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1 Multiscale Modeling of 

Porous Medium Systems

Amanda L. Dye, James E. McClure, 

William G. Gray, and Cass T. Miller

1.1 INTRODUCTION

The use of computers over the last 60 years for simulating subsurface �ow problems has provided 
an impressive, ever-expanding ability to model processes at a high resolution. Whereas in the 
1960s a computational grid with 500 �xed nodes would have pushed the boundaries of com-
puter power [59], simulations today involve millions of spatial grid points and adaptive meshes 
[40,57]. The availability of this power for solving equations that purport to describe physical and 
chemical processes in porous media is wasted, however, if the equations being used to describe 
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the systems are inadequate. Most assuredly, the ability to solve equations that are posed has been 
vastly improved. Unfortunately, the equations that are being solved have not developed to the 
same degree.

For example, the primary equation for describing momentum transport of �uids in porous 
media is Darcy’s law, a correlation of data from a highly idealized set of experiments (e.g., homo-
geneous medium, single-�uid phase, steady state) published in 1856 [9,16,17]. The results of these 
experiments have been presumed to apply to transient, multiphase �ows in heterogeneous systems 
at different scales. This extension of the experiment to systems clearly beyond their scope has 
resulted in equations with ill-de�ned and poorly understood variables. A clear path for rigor-
ously extending the form of Darcy’s equation to �ows well beyond those considered by Darcy, 
such as high-velocity �ow and �ows with cross coupling between the �uid phases, does not exist. 
Furthermore, inclusion of physical phenomena such as capillary pressure, contact angles, and evo-
lution of interfaces between phases has been a heuristic effort justi�ed somewhat by dabbling in 
physical understanding rather than a comprehensive rigorous derivation of equations that describe 
the processes (e.g., [34,49,53]).

Averaging of equations from the microscale to a larger scale is one general approach that has 
been employed in an effort to obtain equations that have a �rm theoretical basis. Underlying aver-
aging theory is the mathematical theorems that allow transformation of the scale of equations. 
Theorems for transformation of conservation equations for phases have been employed for almost 
50  years [3,4,60,68]. Theorems that allow averaging of equations for interfaces between phases 
and for common curves, where three interfaces meet, were developed subsequently [22,30], and 
the forms of all these equations have been uni�ed [27]. Four principal variants of averaging theory 
that make use of these theorems have been employed. The �rst emphasizes averaging of microscale 
conservation equations for phases and then makes heuristic arguments to close the equation system 
(e.g., [6,29,68]).

A second approach pioneered by Whitaker, and employed by adherents to this approach, is 
commonly referred to as the method of volume averaging (MVA). Applications of MVA typically 
make use of averaging theorems applied to conservation equations for phases only. This approach 
begins with closed microscale equations, which are then averaged to a larger scale. The new 
terms that arise are closed typically by derivation of closure equations solved for a periodic unit 
cell and the solution of closure variables to map from the smaller scale to the larger scale (e.g., 
[8,15,21,54–56,61,69,71]).

The third approach makes use of averaging of conservation equations in conjunction with 
rational thermodynamics (ACRT). ACRT averages equations for phases, interfaces, and common 
curves. Then, based on a set of axioms concerning system behavior, thermodynamic relations are 
obtained directly at the larger scale; and the equation set is closed based on exploitation of an 
entropy inequality (e.g., [7,31,33,64]).

These preceding methods have shortcomings primarily in that the �rst two methods do not 
account for interface dynamics and require assumptions about the forms for deviations between 
microscale and larger-scale values. The approaches make very limited use of thermodynamic infor-
mation. ACRT suffers in that the larger-scale thermodynamic relations in fact are expressed in terms 
of quantities that are not based on fundamental thermodynamic variables [5,42,44,66]. Additionally, 
these models have been abused by using erroneous closure conditions for the interface stress tensor 
and the interface dynamics (e.g., [50,51]). Thus, complete and correct models based on averaged 
conservation equations, thermodynamics, and phase distribution kinematics are missing.

In an effort to overcome the problems of these earlier methods, a fourth method, referred to as 
thermodynamically constrained averaging theory (TCAT), has been formulated. This method is the 
basis of this contribution. Here, we outline the elements of TCAT and show how it can be used to 
obtain model equations that overcome many theoretical dif�culties.
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5Multiscale Modeling of Porous Medium Systems

1.2 OVERVIEW

Conservation equations and thermodynamic relations applicable to porous medium systems are 
well understood at the microscale where the boundaries between all phases are resolved and evolved 
dynamically. However, many porous medium systems are described at a scale above the microscale, 
where a point refers to the averaged conditions in some representative averaging region. We will call 
this larger scale the macroscale. The TCAT has been developed to formulate macroscale models 
such that all variables are expressed explicitly in terms of microscale precursors [24,28]. TCAT 
also assures consistency with the second law of thermodynamics. It has been shown that use of 
the TCAT procedure leads to the occurrence of variables such as volume fractions, interfacial ten-
sions, and density of interfacial area between the �uid and solid phases for the case of single-�uid 
porous medium systems. For multi�uid systems, common curve lengths per volume, interfacial 
tensions, curvatures, and contact angles also arise naturally in the formulation [39]. On physical 
grounds, these variables can be argued to be of importance; their magnitudes relate to possibilities 
for interactions and exchanges between phases. However, these variables do not appear explicitly in 
traditional porous medium models.

Despite the theoretical appeal of TCAT models, a problem remains; solvable models require the 
explicit identi�cation of closure relations that have only been speci�ed in general functional forms 
by the theoretical work advanced to date. The constitutive relations employed for a particular sys-
tem must be consistent with the general functional dependences inferred and must also be clearly 
stipulated and parameterized. Closed models are needed both to facilitate solution of an equation 
set and to allow for validation of TCAT models by comparison with system behavior observed at 
the corresponding scale.

In recent years, some needed closed forms have been motivated by small-scale experimental 
and computational methods. Of particular interest here is the high-resolution microscale modeling 
approach known as the lattice Boltzmann method (LBM). This method can be used to generate both 
a detailed understanding of microscale transport phenomena within the pores of a porous medium 
system and also the macroscale variables that can be obtained as integrated forms of the microscale 
variables. These macroscale variables can be employed in posited general forms of closure rela-
tions [20,32,52,65]. Computational experiments thus provide a basis for the development of closed 
models making use of equations developed using the TCAT procedure. Because TCAT models are 
new, multiscale modeling of speci�c forms of TCAT closure relations has not yet been completed 
for many theorized model formulations.

In this chapter, we examine a TCAT model for two-�uid-phase �ow in a porous medium  system. 
In Section 1.3, we provide the theoretical elements that are combined to establish the TCAT approach. 
In Section 1.4 we propose a set of closed equations that describes two-�uid-phase �ow in a porous 
medium. For this set to be solvable, values or functional forms of some coef�cients and equations 
of state must be speci�ed. In Section 1.5, we discuss how knowledge of the smaller-scale system 
behavior, obtained through complementary experimental and LBM studies, can provide insights for 
speci�cation of the needed forms and coef�cients. Section 1.6 provides details concerning the for-
mulation, veri�cation, and validation of the LBM approach used to simulate two-�uid-phase �ow in 
a porous medium system. The resultant model is used to investigate various aspects of the �ow sys-
tem that the TCAT model suggests warrant attention, such as an appropriate formulation of capillary 
pressure. The need to obtain information about geometric features of the porous medium system, 
such as the curvature of interfaces between phases and the extent of those interfaces, is discussed 
in Section 1.7. In Section 1.8, speci�c closure relations for a two-�uid-phase system are obtained 
from analysis of LBM simulations. This serves as an illustration of how robust models and formula-
tions can be advanced by rigorous theoretical analysis in conjunction with  computer  simulation for 
a range of phenomena.
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6 Handbook of Porous Media

1.3 THEORY

TCAT is a systematic procedure for changing the scale of conservation, balance, and thermody-
namic equations from the microscale to a larger scale. For use in porous media, the TCAT method 
involves averaging over a representative averaging volume to obtain equations for phases, interfaces 
between phases, common curves, and common points, which are referred to generically as entities. 
TCAT has been developed by considering each of these entities separately. Here, we will make use 
of the similarities of the equations and averaging theorems for each of the different entity types to 
develop the equations. The following six sections present the essential TCAT components: averag-
ing theorems, conservation equations, entropy balance, thermodynamic equations, evolution equa-
tions, and the entropy inequality. The full details of these equations and the procedures used to 
manipulate them can be found in [28]. Here, we emphasize the equations that are particularly useful 
in macroscale porous medium �ow modeling. These results form the bases for model formulation 
and closure considerations, which are considered subsequently.

1.3.1 AVERAGING THEOREMS

For porous medium analysis, it is not possible to model large systems at a microscale where the 
�ow pro�le within the pores is described. Neither is it always informative to model the system at 
a megascale where only an average value of a quantity within the full system is determined. As a 
compromise between these two extremes, it is important to be able to model natural systems and 
laboratory systems at an intermediate length scale, referred to as the macroscale, where a �ltered 
form of quantities in the system is used. At the microscale, the phases within a system are visualized 
as being juxtaposed and separated by interfaces. At a microscale location, a point lies within a single 
phase or on an interface or a common curve. From a macroscale perspective, all phases, interfaces, 
and common curves may be present at a location with each having a geometric density. A phase has 
a volume fraction measure, an interface has an interfacial area per volume measure, and a common 
curve has a length per volume measure. A similar density can be developed for common points, 
which do not occur in the systems considered in this chapter.

The conservation and balance equations that describe a system are most easily formulated 
directly in terms of microscale quantities. To transform the microscale equations to the mac-
roscale, mathematical relations are needed. These have the effect of changing averages of 
derivatives of microscale quantities into derivatives of macroscale quantities. These theorems 
[3,22,23,27,30,37,43,47,60,67] are most readily applied when the length scales of the microscale 
and macroscale are widely separated. Microscale phase conservation equations are 3D transient 
forms. Interface conservation equations are 2D at the microscale. Common curves and common 
points are, respectively, one and zero dimensional at the microscale. On transformation to the mac-
roscale, all these equations become 3D as the properties of interest vary in space regardless of the 
type of entity to which they belong.

The spatial averaging theorems are applied, respectively, to the divergence and gradient opera-
tors according to
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7Multiscale Modeling of Porous Medium Systems

where (n) is the number of primes that appears in the superscript, the integration domain is of 
dimensionality 3 − n, and the averaging operator is indicated using angle brackets. Thus, for 
example, for a surface of dimensionality 2, (n) = (1), so the microscale surface gradient operator, 
∇′, uses a single ′ to indicate that it is a surface operator. For a phase, n = 0 and I Iα

( )0
= . For a com-

mon point, n = 3 and Iα
( )3
= 0. Note that all variables and operators are de�ned in the nomenclature 

section.
In addition to the spatial averaging theorems, a temporal averaging theorem is employed that 

relates the spatial average of a time derivative of a function to the time derivative of the spatial aver-
age of the function. This theorem is stated
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where
(n) is the number of primes that appears in the superscript
the integration domain, Ωα, is of dimensionality 3 − n

Equations 1.1 and 1.3 are the primary averaging theorems that are used to convert microscale 
conservation equations for phases, interfaces, common curves, and common points to their mac-
roscale forms.

1.3.2 CONSERVATION AND BALANCE EQUATIONS

The conservation equations at the macroscale can all be derived from the microscale total energy 
equation by application of the averaging theorems followed by the restriction that the equation 
obtained must apply in any inertial coordinate system. In the development here, we will not consider 
species transport or interphase mass transfer of individual species. We state the microscale total 
energy equation for entity α as
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where the summation term in this equation accounts for exchanges with entities of higher 
dimensionality.
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This equation is averaged to the macroscale using the operator ⋅
Ω Ωα,

. After application of the 
averaging theorems Equations 1.1 and 1.3, the macroscale energy equation that results is
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The notation used in this equation is designed to precisely indicate the macroscale quantities (with 
superscripts), particular kinds of averages (spatial average with no overbar on the superscript, mass 
density weighted with a single overbar on the superscript, specially de�ned with a double overbar on 
the superscript), and an exchange term between entities (with a super arrow indicating the transfer from 
one entity to the other). The de�nitions arise naturally in the averaging process, and the expressions 
in terms of microscale variables appear in the nomenclature or in far greater detail in [28]. It is useful 
to rewrite the �rst two terms in Equation 1.5 making use of the material derivative operator to obtain
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9Multiscale Modeling of Porous Medium Systems

This energy equation must apply in any inertial reference coordinate system. We can replace vα by 
v C
α
+ , where C is an arbitrary constant velocity vector, and Equation 1.6 will still apply. After mak-

ing this substitution, collection of terms that multiply C results in an equation of the form

 
E P M* * * .
α α α
+ ⋅ +

⋅
=C

C C

2
0  (1.7)

Because C is arbitrary, selection of C = 0 con�rms that Equation 1.6 still applies. If C is orthogo-
nal to the terms collected to form P*

α, then Equation 1.7 requires that M*

α
= 0. Therefore, we must 

also have P*
α
= 0, since Equation 1.7 must hold for any and all constant C. The group of terms that 

 comprises P*
α is the momentum equation as follows:
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The elements of M*
α constitute the mass conservation equation for entity α, which can be written as
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For two-�uid-phase �ow, we note that the set of entities consists of the phases, interfaces, and com-
mon curve such that the index set is

 
J = { }w n s wn ws ns wns, , , , , ,  (1.10)

As an example of the connected sets, the connected set of higher- and lower-dimensional entities 
for the wn interface is
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and

 
J
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− = { },  (1.12)

respectively. We are considering the connected set of the solid phase to include the common curve.

1.3.3 ENTROPY BALANCE

In addition to the conservation equations, an entropy balance equation may be formulated for each 
entity. The microscale equation denoted as Sα is written

 

S

J

α
α

α α α

κ

κ

κ
κ α

α α

η
η − −

η

ρ
−

α

: ( )
( )

( ) ( ) ( )=
∂

∂
+∇ ⋅ ∇ ⋅ ⋅(

∈
→

+

∑
n

n n n

t
b M

c

v I ϕ )) =

∈ =

Λ

α − α

α

for dimJ ; .n 3

 (1.13)
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10 Handbook of Porous Media

Application of the averaging theorems Equations 1.1 and 1.3 to this equation yields the macroscale 
entropy balance given by

 

S ε

ε

J

J

α
α

α α α α

κ

κ α
α κ

κ

κ α
α α

η
η − − η

− Φ −

α

α

:
,=

∂

∂
+∇ ⋅( )

∇⋅( )

∈

→

∈

→

∑

∑

t
b M

c

c

v

ϕ == ∈Λ αα
for J .

 

(1.14)

As with the conservation equations, it will prove convenient to write this equation in terms of the 
material derivative such that we have

 

S ε ε

J J

*
,

:
α

α α
α α α α

κ

κ α
α κ

κ

κ α
α αη

η − − η − Φ −

α α

= + ∇⋅( )
∈

→

∈

→

∑ ∑
D

Dt
b M

c c

I d: ϕ ==

∈

Λ

α

α

for J .

 

(1.15)

We observe that the quantities that appear in this balance equation do not appear in the conserva-
tion equations. To make use of this equation in conjunction with those conservation equations, two 
steps are taken. First, the inter-entity exchange terms will drop out if one sums the entropy balance 
equation over all entities. This gives us

 α

α

α

α α
α α α α α α

α

αη
η − − Λ

∈ ∈ ∈
∑ ∑ ∑= + ∇⋅( )







 =

J J J

S ε ε* .
D

Dt
bI d: ϕ  (1.16)

From the second law of thermodynamics, we know that entropy generation due to irreversible pro-
cesses is nonnegative. Therefore, we know that

 α

α
Λ

∈

∑ ≥

J

0.  (1.17)

The second step in making the entropy inequality helpful in conjunction with the conservation 
equations is the postulation of a thermodynamic formalism that relates entropy to internal energy. 
An approach to this problem is provided in the next subsection.

1.3.4 THERMODYNAMIC FORMALISM

The simplest thermodynamic formulation that can be employed is classical irreversible thermody-
namics (CIT) [5,11,18]. We will use this formalism here because of its simplicity and the fact that it 
indeed describes the thermodynamic behavior of many important systems. The approach employed 
is to make use of the known thermodynamic relations at the microscale and then average them to the 
macroscale. By using this approach, we ensure that all thermodynamic quantities are well de�ned 
at the macroscale and that thermodynamic information is transferred consistently between scales. 
The thermodynamic formalism can be developed using a common notation for all entities except 
the solid. Here, we assume that the solid is elastic, and we provide the thermodynamic relations 
consistent with that speci�cation.

Classical thermodynamics provides thermodynamic properties of equilibrium systems. Using the 
CIT approach, we make use of a local equilibrium assumption such that the thermodynamic rela-
tions are considered to apply at each point in the system even though the properties that are constant 
when the system is at equilibrium have spatial and temporal variation. It is important to note that the 
local equilibrium assumption is enforced at the microscale but is not imposed separately at a larger 
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11Multiscale Modeling of Porous Medium Systems

scale when the larger-scale equations are obtained by averaging the smaller scale thermodynamic 
relations. The impact and importance of nonlocal equilibrium at the larger scale in the thermody-
namic relations are obtained through the averaging process that requires consistency between scales.

The thermodynamics of �uid phases, interfaces, and common curves are all de�ned by the Euler 
form of the energy equation per region of the entity written as

 E P sα α α α α αθ η µ ρ − α= + ∈for J \ .  (1.18)

where
Pα = pα is pressure when α denotes a �uid phase
Pα = −γα for an interface where γα is the interfacial tension
Pα = γα for a common curve where γα is the curvilinear tension of the curve

The derivative of this equation may be written as

 d d d for
( ) ( ) ( )

\ ,
n n n

sEα α α α αθ η µ ρ α= + ∈J  (1.19)

where
d(n) is a differential operator
the superscript (n) constrains the differentiation to remain within the entity when α is of 

 dimensionality 3 − n

With d(n) replaced by ∂(n)/∂t in Equation 1.19, averaging theorem Equation 1.3 can be applied to obtain 
a macroscale thermodynamic equation involving the time derivative. If d(n) is replaced by the gradi-
ent operator, ∇(n) in Equation 1.19, the spatial averaging theorem, Equation 1.2, can be used to obtain 
an expression for the macroscale gradient of energy. Then summation of these two results after dot-
ting the gradient expression with vα yields the averaged form of the thermodynamic relation given by
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(1.20)
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12 Handbook of Porous Media

We emphasize that this expression makes use of the local equilibrium approximation at the 
microscale but does not require this condition to hold at the macroscale.

Although it is not a thermodynamic condition, the equation for the rate of change of the gravi-
tational potential is handled similarly to the thermodynamic condition. Because Ψα = ραψα, the 
derivative of this expression is

 d d d for
( ) ( ) ( )

.
n n nΨ −ψ ρ −ρ ψ αα α α α α = ∈0 J  (1.21)

The differential d(n) may be replaced, successively, by the partial time derivative and gradient 
operators with the averaging theorems applied to the resulting equations. Then, if the resulting 
equation in terms of the gradient is dotted with vα and added to the partial time derivative equa-
tion, the result is

 

T

ε

εG*
:

( )

,

α
α α

α

α α

α

α

Ω Ω

α α αΨ
−ψ

ρ
− ρ

ψ
− ρ ψ −

α

α

α=
( )

∇ ⋅( )

+

D

D

D

D

D

Dt t t

n s

sv v

ρρ − − ψ αα α α
Ω Ω

α

α

v vs n( ) ⋅( ) ⋅∇ = ∈I I
( )

,

.0 for J

 

(1.22)

This equation added to Equation 1.20 provides a relation for the rate of change of macroscale inter-
nal plus potential energy for �uid phases, interfaces, and the common curve.

A potentially fertile area for additional research is the representation of solid phases at the mac-
roscale. Here, we adopt a relatively simple model of the solid as an elastic material, which can be 
formulated as

 
E

j
s s s s

s

s

s s= + +θ η σ ρµ:
C

,  (1.23)

where
σs is a stress tensor
Cs is Green’s deformation tensor
js is the Jacobian

The derivative of this equation may be written

 
d d d dE

j
s s s s

s

s

s s= +








 +θ η σ µ ρ:

C
.  (1.24)

If the arbitrary differential in Equation 1.24 is replaced successively by the partial time deriva-
tive and gradient operators, the resulting equations can be averaged making use of the time and 
space averaging theorems. With the gradient expression dotted with vs added to the time derivative 
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13Multiscale Modeling of Porous Medium Systems

expression, the resulting expression for the relation among the rates of change of macroscale ther-
modynamic properties of the solid is
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 ⋅( ) =− σ −

Ω Ω,

.0

 

(1.25)

This expression makes use of the microscale local equilibrium approximation and also accounts 
for the fact that a concentrated force can act on the solid surface at common curves and common 
points. The equation for the rate of change of gravitational potential for the solid phase is obtained 
from Equation 1.22.

1.3.5 EVOLUTION EQUATIONS

Unique to the TCAT approach in comparison to other averaging methods is the incorporation of the 
kinematics of the space occupied by a phase, and of the shape and extent of an interface between 
phases and of the common curve on the solid surface into the full formulation [26,28,31]. Kinematics 
of irregular geometries are dif�cult to describe exactly, so we rely on approximations that are based 
on the averaging theorems, in particular Equations 1.2 and 1.3 with fα = 1. The gradient theorem 
becomes

 

0 = ∇ ∇⋅ ∇ ⋅ +

∈

∑ε

J

α
α

Ω Ω
α

Ω Ω

κ

α
Ω Ω

− − −
α α

α
−

κ

I I I
( )

,

( ) ( )

, ,
,

n n n

c

n  (1.26)

while the time derivative theorem simpli�es to

 

0 =
∂

∂
+∇ ⋅ ( ) ⋅ + ∇ ⋅ ⋅ ⋅
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J
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α α
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α κ Ω
− −

α α

α
−

t

n n n

I I I
( )

,

( ) ( )

,
v v n v

c

κκ Ω,
.  (1.27)

These two equations provide relations among the geometric density of the entity of interest, an ori-
entation tensor, and averages of the velocities of the entities.

It is important to recognize that the velocity of an entity is not necessarily equal to the veloc-
ity of the material in the entity except, for the case of an interfacial area or a common curve, in 
the directions normal to the entity. As might be expected, the velocities of the entities in their 
tangential directions do not appear in the preceding two equations. The challenge that arises is 
relating the changes of extent of one entity to that of another entity. For example, if a phase is 
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14 Handbook of Porous Media

spherical, it is easy to relate the rate of change in the size of the sphere to the rate of change of 
the surface area of the sphere; for the case of complicated phase geometries, phase boundaries, 
and curve lengths, such a relation cannot be obtained. Nevertheless, Equations 1.26 and 1.27 
provide exact relations that can be approximated to obtain appropriate macroscale relations. 
These results can then be studied because the larger-scale variables will be speci�ed in terms of 
microscale variables.

To obtain an evolution form in terms of a material derivative moving with the macroscale solid 
phase velocity, we take the dot product of Equation 1.26 with vs and add this to Equation 1.27. After 
minor rearrangement, this gives
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.

J
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(1.28)

Although this equation describes the evolution of the various geometric entities, it is of limited use 
as is because not all of the quantities expressed with the averaging operator can be evaluated in 
terms of the set of macroscale variables that arise in averaging conservation equations. The com-
plex geometries and distributions of the entities also mean that robust approximate evaluations are 
dif�cult to identify. Nevertheless, these equations are important constraints on the behavior of the 
system. The last term on the left side of Equation 1.28 expresses the fact that the change in distri-
bution of an entity is related to changes in the distribution of lower-dimensional entities. For the 
two-�uid-phase system of concern here, we make some approximations that can be revisited if sig-
ni�cant errors in subsequent macroscale simulations or insights gained from microscale simulations 
suggest a need to do so.

The derivation of an approximate form of Equation 1.28 is a rather involved process and can be 
found in [28]. Here, we provide the equation that results when the solid deformation is much slower 
than �uid redistribution, and we are interested in the rate of change of the wn interface. Elements of 

the physical processes that can cause εwn to evolve are the normal velocity of the interface, interfa-
cial curvature changes, and the movement of the common curve on the solid surface. The governing 
approximate equation is [26,28]
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s
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, .ε ε+( ) = 0

 

(1.29)

The terms in this equation are, in order, the rate of change of wn interface density, the net outward 
�ux of εwn, increase in εwn caused by a change in the volume fraction of �uid phase w, relaxation of 
ε

wn to an equilibrium con�guration, and the change in εwn due to movement of the common curve 
that is the boundary of the interface. The quantity Gwn is an orientation tensor that accounts for the 
fact that the wn interface may have a preferred orientation direction.

For the common curve, more approximations are needed. These approximations are not as robust 
as those for the interface, but the errors are not as important if the common curve dynamics have 
less importance in modeling the overall system behavior. The equation that results is [26,28]
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(1.30)
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15Multiscale Modeling of Porous Medium Systems

This equation relates the rate of change of common curve length per volume, respectively, to the net 
outward �ux of the common curve, the movement of the curve along a solid surface that leads to its 
expansion or contraction, and the relaxation of the common curve length to its equilibrium length 
due to stretching. This latter term is expected to be negligible for the case of a two-�uid system when 
the solid does not deform.

1.3.6 ENTROPY INEQUALITY

The entropy inequality is constrained by the conservation equations, the body force potential 
equation, and the thermodynamic relations such that the material derivatives are eliminated as 
far as possible. This strategy serves to express the rate of entropy generation as a product of 
independent forces and �uxes, each of which is zero at equilibrium. The constrained form is 
expressed as
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(1.31)

After substitution of the appropriate conservation and thermodynamic equations into this equation, 
terms can be collected and canceled. For this study, we also employ approximations consistent with 
an isothermal system, a rigid solid, no mass exchange between entities, and massless interfaces and 
common curve to obtain
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(1.32)
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16 Handbook of Porous Media

The manipulations involved in obtaining this equation are extensive, but not particularly dif�cult. 
Detailed examples of the steps involved in the algebra may be found in [28]. Equation 1.32 provides 
the independent force–�ux pairings that are used to obtain linear relations among forces and �uxes. 
The entropy inequality is listed here because it is a precursor for any two-�uid-phase �ow model 
that could be formulated with the restrictions speci�ed preceding this equation. Because each mem-
ber of the set of forces and each member of the set of �uxes is independent of all other members in 
their respective set, each force and �ux must be zero at equilibrium. The simplest condition that this 
suggests is a linear relation between each �ux and the forces. Here, for simplicity and with some 
limited generality, we will make use of these linearizations with each �ux considered to be linear in 
only its conjugate force rather than all forces. Thus, for example, we can deduce from the third line 
from the bottom of Equation 1.32 that
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= ( ))  (1.33)

is an expression that describes the relaxation of the capillary pressure at the interface due to the 
difference in pressures between the phases at the interface. Furthermore, ĉ must be nonnegative to 
ensure that the entropy inequality is not violated. If linearized approximations of �uxes in terms 
of conjugate forces are found to be inadequate to describe the system, more complex forms can be 
postulated that must still be consistent with Equation 1.32.

1.4 MODEL FORMULATION

The linearization of the force–�ux pairs and substitution into the conservation equations leads to a 
closed set of conservation and balance equations under simple conditions of constant-density �uids, 
an immobile solid, an isothermal system, no mass exchange between phases, and massless inter-
faces and common curve. Additionally, the �ow in the porous medium is considered to be slow such 
that the inertial terms in the momentum equation can be neglected. Mass conservation for the �uid 
phases is accounted for with
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D
for f

α α

α α
α

s

t

s+ = ∈I d: 0 J ,  (1.34)

and

 s s
n w

= −1 .  (1.35)

The �ow equations for the phases are obtained as in [25] with

 ∇ + + + ∇ = ∈p R R R sw
w

n
n pα α α α α α−ρ αg v v 0ˆ ˆ ˆ ,ε Jfor f

 (1.36)

where the last term on the left side of the equation accounts for the impact of the gradient in the 
saturation on the volumetric average of a microscopic pressure �eld. When this term is negligible, 
the �ow equations are similar to Darcy’s law with cross coupling of the �ow velocities included.

Equations 1.34 through 1.36 consist of nine scalar equation components in the 10 unknowns 
comprising V where

 
V = { }s s p p

w n w n w n
, , , , , .v v

 
(1.37)
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17Multiscale Modeling of Porous Medium Systems

The usual procedure for making up for the de�cit of equations is to require the difference in phase 
pressures to be equal to some function of saturation, f sw

( ), such that

 p p f sn w w
− = ( ).  (1.38)

This relation is demonstrably inadequate in a number of ways. No function f sw
( ) has been found 

that is single valued. The function employed is based on data claimed to be collected at equilibrium, 
while the function itself is applied in dynamic situations. Efforts to equate f sw

( ) to the capillary 
pressure merely demonstrate that, while the function is somewhat related to capillary pressure, 
other factors enter into the formalism due to the fact that the well-de�ned microscale capillary pres-
sure is replaced by some approximate macroscale analog.

The TCAT approach suggests a more comprehensive method for closing the equation system. 
This method includes the �uid–�uid interfacial area per volume, εwn, as an unknown. It also requires 

that the macroscale capillary pressure, denoted pwn, and an equilibrium value for εwn be speci�ed 
as functions of the problem variables. In the TCAT formulation, pwn arises in the analysis as the 
intrinsic average over the wn interface of γwnJw, the interfacial tension multiplied by the interfacial 
curvature, Jw = ∇′ · nw. For the case where γwn is constant, this average is equal to the product of 
the macroscale averages γwn and Jw

wn. Inclusion of these variables raises the equation de�cit to four, 
which is addressed as follows based on guidance from the entropy inequality discussed earlier and 
the evolution equations.

The difference in pressures of the �uid phases is modeled as

 

p p p
c

s

t

k

c p p

n w wn

wn

w
wn wn wn wn

wn w n
− −

γ −

−
=

∂

∂
+

( )
( )

ε
ε ε

ˆ

ˆ

ˆ
,

1 eq

 (1.39)

where

 
p p s

wn wn w wn= ( ),ε  (1.40)

and

 
ε εeq eq

wn wn n w w
p p s= ( )− , .  (1.41)

Note that in this equation set, pwn depends on both saturation and the interfacial area density, and it 
will equal the pressure difference between the �uid phases at equilibrium. The inclusion of depen-

dence of pwn on εwn provides a better opportunity to model macroscale capillarity by approximat-
ing average interfacial curvature as a function of the volume occupied by the �uid phases and the 
interfacial area extent. The second and third terms on the right side of Equation 1.39 account for 
adjustment of the �uids during a dynamic process due, respectively, to changes in saturation and 
changes in interfacial area con�guration.

The use of this equation set still leaves a de�cit of one equation. One way that this has been 

handled in the past is to drop all dependences on εwn  in Equations 1.39 and 1.40 such that 
Equation 1.41 is not needed. This approach essentially considers the relaxation to equilibrium 
in a system to be due solely to changes in saturation. It is typically applied in practice by adding 
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18 Handbook of Porous Media

a term related to the rate of change of saturation to Equation 1.38 without ever considering that 
the interfacial area density is important. Efforts to validate this approach have not been suc-
cessful (e.g., [58]).

A second approach to closure of the equation system is to include an additional equation. Such 
an equation is an evolution equation for the �uid–�uid interfacial area. This is obtained, most easily, 
as a simpli�ed form of Equation 1.29 where the term involving the fractional wetting is neglected 
so that for an immobile solid

 

∂

∂
+∇ ⋅ ( )+ ∂

∂
( ) =ε

ε
ε

ε ε
wn

wn wn
wn

wn

w
wn wn wn

t

p s

t
kw

γ
− −ˆ ,eq 0  (1.42)

where wwn must be expressed as some function of the two-�uid-phase velocities. Additionally, we 
obtain the relation between k̂wn and ˆk

wn

1  as

 

ˆ ˆ .k
p

p p
kwn

wn

n w

wn=
−

−








1 1  (1.43)

Equations 1.34 through 1.36 supplemented by Equations 1.39 through 1.42 capture the physics of 
multiphase �ow in porous media and account for important mechanisms that impact the system 
behavior not modeled in traditional models. The obvious drawback of this extended model is the 
additional parameters that must be determined. The values of these parameters have their roots in 
microscale system behavior. Therefore, if microscale equations can be solved, then the average of 
the solutions can be used to populate the forms of needed functions. Here, we will make use of the 
LBM to simulate multiphase �ow and then use the results of those simulations to demonstrate some 
important aspects of this extended model. This demonstration suggests avenues for further research 
involving more general models that can be proposed based on TCAT analysis.

1.5 MICROSCALE CONSIDERATIONS

Closure of the macroscale TCAT model formulated in Equations 1.34 through 1.36 and Equations 
1.39 through 1.42 requires the conversion of the general functional forms of the closure relations 
given by Equations 1.40 and 1.41 to speci�c functional forms. In addition, the closure relations 
given by Equations 1.42 and 1.43 contain approximations and coef�cients that require evaluation. 
In general terms, relationships are needed among �uid pressures, �uid saturations, interfacial areas, 
interfacial curvatures at equilibrium, and the rate of approach to the equilibrium state. This could 
be dismissed as an onerous task, or it could be viewed as a necessary step if one is truly interested 
in obtaining a class of high-�delity, physics-based models for two-phase �ow.

Traditional two-phase-�ow models require the de�nition of hysteretic pressure–saturation– 
relative permeability models and the parameters in these models, which are burdensome to deter-
mine [48]. Quite often the form of the model is assumed and the parameters estimated using 
surrogate means, which reduces the apparent burden. However, the dif�culty with the approach in 
traditional models is that important aspects of the physics are being treated implicitly in the closure 
relation formulation, and surrogate estimates of parameters can introduce a source of error.

To advance TCAT models for two-�uid-phase �ow, new methods must be developed to deter-
mine the aspects of the system that must be observed. These aspects include various types of �uid 
pressures depending upon the averaging region, �uid saturations, interfacial areas, curvatures of 
the interface, common curve lengths and curvatures, orientation tensors for interfaces and common 
curves, dynamic relaxation coef�cients, and contact angles. The formation and characteristics of 
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19Multiscale Modeling of Porous Medium Systems

the residual nonwetting phase are also potentially important. These detailed measures of the state 
of a two-�uid-phase system are of interest not only for the closure and validation of TCAT models 
but also because they can lead to improved fundamental understanding of the system and be used 
to evaluate and parameterize alternative macroscale models.

Standard macroscale experimental approaches are unable to observe many of the aspects of a 
two-�uid-phase porous medium system that are of interest and noted earlier, because these  properties 
depend upon knowledge of the pore morphology and topology of the system that is not accessible by 
merely interpreting the total volume of each phase within the system. Likewise, destructive methods 
of observing the state of a two-�uid-phase system are not of much use either as they are much too 
inef�cient to provide the level and quantity of information that it required. Thus, the information 
required must be obtained either through nondestructive, high-resolution experimental methods or 
high-resolution microscale simulation approaches.

Nondestructive, high-resolution experimental methods of observing multiphase porous medium 
systems have advanced greatly in recent years. In principle, many of the measures needed to close 
the TCAT model formulated earlier can examine and have been examined using experimental 
means. Two general experimental approaches are especially relevant: micromodel methods based 
upon image analysis [13] and high-�ux photon attenuation methods [2,10,14,62,70]. Micromodel 
methods create a porous medium system that is thin in one dimension. Fluid displacements are then 
systematically studied and the state is observed using photographic and image-processing methods. 
While ef�cient and providing a means to observe all of the properties of interest, these systems are 
limited to those systems that are created, which are essentially 2D in nature. Because the porous 
medium systems of common interest are 3D in nature, and 3D systems behave much differently than 
2D systems, micromodel approaches are limited in general applicability.

Alternatively, natural porous medium system can be observed using high-�ux photon attenua-
tion methods, which can be produced, for example, from a synchrotron source. This approach has 
the advantage of being able to study some of the details needed for TCAT model closure in real 3D 
systems. The disadvantages are that the facilities needed are specialized, dynamics are dif�cult to 
evaluate because of the time needed to image a system, and it is often not within reach to observe 
both the spatial scale of the system and the density of states needed to characterize suf�ciently the 
equilibrium relationships sought. Therefore, while high-resolution experiments are important for 
advancing fundamental understanding of multiphase systems, they suffer from some drawbacks 
that preclude their general use for the full range of information sought.

The phase distribution morphology and topology measures needed to close the TCAT model 
formulated earlier can also be investigated using microscale modeling approaches. Approaches 
based upon idealized pore structures are embodied in pore network models, whereas discrete repre-
sentation of the real porous medium systems can also be used. The key aspect of an ideal approach 
to microscale modeling is the ability to represent real systems of suf�cient size at high resolu-
tion in a dynamic manner. Such an approach provides the means to provide all of the information 
needed to produce the necessary closure relations without the drawbacks associated with alternative 
experimental or modeling approaches. Despite the promise of microscale modeling approaches for 
determining closure relations, no modeling approach has yet been advanced to adequately resolve 
a suf�ciently large porous medium system at the necessary resolution to provide a basis for deter-
mining the closure relations sought. In addition, the simulations that have been reported in the 
literature have not included all of the measures that arise in the TCAT model formulation detailed 
earlier. Thus, while microscale modeling methods hold great promise, this promise has yet to yield 
a  suf�cient foundation for formulating the closure relations that are sought.

In the following sections, we detail LBM simulation and computational geometry approaches for 
producing dynamic, high-resolution representations of the morphology and topology of a two-�uid-
phase porous medium system. The results of these approaches can be used to motivate and guide 
the formulation of TCAT closure relations.
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20 Handbook of Porous Media

1.6 LATTICE BOLTZMANN MODELING

1.6.1 FORMULATION

LBMs are a class of numerical methods used to simulate �uid �ow by discretely approximating 
the Boltzmann equation. While many LBMs exist, a desirable method has several characteristics: 
(1) the method should conserve mass and momentum; (2) the method should be Galilean  invariant; 
(3) the moments modeled should be allowed to relax at different rates; (4) the approach chosen 
should be able to represent well-known behavior in model systems with a minimum of computa-
tional artifacts that can limit the usefulness of the results; (5) the method should be implemented 
using data structures, algorithms, and computational approaches that result in an ef�cient, scalable 
simulator on modern high-performance computing architectures; and (6) the simulator and compu-
tational environment must support simulations that are adequately resolved and of suf�cient size to 
yield a representative averaging region.

An LBM simulator that possesses these characteristics was developed for multiphase porous 
medium systems based upon the three components common to LBMs: (1) a discrete lattice and asso-
ciated sets of velocity vectors and distribution functions, (2) a collision operator expressed in terms 
of a set of equilibrium distribution functions that formulates the relaxation toward an equilibrium 
state, and (3) an evolution equation that speci�es the manner in which the model state is advanced 
from one discrete time level to the next. We detail each of these components for the selected method 
in the following text.

A regular lattice space δs dℤ  is used to represent discretely phase space in d spatial dimensions. 
A symmetric set of discrete velocity vectors Ed i i N= ={ }e | , ,0 1…  characterizes the connection of 
each lattice site xk s d∈δ ℤ  to a set of neighboring lattice sites Xk ki i N= = …{ }x | , ,0 1 . Additionally, 
a set of velocity distribution functions Fdk if i N= ={ }| , ,0 1…  is associated with the set Ed at each 
 lattice location k. The discrete distributions and velocity vectors may be obtained from their con-
tinuous counterparts in kinetic theory based on a quadrature scheme [35]. These aspects of an 
LBM are often listed in shorthand form by specifying the lattice as being of a DdQq form, where 
q = N + 1 to account for standard indexing convention that starts with 0. We used a D3Q19 lattice, 
which speci�es the discrete velocity set as

 

ei =

− − − − −

− − − − −

−

0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 11 0 0 0 0 1 1 1 1 1 1 1 1− − − −

















,  

(1.44)

where each column represents the components of the corresponding vector.
The 19 distributions evolve according to a multirelaxation time (MRT) form of the lattice 

Boltzmann equation

 f t t t f ti k i n i k n i( , ) ( , ) ,x e x+ + =δ δ − C  (1.45)

where δt is the time step.
The right side of Equation 1.45 is a collision term that accounts for the effects of intermolecular 

collisions. In practice, the form of this term is chosen to recover a desired continuum form for the 
microscale momentum transport equation by means of a multiscale expansion. The multirelaxation 
form of the collision operator is expressed in terms of moments of the distributions that are com-
puted from the distributions using a linear transformation

 m f= ⋅M .  (1.46)
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21Multiscale Modeling of Porous Medium Systems

The vector containing the 19 distributions is f, and M is a transformation matrix. Among the 
moments computed are the density, which relates to the �uid pressure

 

ρ = = =

=

∑ f
p

c
pi

i

N

s
0

2
3 ,  (1.47)

and the momentum

 

j u e= =

=

∑ρ fi

i

N

i

0

,  (1.48)

where cs is the speed of sound. The velocity is

 
u

j
=
ρ

.  (1.49)

Speci�c details for the construction of the remaining moments including the transformation 
matrix M and its inverse are available in the literature [19]. The MRT form allows each moment to 
relax toward its equilibrium value at a unique rate, with the collision operator written in moment 
space as

 
C =  M S

− −1ˆ ( , ) ( , ) .m x m xeq k n k nt t  (1.50)

The moments relax toward their equilibrium values, denoted with the subscript “eq,” at unique 
rates speci�ed by the diagonal matrix Sɵ. A detailed account of the relaxation rates for porous 
medium �ows is provided by Pan et al. [52]. The equilibrium value of the moments follows from this 
MRT formulation with additional terms present to account for surface forces, provided as follows:

 
m0eq = ρ,  (1.51)

 
m1

0

11
19

eq = − + −⋅ρ
ρ

σj j C| |,  (1.52)

 
m w

w j
2

0

eq = + ⋅ε
ε

ρ
ρ

j j,  (1.53)

 
m jx3eq = ,  (1.54)

 
m jx4

2

3
eq = − ,  (1.55)

 
m jy5eq = ,  (1.56)
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m jy6

2

3
eq = − ,  (1.57)

 
m jz7eq = ,  (1.58)

 
m jz8

2

3
eq = − ,  (1.59)

 
m j j jx y z9

0

2 2 21
2

1

2
eq = − −( )+ ⋅

ρ
σ | | ,C n n  (1.60)

 
m w m

xx10 9eq = ,  (1.61)

 
m j j n ny z y z11

0

2 2 2 21 1

2
eq  = +( )+ −( )

ρ
σ | | ,C  (1.62)

 
m w m

xx12 11eq = ,  (1.63)

 
m j j n nx y x y13

0

1 1

2
eq = +

ρ
σ | | ,C  (1.64)

 
m j j n ny z y z14

0

1 1

2
eq = +

ρ
σ | | ,C  (1.65)

 
m j j n nx z x z15

0

1 1

2
eq = +

ρ
σ | | ,C  (1.66)

 
m16 0eq = ,  (1.67)

 
m17 0eq = ,  (1.68)

and

 
m18 0eq = .  (1.69)

The parameter σ is related linearly to the interfacial tension γwn [1]. The color gradient C and the 
associated unit normal vector n are computed from the nondimensional density �eld

 
φ

ρ ρ

ρ ρ
=

−

+

w n

w n

,  (1.70)

where ρw and ρn are obtained by solving a separate lattice Boltzmann equation that recovers the 
mass transport. The value of ϕ is constant in the bulk of each phase and varies within the transition 
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23Multiscale Modeling of Porous Medium Systems

region in the �uid–�uid interface. Fluid–solid interactions (i.e., contact angle) are controlled by set-
ting the value of ϕ to a constant value within the solid phase

 φ φ( ) .x xk s k s= ∈for Ω  (1.71)

The color gradient is computed as

 

C e x e= +

=

∑
3
2

0
c

w t t

s t

i

i

N

i k i

δ
δφ( , ),  (1.72)

and the unit normal vector is

 
n

C

C
=

| |
.  (1.73)

A solution for the mass transport is provided by relying on a separate set of distributions to track the 
densities of the wetting and nonwetting phases, ρw and ρn, respectively. The associated distributions 
are computed based on these local density values, the �ow velocity is determined from Equation 
1.49, and the color gradient is determined from Equation 1.72. The distributions are determined 
by subjecting an equilibrium population to a recoloring step that minimizes the mass �ux of each 
component in the direction of the color gradient. The redistribution step conserves the mass of each 
component exactly along with the total �uid momentum [41]

 

g w
c

iw i w

s

i
w n

w n

i= +








 + +









⋅ ⋅ρ ζ

ρ ρ
ρ ρ

1
3
2

e u n e ,  (1.74)

and

 

g w
c

in i n

s

i
w n

w n

i= +








 − +









⋅ ⋅ρ ζ

ρ ρ
ρ ρ

1
3

2
e u n e .  (1.75)

The parameter ζ determines the interfacial thickness, and the quadrature weights are

 

w

q

q

q

i =

∈

∈

∈

1

3
0

1

18
1 2 3 4 5 6

1

36
7 8 9 10 11

, { }

, { , , , , , }

, { , , , , ,

for

for

for 112 13 14 15 16 17 18, , , , , , }.















 (1.76)

The density values for the subsequent time step can then be computed as

 

ρ αδ δα α( , ) ( , ) , .x x ek n i k i n

i

t t g t t w n+ = − =

=

∑
0

18

for  (1.77)

Combined with Equations 1.74 and 1.75, continuum expressions for mass conservation are thus 
obtained for each �uid component.
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24 Handbook of Porous Media

1.6.2 VERIFICATION AND PARAMETER ESTIMATION

The parameters that must be set in the LBM are ζ, which determines the width of the interface; σ, 
which controls interfacial tension; and the order parameter in the solid phase φs, which determines the 
contact angle. ζ was set to 0.9 based on previous analysis that con�rmed the parameter is independent 
of interfacial tension and demonstrated there was no advantage to having a large interfacial thickness 
[46]. The parameters σ and φs were determined to match physical parameters of interest using a bub-
ble test in the absence of a solid phase and a constrained bubble test in a capillary tube, respectively.

A 2D bubble test, in the absence of a solid phase, was used to measure the interfacial tension. 
A 40 × 40 × 3 lattice was saturated with equal parts of wetting and nonwetting phases. Initially, a 
cylindrical shaped bubble of nonwetting phase with a de�ned radius was immersed in the wetting 
phase. Periodic boundary conditions were imposed in the x and y directions, with the z boundary 
being closed to �ow. The system was allowed to progress to a steady state. When equilibrium was 
established, pwn was measured as the difference in the pressure between the two phases. The values 
of pn and pw were extracted by using the phase indicator �eld to identify the maximum pressure 
value within each phase. The pressure maxima within each phase effectively excludes the interfacial 
region where small pressure �uctuations can occur.

In the bubble tests, equilibrium was de�ned when the change of dimensionless pn − pw between 
time steps was less than 10−8; it took approximately 40,000 time steps to achieve this criterion in the 
computational domain used. The difference in �uid pressures was related to the radius of curvature 
R through the 2D Young–Laplace equation given by

 
p p

R
n w

wn
− =

γ
.  (1.78)

Simulations for various bubble sizes were carried out, and the �nal radius of curvature R was cal-
culated using imaging techniques detailed in the following text. The slope of the line relating the 
interfacial tension γwn and the parameter σ was found by plotting pn − pw as a function of 1/R and 
�tting a linear function to the data points. In order to match the experimental interfacial tension, σ 
was determined to be 6.2 × 10−3.

To control the contact angle with the LBM, the �uid–solid interactions with the solid phase were 
de�ned using a constrained bubble test suggested by Huang et al. [38]. In this case, a cylindrical 
capillary tube of radius R was used to provide a constraint on the equilibration of the bubble. With 
Equation 1.78 used to relate the interfacial curvature to the capillary pressure, the curvature was 
determined solely by the contact angle φws,wn between the wetting �uid–solid and wetting–nonwet-
ting �uid interfaces according to

 
p p

R
n w

wn ws wn
− =

2γ ϕcos ,
.  (1.79)

Given the known value for σ from the previously described bubble test, the contact angle ϕws,wn was 
determined by measuring the phase pressures and calculating pn − pw. Simulations in a capillary 
tube with a radius R = 20 were carried out for various values of ϕs and the corresponding ϕws,wn 
values were calculated. The ϕs value that corresponded to the contact angle from a target physical 
system can thus be determined.

1.6.3 VALIDATION

The computational expense required to simulate macroscale experiments has restricted the com-
parison of highly resolved microscale simulations with controlled experiments for two-�uid-phase 
�ow. While some comparisons exist, virtually no comparisons exist that successfully compare these 
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25Multiscale Modeling of Porous Medium Systems

systems for the full set of variables needed to close the TCAT model formulated earlier. Such com-
parisons of theory, experiment, and computation are a fruitful approach for advancing scienti�c 
understanding. To validate the LBM model, we performed a highly resolved microscale laboratory 
experiment and simulated this experiment using the LBM simulator with parameters determined for 
the contact angle and interfacial tension as described earlier.

The experimental methods follow the work of Pyrak-Nolte and coworkers [12]. A 2D micro-
model consisting of a photosensitive polymer (photoresist) porous medium bounded by two glass 
slides was fabricated using lithographic methods and sealed into a cell that was 500 μm × 500 μm × 
1.5 μm. Figure 1.1 is an illustration of the porous medium cell, which consisted of a distribution 
of cylinders with a porosity 0.52. In comparison to 3D systems, a higher porosity is necessary to 
ensure the connectivity of the pore space in a 2D cell. The cell was mounted horizontally on an 
optical microscope (Nikon SMZ-U Zoom 1:10) to avoid gravitational effects, and the microscope 
was interfaced to a CCD camera (Nikon D90). One outlet from the cell was connected to a wetting-
�uid-phase decane reservoir, and a second outlet was connected to a nonwetting-�uid-phase nitro-
gen reservoir with individual and differential pressures measured using transducers (Omega PX319 
and PX409). The other four boundaries of the cell were solid, no-�ow boundaries. The contact 
angle of the decane with the photoresist material and the decane–nitrogen gas interfacial tension 
were measured to be 4.1° and 24.7 dynes/cm, respectively [12]. The experiment was conducted in an 
ultraviolet-free room with temperature maintained constant at 24°C.

A displacement experiment was performed by fully saturating the porous medium region of 
the cell with decane through the inlet reservoir. Primary drainage of the cell was accomplished by 
increasing the pressure of the nitrogen reservoir such that an increasing portion of the decane was 
displaced over a series of discrete pressure steps. After each pressure step, the system was allowed 
to equilibrate, and an image of the system and the �nal pressures were recorded. A series of steps 
leading to decane imbibition followed a partial primary drainage sequence. Following drainage, an 
imbibition sequence was studied by decreasing the nitrogen pressure, allowing decane to imbibe 
back into the cell. The experimental results are shown in Figure 1.2.

A 2D LBM simulation of the drainage and imbibition sequence was performed matching experi-
mental conditions with a 0.5 μm grid resolution, and the computational results are also shown 
in Figure 1.2. In the LBM simulations, the experimental conditions were mimicked by setting a 

FIGURE 1.1 2D micromodel in which the solid is represented by black and the regions accessible to �uid 
�ow by white.
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26 Handbook of Porous Media

constant pressure boundary condition on one inlet face for one �uid and on the other inlet face 
for the second �uid and setting no-�ow boundaries for all other horizontal boundaries. The 3D 
simulator employed was reduced effectively to two dimensions by having only one interior grid 
block in the vertical dimension and periodic boundaries in this dimension. The pressure boundary 
conditions for the LBM simulation were determined by scaling the external pressure applied in the 
experimental system using the Young–Laplace equation, Equation 1.78, to give

 

( )
,

p p

R

p p

D

n w

z

nLB wLB

LBwn wn

−
− =

−

γ γ

1
 (1.80)

where
pn − pw is the pressure difference between the two �rst-kind boundary conditions for the �uids in 

the cell obtained from the pressure transducer reading
γwn is the decane–nitrogen interfacial tension (24 dynes/cm)
Rz is the principal radius of curvature in the z direction
D is the lattice resolution (0.5 μm per lattice unit)
LB denotes a value in the LBM model

The lattice spacing D is introduced to scale the dimensionless LBM variables. Note that since the 
experiments have curvature in the z direction and the 2D simulations do not, the radius of curvature 
in the vertical dimension, Rz, had to be subtracted from the pn − pw value obtained from the experi-
mental system. This reduction of dimensionality can be viewed as an assumption that the curvature 
in the vertical dimension of the experimental cell is always in an equilibrium state. Given the short 
length scale in the vertical dimension, this approach seems reasonable.

The experimental and simulated results shown in Figure 1.2 have similar shapes with simu-
lated saturations at a given pn − pw typically within a few percent of the experimentally observed 
values. Reasons for the differences between the simulated and observed results include the fol-
lowing possible sources of error: potential variations in the shape of the cylindrical features that 
make up the porous medium with depth due to overexposure or underexposure during fabrication, 

2-D LB: Drainage
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FIGURE 1.2 Pressure–saturation curves obtained from the displacement experiment and the LBM simula-
tions for the porous geometry shown in Figure 1.1.
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27Multiscale Modeling of Porous Medium Systems

the representation of the smooth cylindrical features of the experiment with a �xed-grid discrete 
lattice that is inherently jagged, the use of literature values for the contact angle and interfacial ten-
sion, pressure transducer and image analysis errors, and the use of a 2D simulation to approximate 
a 3D experiment. To further investigate the potential sources of error between the experimental 
results and the LBM simulations, a 3D LBM model was used to simulate conditions, including the 
vertical boundary conditions, consistent with the experiments using a grid resolution of 0.25 μm in 
the x–y plane and 0.015 μm in the z dimension. Figure 1.2 shows that the more highly resolved 3D 
LBM simulation more closely represents the experimental data than the less highly resolved 2D 
simulation. Part of this difference is likely due to a more accurate representation of the cylindri-
cal solid phase with an improved grid resolution. Given the known and potential sources of error, 
the agreement between the experimental data and the LBM simulations is judged to be acceptable 
and a suf�cient validation of the LBM simulator to be used for the purpose of evaluating TCAT 
closure relations.

1.7 COMPUTATIONAL GEOMETRY METHODS

The computation of variables appearing in TCAT models requires the evaluation and integration of 
data from experimental observations or microscale simulations. In general, these approaches rely 
on three main components:

 1. A suf�ciently resolved source of microscale information, which may be obtained from a 
computational simulation or from images of an experimental system

 2. A framework to numerically approximate each of the entity domains and their boundaries, 
including phases, interfaces, and common curves

 3. A means to approximate macroscale averages based upon the underlying microscale rep-
resentation of the experimental or simulated system

The regular lattice used for the LBM provides a natural way to evaluate the volumetric averages, 
with the dimensionless density �eld ϕ identifying the regions of space occupied by either phase. 
For the images of experimental systems, the phase positions are extracted by smoothing the image 
using a median �lter, then selecting an isovalue that segments the pore space between wetting and 
nonwetting phases. This isovalue also de�nes the interface between the wetting and nonwetting �u-
ids. The position of the solid phase is known, which allows all phases and interfaces to be identi�ed 
explicitly. Given this information, TCAT averages can be determined in an analogous fashion for 
both the experimental and simulated data.

To perform averaging over an interface or a common curve, a numerical approximation must 
be constructed for each of these entities. The porous medium marching cubes algorithm was used 
to approximate Ωwn, Ωws, Ωns, and Ωwns [45]. For the interfaces, lists of triangles were constructed 
to represent each entity. Line segments that approximate the common curve were extracted at the 
intersection of the three surfaces. Microscale quantities were then interpolated to points on the 
interfaces or common curve and averaged using quadrature methods to match the respective TCAT 
de�nition of each variable. For the experimental images, a 2D analog of this approach was devel-
oped to extract the interfaces present in the system and evaluate the interfacial curvature.

1.8 TCAT CLOSURE RELATIONS

1.8.1 SIMULATIONS

The veri�ed and validated LBM model was used to evaluate the closure relations needed for the 
TCAT two-�uid-phase model. Speci�cally, relations among �uid pressures, saturations, interfacial 
areas, curvatures, and dynamic evolution equations as described by Equations 1.39 through 1.43 
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28 Handbook of Porous Media

were sought. The basic notion here is that we have shown that the 2D LBM can simulate with rea-
sonable accuracy the 3D micromodel experiments. Since the micromodel is a valid porous medium 
system, we have a means to compute the detail needed to address TCAT closure relations. Although 
not strictly necessary, reducing the model to two dimensions greatly decreased the computational 
burden. Highly resolved 3D simulations would have provided a more accurate representation of the 
model system.

LBM simulations of drainage and imbibition were performed to mimic the micromodel experi-
ment used to validate the model. The initial condition was a fully wetting-phase-saturated system. 
The simulated boundary conditions were

 p y z t p tw
b
w

( , , , ) ( ),0 =  (1.81)

 p x y z t p tn
l b

n
( , , , ) ( ),=  (1.82)

 

∂
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y z t0

0

, , ,

 (1.83)

and

 

∂

∂
=

p

x

w

x y z tl , , ,

,0  (1.84)

where
xl is the length of the domain in the x direction
the subscript b denotes a boundary value, and periodic boundary conditions were used in the 

y and z dimensions

These conditions ensured that the wetting �uid and the nonwetting �uid entered and exited one face 
of the domain, matching the manner in which traditional laboratory experiments are performed. 
The boundary conditions were adjusted in discrete jumps in time and the simulator was run until 
an equilibrium state was approached, observing both the �nal approximate equilibrium state and 
the dynamics of the approach to the approximate equilibrium state. True equilibrium states were 
not simulated because interfacial curvature relaxation was not monitored and used as a termina-
tion criterion in the simulations. Termination was based upon a small change in �uid saturations. 
True equilibrium requires longer to achieve beyond the point at which �uid saturations changes are 
small. The LBM results were averaged over the domain, and these results were used to produce the 
macroscale quantities of interest in TCAT model closure.

A sequence of pressure boundary conditions was set to simulate primary drainage, main imbibi-
tion, and both imbibition and drainage scanning curves. Primary drainage was simulated until an 
asymptotic wetting-phase saturation was approached; main imbibition was simulated until a state 
where the boundary conditions were pn = pw. Figure 1.3 depicts the set of equilibrium states that 
were simulated, while the curves passing through the points indicate the sequence of the simula-
tions used to reach a given equilibrium state. As was the case with the micromodel validation exper-
iment, imbibition resulted in the formation of a disconnected, entrapped residual nonwetting phase. 
Examples of the simulated �uid displacement patterns for both primary drainage and main imbibi-
tion are depicted in Figures 1.4 and 1.5, respectively. The residual nonwetting phase is clearly shown 
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29Multiscale Modeling of Porous Medium Systems

by the set of disconnected nonwetting-phase (DNP) regions that remain after imbibition is complete. 
Each of these discrete nonwetting-phase regions formed under speci�c �uid pressure conditions. 
Therefore, each residual region at equilibrium has a distinct curvature, corresponding to a capillary 
pressure that was established at the time the disconnected region was formed. This  observation has 
implications for modeling and model closure.
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FIGURE 1.3 Pressure–saturation quasi-equilibrium states computed using the LBM.

(b) (c)

(d) (e) (f)

(a)

FIGURE 1.4 Fluid distributions for a set of equilibrium states along the simulated primary drainage curve 
shown in Figure 1.3. Black represents the solid phase, white represents the nonwetting �uid phase, and gray 
represents the wetting �uid phase. (a) sw = 0 85. , (b) sw = 0 709. , (c) sw = 0 598. , (d) sw = 0 482. , (e) sw = 0 383. , 
(f) sw = 0 272. .
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30 Handbook of Porous Media

1.8.2 CAPILLARY PRESSURE–SATURATION–INTERFACIAL AREA RELATION

Traditional two-phase-�ow models are closed using hysteretic pressure–saturation relations that 
account for nonwetting �uid entrapment but do not explicitly account for variables known from 
pore-scale analysis to be important, such as interfacial tensions, interfacial curvatures, and contact 
angles [48]. The nature of two-�uid-phase porous medium systems also suggests interfacial areas 
are important. The absence of important variables in closure relations for traditional models and 
the hysteretic nature of these relations are indicators of a modeling approach in which underlying 
physics has been relegated to implicit parameterization. The TCAT model formulated to describe 
two-�uid-phase �ow posits general functional forms of closure relations that explicitly include the 
traditionally neglected variables. As previously noted, the determination of speci�c forms of these 
relations is an active area of current and recent research. The LBM simulations summarized earlier 
provide a means to investigate these closure relations with an ultimate goal being to determine spe-
ci�c functional forms that represent the behavior of the system.

The simulated quasi-equilibrium points were analyzed to determine the �uid pressures, pw and 
pn; the average curvature, Jw

wn; the saturation of the wetting phase, sw; and the speci�c interfacial 

area, εwn. Various subsets of the entire data set were examined to gain insight into the nature of the 
relation sought. In addition, subsets of the data excluding the DNP �uid were also considered. By 
DNP, we mean that a continuous connection to the Dirichlet boundary corresponding to the non-
wetting phase cannot be traced through the system. Note that this de�nition implicitly has a length 
scale associated with it, and we take this length scale to be that associated with the averaging region 
over which the TCAT model is developed. Figure 1.5 shows cases in which a DNP forms during 
main imbibition. The goals of these simulations were to determine in a semiquantitative manner 
if the inclusion of interfacial area can remove the hysteresis associated with traditional models, 
to evaluate the role of the DNP, and to evaluate the nature of the dynamic rate of relaxation to an 
equilibrium state.

(a) (b) (c)

(d) (e) (f)

FIGURE 1.5 Fluid distributions for a set of equilibrium states along the simulated main imbibition curve 
shown in Figure 1.3. Black represents the solid phase, green represents the nonwetting �uid phase, and blue 
represents the wetting �uid phase. (a) sw = 0 356. , (b) sw = 0 43. , (c) sw = 0 52. , (d) sw = 0 705. , (e) sw = 0 855. , 
(f) sw = 0 895. .
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31Multiscale Modeling of Porous Medium Systems

The data shown in Figure 1.3 were processed using the image analysis approaches described in 
§7 to determine the TCAT variables of interest. To close the TCAT model formulated, consistent 
equations of state are needed for Equations 1.40 and 1.41. Because we know that at equilibrium 
pwn = pn − pw, a single, smooth invertible function could provide the closure information needed. 
Simulation results con�rmed that this condition is reasonable, within a small error associated with 
the estimation of the curvature. The issue thus becomes identifying the necessary function from the 
data available or at least determining if such a well-behaved function is likely to exist given the data 
available. The desired function would �t the entire data set, including all scanning curves, and be 
single valued, and thus nonhysteretic. The pooled data for the primary drainage, main imbibition, 
and all scanning curves were examined for the cases in which the DNP �uid was included with 
the nonwetting phase �uid and for the case in which the DNP �uid was excluded. By inclusion and 

exclusion of the DNP, we mean that sw and εwn were computed including either all of the nonwetting 
phase or only the continuous, connected portion of the nonwetting phase.

A polynomial function proposed to have the form

 ε
wn wn w wn w wn wb p p s b p s b p b s b+ + + + + + =0 1 2 3 4 5

2 2

0
( )  (1.85)

was �t to all of the data shown in Figure 1.3 using nonlinear least squares for the cases with and 

without the inclusion of DNP in the computation of sw and εwn. The minimized root-mean-square 
error between the estimated function and the data was computed according to
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Additionally, the mean normalized error was calculated as

 

ε
−

−

−

−
MAE

i n

wni wni

wn wn

wni wni

wnn

p p

p p
= +

=

∑
1

3
1,

*

max min

*

max mi

ε ε

ε ε nn

*

max min

.
wn

i wiw

w w

s s

s s
+

















−

−
 (1.87)

In these expressions, the sum of errors for each of the variables was computed by specifying the 

other two variables from the set of pwn, εwn, and sw and computing the root from Equation 1.85 to 
determine the third value; max denotes the maximum value; min denotes the minimum value; i is 
a data point index; n is the total number of data points in the set; and * denotes the functional value 
�t using Equation 1.85. Normalization of the variables was performed to rescale all the variables to 
a common range of [0, 1].

Nonlinear least squares yielded the coef�cients tabulated in Table 1.1, and the corresponding 
errors are listed in Table 1.2. These results show that a simple quadratic function represents the 

TABLE 1.1

Best-Fit Coef�cients for Functional Form Given by Equation 1.85

b0 b1 b2 b3 b4 b5

Inclusion of DNP −1.67 × 10−5 0.0108 −0.0011 0.0013 0.0297 −0.0398

Exclusion of DNP −2.14 × 10−5 0.0010 −0.0010 0.0015 0.0344 −0.0434
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32 Handbook of Porous Media

data reasonably well and that errors are reduced by excluding DNP from the �ts. The surface �t to 
the data is shown in Figure 1.6 for the case in which DNP is removed from the analysis. The results 
also show that the function determined is invertible and thus hysteresis is essentially eliminated. 
To further demonstrate properties of the equation of state, determined for the case with DNP 
excluded, the relationship between the observed and predicted values of sw is shown in Figure 
1.7. This �gure demonstrates that the equation of state is an accurate representation of the LBM 
simulations.

1.8.3 DISCONNECTED NONWETTING PHASE

Results from the previous section illustrated that DNP plays an important role in the behavior of 
two-�uid-phase �ow systems. It is important to identify this portion of the n phase and account 
for it appropriately in the model closure. This observation is consistent with the treatment of the 
nonwetting phase in traditional two-�uid-phase �ow models [36,48,63], where typically some 
linear or nonlinear model of the �uid saturations is used to approximate the DNP. The impor-
tance of treating the DNP differently from the connected nonwetting phase was shown as a result 
of the equation of state �tting in the previous section, and it also seems reasonable based upon 
physical reasoning. Because the LBM simulations provide complete microscale detail of the �uid 
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FIGURE 1.6 εwn as a function of pwn and sw for the case in which DNP is excluded.

TABLE 1.2

Normalized Errors for Estimation of Variables Given Functional 

Fits Corresponding to the Coef�cients Listed in Table 1.1

p p s
wn wn w wn== , ε( ) ε ε

wn wn wn w
p s== ,( ) 

εRMSE εMAE εRMSE εMAE

Inclusion of DNP 0.045 0.031 0.045 0.032

Exclusion of DNP 0.031 0.022 0.028 0.015
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33Multiscale Modeling of Porous Medium Systems

distributions, some details of the DNP are accessible based upon the simulations. For example, 
the saturations, curvatures, interfacial area, and geometric orientation tensor distribution of all 
DNP regions are available. Such information would not typically be available from traditional 
macroscale laboratory experiments, and it is also burdensome to collect such data even for high-
resolution imaging methods because of the number of discrete equilibrium points needed to 
understand the formation of DNP.

We examined two aspects of DNP residual formation: (1) the maximum volume of DNP that can 
be formed for a given system, which occurs at pwn = 0, along with identi�cation of the variable(s) 
that enable the approximation of this formation potential, and (2) the amount of DNP at any quasi-
equilibrium state. During primary drainage the nonwetting phase is connected to the boundary and 
thus DNP does not form. However, once imbibition starts from any partially drained state, DNP 
can begin to form due to snap off of the nonwetting phase. The usual case is to posit that the maxi-
mum DNP that can form in a system is a function of the minimum wetting-phase saturation that is 
achieved. Mechanistically, this means that the greater the fraction of the pore space that is accessed 
by the nonwetting phase at some point, the greater the potential to form DNP as imbibition occurs. 
The maximum DNP forms at the completion of the main imbibition stage, and the magnitude of this 
quantity depends upon the pore morphology and topology as well as the properties of the �uids and 
the solid. Because we have only examined a single system, pore morphology and topology factors 
were not evaluated in this work.

As part of the examination of the maximum DNP formation capacity, Figure 1.8 shows the rela-
tionship between the minimum wetting-phase saturation state of a system at any point in time and 
the maximum DNP that forms when pwn = 0. The main imbibition and all imbibition-scanning 
curves were used to create this �gure. These data show that a relatively smooth, monotonic, and 
nonlinear relationship exists between these two variables. Note that the shape is constrained by zero 
DNP as minimum sw approaches unity and a maximum attainable value of DNP as the minimum 
value of sw approaches the irreducible wetting-phase saturation. This curvilinear form is consistent 
with established methods of describing the DNP formation capacity [36]. Additional data could be 
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FIGURE 1.7 Error in sw resulting from the equation of state given by Equation 1.85 for the case in which 
DNP is excluded.
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34 Handbook of Porous Media

used to further re�ne this relationship, but the available data support the suggested parameterization 
of this relation as a function that depends upon the minimum value of sw.

The second aspect of DNP is the estimation of the quantity for any equilibrium state of the 
system. Given the observations made earlier, two limits can be noted for any system. The lower 
limit is

 
lim ,

,mins s

nd

w w

s

→

= 0  (1.88)

and the upper limit is

 
lim ,

,max

p p

nd nd

n w
s s

− →

=
0

 (1.89)

where

s
nd is the saturation of the DNP

min denotes a minimum value
max denotes a maximum value

Equation 1.88 is consistent with the notion that DNP does not exist during primary drainage and a 
requirement that imbibition scanning curves that are reversed will be closed at the point of depar-
ture from the primary drainage curve, and Equation 1.89 is the de�nition of the maximum DNP. 
The most appropriate function to describe the DNP at intermediate saturations will depend upon 
characteristics of the morphology and topology of the pore space.

A remaining DNP issue that has not received attention in the literature is elucidation of the 
dynamics of the formation of DNP. It seems reasonable that if the dynamics of �uid saturations, 
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FIGURE 1.8 Maximum DNP saturation that can form as a function of the minimum wetting-phase satura-
tion state of the system.
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35Multiscale Modeling of Porous Medium Systems

pressures, and interfacial areas are important and that DNP must be accounted for, then the dynam-
ics of the formation and destruction of DNP must also be modeled. No method has been advanced 
to account for this phenomenon in a TCAT-based two-�uid-phase �ow model.

1.8.4 DYNAMIC RELAXATION

The TCAT model for two-�uid phases formulated in §4 includes dynamic changes in the rela-
tionship among capillary pressure, �uid saturations, and interfacial areas. This model formulation 
makes use of a general form of a state equation for capillary pressure given as Equation 1.39, a gen-
eral form of an equilibrium relationship for interfacial area given by Equation 1.41, and a dynamic 
equation that expresses the relaxation of �uid pressures, capillary pressure, �uid saturation, and 
interfacial area to an equilibrium state. Because this formulation is new, aspects of this general 
formulation need further development and evaluation.

Consider the state equation for capillary pressure and the equilibrium relationship for interfacial 
area, which are restated as

 
p p s

wn wn w wn= ( ),ε  (1.90)

and

 
ε εeq eq

wn wn n w w
p p s= ( )− , .  (1.91)

Pore-scale simulations have been used to deduce an approximate form of Equation 1.90. This 

smooth function can be inverted to determine εwn as a function of pwn and sw; alternatively a smooth 
quadratic function can be �t to the data to represent this inverted quantity saving the issue of mul-
tiple roots. This equation has the form

 
ε

wn wn w
F p s= ( ), .  (1.92)

When the system is not at equilibrium, we can identify an expected value of εwn that would exist if 
the system were at equilibrium as

 
εeq

wn n w w
F p p s= ( )− , .  (1.93)

It can be shown that at equilibrium,

 p p p
wn n w
= − .  (1.94)

Therefore, the difference between εwn and εeq

wn is a measure of disequilibrium and is employed in 
Equation 1.30 as a driving force for evolution of the interfacial area toward equilibrium.

To evaluate the validity of Equation 1.90 as a state equation, we extracted the data from a dynamic 
portion of the LBM simulations as the system relaxed to an equilibrium state and compared the pwn 
predicted by the state equation with the pwn that was observed in the dynamic simulations. The 
results shown in Figure 1.9 demonstrate a good agreement between the capillary pressure obtained 
under dynamic conditions in the simulations and predictions based upon the state equation derived 
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36 Handbook of Porous Media

using only the quasi-equilibrium data. It seems possible that the general state equation could be 
further improved by including not only equilibrium data but also dynamic data in its formulation. 
In other words, the simple quadratic form employed in this work, Equation 1.85, can likely be 
improved upon, but the results are encouraging in the context of the model formulation that has 
been proposed.

Equation 1.33 can be restated as

 

p p p
c

s

t

k

c p p

n w wn

wn

w
wn wn wn wn

wn w n
− −

γ −

−
=

∂

∂
+

( )
( )

ε
ε ε

ˆ

ˆ

ˆ
.

1 eq

 (1.95)

Because the LBM simulations yield dynamic information of the relaxation to an equilibrium state, 
these simulations can be used to determine ĉwn and ˆk

wn

1  and to evaluate how well Equation 1.95 
 represents the simulated system. To accomplish these goals, Equation 1.95 was written as

 

ε − − −
γ −

−
dyn = +

∂

∂

( )
( )

p p p
c

s

t

k

c p p

n w wn

wn

w
wn wn wn

eq
wn

wn w n

ε
ε ε

ˆ

ˆ

ˆ
.

1

 (1.96)

Then, εdyn was minimized in a least squares sense to determine ĉwn and ˆk
wn

1  using cubic spline 
 representations of all other quantities derived from the LBM simulations. The value of various 
groupings of terms from this equation is shown in Figure 1.10. The dynamic approach to equilib-
rium was represented well by Equation 1.95, and the three groupings of terms show that all compo-
nents of this equation are important. It is especially telling that the interfacial area term is relatively 
large compared to the temporal derivative of sw, because the interfacial area term has not been 
included in other so-called dynamic capillary pressure models, suggesting that important physics 
has been overlooked in these alternative approaches.
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FIGURE 1.9 Observed versus predicted values of pwn for points from a dynamic LBM simulation of relax-
ation to an equilibrium state.
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37Multiscale Modeling of Porous Medium Systems

1.9 DISCUSSION AND CONCLUSIONS

The elements of the TCAT theory have been summarized and used to formulate a two-�uid-phase 
�ow model. The formulated model has many attractive features including connection across scales, 
a sound thermodynamic basis, inclusion of relevant physics missing from traditional models, and 
general forms of all closure relations needed to produce a solvable model. Because the formulated 
TCAT model is new and the closure relations have not yet been deduced in a speci�c and re�ned 
functional form, signi�cant work remains to produce a solvable TCAT model.

Microscale simulation methods have matured to the point that they can be used to provide the sort of 
high-resolution simulations needed to formulate meaningful closure relations. The microscale detail from 
such simulations can be averaged to determine the various TCAT quantities that emerge from the model 
formulation. An LBM method was advanced that is capable of providing the sort of information needed 
to produce the closure relations sought for the formulated TCAT model. This simulator was validated by 
comparing to micromodel experiments, which are more costly and time consuming to perform than the 
desired simulations. Thus, simulation was used as a basis to investigate the closure relations sought.

Support was provided for the existence of a smooth, invertible, and unique relationship among 
capillary pressure, �uid saturation, and interfacial area between the �uid phases. Simulation results 
revealed that a simple quadratic function represented the data more accurately when the DNP was 
excluded from the analysis. This observation is reasonable because individual regions of DNP form 
over a range of capillary pressures. It seems consistent, then, to formulate and solve models that 
account explicitly for DNP. Such a TCAT model has not been formulated. Aspects of DNP that are 
important include the maximum amount that can form in a system, the amount formed under equi-
librium conditions at any state point, and the role of dynamics in the formation and destruction of 
DNP. Signi�cant opportunities for future work exist in these open areas of knowledge.

The LBM data were used to probe the posited dynamic form of the model. These efforts revealed 
an encouraging level of agreement between the posited evolution equation and microscale observa-
tions. It appears that a local equilibrium–based state equation can describe the nonequilibrium data. 
Also of signi�cant interest is the importance of the deviation from equilibrium of the interfacial 
area state as an important component in relaxation of �uid pressures to the capillary pressure at 
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FIGURE 1.10 The line passing through the circles is the term pn − pw − pwn, the line crossing through the 
x symbols is the term involving the interfacial area in Equation (1.96), and the line crossing through the dia-
monds is the term involving the temporal derivative of saturation in Equation (1.96).
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38 Handbook of Porous Media

equilibrium. The importance of this interfacial area term has not been shown in the literature; other 
evolving multiphase models only include the change in �uid saturation in posited forms of a non-
equilibrium equation for capillary pressure.

NOMENCLATURE

b entropy body source density
C Green’s deformation tensor, ∇Xx · (∇Xx)T

Cs macroscale Green’s deformation tensor, Cs
s sΩ Ω,

C constant velocity vector
C gradient of the dimensionless density �eld/color gradient
Ci collision operator for the LBM
ĉ closure coef�cient
cs speed of sound
dα  macroscale rate of strain tensor, [ ( ) ]∇ + ∇v vα α T

/2

E internal energy density
Eα macroscale energy of entity α per total volume, Eα

αΩ Ω,

E*

α  particular material derivative form of a macroscale entity total energy conservation 
equation

Ed set of discrete velocity vectors
ei discrete velocity vector i
f general scalar function
f vector containing discrete distributions for the LBM
Fdk set of discrete distributions

Gα macroscale orientation tensor for α interface or common curve, I I−
( )
α

α α

n

Ω Ω,

G*

iα  particular material derivative form of a macroscale species-based body force potential 
 balance equation

G*

α  particular material derivative form of a macroscale entity-based body force potential 
 balance equation

g body force per unit mass, acceleration
gi
α
 LBM distribution for mass transport of phase α

h energy source density
hα macroscale energy source density for entity α
I unit tensor
Iα
( )n   unit tensor associated with 3 – n-dimensional entity, α, where (n) is the number of 

primes used
J set of entity indices
J cα connected set of indices for entity α, = ∪

+
J Jc cα α

−

J cα
+  connected set of indices of dimension higher than entity α
J cα

−  connected set of indices of dimension lower than entity α
J f  set of �uid-phase indices
J I set of interface indices
J P set of phase indices
J \s set of entity indices except the solid phase, s
J �rst curvature equal to twice the mean curvature
j Jacobian
j �uid momentum
KEα deviation kinetic energy per mass of entity α
KE

α entity-based macroscale deviation kinetic energy, 〈 ⋅ 〉( ) ( ) /, ,v v v vα
α

α
α

Ω Ω ρ− −
α α α

2

k̂
wn parameter for rate of relaxation of interfacial area
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39Multiscale Modeling of Porous Medium Systems

ˆk
wn

1  parameter for rate of relaxation of interfacial area
M
κ α→

 microscale transfer rate of mass of entity κ to entity α per entity extent

M
κ α→

 macroscale transfer rate of mass of entity κ to entity α per entity extent
M*

α particular material derivative form of a macroscale entity mass conservation equation
M transformation matrix
m vector of moments obtained as a linear combination of the distributions f
nα unit normal vector outward from boundary of entity α
ns interface between n and s phases

P
*

α  particular material derivative form of a macroscale entity momentum conservation 
equation

P pressure, interfacial tension, or common curvilinear tension based upon entity quali�er
p pressure
pwn capillary pressure of the wn interface
Q
κ α→

 general macroscale transfer rate of energy from entity κ to entity α

Q
κ α→

 general macroscale transfer rate of energy from entity κ to entity α
q nonadvective energy �ux

qα macroscale nonadvective energy �ux associated with entity α
R radius
R̂ closure scalar
r general integration variable
S*

α particular material derivative form of a macroscale entity entropy balance
sα saturation of �uid phase α
Ŝ diagonal matrix of relaxation rates
T transport theorem
T
κ α→

 general microscale transfer rate of momentum from entity κ to entity α

T
κ α→

 general macroscale transfer rate of momentum from entity κ to entity α
T*

s
 particular material derivative form of a macroscale Euler equation for a solid

T*
α particular material derivative form of a macroscale Euler equation for an entity
TG*

s   particular macroscale form of the material derivative of the body source potential of a 
solid phase

TG*
α particular macroscale form of the material derivative of the entity body source potential

t time
δt time step
t stress tensor
tα macroscale stress tensor for entity α
V set of variables
v velocity
vα κ,  velocity of �ow in an entity averaged over the boundary of the entity
W weighting function for averaging
wxx free parameter in the MRT scheme
wi weight for the LBM
w wetting phase
wn interface between w and n phases
wns common curve at boundary of wn, ws, and ns interfaces
ws interface between w and s phases
w velocity of a domain boundary
wwn vector velocity of normal component of wn interface, vwn·nwnw
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40 Handbook of Porous Media

X position vector in a solid in the initial state
Xk set of neighboring lattice sites to site xk

x position vector
δs dℤ  regular lattice space in d dimensions

GREEK SYMBOLS

α entity index
β entity index
Г boundary of a domain
γ interfacial or surface tension; common curvilinear tension
ϵ porosity
ε
α speci�c entity measure, 〈 〉1 Ω Ωα,

ζ parameter controlling interfacial width in LBM
η entropy density
η
α
 macroscale entropy of entity α per volume, 〈 〉ηα Ω Ωα,

θ temperature
θ
α entropy weighted macroscale temperature of entity α, 〈 〉θα Ω Ω ηα α α, ,

κG

wns macroscale geodesic curvature

κN

wns macroscale normal curvature
Λ entropy production rate
Λ
α macroscale entropy production rate associated with entity α

μ chemical potential
ρ mass density
σ LBM parameter used to control the interfacial tension
σ solid-phase stress tensor
σs  macroscale solid-phase stress tensor
τ dissipative part of the stress tensor
ϕ dimensionless density �eld
ϕs solid-phase value of dimensionless density �eld set to control contact angle

Φ

κ α→  general macroscale transfer of entropy from entity κ to entity α

ϕws wn,  macroscale measure of contact angle
ϕ nonadvective entropy �ux
ϕ
α macroscale nonadvective entropy �ux associated with entity α

ϕws,wn microscale contact angle

χα
k
 fraction of boundary of entity α in contact with entity κ, 〈 〉1 Ω Ωκ α,

Ψ body force potential density
Ψ

α entity-based macroscale body force potential density
ψ body force potential per unit mass
ψ
α κ,   macroscale average of body force potential density associated with one entity averaged 

over a lower-dimensional entity
Ω averaging domain
Ωα domain of entity α

SUPERSCRIPTS

eq equilibrium value
n macroscale nonwetting-phase quali�er
ns macroscale quali�er for interface between n and s phases
ss total surface of solid-phase quali�er
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41Multiscale Modeling of Porous Medium Systems

s macroscale solid-phase quali�er
T transpose
w macroscale wetting-phase quali�er
wn macroscale quali�er for interface between w and n phases
wns macroscale quali�er for common curve where wn, ws, and ns interfaces meet
ws macroscale quali�er for interface between w and s phases
α macroscale entity quali�er
α intrinsic average over entity α or macroscale property of entity α
α mass average over entity α
α uniquely de�ned average over α
– above a superscript refers to a density-weighted macroscale average
= above a superscript refers to a uniquely de�ned macroscale average
′ vector tangent to a surface
″ vector tangent to a common curve

SUBSCRIPTS

eq equilibrium value
E associated with the total energy conservation equation
eq equilibrium
G  associated with the potential energy equation
M associated with the mass conservation equation
n microscale nonwetting-phase quali�er
ns microscale quali�er for interface between n and s phases
P  associated with the momentum conservation equation
s microscale solid-phase quali�er
ss refers to the total boundary of the s phase
T total
T associated with the thermodynamic equation
TG associated with the derivative of potential energy equation
w microscale wetting-phase quali�er
wn microscale quali�er for interface between w and n phases
wns microscale quali�er for common curve where wn, ws, and ns interfaces meet
ws microscale quali�er for interface between w and s phases
α microscale entity quali�er
αα refers to the total boundary of entity α

OTHER MATHEMATICAL SYMBOLS

Dα/Dt material derivative with microscale velocity vα

D D
α

/ t material derivative with macroscale velocity vα

′D D
s

t/  material derivative on a surface where the macroscale solid is employed, ′∂ ∂ + ⋅ ′∇/ t
sv

′′D D
s

t/  material derivative on a curve where the macroscale solid is employed, ′′∂ ∂ + ⋅ ′′∇/ t
sv

∂′/∂t partial time derivative at a point �xed on a surface
∂″/∂t partial time derivative at a point �xed on a common curve
∂(n)/∂t  partial time derivative at a point �xed on 3 – n-dimensional entity, (n) is replaced by 

n primes
∇′ microscale sur�cial del operator
∇″ microscale common curve del operator
∇(n) microscale del operator for a 3 – n-dimensional entity where (n) is the number of primes
∇X gradient operator with respect to X coordinates
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42 Handbook of Porous Media

∇x gradient operator with respect to macroscale x coordinates
(n) denotes the number of primes that should appear
ˆ  a parameter de�ned at the scale indicated by the subscript or superscript on the 

parameter

〈 〉f Wα Ω Ωβ γ, ,

 

=


























∫ ∫

Ω

α

Ωβ γ

W f Wd dr r , general average of microscale property fα

fα
β
 = 〈 〉fα Ω Ωβ β,

f α = 〈 〉fα Ω Ωα α, , intrinsic average
fα
β
 = 〈 〉fα Ω Ω ρβ β α, , , general density-weighted average

f α = 〈 〉fα Ω ρα α α, ,Ω , intrinsic density-weighted average

ABBREVIATIONS

CIT classical irreversible thermodynamics
DNP disconnected nonwetting phase
LBM lattice Boltzmann method
MRT multirelaxation time
TCAT thermodynamically constrained averaging theory
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