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Abstract

Adetailed understanding of the action of biological molecules is a pre-requisite for rational 
advances in health sciences and related fields. Here, the challenge is to move from available 
structural information to a clear understanding of the underlying function of the system. In light of 
the complexity of macromolecular complexes, it is essential to use computer simulations to 
describe how the molecular forces are related to a given function. However, using a full and 
reliable quantum mechanical representation of large molecular systems has been practically 
impossible. The solution to this (and related) problems has emerged from the realization that large 
systems can be spatially divided into a region where the quantum mechanical description is 
essential (e.g. a region where bonds are being broken), with the remainder of the system being 
represented on a simpler level by empirical force fields. This idea has been particularly effective in 
the development of the combined quantum mechanics/molecular mechanics (QM/MM) models. 
Here, the coupling between the electrostatic effects of the quantum and classical subsystems has 
been a key to the advances in describing the functions of enzymes and other biological molecules. 
The same idea of representing complex systems in different resolutions in both time and length 
scales has been found to be very useful in modeling the action of complex systems. In such cases, 
starting with coarse grained (CG) representations that were originally found to be very useful in 
simulating protein folding, and augmenting them with a focus on electrostatic energies, has led to 
models that are particularly effective in probing the action of molecular machines. The same 
multiscale idea is likely to play a major role in modeling of even more complex systems, including 
cells and collections of cells.
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 Introduction

The ability to model complex molecular systems is crucial for advances in understanding 
biological systems and in rational progress in molecular medicine, as well as in the rational 
design of new materials and devices. However, progress in this direction was hindered by the 
fact that rigorous modeling of complex systems requires enormous computational power. 
That is, a reliable quantum mechanical description[1] of more than a few atoms was 
practically impossible for a very long time. Even now, it is still too computationally 
expensive to use high-level quantum calculations to obtain convergent sampling on the many 
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configurations needed to reliably describe the free energies of even medium sized systems. 
The solution to this challenge (and related problems) has emerged from the realization that a 
description of the properties of complex systems does not require the representation of all 
parts of the system at the same level of detail. For example, the interactions of a water 
molecule with a charge center that is 10 Å away can be treated classically instead of 
quantum mechanically. Similarly, a bond that does not participate in a chemical reaction can 
be represented as a classical spring. Thus, it is possible to decompose the system to parts 
where the quantum mechanical description is essential (e.g. parts where bonds are being 
broken), and other parts that can be represented on a simpler level with empirical force 
fields. This idea, that may seem obvious in retrospect, led to the development of the 
combined quantum mechanics/molecular mechanics (QM/MM) model.[2] Here, the coupling 
between the electrostatic effects of the quantum and classical subsystems has eventually 
become a key to advances in describing the function of enzymes and other biological 
molecules.

The emergence of the QM/MM approach allowed one to for the first time ask, in a well-
defined and logical way, what the origin of the catalytic power of enzymes actually is. That 
is, although landmark works (see discussion in Ref. [3–5]) suggested various ways by which 
enzymes can accelerate reactions, none of these could directly relate the structure of the 
enzyme to its catalytic effect, nor could any approach reliably predict the rate constants of 
enzymatic reactions. Here, the QM/MM approach (and, in particular its empirical valence 
bond (EVB) version) has provided what is probably the best solution to this long-standing 
fundamental puzzle. The idea of dealing with complex systems by treating different parts of 
the system on different scales is very general, and has found applications in many areas, and, 
in particular, in studies of complex biological systems. An early example of this has been 
our simplified coarse-grained (CG) model for protein folding.[6] Subsequent focus on 
electrostatic models has led to CG models that are particularly effective in probing the action 
of molecular machines.

Overall, the philosophy that has emerged from our studies is that the description of complex 
molecular systems requires computers to bridge between structural and functional 
information, and that computational scientists should carefully consider the resources 
available when choosing optimal models for describing the simulated systems. Here, using 
multiscale strategies is almost always a powerful way to explore different systems with 
different time and length scales. In describing the emergence of multiscale modeling, I will 
start by some recollections of the early developments in the field, and then move to specific 
examples, starting with enzyme action all the way through to the action of molecular 
machines.

 Early Journeys in Multiscale Computer Modeling

Growing up in a Kibbutz in Israel, I did not have much scientific experience, but I liked to 
experiment with hot air balloons and building handguns, as well as in other subjects that 
have no relationship to chemistry. Nevertheless, after being accepted to the Technion (Israel 
Institute of Technology), I rather randomly chose to study chemistry. Eventually in 1964–
1965, during my third year, I became interested in understanding how enzymes can 
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accelerate chemical reactions, sometimes by up to twenty orders of magnitude. I started an 
experimental project that resulted in perhaps the first NMR measurement of a very fast step 
in the catalytic reaction of chymotrypsin, but this experiment did not provide any reasonable 
clues about the origin of the catalytic effect. In fact, although I did suspect that electrostatic 
effects are making the reaction go faster, my experiments showed that changing the ionic 
strength does not influence catalysis in a major way.[7] This result (incorrectly) indicated 
that electrostatic effects do not contribute significantly to catalysis.

After the Technion, I joined Shneior Lifson, who was the scientific director of the Weizmann 
Institute, and was starting to move from statistical mechanics of helix coil transitions, to 
modeling molecules with digital computers. In the fall of 1966, I started my PhD trying to 
develop what became known as the consistent force field (CFF).[8,9] My general suggested 
direction was to represent molecules as balls and springs (which became known as 
molecular mechanics (MM) or a “force field” approach) and to reproduce energies, 
structures, and perhaps vibrations. This was supposed to be done by a consistent refinement 
of the MM parameters that will force the calculated and observed properties to be as close as 
possibly to each other. However, we had no clue how to actually do so. As a start, I 
attempted to treat cyclic amides, on the way to parameterizing amino acids’ potential 
functions, by extending the internal coordinate approach of Mordechai Bixon,[10] who was 
the previous student of Lifson. Unfortunately, this approach, which involved analytical 
derivatives of complex interdependent transformation matrices, became basically impossible 
to formulate and implement. The same internal coordinate treatment had been the key to 
practical conformational analysis programs of that time (e.g. Ref. [11,12]), which 
incidentally could not obtain convergent minimization, because this required the first and 
second derivatives. In desperation, I tried to abandon the common description of molecules 
in terms of bond lengths and angles, and to move to a Cartesian coordinate description, 
where suddenly all the problems with analytical derivatives seemed to disappear. For 
example, obtaining the analytical first and second derivatives needed for minimizing the 
energy of a cyclic molecule in a converging way, which was close to impossible in internal 
coordinates (because each internal coordinate depends on all other coordinates), became 
trivial in Cartesian coordinates. Similarly, obtaining vibrational modes, which previously 
demanded spending half a year on reading Bright Wilson’s molecular vibrations book,[13] 

and then almost (at least for cyclic molecules) hopeless programming, required only the use 
of one simple equation in terms of the Cartesian second derivatives.

Fortunately, the Weizmann Institute had a specialized computer called the Golem (named 
after the “robot” from Jewish legend that helps the famous Prague rabbi), which had a 
remarkable double precision. Thus, I was able to obtain very accurate first and second 
numerical derivatives, and to prove that I was on the right track in obtaining exact minima 
and molecular vibrations in a general molecule. At that point I started to write a program 
with Cartesian analytical derivatives and a least squares force field refinement (using the 
numerical derivatives in pinpointing errors), stopping for a while during the Six-Days war, 
and then moving back to the program. At the end of the war, I returned to the Weizmann 
Institute, and around this time Michael Levitt appeared. Guided by Schneior’s insight on 
obtaining consistent force field parameters, and his insistence that these parameters can 
describe reality regardless of whether they are derived from experiment or theory, we 
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developed the general CFF Cartesian force field programs[8,14], that allowed one to use MM 
to find exact local minima and vibrations of any medium sized molecule. The program also 
allowed for a fully consistent refinement of the MM parameters, by fitting the calculated and 
observed properties of molecules and molecular crystals. At any rate, our CFF program 
eventually became the basis of all modern MM molecular simulation programs.[14] The CFF 
parameter refinement turned out to be quite a demanding job (as it required automatic fitting 
to many independent properties), including inventing automatic frequency assignments and 
developing a general way of refining parameters that would reproduce known unit cell 
dimension of molecular crystals.[9] During 1968, in what turned out to be eventually 
significant, I also started experimenting with combining my newly developed CFF method 
(with the spring-like description of bonds with localized electrons) and a valence bond (VB) 
quantum model.[15] This QM(VB) + MM model helped to describe the extremely large 
isotope effect in a chemical reaction between oxygen and a medium sized organic molecule, 
and indicated to me that such a combination can be useful.

While still keeping enzymes at the back of my mind, I started a postdoctoral position at 
Harvard with Martin Karplus at the beginning of 1970, hoping to make the QM + MM CFF 
more general. Karplus and his postdoc Barry Honig were at that time making important 
advances in the study of retinal (the chromophore of the visual pigment),[16] which involves 
a 12π-electron system. This seemed to be a good rationale to start developing the CFF for π-
electron systems. Indeed, I succeeded to connect the molecular orbital (MO) description of 
atoms with π-electrons with an MM description of σ-bonds with localized electrons,[17] and 
to consistently refine the corresponding parameters for a unified CFF description. This 
QM(MO) + MM model included only the bonding between the QM and MM region, and 
thus ignored all key (e.g. electrostatic) coupling between the MM and QM regions. 
Nevertheless, the model provided a very powerful and general way to treat large conjugated 
molecules. During this project, I also figured out how to get the exact analytical forces from 
the QM treatment, by fixing the molecular orbitals and differentiating only the integrals. As 
usual, I made this fundamental advance by guessing it, then (as before) I confirmed my idea 
by using numerical derivatives and then finding the exact mathematical proof.[18] Here again 
it was shown that the combination of intuition and numerical validation is a powerful tool.

At any rate, the QM + MM treatment of delocalized electron systems still did not help me to 
move towards studying enzymes. Thus, upon returning to the Weizmann institute in 1972,I 
started to develop a very effective hybrid orbital quantum program (QCFF/ALL), that 
represented all atoms in a relatively small part of a molecular quantum mechanically, while 
representing the rest classically. I felt that this should allow me to finally make a progress 
towards my old dream of studying enzymes. At that time, Mike returned from his PhD at the 
Medical Research Council (MRC) to the Weizmann Institute, and I started to explore the 
possibility of combining my quantum mechanical model with his MM calculations on 
lysozyme (see below). While still struggling with the development of my QCFF/ALL 
approach, I found myself one day in the computer center discussing the protein-folding 
problem with Mike. This discussion turned to a strange idea of studying mechanical models 
of molecules on a gravitation-less spacecraft, and we suddenly came out with the idea of 
simplified protein models where spheres would represent amino acid side chains, and started 
to work on this project. This folding project started to move in a remarkable way, and it 
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appeared that the drastic simplifications we had suggested allowed us to fold the small 
protein BPTI without using an enormous number of minimization steps. This simplified CG 
model[6] appeared to resolve the so-called “Levinthal paradox”, where the observation that 
proteins actually fold appeared to contradict the fact that they have an astronomical number 
of possible conformations so that they could never find a path for folding in a reasonable 
timescale. In fact, our simulations showed that the number of relevant coordinates is 
relatively small, and that the protein folding process can be effectively simulated. The 
progress on the folding problem helped me to obtain an EMBO fellowship so that I could 
collaborate with Mike when he moved back to the MRC. My time at the MRC turned out to 
lead to the culmination of several key advances pushing the frontiers in the understanding of 
biological function.

 Enzymes, Electrostatics and QM/MM

The three-dimensional structures of the enzyme lysozyme, which were solved by Phillips 
and coworkers in 1967,[19] provided the first glimpse of the structure of the enzyme-
substrate complex. These breakthroughs offered enormous hope that enzyme catalysis would 
now be finally understood. For example, Phillips suggested that enzymes work by applying 
steric strain that pushes the substrate to a structure that is closer to the structure of the so-
called “transition state”, where the crucial bond between the carbon and oxygen atom in the 
sugar substrate is broken. This idea was due in part to the observation of what looks a 
distorted sugar ring and to the assumption that the protein can induce a significant strain. 
The strain was argued to reduce the barrier for bond breaking, and thus the activation barrier 
for the reaction. However, as Mike demonstrated, the strain idea was problematic since 
enzymes are flexible,[20] and it seemed clear to me that any further progress would require 
actually modeling the chemical reaction in the enzyme. Therefore, upon my arrival to the 
MRC in the autumn of 1974,I started to focus on modeling enzymatic reactions, still 
attempting to somehow combine my QCFF/ALL program with Mike’s energy minimization 
of lysozyme.[21] The first attempt to combine the programs resulted in ridiculously high 
activation energies (so the reaction would never happen), and I realized that something must 
be completely wrong with my modeling direction. Eventually, it became clear that the work 
of breaking the bond between the carbon and oxygen atoms in the sugar substrate was being 
described incorrectly. The problem was that the bond is broken to a positive carbon and a 
negative oxygen (C+ O−), and that these charges must be stabilized by the electrostatic 
environment of the protein + solvent system (see Figure 1).

The introduction of the effect of external charges was not so simple, since practically all 
earlier work that tried to add the effect of the environment started from the complicated 
configuration-interaction (CI) picture, that gave the overall molecular dipole moment and 
then used unreliable continuum cavity models (where the cavity radius is basically a free 
parameter) to describe the environment. Instead, I realized that one can start from the 
general expression of the quantum mechanical self-consistent Hamiltonian (see e.g. [22]):

(1)
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where U is the core Hamiltonian, P is the quantum mechanical bond order, Q is the net 
atomic charge, γ is the electronic repulsive integral, and µ and ν are atomic orbitals on atom 
i. Now, assigning atoms i to the part of the system that should be treated quantum 
mechanically indicated that the other atoms (denoted by j) can be treated classically, 
assuming that their charge is constant. That is, replacing γ by e2/r gives:

(2)

where µ ∊ A and  designates the contribution from the quantum atoms (typically the 
“solute (S)”), and UA designates the total electrostatic potential from the classical atoms 
(typically the “solvent (s)” molecules), at the site of atom A. This equation can be 
generalized to cases where the charge distribution of the classical atoms it not fixed and can 
be polarized by the field of the quantum atoms.[23] Thus, the leading term in the solute–
solvent coupling Hamiltonian is obtained by adding the potential from the solvent atoms to 
the solute Hamiltonian. The total potential energy is then given by:

(3)

In this equation, ES(FS) is the energy that is quantum mechanically obtained with the F 
matrix that includes the given electrostatic potential from the solvent (the vector of all the 
UA values). E′Ss is the non-electrostatic solute–solvent interaction term, and Ess is the 
solvent–solvent classical force field. At this level of approximation, the non-electrostatic 
term is evaluated by the standard classical van der Waals potential function. In studies of 
very large solute molecules, we sometimes divide the solute region in quantum and classical 
parts. The “connection” between the quantum and classical regions is treated by a classical 
force field (which is included in E′Ss), where the quantum atoms at the boundaries are 
connected to dummy hydrogen-like atoms in order to balance the electrons in the quantum 
system. The main problem we faced in 1975 was how to evaluate the magnitude and 
positions of the charges in the environment (e.g. water molecules). Eventually, after 
spending several months in the library and talking to eminent experts on electromagnetic 
theory, I realized that none of the textbooks or the experts could tell us much about how to 
computationally model electrostatic effects in proteins or solution. Thus, I turned to what I 
learned from my experience with developing force fields: forget about what is in the books 
that were written before the emergence of computers, and just go to the basic molecular 
level, using simplified models of needed.

I concluded that we would be unable to progress consistently as long as we thought in terms 
of the standard electrostatic theory, where all the details of the protein or the surrounding 
solvent are included with an elusive dielectric constant. Obviously, the computer power of 
the time was insufficient for modeling a protein surrounded by atomistic models of water 
molecules, while obtaining meaningful energetics. Thus, after considering several options 
with Mike, we decided to represent the water molecules as a grid of polarizable Langevin 
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type dipoles (the LD model), and self-consistently evaluated the interaction of these dipoles 
with the charges in the protein–substrate system and with each other. Of course, the key to 
the success of this approach was the calibration of the LD model to observed solvation free 
energies. A similar self-consistent treatment was then introduced for the induced dipoles on 
the protein atoms.[2] This LD water model led to the first microscopic description of protein 
electrostatics, evading the conceptual traps of the past and future continuum dielectric 
descriptions. Apparently, this model looked problematic to those who were trained with the 
idea that the special, highly symmetric structure of water molecules must be very relevant to 
their enormous solvation effects. However, the LD grid model eventually turned out to be an 
excellent approximation for studying solvation effects, long before any other microscopic 
model, and also before the development of macroscopic models that tried to consider the 
protein shape.

The introduction of a realistic electrostatic model for the enzyme and its surrounding water 
molecules, together with the incorporation of this effect in a quantum Hamiltonian, finally 
for the first time yielded the energy of heterolytic bond breaking processes in enzymes and 
in solution. This QM/MM approach reflected the realization that we cannot treat large 
systems quantum mechanically, and we cannot describe the chemistry without a quantum 
treatment. Thus, we used Equations (2) and (3) and described only the reacting region 
quantum mechanically, while treating the rest of the protein and the solvent classically 
(Figure 2). This approach, along with related models that we subsequently introduced, has 
become known as “multiscale modeling”. The QM/MM model suggested that enzymes work 
by using electrostatic fields to reduce the activation barriers for bond breaking (see below). 
At any rate, the use of our QM/MM approach in modeling the catalytic reaction of lysozyme 
paved the way for the current direction in modeling enzyme action,[24] and has become a 
major direction in theoretical chemistry and biophysics.

Our QM/MM studies also eventually led to what I believe is a true understanding of the 
origin of enzyme catalysis, which turned out to be associated with the electrostatic 
preorganization effect.[25] More specifically, my subsequent (mainly EVB) studies led to the 
non-trivial finding that enzyme catalysis is not due to the interaction between the enzyme 
and substrate (which is what was believed by most people), but rather to a large free-energy 
penalty for the reorganization of the solvent in the reference reaction without the enzyme 
(the work of rotating the water molecules towards the transition state charges). As described 
in Figure 3, the reorganization energy increases the activation barrier in solution, whereas in 
the enzyme, the polar groups that stabilize the transition state do not have to rotate, since 
they are already folded with correctly polarized dipoles. In subsequent years, I was also able 
to prove that the change in the electrostatic reorganization energy accounts for almost the 
entire catalytic power of enzymes.[26] Although this elusive origin of catalysis was not 
envisioned during our studies at the MRC, I had benefited from the general feeling that it 
should be somehow associated with electrostatic effects (see Max Perutz’ insightful 
review[27]). Interestingly, while Max intuitively recognized the importance of this effect, he 
originally felt that it was like the assumed stabilization of ion pairs in a low dielectric 
environment, while I found that enzyme active sites are in fact very polar, and pointed out to 
him that ion pairs would not be stable in oil surrounded by water. This explanation 
eventually led to a paper that he communicated for me to PNAS.[25] The electrostatic models 
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conceived in 1975 became the basis for consistent microscopic treatment of biological 
models, the understanding of the true nature of protein dielectric constants,[28, 29] and the 
simulation of key functional properties, including pKa values, redox potentials, binding free 
energies, ion and proton conductance,[29] and protein stability.[30]

In subsequent years, my co-workers and I drastically simplified the QM/MM approach, 
using a valence bond description of the different steps of the reaction, in what I called the 
“empirical valence bond” (EVB) method.[31] This approach, which exploits the clear physics 
of the diabatic reactant and product states, has allowed us to take a considerable leap towards 
approaching my early vision, and to finally quantitatively model enzyme catalysis and 
explore enzyme design. This also helped me to explore (and frequently to eliminate) popular 
suggestions of factors that presumably lead to enzyme catalysis, such as entropic effects, 
ground state destabilization by desolvation, dynamical effects, orbital steering and more (see 
discussions in Ref. [32] and [26]). The key to the ability to figure out the secret of enzyme 
catalysis has been the ability to model the actual chemical reaction in the enzyme active site, 
and to dissect the different contributions to the rate constant, which is close to impossible 
when one is just using experimental approaches. Overall, the QM/MM studies provided a 
solution to the long-standing puzzle of the origin of the catalytic power of enzymes, and 
paved the way for quantitative studies of enzymatic reactions.[26] This strategy also allowed 
one to start to explore the issue of enzyme design in a rational way.[33]

QM/MM approaches with an ab initio QM Hamiltonian (QM(ai)/MM calculations) have 
advanced in recent years to a level where they can be used with proper sampling to obtain 
reliable free energy surfaces in the condensed phase.[34] Nevertheless, it seems to me that at 
the time of writing this paper, it is still preferable to calibrate the EVB on QM(ai)/MM 
calculations in solution and then move to studies in proteins with the EVB approach.[35] 

However, it is clear that in the future, one will be able to obtain convergent QM(ai)/MM 
surfaces also for reactions occurring in enzyme active sites. Finally, when talking about 
multiscale modeling in the context of QM/MM and related approaches, it is important to 
emphasize that the general idea can be described as an “embedding approach”, where one is 
looking for the best way to incorporate the effect of the surrounding of the active system, 
that is the focus of the given study. Here, one of the most promising strategies is the use of 
the frozen DFT (FDFT) and constrained DFT (CDFT) approaches (e.g. Ref. [36]). These 
approaches treat the entire system on the quantum mechanical DFT level, with a formalism 
that is in principle rigorous.[37] However, the density around the main region is not subject to 
self-consistent optimization, and the corresponding electron densities are determined by 
approximate considerations (including a freeze-and-thaw strategy). The CDFT approach can 
be described as a QM/QM approach, but, again, the main idea is to have a less rigorous and 
less demanding description of part of the system in order to save computational cost.

 The Primary Event in Vision and the Dawn of Molecular Dynamics 

Simulations in Biology

In 1971, I realized that the optimal way to study photochemical reactions of any medium 
size or large molecules was to forget about the traditional description of crossing between 
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energy levels, and to adopt the surface-hopping semi-classical trajectory approach that was 
introduced for treating gasphase reactions of very small molecules.[38] This advance, which 
turned out to be a conceptual breakthrough, was only published in 1975,[39] using the 
photoisomerization of butene as an example. Fortunately, my conviction that this was the 
key to quantitative studies of photobiology gave me the courage to look at the most 
important problem of biological photochemistry, namely the primary photoisomerization of 
retinal in the visual process. More specifically, I became interested in retinal during my 
postdoc time (see e.g. Ref. [40]), but this interest was focused on spectroscopic and 
geometric properties, and not on the most exciting problem of what is happening during the 
first step of the vision process (a problem that seems to be completely inaccessible to 
theoretical studies with the standard strategies). At that time, it was known that when light 
strikes the eye, it is absorbed in the Schiff base of retinal, which is embedded in a protein 
called rhodopsin. After absorption of light, the retinal molecule isomerizes from its initial 
11-cis structure to an all-trans structure, forcing structural changes of the protein, where the 
new form of the protein (metarhodopsin) activates the transfer of the visual signal to the 
brain. Later, it was found that the metarhodopsin activates a G-protein called transducing, 
and that rhodopsin is in fact a G protein-coupled receptors (GPCR).[41] It was also known 
that the primary absorption of light leads to a photoisomerization of the retinal molecule in 
less than 6 picoseconds (which was the shortest time that could be measured in the early 
1970s). Furthermore, the absence of structural information seemed to introduce an even 
bigger challenge. Although I considered binding retinal to chymotrypsin, I decided to model 
the protein’s effect by a steric cavity plus an assumed internal counter ion, and used the 
semiclassical surface hopping approach with a Schiff base of retinal, constrained to be in the 
starting 11-cis conformation.[42] My MD simulations, depicted in Figure 4, predicted that 
the primary process takes about 100 femtoseconds, with an enormous probability of jumping 
from the excited state to the ground state due to very large non-adiabatic coupling (a 
phenomenon that was later identified as the effect of conical intersections). Remarkably, the 
results of these simulations, that represented the first use of MD simulations in biology, have 
since been confirmed both experimentally[43] and theoretically.[44]

The molecular motion that emerged from these computer simulations resolved the problem 
of fast movement in a restricted protein cavity without strongly clashing with it. That is, it 
was found that the isomerization occurs with a concerted rotation of several bonds, which I 
called the “bicycle pedal” motion. To see if the bicycle pedal model made sense, I borrowed 
model building parts from Max Perutz’s structural biology lab, and built a model that 
appeared to reproduce the concerted motion without any large structural changes. 
Interestingly, about 30 years after my original model, this motion has been confirmed by ab 
initio studies.[44]

Over the following years, my long-time collaborator Bill Parson and our coworkers[45] used 
the structure of a bacterial reaction center (RC) and the same semi-classical approach to 
model the primary electron transfer event in photosynthesis, establishing that the observed 3 
ps process involves a sequential hopping from the primary chlorophyll dimer (P*) to one 
monomer (B), and then to a second monomer (H). This was again done before the 
confirmation of our findings by decisive experimental studies (e.g. Ref. [46]), and at a time 
where most workers assumed that the primary event cannot be a stepwise and assumed that 
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it is a single step super-exchange process. Here, the ability to determine the correct 
electrostatic energy of each intermediate has been a major advantage over related attempts 
that did not involve experience in the conversion of protein structures to model electrostatic 
energies and redox potentials. Instructively, in this case, the advantage of working with and 
developing tools for studies of biological functions has been demonstrated in an effective 
way. That is, although we waited four years to get the RC coordinates, all the computer 
programs were ready and tested for a long time, and it took us only two weeks at the end of 
1987 to convert the structure of the RC to a detailed (and correct) functional mechanism.

 Free Energy Calculations and Thermodynamic Cycles

One of the most remarkable advances that resulted from the emergence of computer 
modeling of biological molecules has been the ability to evaluate the relevant free energies, 
and, in particular, the energetics of charged groups in proteins. Arguably, this started with 
the very rough attempt in the original 1976 paper (see Figure 8 of Ref. [2]), and continued 
with more quantitative free energy considerations and the introduction of well-defined 
microscopic based thermodynamic cycles, using the PDLD model that paved the way to 
evaluation of pKa values,[28] redox energies,[47] ion transfer energies[48] and drug binding 
free energies.[29] In 1977/78, after reading Valleau and Toerrie’s masterful review,[49] I 
started free energy perturbation (FEP) calculations of the charging of an ion in my surface-
constrained soft sphere dipole (SCSSD) water model.[50] This was mainly in order to show 
the referees of the SCSSD paper that the entropic contribution to the solvation free energies 
of ions is small. The calculations gave a reasonable trend, but I was too busy trying to fight 
the referees on other trivial issues that I did not publish the preliminary entropy study. 
Eventually, the increase in computer power allowed us to move into free energy calculations 
of charges in all atom solution models in 1982,[51] as well as starting free energy 
calculations of proteins in 1983/84.[52] The microscopic free energy perturbation 
calculations and the corresponding free energy cycles have become a major part of the field, 
in part due to the excitement from rather trivial changes of a few solute atoms in solution[53] 

and then in proteins.[54] In light of my conviction in the importance of electrostatic energies, 
I did not consider these “alchemical changes” to be a real challenge, and continued to focus 
on evaluating the large absolute solvation free energy, providing the first FEP studies of the 
free energy of ionizing acids in proteins, and of redox process (for a review see Ref. [29]), as 
well as the free energies of countless enzymatic reactions.[26] My co-workers and I also tried 
to educate the community about the enormous risks of looking at the so-called potential of 
mean force (PMF) in studies of biological charge transport and related problems. Here, we 
pointed out that looking at the PMFof say ion penetration in ion channels can be extremely 
misleading, since it does not tell you much about the error in getting the absolute solvation 
free energy, and can lead to enormous problems. On the other hand, insisting on obtaining 
the absolute free energy is the best way to know if the model captures the correct 
physics.[26, 29] This issue is strongly related to the tendency of confusing formal rigor with 
actual reliability. Here, the realization that the proper boundary conditions are key to the 
reliability of the results and the speed of the convergence, took a rather long time to reach 
the community.
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 Bridging Time and Length Scales: Coarse-grained (CG) Simplified Models 

of the Function of Complex Molecular machines

While the MD studies of ultrafast photobiological processes of the type discussed above 
have been very effective,[55] the simulations of functional properties that involve longer time 
steps and larger systems have presented a much more serious challenge. In fact, even today, 
despite the exponential growth of MD simulations of proteins and related systems, and the 
enormous progress in computer power (e.g. Ref. [56,57]), the ability to capture functional 
properties has been limited. Here, one faces enormous sampling problems that, (as discussed 
in Ref. [58]), are not necessarily reduced by using sophisticated formulations such as that of 
Ref. [59]. Of course, running one very long trajectory to represent a functional property 
suffers from the problem of having a single observation, which might not correspond to the 
overall action. Furthermore, having a single long trajectory can still be considered as an 
experiment that needs careful interpretation and an analysis by a general reduced model. 
Thus, our point of view has been that in simulating complex systems, we clearly have the 
need to bridge the time and length scales by simple models.

Here, we have reverted back to the CG idea of the protein folding days,[6] and asked how it 
can be used to study protein functions. It was clear that this task requires an improved 
treatment of electrostatic energies (which appear to be the key for structure-function 
correlations), and thus we undertook a major project, generating an improved electrostatic 
model and calibrating it on absolute protein stabilities.[30] The resulting CG model appeared 
to provide what is arguably the best current tool for moving from the structure to the 
function of molecular machines (see below). Another challenge that we had to address has 
been the requirement that the long time-scale behavior of the simplified model would 
reproduce the corresponding trend in the full model. The solution came with our 
renormalization method,[60] where we apply strong external forces in MD simulations of the 
full model (thus inducing large conformational changes in short times), and also apply the 
same forces in the reduced model, which is simulated by Langevin dynamics. We then chang 
the effective friction in the Langevin dynamics simulations until both the full and the 
reduced model produced the same time-dependent response to the applied forces. The 
resulting friction is then used as the optimal friction for long timescale simulations with the 
reduced model, in the absence of the external force. This renormalization approach appeared 
to reliably reproduce the long timescale microscopic simulation,[61] and allowed us to 
explore the long timescale behavior of complex molecular machines.[60, 62]

Significantly, in developing the above CG and multiscale models, one faces the question of 
how to relate the simplified free energy surface to the corresponding results that would be 
obtained with the full explicit model. Here, we recruited the paradynamics (PD) philosophy, 
first evaluating the CG free energy, and then performing a perturbation between the CG and 
full surfaces at different key regions on the landscape.[60] These developments allowed us to 
use our CG model in simulations of molecular machines and other complex biological 
systems, and I will consider some of the most instructive recent examples below.

F1F0-ATPsynthase is a ubiquitous cellular engine composed of two rotational motors, the 
cytoplasmic F1 coupled to the membrane embedded F0 units. The F0 rotor uses the energy of 
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the proton transport across the cellular membrane to rotate the membrane embedded c-ring, 
while the F1 couples the rotation of the c-ring with its central stalk (g subunit) to generate 
ATP from ADP and Pi. In spite of numerous simulation and phenomenological studies (e.g. 
Ref. [63,64]), the origin of the coupling between chemical and mechanical events in the 
F1F0-ATPsynthase has not been elucidated or simulated in a consistent and unbiased way. 
More specifically, several single molecule experiments[65] have discovered the amazing 
presence of the 80°/40° stepwise rotation of the system and noticed that the chemical step 
occurs after the 80° step (the delay before the chemical step has been called the “catalytic 
dwell”). Unfortunately, it has been especially difficult to understand the origin and 
significance of the stepwise coupling from a structural perspective. This difficulty has been 
in part due to the large system size, and the very long timescale of the process, which 
extends beyond the millisecond regime. Remarkably, the CG electrostatic free energy 
surface coupled to the ATP hydrolysis and product release free energies could successfully 
reproduce the observed behavior of the system. This included generating electrostatic 
landscape that has a high energy region after the 80° γ-stalk rotation (see Figure 5) and then 
upon addition of the chemical landscape, reproduce (see Ref. [62]) a functional landscape, 
where the 80° barrier is coupled zo the chemical coordinate of the ATP hydrolysis and 
generate the catalytic dwell. This reproduced the experimentally observed catalytic dwell at 
80°/40°. The details of our CG modeling and the corresponding analysis are given in Ref. 
[62].

An additional encouraging CG study[66] has for the first time reproduced the directionality 
of the coupling between the protomotive force and the rotation of the c ring in F0-ATPase. 
Phenomenological models have been used in attempts to understand the action of the c-ring 
rotation coupled to the proton transfer from the low to high pH reservoirs across the 
membrane.[67, 68] However, a quantitative structure-function relationship that elucidates the 
physical nature of the directional rotation has been completely missing. Our CG model has 
generated the electrostatic free energy surface of the c-ring rotation coupled to the proton 
transport from the P side (pH 5) to the N side (pH 8) of the membrane. The generated 
landscape has shown that the CG surface, the molecular origin of the directional c-ring 
rotation is mostly due to the asymmetry of the proton transport path on the N and P sides of 
the F0 unit, rather than being driven by the energetics of the centrally placed salt bridge 
between the c-ring and the stator subunit a.[66]

Another interesting biological system that was explored with our CG model is the translocon 
complex that controls the translocation of polypeptides across the membrane. We used the 
CG model to address several key questions about this system, starting with the mechanism 
of membrane insertion of charged residues.[69] We then made significant advances in 
exploring the energetics of the translocon-assisted protein insertion, where we challenged 
ourselves to obtain the complete free energy profile for the protein translocation through the 
translocon and the partition to the water and membrane phases. By applying several 
constraints on the system, we were able to obtain a free energy profile[70] that was used to 
investigate the effect of different mutations and the ribosome binding. Comparison with 
experimental data led to the conclusion that the insertion process is most likely a non-
equilibrium process, and that the insertion barrier into the translocon controls the peptide 
topology. The obtained free energy profile allowed us to approach extremely challenging 
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and fundamental questions regarding the nature of the coupling between two large biological 
systems: the translocon and ribosomes. That is, we investigated the origin of the 
experimentally observed[71] biphasic pulling force from the translocon that releases the 
stalling of some elongated nascent peptide chain from the ribosome. By combining the 
estimates of the chemical barriers of peptide bond formation for the regular and stalled 
peptide sequences with the profile for the translocon-assisted protein membrane integration 
and performing Langevin dynamics simulations of the ribosome/translocon model, we were 
able to reproduce the experimental effect ([72] and Figure 6). Our simulation of the action of 
voltage activation ion channels[73] provides another instructive case study. The above 
examples highlight the importance of obtaining the relevant free energy profiles for a 
thorough understanding of the mechanisms underlying different biological processes.

 Future Directions

The enormous increase in computer power makes it virtually certain that computer 
simulations will increasingly become the key tool in modeling complex systems. Although it 
is hard to predict the exact future trajectory of the field, it may be useful to consider some 
promising directions. One clear direction is the field of fighting drug resistance. That is, at 
the turn of the 20th century, we had a short life-span due in part to the effect of deadly 
diseases. The discovery of penicillin and other drugs helped to protect against major 
diseases. However, in recent years, the phenomenon of drug resistance has started to reverse 
the picture. It appears that there is no magic bullet: key drugs become ineffective due in part 
to excessive irresponsible use of antibiotics. In other cases, we have diseases like HIV that 
are hard to combat due to the inherent fast mutations of the pathogen, or diseases like 
malaria, where we also have drug resistance. Thus, it has become essential to pursue new 
drug design strategies. Here, the challenge is to predict the moves of the pathogen in 
response to different drugs. Of course, one can try to explore the actual experimental 
response of the pathogen to different drugs, but this is obviously not a predictive approach. 
Thus, it would be tremendously helpful to use computational strategies for studies of drug 
resistance, but such a strategy must drastically reduce the options for effective mutations.

One such strategy is to exploit the fact that a virus fighting against a given drug must reduce 
the affinity to this drug, while still maintaining a reasonable catalytic efficiency towards the 
native substrates. Thus, it would be useful to find a way to out-maneuver the virus by 
designing inhibitors, whose binding to the target enzyme cannot be reduced by mutations 
without significantly reducing its kcat/KM value. In other words, the drug resistant mutants 
must increase Ki for the drug, while maintaining a reasonable kcat/KM value for their native 
substrate. Thus, an effective strategy can exploit the ability to calculate the vitality value, γ 

(γ = Ki kcat/KM), and to determine the chance that the virus will mutate in a given way. 
Combining the vitality value and other constraints (such as maintaining reasonable protein 
stability) will provide the survival value, which is the chance that the given mutant will 
survive in the presence of the specific drug. Our ability to evaluate the vitality value has 
already been demonstrated in preliminary studies,[74, 75] and thus we are confident that it 
will be possible to develop a robust ability to predict the survival of the virus mutants, and 
thus to design drugs that would reduce the resistance problem. Other constraints such as 
mutation tendency and other factors can be introduced by bioinformatics approaches. It is 
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quite likely that an aggressive use of computer simulations will provide a way to beat the 
pathogens in their own game.

Another exciting direction can involve the design of drugs that interfere with protein–protein 
interactions. Here, the idea is to learn about key interactions between partners in signal 
transduction networks (e.g. Ras/RAF[76]), and then designing molecules based on the 
regions with the strongest interaction (see the strategy in Figure 49 of Ref. [77]. Yet another 
direction that will gradually mature is the field of truly rational enzyme design. Here, it 
seems obvious to me that the design approaches must involve actual modeling of the 
catalytic effect of different design options. It is unlikely that unverified ideas of how 
enzymes may work (e.g. the idea that enzyme catalysis is due to dynamical effects), or ideas 
that are based on gas-phase modeling, would lead to artificial enzymes with large catalytic 
effects. On the other hand, approaches that can reproduce the catalytic effects of known 
enzymes must eventually be very powerful in screening different design options. Multiscale 
modeling of the action of molecular complexes is likely to be used in describing signal 
transduction, and allowing one to have a clearer and clearer understanding of cellular action. 
Finally, it should also be mentioned that multiscale modeling provides a very powerful tool 
in modeling non-biological systems. Promising directions here include the design of 
catalysts for a wide range of applications, the design of advanced materials, and the 
optimization of nanotechnological devices. Overall, the use of computer modeling is likely 
to increase enormously in any branch of molecule science, as well as in modeling very large 
systems that can be considered as macroscopic systems.
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Figure 1. 
Showing the energetics of breaking a C–O bond in an uncoupled QM + MM (upper 
diagram) and when the electrostatic and steric effects of the environment are included in a 
coupled QM/MM (lower diagram). The dipoles designate the effect of the surrounding 
residual charges. As seen from the Figure it is very hard to break the bond without including 
the coupling between the QM and MM regions.
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Figure 2. 
A QM/MM model of the lysozyme active site. The enzyme is divided to a small reactive QM 
region, and to the rest of the system, which is described by a classical MM model.

Warshel Page 20

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Schematic demonstration of the reorganization of the environment dipoles in an SN2 
reaction, where the charges change from being on one atom in the reactant state (RS), to 
being delocalized in the transition state (TS) in A) water and B) an enzyme active site.[26]
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Figure 4. 
Snapshots from the simulated MD trajectory of the primary event in the vision process. The 
trajectory starts with 11-cis retinal in the ground state, and, upon absorption of light, the 
system moves to the excited state where the 11–12 torsional angle rotates without a barrier 
to 90°, and the trajectory crosses to the ground state in the trans direction. The motion 
involves only a small change in the overall structure, since the other torsional angles move in 
the opposite direction to the 11–12 torsional angle. The snapshots are taken from a movie 
that used the original trajectory presented in Ref. [42].
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Figure 5. 
Exploring the coupling between the rotation of the γ-stalk to ATP hydrolysis in F1-ATPase. 
The relevant system (namely F1-ATPase) is shown from the membrane side (A), and along 
the vertical direction parallel to the central γ-stalk (B). The α catalytic subunits are shown in 
deep blue, deep green and orange, while the β units are shown in cyan, light green and 
yellow. The γ-stalk is shown in magenta. The nucleotide occupancies of the β subunits are 
depicted as T (ATP bound), D (ADP bound) or E (empty) states. (C) The CG electrostatic 
free energy surface of the rotation of the γ-stalk coupled to the α/β conformational changes. 
This landscape reflects the stepwise 80°/40° features discussed in the main text. The 
combination of the diagram of (C) with the energetic of the chemical steps (which is given 
in Ref. [62]) provides a structure-based description of the action of F1-ATPase. This Figure 
is taken from Ref. [62].
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Figure 6. 
Simulations of the coupling between the ribosome and the translocon (TR). The simulation 
addresses the effect of the TR on stalled peptides, where for some lengths of the linker, L, 
the coupling to the TR helps to release the stalled peptide. The time dependence of xistall and 
x1 for a peptide chain with 40 and 36 units is shown here, which corresponds to L = 31 
(blue) and 27 (red), respectively. The x coordinate designates the insertion coordinate and is 
defined in Ref. [72]. The barriers used for the LD simulations were obtained by scaling 
down the energy terms by 0.43. This allowed for the simulation of the insertion process in a 
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relatively short timescale, and then estimating the relevant time for the actual barriers by 
using the corresponding Boltzmann probability. The snapshots on the top and bottom of the 
plot show the configuration of the nascent peptide chain for L = 31 and L = 27, respectively. 
The ribosome and TR are shown schematically, the starting configuration of the nascent 
chain is in cyan, the leading particle (x1) is in red, and all other particles added to the 
growing chain are shown in magenta. The interpolated times (that should be obtained 
without scaling) for L = 31 and L = 27 are 6 min and 36 min, respectively. This Figure is 
taken from Ref. [72], which also gives a complete description of the problem and the 
simulations performed.
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