with molecular resolution ( ~2–4 

nm resolution in individual tomograms),17–19; soft x-ray tomography to image whole 

hydrated (not stained or frozen) cells in their near-native state20; near-atomic cryoelectron 

microscopy (cryoEM)19; small angle x-ray (SAXS) and neutron scattering (SANS); x-ray 

crystallography, diffuse scattering for an ensemble-based view of x-ray structures21; x-ray 

free electron lasers 22, time resolved x-ray 23 and neutron diffraction24. In parallel, ongoing 

innovations in biophysical techniques such as NMR spectroscopy (e.g.,used for intein 

protein segmentation25) and hydrogen-deuterium exchange mass spectrometry (HDX-MS)26 

continue to enrich our understanding of the dynamics and interactions of molecular and 

macromolecular ensembles. Interpretation, refinement and understanding of the high-

resolution data from all these techniques challenge current modelling approaches. In 

addition all these new data call for the development of models and provide tests for their 

validation.

[H3] The coming fusion of simulation and data science

The convergence of improved and increased biophysical data, together with impressive 

algorithmic advances, occurs against a backdrop of an ever-expanding, increasingly diverse 

and more capable computing landscape. Porting simulation methods to the growing range of 

novel hardware architectures (e.g., graphics processing units (GPUs), advanced RISC 

machine (ARM)-based high performance computing (HPC), cloud computing, petascale 

HPC machines, and the emerging horizon of exascale computing27) is extending the scope 

and range of simulations. The rapid growth of data science also offers transformative 

possibilities, not only in the manipulation of simulation data and linking across 

spatiotemporal scales, but also in its seamless integration with experimental data. Examples 

include the systematic development of Jupyter notebooks28 and automated workflows29,30, 
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improved data sharing21, integration31, and analytics20. These developments are driving 

cultural shifts towards improved reproducibility, openness, sharing, robustness and, 

ultimately, predictive ability of the computational approaches discussed in this Perspective.

[H3] Potential applications of multiscale methods in drug discovery

Multiscale methods span two or more spatial or temporal domains, or combine different 

types of treatment, aiming to give insight across scales. We note that the concept of 

multiscale modeling has been developed in several disciplines. Here, we focus on multiscale 

simulation methods that relate to the molecular level, that are based on fundamental physics, 

and are potentially relevant to drug discovery. Multiscale techniques can be constructed in 

different ways, depending on how different levels of description are combined or coupled, 

and how information is passed between the different levels34. Multiscale methods can 

combine different levels of theory or resolution, e.g., combining MD with Brownian 

dynamics (BD) to access long timescales and larger lengthscales (MD/BD35) or combining 

quantum mechanics (QM) with molecular mechanics (MM) in (QM/MM36) to study 

electronic properties in a single simulation. Another class of multiscale methods comprises 

the hierarchical integration of sets of approaches carried out at different scales, which leads 

to one ultimate cohesive model. In this case, the final result is obtained through the 

interchange of key parameters across model scales37– 40, even though the simulation 

platform itself may not directly interface two distinct physical regimes. A related form of 

multiscale modeling is based on the connection (and synthesis) of different types of 

biological, chemical, structural and biophysical data — a particularly exciting approach, 

given technological advances across a spectrum of experimental techniques. The 

development of increasingly accurate integrative models as an initial framework on which 

multiscale simulation methods subsequently operate presents a powerful emerging paradigm 

for drug discovery.

The study of multiscale methods for drug design is a wide and rapidly growing field; it is 

rich in potential but yet to realise its enormous promise. The diversity of approaches and 

applications means that we can only cover a few relevant examples in this Perspective to 

indicate the vast potential of this field. Here, we focus on some recent exciting 

methodological advances, as well as challenges for development and applications that 

highlight the promise of simulations to bridge scales from atoms to cells.

[H1] Cellular to Subcellular—The ongoing surge of high-resolution structural data is 

providing detailed views into many previously inaccessible biological compartments (e.g., 

the cell nucleus) and enabling the development of correspondingly realistic molecular 

models of cells and subcellular organelles. New tools such as CellPack12, which 

interoperates with CellView41 and LipidWrapper13, can be used to model complex 

biomolecular systems at the mesoscale, reaching atomic resolution. Combining different 

datasets across scales of resoultion enables direct multiscaling from the standpoint of data 

integration (Box 1). The accessible spatial range now reaches the micron dimension, with 

essentially no limits on the complexity of the constituents of the system under investigation. 

A key advance is the ability to develop many ensembles of such models compatible with 

multiple sources of experimental data (e.g., proteomics, structural data from x-ray through 
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cell tomography, etc.). This allows researchers to modify the construction of a system (for 

example, changing the expression level of a particular protein, introducing a structural 

perturbation to membrane or organelle shape, varying the molecular composition of viral 

strains (reassortment), or adding post-translational modifications) in order to test consistency 

against different types of data and predict the effects induced by these changes on the 

system.

Once structural models are assembled, researchers can explore biological heterogeneity at 

the molecular level, and statistical distributions of biological and chemical components 

within these complex environments. Monte Carlo based methods such as MCell, 7 and 

continuum-based methods such as SubCell, 6 enable researchers to investigate biological 

phenomena without explicitly accounting for molecular (particle) collision and interaction. 

Reaction-diffusion master equation (RDME) methods combine network- and particle-based 

approaches on discretized grids/lattice sites; in doing so, these approaches allow the 

development of whole-cell based models of drugs and their dynamical interactions with 

receptors. Two exemplary GPU-accelerated RDME programs are: Lattice Microbe 46–48, 

which splits the reaction and diffusion operators to allow efficient models of in vivo 

crowding on particle diffusion; and ReaDDyMM49, which combines reactions at lattice sites 

with particle-particle interactions at off-lattice sites, as determined by MD. Another 

promising multiresolution method — lattice Boltzmann MD (LBMD) — employs a mixed 

approach in which (dynamic) proteins are represented as coarse-grained particles and the 

solution through which the proteins diffuse is represented probabilistically, such that 

multiple physical elements (including hydrodynamic and thermodynamic forces) can be 

included50.

Particle-based approaches range from coarse-grained (each particle represents a group of 

atoms, from part of an amino acid residue to a whole protein) to fully atomistic (every atom 

represented individually) representations of the molecular constituents. Although coarse-

grained techniques offer the possibility of simulating the behavior of larger systems on 

longer time-scales compared to the fully atomistic approaches, the choice of particle 

representation (i.e., how atoms are grouped) and the related force field development still 

presents challenges51. Atomic details are neglected entirely in coarser models, such as 

fluctuating finite element analysis (FFEA). In this approach, the macromolecules are 

essentially treated as density maps, subject to thermal fluctuations within a continuum 

medium that encodes the material properties, such as shear and elastic. Lower resolution 

data, such as SAXS or cryoEM can be directly linked to FFEA, effectively bypassing the 

requirement of starting with a detailed molecular model52. Such approaches can be essential 

when, for example, higher resolution structural data for system components is not available, 

or not all of the molecular components in a particular system are known.

Particle-based simulations in which the molecular components are represented with atomic 

detail —rigid-body BD and fully-flexible atomistic MD simulations — are proving ever 

more capable 6,53–55. Rigid-body BD uses fully atomistic representations of molecules, but 

neglects the molecular internal degrees of freedom. In this representation, rigid molecules 

(e.g. proteins) are free to tumble and rotate as they diffuse relative to each other in a viscous 

medium (with water represented as a continuum solvent) and subject to random motion 
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according to the fluctuation-dissipation theorem. The intermolecular forces that govern the 

interaction and collisions of the particles are electrostatic in nature and represented with a 

modified form of the Poisson–Boltzmann equation. In contrast, internal motions and 

conformational changes are considered in fully-flexible MD simulations. BD and MD can be 

used to explore the dynamics of molecules in crowded biological milieus, improving 

understanding of detailed biological and chemical interactions10,53. They can be combined 

in multiscale approaches such as SEEKR (Box 2). Recent efforts linking particle-based 

simulation to higher-level systems biology or network-based models exemplify how 

handoffs between such methods can be gainfully achieved. For example, association rates 

determined with BD, MD, and SEEKR in network-based Markov chain of states models 

have been combined in order to define the mechanisms underlying the cooperative nature of 

cAMP activation of protein kinase A37. Systems biology models and MD simulations have 

been combined e.g. to generate predictions of the effects of enzyme--substrate binding 

affinity changes due to genetic variation in human erthyrocytes38. In both cases, linking 

molecular and cell-based models allowed mechanistic insights and predictions at the atomic-

level to inform network-based whole-cell models of disease. Collectively, multiscale 

approaches spanning cellular to subcellular scales will help to address the challenge of better 

predictive models for off-target effects (e.g. binding of drugs to targets other than that 

desired). They also enable more complete understanding of chemical mechanisms of action 

and their effects at larger scales, especially for complex signalling pathways that require a 

broad view of molecular complexity. Hence, particle-based multiscale approaches at this 

scale may be particularly useful for understanding drug action.

Challenges at cellular and subcellular scales will continue to include the experimental 

determination of the constituents of cellular compartments (e.g., protein counts, mRNA 

expression levels, etc.) with enough detail (spatial and temporal resolution) to enable the 

development of biologically accurate structural models. New tools for segmentation and 

refinement of tomographic data are needed, particularly when the data are highly complex. 

For example, recent ultrastructural 3D mapping of the cell nucleus shows how new imaging 

techniques, such as ChromEMT, can directly reveal details of the higher order structure of 

chromatin; at the same time, it underscores the need for new tools that are able to segment 

and refine the structural data at the level of individual chromatin fibers56. These data will 

transform our understanding of the relationship between chromatin structure and dynamics 

and the regulation of gene expression, which is an inherently multiscale challenge 57. 

Additionally, once these structures are refined, new tools for developing numerically 

computable meshes from these reconstructions are required to create models that can be 

extended and interrogated with physics-based simulation. Innovations in simulation 

approaches are required to effectively handle hydrodynamic interactions58, as well as 

different concentration and diffusion regimes within a complex, crowded cell scene 59. 

Finally, a major set of challenges relates to the ability of researchers to set up and execute 

complex models and simulations. Also, the substantial complexity of highly detailed large-

scale models can make the interpretation of the simulated phenomena difficult. These 

challenges are intimately linked with data analysis and visualization, and will benefit from 

technological advances such as machine learning 60 and virtual reality61.
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[H1] Subcellular to molecular and atomistic—The action (and metabolism) of many 

drugs is fundamentally based on the changes in and interactions among individual 

molecules. Multiscale methods are needed to connect molecular changes to changes induced 

in subcellular levels and and beyond. Increasingly informed integrative models of 

macromolecular complexes 62,63 are providing atomically detailed views of complex drug 

targets and drug-target interaction64, thanks particularly to advances in cryoEM. The 2017 

Nobel Prize in Chemistry recognised these developments 65. However, moving beyond the 

traditional paradigm of studying single drug targets in isolation to tackle the dynamics of 

macromolecular complexes and, for example, their interactions with the genome64 poses a 

challenge to atomic-scale modeling. The ability to model protein–protein complexes more 

accurately (e.g. allowing for changes in conformation driven by intermolecular interactions 

and chemical changes) will improve protein and antibody design for vaccine development.
66–69 Indeed, the resolution-revolution taking place in cryoEM and cryoET will drive 

methods development for multiscale simulation across the subcellular and molecular scales. 

Multiscale simulations will offer an expanded perspective of drug targets, elucidating their 

detailed and often critical interactions with realistically complex membranes and other 

proteins. The new structural understanding provided by diverse approaches has already 

helped industrial research teams reconcile seemingly divergent or otherwise inexplicable 

experimental assay results70.

There has been significant recent progress in the development of methods enabling the 

exploration and characterization of the dynamics of molecular scale systems. An example 

particularly relevant to drug discovery is provided by simulation-based approaches for the 

identification of so-called cryptic (hidden) pockets or sites of allosteric activation, which are 

not evident in x-ray crystallographic structures and can be novel drug-target sites 4,71,72. 

Another promising class of techniques is based on Markov state models (MSMs), which 

enable the extension of temporal scales achievable in ensemble-based approaches through 

the extraction of long timescale dynamics from many short timescale simulations. MSMs 

take a more statistics-oriented view to trajectory analysis: individual states are defined or 

identified, and the dynamics between the interconnected states, assumed to be Markovian, 

are modelled as a transition probability matrix, populated from independent simulations. 

Dynamic information relating the states is typically obtained through many short timescale 

MD simulations that are integrated into one cohesive framework 73–75 MSMs have been 

used to predict the thermodynamic and kinetic landscapes for the activation of multiple 

kinases 76,77 and protein–protein association pathways78, characterizing biological processes 

that occur over timescales from microseconds to hours. Notably, MSMs make use of the 

statistical sampling necessary for the analysis of larger lengthscale (e.g., subcellular or cell-

scale) simulations, which by their nature contain many independent copies of one particular 

drug target. One can use relatively short timescale (e.g., tens of nanoseconds) simulations of 

large and/or multicomponent systems, potentially comprising multiple hundreds of millions 

of atoms, in combination with MSMs to extract long timescale (e.g., kinetics on the order of 

milliseconds) information for the individual molecular components of a biological scene. 

These methods will facilitate an increasingly accurate understanding of how drugs act at a 

particular site and subsequently alter the dynamical landscape of their receptors, including, 

for example, for the highly dynamic G-protein coupled receptors 79, one of the most 
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important classes of pharmaceutical targets. MD based methods also stand to benefit from 

and connect to advances in experimental structure characterization methods. These methods 

include diffuse x-ray scattering, which gives improved characterization of protein flexibility 

and ligand binding, and the detailed picture of biomolecular heterogeneity emerging from 

high resolution cryoEM, both of which can feed back into the development of more accurate 

MD force fields 21.

The development of effective drugs is becoming increasingly reliant on our understanding 

and ability to quantify and optimize the kinetics of drug binding (associated with a rate 

contstant kon) and unbinding (koff). Drugs must bind quickly enough to their target to avoid 

being cleared from the body before they can act, and must also remain bound long enough to 

exert an effect; such considerations are more important than the thermodynamic binding 

affinity in many cases. Drugs with slow rates of dissociation have longer interaction times 

(also referred to as residence times) with their targets and therefore are often found to be 

more efficacious80,81. The ability to quantify and predict binding and unbinding rates and 

residence times therefore represents a major and growing requirement in drug discovery and 

development programs. As such, the past few years have seen a dramatic increase in 

simulation and associated modeling methods to predict such quantities, and analyse the 

molecular and dynamical features that determine them81. These methods include direct 

quantification through enhanced sampling techniques82 such as MSMs 76,83, smoothed-

potential MD84,85, and metadynamics 86 (e.g. with path collective variables and parallel 

tempering to calculate free energy profiles, and transition state-partial path transition 

interface sampling 87 for kinetics) or through multiscale simulation methods, such as 

SEEKR. SEEKR is a novel method that uses milestoning theory to combine atomic-scale 

rigid-body Brownian dynamics (if the two interacting molecular species are sufficiently far 

apart, with fully-flexible MD simulations when the particles are in close proximity (Box 2) 
35,88,89. The combined use of different dynamical propagators enables efficient computation 

of accurate binding kinetics and free energies of binding using a directly multiscale 

approach.

Predicting membrane permeability is another area of intense interest to drug discovery 

programs for which multiscale physics-based simulations promise significant advantages 

over phenomenological (or descriptor-based) models. Both the potential of mean force for a 

small molecule crossing the membrane and its position-dependent diffusion constant can be 

simulated in several ways and combined to predict the passive permeation of drugs through 

membranes (reviewed in 90,91). Recent resurgence of interest in this area has included 

multiscale efforts to tackle system complexity, e.g. for notoriously challenging systems such 

as gram-negative bacterial membrane transport 92–94; multiresolution methods that mix 

coarse-grained models of membranes with all-atom models of antibacterial compounds 95; 

and methods that enable multiscaling in time through the integrated use of MSMs 96 or 

milestoning 97,98.

Despite the developments described above, the ability of present methods to enable crossing 

of subcellular to molecular scales — ensuring biological and chemical realism — is not 

without technical and intellectual challenges. Sampling of slow conformational dynamics in 

all of these systems remains a key problem. Development of new approaches to accelerate 
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otherwise slow dynamics (e.g., multiensemble MSMs99) will be required. Innovative 

solutions to the challenges posed by slow dynamics are likely to require continued 

development of approaches for hierarchical coarse-graining57,100–104. As simulations over 

increasingly longer timescale become routine, research efforts must continue to shift from 

manual human-driven data curation (which remains the current de facto standard) to 

machine-learning-based methods that will enable the detection of new patterns, correlations, 

etc. within the vast amount of data being generated105.

[H1] Atomistic to electronic—Molecular structure, dynamics, and reactivity arise 

fundamentally from quantum mechanics. Calculations of the electronic structure of 

molecules are essential for the study of certain properties. In principle, as Dirac stated long 

ago, quantum mechanics provides the theoretical route to calculating all molecular 

properties, the “only” challenge being computational tractability. The utility of quantum 

mechanics has been amply demonstrated for small molecules (~tens of atoms), for which 

reaction barriers and spectra can be calculated from first principles ab initio electronic 

structure methods with accuracy often at least as good as experiment. The electronic 

structure of larger systems (~hundreds of atoms) can be calculated with density functional 

theory (DFT) methods. These are in general somewhat less accurate and are not 

systematically improvable, but have nevertheless revolutionized the role of computation in 

chemistry by providing useful insight (e.g., into reaction mechanisms) at a manageable 

computational cost. More approximate methods based on semiempirical molecular orbital 

theory or approximate DFT allow calculations on even larger systems (~thousands of 

atoms). Algorithmic developments (such as implementation on GPUs9) and methodological 

developments continue to extend the reach of quantum chemical calculations, both in terms 

of system size (for example, the thousands of atoms for modelling transition states in 

enzymes and properties of ion channels) and scope (for example, to MD and Monte Carlo 

simulations), bringing electronic structure calculations into new biological regimes106. All 

of these techniques address molecular electronic structure, which is inherently quantum 

mechanical, and are usually applied with a classical description of molecular dynamics/

nuclear motion. Quantum dynamical effects such as quantum tunneling (which is significant 

in the determining the rate of transfer of hydrogen) can also be investigated, by methods that 

include the effects of quantum dynamics for nuclei.

In principle, quantum mechanical methods offer higher accuracy than empirical force fields, 

but in practice, it may often be more feasible — or indeed preferable — to apply a hybrid 

approaches, combining a quantum mechanical description of a small region (e.g., enzyme 

active site) with an empirical (MM) treatment of most of the system (e.g., protein, solvent, 

membrane, etc). Such QM/MM methods were a focus of the 2013 Nobel Prize in Chemistry 

and now provide an attractive combination of practicality and versatility for a range of 

problems. Applications in drug development include: informing inhibitor design from 

knowledge of interactions of transition states and intermediates 107; understanding the 

reactivity and specificity of (and resistance to) covalent inhibitors 108; analysing the coupling 

of chemical and conformational changes in biomolecules; predicting NMR and electronic 

spectra (e.g., to identify binding modes); developing of in situ structure-activity 

relationships, and predicting drug metabolism 109–111 (Figure 2). It is possible to extend 
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beyond DFT to highly accurate first principles ab initio methods, e.g., by applying projector-

based embedding techniques, which can be applied in a QM/MM framework to treat large 

systems such as proteins. 112113114 QM/MM MD simulations are possible with lower-level 

QM treatments and are increasingly practical with DFT methods. A combination of such 

methods can predict chemically accurate barriers for enzyme-catalysed reactions 35,110. 

QM/MM methods can also now be applied in areas that were previously the domain of 

empirical force fields, such as in calculations of binding affinities and solvation energies 

using multilevel sampling approaches. 8,117–121 QM/MM methods can be applied in 

multiscale schemes coupling sampling at different levels, to combine the accuracy of the 

higher-level method with a more computationally efficient lower-level treatment (see Box 3). 

Potentially, this can overcome some limitations of empirical (MM) atomistic force fields 

(such as oversimplified descriptions of electrostatics and lack of electronic polarization), 

which may be particularly important for some target classes, such as metalloproteins122. For 

example, the binding affinity of water molecules to proteins is affected by changes in the 

polarization of water molecules 123. This effect is larger for larger drug-like molecules and 

may affect predictions of drug binding/unbinding kinetics because of the important changes 

in solvation involved in these processes. Just as QM methods can generate data to inform 

development of atomistic force fields124, which are increasingly driven by machine learning 

approaches and integrated with experimental data, multiscale QM/MM schemes also offer 

the potential of testing and developing lower-level methods, e.g., in on-the-fly 

(re)parameterization125.

Methods capable of modelling and predicting chemical reactivity in detail offer 

opportunities in a number of emerging challenging areas in drug discovery. A particularly 

important area of application is in the study of covalent inhibitors. There is renewed and 

growing interest in developing covalent binders and inhibitors (for enzymes and other 

targets), for increased affinity and e.g. altered pharmacokinetics 126. There is a need to 

understand what governs the reactivity of covalent modifiers in vivo to maximise specificity 

and minimise off-target effects, and to understand resistance to covalent drugs127. The ideal 

covalent modifier is only activated at the specific target site. Just as for the prediction of 

drug metabolism, approaches based on the ligands alone cannot capture all the factors 

relevant for reactivity. Challenges include prediction of pKas of target residues for 

modification (for cysteines, in particular), treatment of conformational effects and 

identification of unusual mechanisms. For modelling of reactivity, empirical valence bond 

(EVB) methods are a highly efficient alternative to QM or QM/MM calculations, being 

significantly less computationally demanding than electronic structure methods, but they 

require substantial effort in parameterization 128. QM and QM/MM methods (and/or 

experimental data) can be used to parameterize EVB models 115. Pratical challenges in 

applying QM/MM methods 129 include the choice of the size of QM region for optimal 

efficiency and accuracy 130. Adaptive schemes, in which the QM region changes during the 

simulation, are potentially useful for some applications, such as long-range electron transfer 
131. Consistency between the particular level of QM treatment and the MM force field is also 

important. Also, QM/MM simulations typically apply relatively low levels of QM theory, 

and connecting to higher levels of theory (for example, via embedding or perturbation 

approaches) can be important to achieve high accuracy. For large systems, models 
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combining QM/MM and coarse grained methods will be useful132. Generating reaction 

pathways and reactive configurations requires effective and efficient simulation methods and 

enhanced sampling techniques. A long-cherished goal is to use knowledge of transition 

states to design enzyme inhibitors, based on Pauling’s proposal that transition state 

analogues should be high affinity ligands. Whilst it is naive to think that this is a universal 

approach to enzyme inhibition, there is real potential in using structurally detailed 

knowledge of the interactions of transition state structures in some enzymes, and reaction 

intermediates in others, to design and optimise binding interactions of drug leads.

Methods for understanding and predicting chemical reactivity in large biological systems 

also bring into view a range of other exciting possibilities relevant to drug design and 

development. Simulations of biochemical reactions will be important for understanding the 

modulation and control of reactivity by conformational effects and allosteric regulation. A 

fundamentally important theme is understanding how chemical and conformational changes 

are coupled in biomolecular systems. This is essentially a multiscale problem in itself: it 

requires knowledge of the role of macromolecular conformational changes in catalytic 

cycles, and how reactions such as the hydrolysis of ATP drive molecular motors and other 

biomolecular machines. Linking to larger scales will help in designed manipulation of 

metabolic cycles and signaling cascades, as noted above. More speculative practical 

challenges are also coming into sight: the control and manipulation of reactivity within 

biological systems promises entirely new types of therapy. Enzyme inhibitors are obviously 

important as pharmaceuticals and, in a few cases, enzymes are used as drugs, such as 

thrombolytics, and in enzyme replacement and enhancement therapies to correct genetic 

deficiencies, usually in rare conditions. The activation of prodrugs often depends on 

enzymes and therefore improved understanding of prodrug–enzyme reactivity will help the 

in the design and development of all types of directed enzyme prodrug therapy133,134. 

Potentially, engineered or evolved enzymes, catalytic antibodies or hybrid bio/

chemocatalysts, could be used to control selective prodrug reactivity in cells. Photodynamic 

therapy is another area in which electronic structure calculations can potentially aid drug 

design, understanding and predicting photoactivation and contributing to improved 

selectivity of photoactivation 135. More radical is the use of designed catalysts to remodel or 

destroy biological targets in situ 136. One example is the possibility of gene editing offered 

by systems such as CRISPR/Cas 9. Application of catalysts in human patients will be 

accelerated by techniques for understanding and designing determinants of specificity and 

reactivity and their interactions in vivo. Multiscale simulation methods capable of modelling 

reactions and predicting their effects in complex biological systems will contribute to such 

developments.

[H1] The changing role of computational science—An expanding range of 

chemical, biological, biophysical, spectroscopic and structural techniques is increasingly 

integral to drug discovery and design programs. The scale and complexity of the data that 

they generate demand the concerted development of data-centric computational models to 

interpret and connect them. The combination of a range of data with multiscale models will 

provide detailed knowledge of drug targets, including their time dependence and dynamics, 

transforming our ability to understand and predict drug action. An exciting prospect is the 
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development of interconnected multiscale models spanning the full range of complexity, 

from chemical action at a target binding site through complex cellular interactions and 

beyond. Multiscale models of this scope will also help to identify and analyse adverse drug 

reactions, arising from drug–drug interactions and off-target effects. Developing reliable, 

integrated multiscale methods poses significant challenges, but they promise significant 

payoffs in the drug discovery arena. They will drive the generation of experimentally 

testable hypotheses and assist in experimental design. Understanding of biology will 

undoubtedly advance faster and more reliably through effective combination of experimental 

and multiscale computational science.

The role of biomolecular simulation in drug design and development (and in analysing 

mechanisms relevant to health and disease) is evolving rapidly. Whereas previously 

simulation provided simple models to help develop or illustrate hypotheses, increasingly 

simulations can be used as another form of experiment: a computational experiment or 

assay. As such, simulators must apply similar standards of statistical rigor in assessing the 

significance of their findings. Computational assays can be used to assess and predict 

biological properties, such as drug resistance in mutant systems. Simulations can also be 

used to explore and analyse processes that are otherwise inaccessible or unachievable with 

experiment. Ongoing increases in computer power, together with improvements in the 

reliability and scope of simulation methods (with detailed validation against experiment), 

mean that computational assays will become ever more important in drug development, 

offering speed and affordability, and complementing and managing the growing deluge of 

experimental data.

No single simulation technique can address all the many levels of challenge and 

understanding required for modelling of biological systems from the molecular to the 

cellular level: this is the essential driving motivation for the development of multiscale 

methods. As the examples outlined here highlight, the potential of multiscale modelling and 

simulation, and of its close integration with experiment, is only just starting to be realized in 

drug discovery. We expect that, within the next decade, multiscale methods are likely to be 

central in drug discovery and development programs. They will form the basis of, and 

inform, cohesive data-rich models for drug–target systems. Together, these will rationalize 

and synthesize experimental data, accelerate drug development and help discover effective 

therapeutics with novel mechanisms of action.
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Box 1:

Multiscale Data-Driven System Assembly

CellPACK42 is a system-construction framework allowing the integration of information 

from cellular ultrastructure, genomics and proteomics, and atomic structure to build 

integrated, data-centric 3D models of subcellular environments at molecular detail.

Data Input Sources

CellPack can connect to (ingest) many types of relevant datasets such as proteomics and 

genomics (for contents, stoichiometry of molecules in various compartments), X-ray 

crystallography (for atomic-resolution of molecular components), as well as various types 

of electron microscopies and tomographies (for macromolecular assemblies, subcellular 

and cellular ultrastructure).

Compartment Construction Methods

Once the compartments have been defined, polygonal models define membrane 

ultrastructure. If atomic membranes are desired, atomic structures of lipid membrane are 

modeled with LipidWrapper43. Membrane-embedded selective orientation and placement 

of membrane-bound macromolecules based on the Orientations of Proteins in 

Membranes (OPM) methodology137.

Solid voxelisation techniques are used to discretize the volume to be filled. Afterwards, 

crowded soluble environments are constructed with a size-priority voxel based method; 

where needed, schematic fibrous structures can be modeled with a random walk 

algorithm that “grows” the structures in situ.

Recipe Parameterization

The various data input sources and methods are integrated into a “recipe” that describes 

how to build a model. Namely, the recipe defines the “what” (ingredient description 
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extracted from proteomics and structural biology), the “where” (cellular localization, e.g., 

surface, interior, organelle, etc.), the “how” (packing methods and constraints) and “how 

many” (based on molarity or copy number extracted from literature or experimentation).

Model Generation

Based on the recipe, and given a random seed, cellPACK generates a unique 3D model, 

which is simply a list of ingredients and their respective positions and orientations. By 

sampling different parameters (concentration, priority, order, packing methods) CellPack 

can easily generate hundreds of models to study statistical distributions, taking molecular 

models a step closer towards addressing biological heterogeneity, in hopes of 

understanding and, ultimately, accurately predicting emergent phenomena.
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Box 2:

A Multiscale Method for Drug Binding and Residence Time Prediction.

SEEKR is a directly multiscale simulation approach that combines fully atomistic 

molecular dynamics simulations and rigid body Brownian dynamics simulations (i.e. two 

different dynamical propagators) with milestoning theory to calculate association and 

dissociation rates as well as binding free energies for protein ligand complexes. Fictitious 

‘milestone’ surfaces (depicted with different colours) are placed at increasing distances 

from the determined ligand binding site. Short simulations are initiated from each 

milestone surface and are monitored until they touch an adjacent surface, where they are 

subsequently terminated. Each milestone surface is assigned a particular simulation type. 

These types can encompass a broad range of methods, as milestoning theory is agnostic 

to the simulation type implemented. Typical SEEKR simulations span the spectrum of 
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potential simulation detail, implementing fully atomistic MD regions and rigid body BD 

regions. This approach has demonstrated significant increases in both speed and accuracy 

for the calculation of kinetic parameters compared to “brute force” molecular dynamics 

simulations, which often require simulation timescales that are inaccessible by 

conventional computer simulations. The combination of a multiscale simulation approach 

with milestoning enables SEEKR to predict ligand dissociation events in a statistically 

robust and computationally efficient manner, facilitating the accurate computation of 

drug residence times, a particularly important property linked to the in vivo efficacy of 

drug molecules.

Yellow regions in the figure represent regions that are simulated using fully atomistic 

molecular dynamics simulations (red arrows represent these trajectories). These regions 

correspond to milestones close to the binding site, where an atomistic description of 

molecular interactions is required to model of the binding and unbinding processes. Blue 

regions instead are simulated using Brownian dynamics. These correspond to the 

outermost milestones of the figure, where atomistic detail is less important and rigid body 

dynamics with implicit solvent can rapidly sample long trajectories. The green region 

represents an area sampled by both molecular dynamics and Brownian dynamics 

simulations, which are brought together with milestoning theory.

A typical milestoning procedure consists of multiple simulation steps. First an 

equilibrium distribution for each milestone surface is obtained, typically through 

umbrella sampling. The equilibrium distribution is then converted to a first hitting point 

distribution (FHPD) by initiating simulations from each point in the equilibrium 

distribution with reversed velocities to determine if they had been in a previous state. Any 

trajectories that cross the same milestone surface they were initiated from are excluded 

from the FHPD. Finally, trajectories are initiated from each point in the FHPD and 

allowed to propagate forward in time until it crosses another milestone surface. The 

trajectory is then terminated, and the transition, as well as the transition time, is recorded. 

This data can be used to compute a transition kernel, K, where each element is computed 

by the formula:

K
i j

=

n
i j

k
n
i k

The mean first passage time (MFPT), τ:, can then be computed by the equation:

τ = p ⋅ I − K
−1

τ

Where p is the initial probability distribution and I is the identity matrix. The unbinding 

rate constant, koff, is then simply the inverse of the calculated MFPT.
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Box 3:

Combining QM/MM and MM simulations for calculations of Protein-Ligand 

Binding Affinity.

Multiscale sampling allows for efficient connection of high and low levels of simulation, 

combining a more accurate, high level method, with the greater computational efficiency 

of a lower-level method34, 115, 120. Free energy calculations are increasingly important in 

drug discovery and development. Typically, the relative binding affinity of different 

ligands is calculated (for example, via free energy perturbation simulations); 

alternatively, the absolute binding free energy of a ligand to its protein target, ΔGbind, can 

be calculated, as shown here, (for example using enhanced sampling molecular dynamics 

methods). Typically, such calculations apply empirical ‘molecular mechanics’ models, 

which are computationally efficient and provide atomic-level detail, but have limitations 

in their description of molecular interactions (due for example to the use of an invariant 

atomic charge model). Methods based on quantum mechanics (QM) are potentially more 

accurate because they treat the electronic structure of molecules, but they are much more 

computationally expensive, making direct application in free energy simulations 

impractical. A coupled multiscale approach, combining quantum mechanics (QM) 

calculations with MM simulations, allows protein-ligand binding affinities to be 

calculated at the combined QM/MM level, which may help overcome limitations of 

empirical MM force fields, potentially improving the accuracy of predictions, and 
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improving models. This is achieved by the thermodynamic cycle shown here, where the 

free energy change for going from a QM to a MM description of the ligand ΔG
QM MM

is calculated, here for the ligand when bound to the protein, and when free in solution. 

Replica exchange thermodynamic integration can be used to calculate ΔG
MM QM

efficiently. This transformation from a MM to a QM representation of the molecule takes 

advantage of efficient sampling at the lower (MM) level. The Metropolis-Hastings 

algorithm is used to accept a configuration into the higher level (QM/MM) ensemble. 

Replica exchange simulations across the QM<->MM coordinate enhance sampling, and 

free energy differences can be calculated by thermodynamic integration, or other 

methods. Combined with the MM free energy of binding, these give the free energy of 

binding, ΔGbind.at the QM/MM level. This can test (and correct) limitations of MM 

methods such as lack of changes in electronic polarization115–118. This type of scheme 

also allows rigorous connection between different levels in generalized multiscale 

simulation schemes.
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Figure 1: Multiscale structure- and physics-based methods bridging from atoms to cells.
Emerging multiscale computational methods coupled with increasingly accurate structural 

data on biological and chemical systems enables the development of highly detailed and 

predictive models of drug action across spatial scales ranging from angstroms to microns 

and temporal scales ranging from femtoseconds to minutes. Such approaches can be 

gainfully used to address a number of outstanding challenges in drug discovery and design 

(Table 1).
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Figure 2: Multiscale Simulation Methods to Predict Drug Metabolism by Cytochrome P450 
Enzymes.
Cytochrome P450 enzymes (CYPs) play a central role in metabolizing most drugs. 

Understanding their reactivity and selectivity is a central goal in predicting drug metabolism, 

and provides an example of a drug development challenge requiring multiscale simulation 

approaches. The flowchart shows a practical workflow for multiscale modeling of metabolic 

reactions of pharmaceuticals in CYPs109. Mammalian CYPs are membrane-bound enzymes, 

but typically only the structures of the soluble portions are determined experimentally, 

lacking the membrane-anchoring helix, and the membrane. The intact CYP, in situ, can be 

modeled by adding the transmembrane helix and assembling the membrane around the 

protein, which occurs spontaneously in coarse-grained (CG) molecular dynamics (MD) 

simulations. CG methods allow MD simulations on timescales of microseconds to 

milliseconds, showing how the protein is oriented in the membrane and how drug molecules 

such as warfarin move through the membrane and associate with the protein. Understanding 

how the drug accesses and binds within the active site requires more detailed, fully-flexible 

MD simulations with an atomistic molecular mechanics (MM) representation in which every 

atom in the simulation is represented explicitly, in contrast to the representation of amino 

acids by a small number of ‘beads’ that group atoms together at the CG level. The CG model 
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is converted into an atomistic (AT) model, which can be used for MD simulations of drug 

binding. Typical MM methods cannot be used to model chemical reactivity, therefore for 

potentially reactive poses of the enzyme/drug complex, the system is converted to a quantum 

mechanics/molecular mechanics (QM/MM) model, in which the reactive Compound I and 

the drug are included in the QM region for modeling of chemical reactions of the drug in the 

enzyme.
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Table 1:

Drug Discovery Challenges and Multiscale Computational Methods that Address Them

Drug Discovery Challenge Relevant Multiscale Computational Method(s) and Examples

Mechanism of Action: Small molecule or protein-
protein binding, transition or activation pathway 
analysis

Combined MD/BD (SEEKR) 88, Markov state models (MSM) 78

Mechanism of Action: Reaction mechanisms. Covalent 
inhibition/binding/modification

Combined quantum mechanics/molecular mechanics (QM/MM) 5,36,115, including 

embedding methods 116; empirical valence bond methods

Mechanism of Action: Off-target effects MD, BD of large-scale multi-component systems 6,10,11, reaction diffusion master 

equation 47,49, lattice Boltzmann MD50

Predicting Drug Resistance QM/MM (e.g. for antimicrobial resistance due to beta-lactamases36, and for covalent 

binders124); MD with free energy calculations (e.g. influenza neuraminidase) 5

Drug Residence Time SEEKR 88, metadynamics 138, MSM 83

CYP P450 Drug Metabolism Combined coarse grained MD, MD, QM/MM 109,110

Small Molecule Membrane Permeability

Milestoning97,98, mixed coarse-grained/all-atom approaches 95, combined 

PMF/MSM method 96

Nat Rev Chem. Author manuscript; available in PMC 2019 April 02.


	Abstract
	Introduction
	[H3] Unleashing the potential of emerging experimental data sources
	[H3] The coming fusion of simulation and data science
	[H3] Potential applications of multiscale methods in drug discovery
	[H1] Cellular to Subcellular
	[H1] Subcellular to molecular and atomistic
	[H1] Atomistic to electronic
	[H1] The changing role of computational science


	References
	Figure 1:
	Figure 2:
	Table 1:

